2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
9 #include <linux/capability.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <generated/utsrelease.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 #include <linux/suspend.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
31 #include <linux/cpu.h>
32 #include <linux/console.h>
33 #include <linux/vmalloc.h>
34 #include <linux/swap.h>
37 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/sections.h>
42 /* Per cpu memory for storing cpu states in case of system crash. */
43 note_buf_t
* crash_notes
;
45 /* vmcoreinfo stuff */
46 static unsigned char vmcoreinfo_data
[VMCOREINFO_BYTES
];
47 u32 vmcoreinfo_note
[VMCOREINFO_NOTE_SIZE
/4];
48 size_t vmcoreinfo_size
;
49 size_t vmcoreinfo_max_size
= sizeof(vmcoreinfo_data
);
51 /* Location of the reserved area for the crash kernel */
52 struct resource crashk_res
= {
53 .name
= "Crash kernel",
56 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
59 int kexec_should_crash(struct task_struct
*p
)
61 if (in_interrupt() || !p
->pid
|| is_global_init(p
) || panic_on_oops
)
67 * When kexec transitions to the new kernel there is a one-to-one
68 * mapping between physical and virtual addresses. On processors
69 * where you can disable the MMU this is trivial, and easy. For
70 * others it is still a simple predictable page table to setup.
72 * In that environment kexec copies the new kernel to its final
73 * resting place. This means I can only support memory whose
74 * physical address can fit in an unsigned long. In particular
75 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
76 * If the assembly stub has more restrictive requirements
77 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
78 * defined more restrictively in <asm/kexec.h>.
80 * The code for the transition from the current kernel to the
81 * the new kernel is placed in the control_code_buffer, whose size
82 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
83 * page of memory is necessary, but some architectures require more.
84 * Because this memory must be identity mapped in the transition from
85 * virtual to physical addresses it must live in the range
86 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
89 * The assembly stub in the control code buffer is passed a linked list
90 * of descriptor pages detailing the source pages of the new kernel,
91 * and the destination addresses of those source pages. As this data
92 * structure is not used in the context of the current OS, it must
95 * The code has been made to work with highmem pages and will use a
96 * destination page in its final resting place (if it happens
97 * to allocate it). The end product of this is that most of the
98 * physical address space, and most of RAM can be used.
100 * Future directions include:
101 * - allocating a page table with the control code buffer identity
102 * mapped, to simplify machine_kexec and make kexec_on_panic more
107 * KIMAGE_NO_DEST is an impossible destination address..., for
108 * allocating pages whose destination address we do not care about.
110 #define KIMAGE_NO_DEST (-1UL)
112 static int kimage_is_destination_range(struct kimage
*image
,
113 unsigned long start
, unsigned long end
);
114 static struct page
*kimage_alloc_page(struct kimage
*image
,
118 static int do_kimage_alloc(struct kimage
**rimage
, unsigned long entry
,
119 unsigned long nr_segments
,
120 struct kexec_segment __user
*segments
)
122 size_t segment_bytes
;
123 struct kimage
*image
;
127 /* Allocate a controlling structure */
129 image
= kzalloc(sizeof(*image
), GFP_KERNEL
);
134 image
->entry
= &image
->head
;
135 image
->last_entry
= &image
->head
;
136 image
->control_page
= ~0; /* By default this does not apply */
137 image
->start
= entry
;
138 image
->type
= KEXEC_TYPE_DEFAULT
;
140 /* Initialize the list of control pages */
141 INIT_LIST_HEAD(&image
->control_pages
);
143 /* Initialize the list of destination pages */
144 INIT_LIST_HEAD(&image
->dest_pages
);
146 /* Initialize the list of unuseable pages */
147 INIT_LIST_HEAD(&image
->unuseable_pages
);
149 /* Read in the segments */
150 image
->nr_segments
= nr_segments
;
151 segment_bytes
= nr_segments
* sizeof(*segments
);
152 result
= copy_from_user(image
->segment
, segments
, segment_bytes
);
157 * Verify we have good destination addresses. The caller is
158 * responsible for making certain we don't attempt to load
159 * the new image into invalid or reserved areas of RAM. This
160 * just verifies it is an address we can use.
162 * Since the kernel does everything in page size chunks ensure
163 * the destination addreses are page aligned. Too many
164 * special cases crop of when we don't do this. The most
165 * insidious is getting overlapping destination addresses
166 * simply because addresses are changed to page size
169 result
= -EADDRNOTAVAIL
;
170 for (i
= 0; i
< nr_segments
; i
++) {
171 unsigned long mstart
, mend
;
173 mstart
= image
->segment
[i
].mem
;
174 mend
= mstart
+ image
->segment
[i
].memsz
;
175 if ((mstart
& ~PAGE_MASK
) || (mend
& ~PAGE_MASK
))
177 if (mend
>= KEXEC_DESTINATION_MEMORY_LIMIT
)
181 /* Verify our destination addresses do not overlap.
182 * If we alloed overlapping destination addresses
183 * through very weird things can happen with no
184 * easy explanation as one segment stops on another.
187 for (i
= 0; i
< nr_segments
; i
++) {
188 unsigned long mstart
, mend
;
191 mstart
= image
->segment
[i
].mem
;
192 mend
= mstart
+ image
->segment
[i
].memsz
;
193 for (j
= 0; j
< i
; j
++) {
194 unsigned long pstart
, pend
;
195 pstart
= image
->segment
[j
].mem
;
196 pend
= pstart
+ image
->segment
[j
].memsz
;
197 /* Do the segments overlap ? */
198 if ((mend
> pstart
) && (mstart
< pend
))
203 /* Ensure our buffer sizes are strictly less than
204 * our memory sizes. This should always be the case,
205 * and it is easier to check up front than to be surprised
209 for (i
= 0; i
< nr_segments
; i
++) {
210 if (image
->segment
[i
].bufsz
> image
->segment
[i
].memsz
)
225 static int kimage_normal_alloc(struct kimage
**rimage
, unsigned long entry
,
226 unsigned long nr_segments
,
227 struct kexec_segment __user
*segments
)
230 struct kimage
*image
;
232 /* Allocate and initialize a controlling structure */
234 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
241 * Find a location for the control code buffer, and add it
242 * the vector of segments so that it's pages will also be
243 * counted as destination pages.
246 image
->control_code_page
= kimage_alloc_control_pages(image
,
247 get_order(KEXEC_CONTROL_PAGE_SIZE
));
248 if (!image
->control_code_page
) {
249 printk(KERN_ERR
"Could not allocate control_code_buffer\n");
253 image
->swap_page
= kimage_alloc_control_pages(image
, 0);
254 if (!image
->swap_page
) {
255 printk(KERN_ERR
"Could not allocate swap buffer\n");
269 static int kimage_crash_alloc(struct kimage
**rimage
, unsigned long entry
,
270 unsigned long nr_segments
,
271 struct kexec_segment __user
*segments
)
274 struct kimage
*image
;
278 /* Verify we have a valid entry point */
279 if ((entry
< crashk_res
.start
) || (entry
> crashk_res
.end
)) {
280 result
= -EADDRNOTAVAIL
;
284 /* Allocate and initialize a controlling structure */
285 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
289 /* Enable the special crash kernel control page
292 image
->control_page
= crashk_res
.start
;
293 image
->type
= KEXEC_TYPE_CRASH
;
296 * Verify we have good destination addresses. Normally
297 * the caller is responsible for making certain we don't
298 * attempt to load the new image into invalid or reserved
299 * areas of RAM. But crash kernels are preloaded into a
300 * reserved area of ram. We must ensure the addresses
301 * are in the reserved area otherwise preloading the
302 * kernel could corrupt things.
304 result
= -EADDRNOTAVAIL
;
305 for (i
= 0; i
< nr_segments
; i
++) {
306 unsigned long mstart
, mend
;
308 mstart
= image
->segment
[i
].mem
;
309 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
310 /* Ensure we are within the crash kernel limits */
311 if ((mstart
< crashk_res
.start
) || (mend
> crashk_res
.end
))
316 * Find a location for the control code buffer, and add
317 * the vector of segments so that it's pages will also be
318 * counted as destination pages.
321 image
->control_code_page
= kimage_alloc_control_pages(image
,
322 get_order(KEXEC_CONTROL_PAGE_SIZE
));
323 if (!image
->control_code_page
) {
324 printk(KERN_ERR
"Could not allocate control_code_buffer\n");
338 static int kimage_is_destination_range(struct kimage
*image
,
344 for (i
= 0; i
< image
->nr_segments
; i
++) {
345 unsigned long mstart
, mend
;
347 mstart
= image
->segment
[i
].mem
;
348 mend
= mstart
+ image
->segment
[i
].memsz
;
349 if ((end
> mstart
) && (start
< mend
))
356 static struct page
*kimage_alloc_pages(gfp_t gfp_mask
, unsigned int order
)
360 pages
= alloc_pages(gfp_mask
, order
);
362 unsigned int count
, i
;
363 pages
->mapping
= NULL
;
364 set_page_private(pages
, order
);
366 for (i
= 0; i
< count
; i
++)
367 SetPageReserved(pages
+ i
);
373 static void kimage_free_pages(struct page
*page
)
375 unsigned int order
, count
, i
;
377 order
= page_private(page
);
379 for (i
= 0; i
< count
; i
++)
380 ClearPageReserved(page
+ i
);
381 __free_pages(page
, order
);
384 static void kimage_free_page_list(struct list_head
*list
)
386 struct list_head
*pos
, *next
;
388 list_for_each_safe(pos
, next
, list
) {
391 page
= list_entry(pos
, struct page
, lru
);
392 list_del(&page
->lru
);
393 kimage_free_pages(page
);
397 static struct page
*kimage_alloc_normal_control_pages(struct kimage
*image
,
400 /* Control pages are special, they are the intermediaries
401 * that are needed while we copy the rest of the pages
402 * to their final resting place. As such they must
403 * not conflict with either the destination addresses
404 * or memory the kernel is already using.
406 * The only case where we really need more than one of
407 * these are for architectures where we cannot disable
408 * the MMU and must instead generate an identity mapped
409 * page table for all of the memory.
411 * At worst this runs in O(N) of the image size.
413 struct list_head extra_pages
;
418 INIT_LIST_HEAD(&extra_pages
);
420 /* Loop while I can allocate a page and the page allocated
421 * is a destination page.
424 unsigned long pfn
, epfn
, addr
, eaddr
;
426 pages
= kimage_alloc_pages(GFP_KERNEL
, order
);
429 pfn
= page_to_pfn(pages
);
431 addr
= pfn
<< PAGE_SHIFT
;
432 eaddr
= epfn
<< PAGE_SHIFT
;
433 if ((epfn
>= (KEXEC_CONTROL_MEMORY_LIMIT
>> PAGE_SHIFT
)) ||
434 kimage_is_destination_range(image
, addr
, eaddr
)) {
435 list_add(&pages
->lru
, &extra_pages
);
441 /* Remember the allocated page... */
442 list_add(&pages
->lru
, &image
->control_pages
);
444 /* Because the page is already in it's destination
445 * location we will never allocate another page at
446 * that address. Therefore kimage_alloc_pages
447 * will not return it (again) and we don't need
448 * to give it an entry in image->segment[].
451 /* Deal with the destination pages I have inadvertently allocated.
453 * Ideally I would convert multi-page allocations into single
454 * page allocations, and add everyting to image->dest_pages.
456 * For now it is simpler to just free the pages.
458 kimage_free_page_list(&extra_pages
);
463 static struct page
*kimage_alloc_crash_control_pages(struct kimage
*image
,
466 /* Control pages are special, they are the intermediaries
467 * that are needed while we copy the rest of the pages
468 * to their final resting place. As such they must
469 * not conflict with either the destination addresses
470 * or memory the kernel is already using.
472 * Control pages are also the only pags we must allocate
473 * when loading a crash kernel. All of the other pages
474 * are specified by the segments and we just memcpy
475 * into them directly.
477 * The only case where we really need more than one of
478 * these are for architectures where we cannot disable
479 * the MMU and must instead generate an identity mapped
480 * page table for all of the memory.
482 * Given the low demand this implements a very simple
483 * allocator that finds the first hole of the appropriate
484 * size in the reserved memory region, and allocates all
485 * of the memory up to and including the hole.
487 unsigned long hole_start
, hole_end
, size
;
491 size
= (1 << order
) << PAGE_SHIFT
;
492 hole_start
= (image
->control_page
+ (size
- 1)) & ~(size
- 1);
493 hole_end
= hole_start
+ size
- 1;
494 while (hole_end
<= crashk_res
.end
) {
497 if (hole_end
> KEXEC_CONTROL_MEMORY_LIMIT
)
499 if (hole_end
> crashk_res
.end
)
501 /* See if I overlap any of the segments */
502 for (i
= 0; i
< image
->nr_segments
; i
++) {
503 unsigned long mstart
, mend
;
505 mstart
= image
->segment
[i
].mem
;
506 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
507 if ((hole_end
>= mstart
) && (hole_start
<= mend
)) {
508 /* Advance the hole to the end of the segment */
509 hole_start
= (mend
+ (size
- 1)) & ~(size
- 1);
510 hole_end
= hole_start
+ size
- 1;
514 /* If I don't overlap any segments I have found my hole! */
515 if (i
== image
->nr_segments
) {
516 pages
= pfn_to_page(hole_start
>> PAGE_SHIFT
);
521 image
->control_page
= hole_end
;
527 struct page
*kimage_alloc_control_pages(struct kimage
*image
,
530 struct page
*pages
= NULL
;
532 switch (image
->type
) {
533 case KEXEC_TYPE_DEFAULT
:
534 pages
= kimage_alloc_normal_control_pages(image
, order
);
536 case KEXEC_TYPE_CRASH
:
537 pages
= kimage_alloc_crash_control_pages(image
, order
);
544 static int kimage_add_entry(struct kimage
*image
, kimage_entry_t entry
)
546 if (*image
->entry
!= 0)
549 if (image
->entry
== image
->last_entry
) {
550 kimage_entry_t
*ind_page
;
553 page
= kimage_alloc_page(image
, GFP_KERNEL
, KIMAGE_NO_DEST
);
557 ind_page
= page_address(page
);
558 *image
->entry
= virt_to_phys(ind_page
) | IND_INDIRECTION
;
559 image
->entry
= ind_page
;
560 image
->last_entry
= ind_page
+
561 ((PAGE_SIZE
/sizeof(kimage_entry_t
)) - 1);
563 *image
->entry
= entry
;
570 static int kimage_set_destination(struct kimage
*image
,
571 unsigned long destination
)
575 destination
&= PAGE_MASK
;
576 result
= kimage_add_entry(image
, destination
| IND_DESTINATION
);
578 image
->destination
= destination
;
584 static int kimage_add_page(struct kimage
*image
, unsigned long page
)
589 result
= kimage_add_entry(image
, page
| IND_SOURCE
);
591 image
->destination
+= PAGE_SIZE
;
597 static void kimage_free_extra_pages(struct kimage
*image
)
599 /* Walk through and free any extra destination pages I may have */
600 kimage_free_page_list(&image
->dest_pages
);
602 /* Walk through and free any unuseable pages I have cached */
603 kimage_free_page_list(&image
->unuseable_pages
);
606 static void kimage_terminate(struct kimage
*image
)
608 if (*image
->entry
!= 0)
611 *image
->entry
= IND_DONE
;
614 #define for_each_kimage_entry(image, ptr, entry) \
615 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
616 ptr = (entry & IND_INDIRECTION)? \
617 phys_to_virt((entry & PAGE_MASK)): ptr +1)
619 static void kimage_free_entry(kimage_entry_t entry
)
623 page
= pfn_to_page(entry
>> PAGE_SHIFT
);
624 kimage_free_pages(page
);
627 static void kimage_free(struct kimage
*image
)
629 kimage_entry_t
*ptr
, entry
;
630 kimage_entry_t ind
= 0;
635 kimage_free_extra_pages(image
);
636 for_each_kimage_entry(image
, ptr
, entry
) {
637 if (entry
& IND_INDIRECTION
) {
638 /* Free the previous indirection page */
639 if (ind
& IND_INDIRECTION
)
640 kimage_free_entry(ind
);
641 /* Save this indirection page until we are
646 else if (entry
& IND_SOURCE
)
647 kimage_free_entry(entry
);
649 /* Free the final indirection page */
650 if (ind
& IND_INDIRECTION
)
651 kimage_free_entry(ind
);
653 /* Handle any machine specific cleanup */
654 machine_kexec_cleanup(image
);
656 /* Free the kexec control pages... */
657 kimage_free_page_list(&image
->control_pages
);
661 static kimage_entry_t
*kimage_dst_used(struct kimage
*image
,
664 kimage_entry_t
*ptr
, entry
;
665 unsigned long destination
= 0;
667 for_each_kimage_entry(image
, ptr
, entry
) {
668 if (entry
& IND_DESTINATION
)
669 destination
= entry
& PAGE_MASK
;
670 else if (entry
& IND_SOURCE
) {
671 if (page
== destination
)
673 destination
+= PAGE_SIZE
;
680 static struct page
*kimage_alloc_page(struct kimage
*image
,
682 unsigned long destination
)
685 * Here we implement safeguards to ensure that a source page
686 * is not copied to its destination page before the data on
687 * the destination page is no longer useful.
689 * To do this we maintain the invariant that a source page is
690 * either its own destination page, or it is not a
691 * destination page at all.
693 * That is slightly stronger than required, but the proof
694 * that no problems will not occur is trivial, and the
695 * implementation is simply to verify.
697 * When allocating all pages normally this algorithm will run
698 * in O(N) time, but in the worst case it will run in O(N^2)
699 * time. If the runtime is a problem the data structures can
706 * Walk through the list of destination pages, and see if I
709 list_for_each_entry(page
, &image
->dest_pages
, lru
) {
710 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
711 if (addr
== destination
) {
712 list_del(&page
->lru
);
720 /* Allocate a page, if we run out of memory give up */
721 page
= kimage_alloc_pages(gfp_mask
, 0);
724 /* If the page cannot be used file it away */
725 if (page_to_pfn(page
) >
726 (KEXEC_SOURCE_MEMORY_LIMIT
>> PAGE_SHIFT
)) {
727 list_add(&page
->lru
, &image
->unuseable_pages
);
730 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
732 /* If it is the destination page we want use it */
733 if (addr
== destination
)
736 /* If the page is not a destination page use it */
737 if (!kimage_is_destination_range(image
, addr
,
742 * I know that the page is someones destination page.
743 * See if there is already a source page for this
744 * destination page. And if so swap the source pages.
746 old
= kimage_dst_used(image
, addr
);
749 unsigned long old_addr
;
750 struct page
*old_page
;
752 old_addr
= *old
& PAGE_MASK
;
753 old_page
= pfn_to_page(old_addr
>> PAGE_SHIFT
);
754 copy_highpage(page
, old_page
);
755 *old
= addr
| (*old
& ~PAGE_MASK
);
757 /* The old page I have found cannot be a
758 * destination page, so return it if it's
759 * gfp_flags honor the ones passed in.
761 if (!(gfp_mask
& __GFP_HIGHMEM
) &&
762 PageHighMem(old_page
)) {
763 kimage_free_pages(old_page
);
771 /* Place the page on the destination list I
774 list_add(&page
->lru
, &image
->dest_pages
);
781 static int kimage_load_normal_segment(struct kimage
*image
,
782 struct kexec_segment
*segment
)
785 unsigned long ubytes
, mbytes
;
787 unsigned char __user
*buf
;
791 ubytes
= segment
->bufsz
;
792 mbytes
= segment
->memsz
;
793 maddr
= segment
->mem
;
795 result
= kimage_set_destination(image
, maddr
);
802 size_t uchunk
, mchunk
;
804 page
= kimage_alloc_page(image
, GFP_HIGHUSER
, maddr
);
809 result
= kimage_add_page(image
, page_to_pfn(page
)
815 /* Start with a clear page */
816 memset(ptr
, 0, PAGE_SIZE
);
817 ptr
+= maddr
& ~PAGE_MASK
;
818 mchunk
= PAGE_SIZE
- (maddr
& ~PAGE_MASK
);
826 result
= copy_from_user(ptr
, buf
, uchunk
);
829 result
= (result
< 0) ? result
: -EIO
;
841 static int kimage_load_crash_segment(struct kimage
*image
,
842 struct kexec_segment
*segment
)
844 /* For crash dumps kernels we simply copy the data from
845 * user space to it's destination.
846 * We do things a page at a time for the sake of kmap.
849 unsigned long ubytes
, mbytes
;
851 unsigned char __user
*buf
;
855 ubytes
= segment
->bufsz
;
856 mbytes
= segment
->memsz
;
857 maddr
= segment
->mem
;
861 size_t uchunk
, mchunk
;
863 page
= pfn_to_page(maddr
>> PAGE_SHIFT
);
869 ptr
+= maddr
& ~PAGE_MASK
;
870 mchunk
= PAGE_SIZE
- (maddr
& ~PAGE_MASK
);
875 if (uchunk
> ubytes
) {
877 /* Zero the trailing part of the page */
878 memset(ptr
+ uchunk
, 0, mchunk
- uchunk
);
880 result
= copy_from_user(ptr
, buf
, uchunk
);
881 kexec_flush_icache_page(page
);
884 result
= (result
< 0) ? result
: -EIO
;
896 static int kimage_load_segment(struct kimage
*image
,
897 struct kexec_segment
*segment
)
899 int result
= -ENOMEM
;
901 switch (image
->type
) {
902 case KEXEC_TYPE_DEFAULT
:
903 result
= kimage_load_normal_segment(image
, segment
);
905 case KEXEC_TYPE_CRASH
:
906 result
= kimage_load_crash_segment(image
, segment
);
914 * Exec Kernel system call: for obvious reasons only root may call it.
916 * This call breaks up into three pieces.
917 * - A generic part which loads the new kernel from the current
918 * address space, and very carefully places the data in the
921 * - A generic part that interacts with the kernel and tells all of
922 * the devices to shut down. Preventing on-going dmas, and placing
923 * the devices in a consistent state so a later kernel can
926 * - A machine specific part that includes the syscall number
927 * and the copies the image to it's final destination. And
928 * jumps into the image at entry.
930 * kexec does not sync, or unmount filesystems so if you need
931 * that to happen you need to do that yourself.
933 struct kimage
*kexec_image
;
934 struct kimage
*kexec_crash_image
;
936 static DEFINE_MUTEX(kexec_mutex
);
938 SYSCALL_DEFINE4(kexec_load
, unsigned long, entry
, unsigned long, nr_segments
,
939 struct kexec_segment __user
*, segments
, unsigned long, flags
)
941 struct kimage
**dest_image
, *image
;
944 /* We only trust the superuser with rebooting the system. */
945 if (!capable(CAP_SYS_BOOT
))
949 * Verify we have a legal set of flags
950 * This leaves us room for future extensions.
952 if ((flags
& KEXEC_FLAGS
) != (flags
& ~KEXEC_ARCH_MASK
))
955 /* Verify we are on the appropriate architecture */
956 if (((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH
) &&
957 ((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH_DEFAULT
))
960 /* Put an artificial cap on the number
961 * of segments passed to kexec_load.
963 if (nr_segments
> KEXEC_SEGMENT_MAX
)
969 /* Because we write directly to the reserved memory
970 * region when loading crash kernels we need a mutex here to
971 * prevent multiple crash kernels from attempting to load
972 * simultaneously, and to prevent a crash kernel from loading
973 * over the top of a in use crash kernel.
975 * KISS: always take the mutex.
977 if (!mutex_trylock(&kexec_mutex
))
980 dest_image
= &kexec_image
;
981 if (flags
& KEXEC_ON_CRASH
)
982 dest_image
= &kexec_crash_image
;
983 if (nr_segments
> 0) {
986 /* Loading another kernel to reboot into */
987 if ((flags
& KEXEC_ON_CRASH
) == 0)
988 result
= kimage_normal_alloc(&image
, entry
,
989 nr_segments
, segments
);
990 /* Loading another kernel to switch to if this one crashes */
991 else if (flags
& KEXEC_ON_CRASH
) {
992 /* Free any current crash dump kernel before
995 kimage_free(xchg(&kexec_crash_image
, NULL
));
996 result
= kimage_crash_alloc(&image
, entry
,
997 nr_segments
, segments
);
1002 if (flags
& KEXEC_PRESERVE_CONTEXT
)
1003 image
->preserve_context
= 1;
1004 result
= machine_kexec_prepare(image
);
1008 for (i
= 0; i
< nr_segments
; i
++) {
1009 result
= kimage_load_segment(image
, &image
->segment
[i
]);
1013 kimage_terminate(image
);
1015 /* Install the new kernel, and Uninstall the old */
1016 image
= xchg(dest_image
, image
);
1019 mutex_unlock(&kexec_mutex
);
1025 #ifdef CONFIG_COMPAT
1026 asmlinkage
long compat_sys_kexec_load(unsigned long entry
,
1027 unsigned long nr_segments
,
1028 struct compat_kexec_segment __user
*segments
,
1029 unsigned long flags
)
1031 struct compat_kexec_segment in
;
1032 struct kexec_segment out
, __user
*ksegments
;
1033 unsigned long i
, result
;
1035 /* Don't allow clients that don't understand the native
1036 * architecture to do anything.
1038 if ((flags
& KEXEC_ARCH_MASK
) == KEXEC_ARCH_DEFAULT
)
1041 if (nr_segments
> KEXEC_SEGMENT_MAX
)
1044 ksegments
= compat_alloc_user_space(nr_segments
* sizeof(out
));
1045 for (i
=0; i
< nr_segments
; i
++) {
1046 result
= copy_from_user(&in
, &segments
[i
], sizeof(in
));
1050 out
.buf
= compat_ptr(in
.buf
);
1051 out
.bufsz
= in
.bufsz
;
1053 out
.memsz
= in
.memsz
;
1055 result
= copy_to_user(&ksegments
[i
], &out
, sizeof(out
));
1060 return sys_kexec_load(entry
, nr_segments
, ksegments
, flags
);
1064 void crash_kexec(struct pt_regs
*regs
)
1066 /* Take the kexec_mutex here to prevent sys_kexec_load
1067 * running on one cpu from replacing the crash kernel
1068 * we are using after a panic on a different cpu.
1070 * If the crash kernel was not located in a fixed area
1071 * of memory the xchg(&kexec_crash_image) would be
1072 * sufficient. But since I reuse the memory...
1074 if (mutex_trylock(&kexec_mutex
)) {
1075 if (kexec_crash_image
) {
1076 struct pt_regs fixed_regs
;
1077 crash_setup_regs(&fixed_regs
, regs
);
1078 crash_save_vmcoreinfo();
1079 machine_crash_shutdown(&fixed_regs
);
1080 machine_kexec(kexec_crash_image
);
1082 mutex_unlock(&kexec_mutex
);
1086 size_t crash_get_memory_size(void)
1089 mutex_lock(&kexec_mutex
);
1090 size
= crashk_res
.end
- crashk_res
.start
+ 1;
1091 mutex_unlock(&kexec_mutex
);
1095 static void free_reserved_phys_range(unsigned long begin
, unsigned long end
)
1099 for (addr
= begin
; addr
< end
; addr
+= PAGE_SIZE
) {
1100 ClearPageReserved(pfn_to_page(addr
>> PAGE_SHIFT
));
1101 init_page_count(pfn_to_page(addr
>> PAGE_SHIFT
));
1102 free_page((unsigned long)__va(addr
));
1107 int crash_shrink_memory(unsigned long new_size
)
1110 unsigned long start
, end
;
1112 mutex_lock(&kexec_mutex
);
1114 if (kexec_crash_image
) {
1118 start
= crashk_res
.start
;
1119 end
= crashk_res
.end
;
1121 if (new_size
>= end
- start
+ 1) {
1123 if (new_size
== end
- start
+ 1)
1128 start
= roundup(start
, PAGE_SIZE
);
1129 end
= roundup(start
+ new_size
, PAGE_SIZE
);
1131 free_reserved_phys_range(end
, crashk_res
.end
);
1134 crashk_res
.end
= end
;
1135 release_resource(&crashk_res
);
1137 crashk_res
.end
= end
- 1;
1140 mutex_unlock(&kexec_mutex
);
1144 static u32
*append_elf_note(u32
*buf
, char *name
, unsigned type
, void *data
,
1147 struct elf_note note
;
1149 note
.n_namesz
= strlen(name
) + 1;
1150 note
.n_descsz
= data_len
;
1152 memcpy(buf
, ¬e
, sizeof(note
));
1153 buf
+= (sizeof(note
) + 3)/4;
1154 memcpy(buf
, name
, note
.n_namesz
);
1155 buf
+= (note
.n_namesz
+ 3)/4;
1156 memcpy(buf
, data
, note
.n_descsz
);
1157 buf
+= (note
.n_descsz
+ 3)/4;
1162 static void final_note(u32
*buf
)
1164 struct elf_note note
;
1169 memcpy(buf
, ¬e
, sizeof(note
));
1172 void crash_save_cpu(struct pt_regs
*regs
, int cpu
)
1174 struct elf_prstatus prstatus
;
1177 if ((cpu
< 0) || (cpu
>= nr_cpu_ids
))
1180 /* Using ELF notes here is opportunistic.
1181 * I need a well defined structure format
1182 * for the data I pass, and I need tags
1183 * on the data to indicate what information I have
1184 * squirrelled away. ELF notes happen to provide
1185 * all of that, so there is no need to invent something new.
1187 buf
= (u32
*)per_cpu_ptr(crash_notes
, cpu
);
1190 memset(&prstatus
, 0, sizeof(prstatus
));
1191 prstatus
.pr_pid
= current
->pid
;
1192 elf_core_copy_kernel_regs(&prstatus
.pr_reg
, regs
);
1193 buf
= append_elf_note(buf
, KEXEC_CORE_NOTE_NAME
, NT_PRSTATUS
,
1194 &prstatus
, sizeof(prstatus
));
1198 static int __init
crash_notes_memory_init(void)
1200 /* Allocate memory for saving cpu registers. */
1201 crash_notes
= alloc_percpu(note_buf_t
);
1203 printk("Kexec: Memory allocation for saving cpu register"
1204 " states failed\n");
1209 module_init(crash_notes_memory_init
)
1213 * parsing the "crashkernel" commandline
1215 * this code is intended to be called from architecture specific code
1220 * This function parses command lines in the format
1222 * crashkernel=ramsize-range:size[,...][@offset]
1224 * The function returns 0 on success and -EINVAL on failure.
1226 static int __init
parse_crashkernel_mem(char *cmdline
,
1227 unsigned long long system_ram
,
1228 unsigned long long *crash_size
,
1229 unsigned long long *crash_base
)
1231 char *cur
= cmdline
, *tmp
;
1233 /* for each entry of the comma-separated list */
1235 unsigned long long start
, end
= ULLONG_MAX
, size
;
1237 /* get the start of the range */
1238 start
= memparse(cur
, &tmp
);
1240 pr_warning("crashkernel: Memory value expected\n");
1245 pr_warning("crashkernel: '-' expected\n");
1250 /* if no ':' is here, than we read the end */
1252 end
= memparse(cur
, &tmp
);
1254 pr_warning("crashkernel: Memory "
1255 "value expected\n");
1260 pr_warning("crashkernel: end <= start\n");
1266 pr_warning("crashkernel: ':' expected\n");
1271 size
= memparse(cur
, &tmp
);
1273 pr_warning("Memory value expected\n");
1277 if (size
>= system_ram
) {
1278 pr_warning("crashkernel: invalid size\n");
1283 if (system_ram
>= start
&& system_ram
< end
) {
1287 } while (*cur
++ == ',');
1289 if (*crash_size
> 0) {
1290 while (*cur
&& *cur
!= ' ' && *cur
!= '@')
1294 *crash_base
= memparse(cur
, &tmp
);
1296 pr_warning("Memory value expected "
1307 * That function parses "simple" (old) crashkernel command lines like
1309 * crashkernel=size[@offset]
1311 * It returns 0 on success and -EINVAL on failure.
1313 static int __init
parse_crashkernel_simple(char *cmdline
,
1314 unsigned long long *crash_size
,
1315 unsigned long long *crash_base
)
1317 char *cur
= cmdline
;
1319 *crash_size
= memparse(cmdline
, &cur
);
1320 if (cmdline
== cur
) {
1321 pr_warning("crashkernel: memory value expected\n");
1326 *crash_base
= memparse(cur
+1, &cur
);
1332 * That function is the entry point for command line parsing and should be
1333 * called from the arch-specific code.
1335 int __init
parse_crashkernel(char *cmdline
,
1336 unsigned long long system_ram
,
1337 unsigned long long *crash_size
,
1338 unsigned long long *crash_base
)
1340 char *p
= cmdline
, *ck_cmdline
= NULL
;
1341 char *first_colon
, *first_space
;
1343 BUG_ON(!crash_size
|| !crash_base
);
1347 /* find crashkernel and use the last one if there are more */
1348 p
= strstr(p
, "crashkernel=");
1351 p
= strstr(p
+1, "crashkernel=");
1357 ck_cmdline
+= 12; /* strlen("crashkernel=") */
1360 * if the commandline contains a ':', then that's the extended
1361 * syntax -- if not, it must be the classic syntax
1363 first_colon
= strchr(ck_cmdline
, ':');
1364 first_space
= strchr(ck_cmdline
, ' ');
1365 if (first_colon
&& (!first_space
|| first_colon
< first_space
))
1366 return parse_crashkernel_mem(ck_cmdline
, system_ram
,
1367 crash_size
, crash_base
);
1369 return parse_crashkernel_simple(ck_cmdline
, crash_size
,
1377 void crash_save_vmcoreinfo(void)
1381 if (!vmcoreinfo_size
)
1384 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1386 buf
= (u32
*)vmcoreinfo_note
;
1388 buf
= append_elf_note(buf
, VMCOREINFO_NOTE_NAME
, 0, vmcoreinfo_data
,
1394 void vmcoreinfo_append_str(const char *fmt
, ...)
1400 va_start(args
, fmt
);
1401 r
= vsnprintf(buf
, sizeof(buf
), fmt
, args
);
1404 if (r
+ vmcoreinfo_size
> vmcoreinfo_max_size
)
1405 r
= vmcoreinfo_max_size
- vmcoreinfo_size
;
1407 memcpy(&vmcoreinfo_data
[vmcoreinfo_size
], buf
, r
);
1409 vmcoreinfo_size
+= r
;
1413 * provide an empty default implementation here -- architecture
1414 * code may override this
1416 void __attribute__ ((weak
)) arch_crash_save_vmcoreinfo(void)
1419 unsigned long __attribute__ ((weak
)) paddr_vmcoreinfo_note(void)
1421 return __pa((unsigned long)(char *)&vmcoreinfo_note
);
1424 static int __init
crash_save_vmcoreinfo_init(void)
1426 VMCOREINFO_OSRELEASE(init_uts_ns
.name
.release
);
1427 VMCOREINFO_PAGESIZE(PAGE_SIZE
);
1429 VMCOREINFO_SYMBOL(init_uts_ns
);
1430 VMCOREINFO_SYMBOL(node_online_map
);
1431 VMCOREINFO_SYMBOL(swapper_pg_dir
);
1432 VMCOREINFO_SYMBOL(_stext
);
1433 VMCOREINFO_SYMBOL(vmlist
);
1435 #ifndef CONFIG_NEED_MULTIPLE_NODES
1436 VMCOREINFO_SYMBOL(mem_map
);
1437 VMCOREINFO_SYMBOL(contig_page_data
);
1439 #ifdef CONFIG_SPARSEMEM
1440 VMCOREINFO_SYMBOL(mem_section
);
1441 VMCOREINFO_LENGTH(mem_section
, NR_SECTION_ROOTS
);
1442 VMCOREINFO_STRUCT_SIZE(mem_section
);
1443 VMCOREINFO_OFFSET(mem_section
, section_mem_map
);
1445 VMCOREINFO_STRUCT_SIZE(page
);
1446 VMCOREINFO_STRUCT_SIZE(pglist_data
);
1447 VMCOREINFO_STRUCT_SIZE(zone
);
1448 VMCOREINFO_STRUCT_SIZE(free_area
);
1449 VMCOREINFO_STRUCT_SIZE(list_head
);
1450 VMCOREINFO_SIZE(nodemask_t
);
1451 VMCOREINFO_OFFSET(page
, flags
);
1452 VMCOREINFO_OFFSET(page
, _count
);
1453 VMCOREINFO_OFFSET(page
, mapping
);
1454 VMCOREINFO_OFFSET(page
, lru
);
1455 VMCOREINFO_OFFSET(pglist_data
, node_zones
);
1456 VMCOREINFO_OFFSET(pglist_data
, nr_zones
);
1457 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1458 VMCOREINFO_OFFSET(pglist_data
, node_mem_map
);
1460 VMCOREINFO_OFFSET(pglist_data
, node_start_pfn
);
1461 VMCOREINFO_OFFSET(pglist_data
, node_spanned_pages
);
1462 VMCOREINFO_OFFSET(pglist_data
, node_id
);
1463 VMCOREINFO_OFFSET(zone
, free_area
);
1464 VMCOREINFO_OFFSET(zone
, vm_stat
);
1465 VMCOREINFO_OFFSET(zone
, spanned_pages
);
1466 VMCOREINFO_OFFSET(free_area
, free_list
);
1467 VMCOREINFO_OFFSET(list_head
, next
);
1468 VMCOREINFO_OFFSET(list_head
, prev
);
1469 VMCOREINFO_OFFSET(vm_struct
, addr
);
1470 VMCOREINFO_LENGTH(zone
.free_area
, MAX_ORDER
);
1471 log_buf_kexec_setup();
1472 VMCOREINFO_LENGTH(free_area
.free_list
, MIGRATE_TYPES
);
1473 VMCOREINFO_NUMBER(NR_FREE_PAGES
);
1474 VMCOREINFO_NUMBER(PG_lru
);
1475 VMCOREINFO_NUMBER(PG_private
);
1476 VMCOREINFO_NUMBER(PG_swapcache
);
1478 arch_crash_save_vmcoreinfo();
1483 module_init(crash_save_vmcoreinfo_init
)
1486 * Move into place and start executing a preloaded standalone
1487 * executable. If nothing was preloaded return an error.
1489 int kernel_kexec(void)
1493 if (!mutex_trylock(&kexec_mutex
))
1500 #ifdef CONFIG_KEXEC_JUMP
1501 if (kexec_image
->preserve_context
) {
1502 mutex_lock(&pm_mutex
);
1503 pm_prepare_console();
1504 error
= freeze_processes();
1507 goto Restore_console
;
1510 error
= dpm_suspend_start(PMSG_FREEZE
);
1512 goto Resume_console
;
1513 /* At this point, dpm_suspend_start() has been called,
1514 * but *not* dpm_suspend_noirq(). We *must* call
1515 * dpm_suspend_noirq() now. Otherwise, drivers for
1516 * some devices (e.g. interrupt controllers) become
1517 * desynchronized with the actual state of the
1518 * hardware at resume time, and evil weirdness ensues.
1520 error
= dpm_suspend_noirq(PMSG_FREEZE
);
1522 goto Resume_devices
;
1523 error
= disable_nonboot_cpus();
1526 local_irq_disable();
1527 /* Suspend system devices */
1528 error
= sysdev_suspend(PMSG_FREEZE
);
1534 kernel_restart_prepare(NULL
);
1535 printk(KERN_EMERG
"Starting new kernel\n");
1539 machine_kexec(kexec_image
);
1541 #ifdef CONFIG_KEXEC_JUMP
1542 if (kexec_image
->preserve_context
) {
1547 enable_nonboot_cpus();
1548 dpm_resume_noirq(PMSG_RESTORE
);
1550 dpm_resume_end(PMSG_RESTORE
);
1555 pm_restore_console();
1556 mutex_unlock(&pm_mutex
);
1561 mutex_unlock(&kexec_mutex
);