cfg80211: Fix array-bounds warning in fragment copy
[linux/fpc-iii.git] / arch / mips / kernel / pm-cps.c
blob5f928c34c1489c1b054b105a37296f72d863d6f7
1 /*
2 * Copyright (C) 2014 Imagination Technologies
3 * Author: Paul Burton <paul.burton@imgtec.com>
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 */
11 #include <linux/cpuhotplug.h>
12 #include <linux/init.h>
13 #include <linux/percpu.h>
14 #include <linux/slab.h>
16 #include <asm/asm-offsets.h>
17 #include <asm/cacheflush.h>
18 #include <asm/cacheops.h>
19 #include <asm/idle.h>
20 #include <asm/mips-cm.h>
21 #include <asm/mips-cpc.h>
22 #include <asm/mipsmtregs.h>
23 #include <asm/pm.h>
24 #include <asm/pm-cps.h>
25 #include <asm/smp-cps.h>
26 #include <asm/uasm.h>
29 * cps_nc_entry_fn - type of a generated non-coherent state entry function
30 * @online: the count of online coupled VPEs
31 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
33 * The code entering & exiting non-coherent states is generated at runtime
34 * using uasm, in order to ensure that the compiler cannot insert a stray
35 * memory access at an unfortunate time and to allow the generation of optimal
36 * core-specific code particularly for cache routines. If coupled_coherence
37 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
38 * returns the number of VPEs that were in the wait state at the point this
39 * VPE left it. Returns garbage if coupled_coherence is zero or this is not
40 * the entry function for CPS_PM_NC_WAIT.
42 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
45 * The entry point of the generated non-coherent idle state entry/exit
46 * functions. Actually per-core rather than per-CPU.
48 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
49 nc_asm_enter);
51 /* Bitmap indicating which states are supported by the system */
52 DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
55 * Indicates the number of coupled VPEs ready to operate in a non-coherent
56 * state. Actually per-core rather than per-CPU.
58 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
59 static DEFINE_PER_CPU_ALIGNED(void*, ready_count_alloc);
61 /* Indicates online CPUs coupled with the current CPU */
62 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
65 * Used to synchronize entry to deep idle states. Actually per-core rather
66 * than per-CPU.
68 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
70 /* Saved CPU state across the CPS_PM_POWER_GATED state */
71 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
73 /* A somewhat arbitrary number of labels & relocs for uasm */
74 static struct uasm_label labels[32];
75 static struct uasm_reloc relocs[32];
77 enum mips_reg {
78 zero, at, v0, v1, a0, a1, a2, a3,
79 t0, t1, t2, t3, t4, t5, t6, t7,
80 s0, s1, s2, s3, s4, s5, s6, s7,
81 t8, t9, k0, k1, gp, sp, fp, ra,
84 bool cps_pm_support_state(enum cps_pm_state state)
86 return test_bit(state, state_support);
89 static void coupled_barrier(atomic_t *a, unsigned online)
92 * This function is effectively the same as
93 * cpuidle_coupled_parallel_barrier, which can't be used here since
94 * there's no cpuidle device.
97 if (!coupled_coherence)
98 return;
100 smp_mb__before_atomic();
101 atomic_inc(a);
103 while (atomic_read(a) < online)
104 cpu_relax();
106 if (atomic_inc_return(a) == online * 2) {
107 atomic_set(a, 0);
108 return;
111 while (atomic_read(a) > online)
112 cpu_relax();
115 int cps_pm_enter_state(enum cps_pm_state state)
117 unsigned cpu = smp_processor_id();
118 unsigned core = current_cpu_data.core;
119 unsigned online, left;
120 cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
121 u32 *core_ready_count, *nc_core_ready_count;
122 void *nc_addr;
123 cps_nc_entry_fn entry;
124 struct core_boot_config *core_cfg;
125 struct vpe_boot_config *vpe_cfg;
127 /* Check that there is an entry function for this state */
128 entry = per_cpu(nc_asm_enter, core)[state];
129 if (!entry)
130 return -EINVAL;
132 /* Calculate which coupled CPUs (VPEs) are online */
133 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
134 if (cpu_online(cpu)) {
135 cpumask_and(coupled_mask, cpu_online_mask,
136 &cpu_sibling_map[cpu]);
137 online = cpumask_weight(coupled_mask);
138 cpumask_clear_cpu(cpu, coupled_mask);
139 } else
140 #endif
142 cpumask_clear(coupled_mask);
143 online = 1;
146 /* Setup the VPE to run mips_cps_pm_restore when started again */
147 if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
148 /* Power gating relies upon CPS SMP */
149 if (!mips_cps_smp_in_use())
150 return -EINVAL;
152 core_cfg = &mips_cps_core_bootcfg[core];
153 vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
154 vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
155 vpe_cfg->gp = (unsigned long)current_thread_info();
156 vpe_cfg->sp = 0;
159 /* Indicate that this CPU might not be coherent */
160 cpumask_clear_cpu(cpu, &cpu_coherent_mask);
161 smp_mb__after_atomic();
163 /* Create a non-coherent mapping of the core ready_count */
164 core_ready_count = per_cpu(ready_count, core);
165 nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
166 (unsigned long)core_ready_count);
167 nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
168 nc_core_ready_count = nc_addr;
170 /* Ensure ready_count is zero-initialised before the assembly runs */
171 ACCESS_ONCE(*nc_core_ready_count) = 0;
172 coupled_barrier(&per_cpu(pm_barrier, core), online);
174 /* Run the generated entry code */
175 left = entry(online, nc_core_ready_count);
177 /* Remove the non-coherent mapping of ready_count */
178 kunmap_noncoherent();
180 /* Indicate that this CPU is definitely coherent */
181 cpumask_set_cpu(cpu, &cpu_coherent_mask);
184 * If this VPE is the first to leave the non-coherent wait state then
185 * it needs to wake up any coupled VPEs still running their wait
186 * instruction so that they return to cpuidle, which can then complete
187 * coordination between the coupled VPEs & provide the governor with
188 * a chance to reflect on the length of time the VPEs were in the
189 * idle state.
191 if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
192 arch_send_call_function_ipi_mask(coupled_mask);
194 return 0;
197 static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
198 struct uasm_reloc **pr,
199 const struct cache_desc *cache,
200 unsigned op, int lbl)
202 unsigned cache_size = cache->ways << cache->waybit;
203 unsigned i;
204 const unsigned unroll_lines = 32;
206 /* If the cache isn't present this function has it easy */
207 if (cache->flags & MIPS_CACHE_NOT_PRESENT)
208 return;
210 /* Load base address */
211 UASM_i_LA(pp, t0, (long)CKSEG0);
213 /* Calculate end address */
214 if (cache_size < 0x8000)
215 uasm_i_addiu(pp, t1, t0, cache_size);
216 else
217 UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
219 /* Start of cache op loop */
220 uasm_build_label(pl, *pp, lbl);
222 /* Generate the cache ops */
223 for (i = 0; i < unroll_lines; i++) {
224 if (cpu_has_mips_r6) {
225 uasm_i_cache(pp, op, 0, t0);
226 uasm_i_addiu(pp, t0, t0, cache->linesz);
227 } else {
228 uasm_i_cache(pp, op, i * cache->linesz, t0);
232 if (!cpu_has_mips_r6)
233 /* Update the base address */
234 uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
236 /* Loop if we haven't reached the end address yet */
237 uasm_il_bne(pp, pr, t0, t1, lbl);
238 uasm_i_nop(pp);
241 static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
242 struct uasm_reloc **pr,
243 const struct cpuinfo_mips *cpu_info,
244 int lbl)
246 unsigned i, fsb_size = 8;
247 unsigned num_loads = (fsb_size * 3) / 2;
248 unsigned line_stride = 2;
249 unsigned line_size = cpu_info->dcache.linesz;
250 unsigned perf_counter, perf_event;
251 unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
254 * Determine whether this CPU requires an FSB flush, and if so which
255 * performance counter/event reflect stalls due to a full FSB.
257 switch (__get_cpu_type(cpu_info->cputype)) {
258 case CPU_INTERAPTIV:
259 perf_counter = 1;
260 perf_event = 51;
261 break;
263 case CPU_PROAPTIV:
264 /* Newer proAptiv cores don't require this workaround */
265 if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
266 return 0;
268 /* On older ones it's unavailable */
269 return -1;
271 default:
272 /* Assume that the CPU does not need this workaround */
273 return 0;
277 * Ensure that the fill/store buffer (FSB) is not holding the results
278 * of a prefetch, since if it is then the CPC sequencer may become
279 * stuck in the D3 (ClrBus) state whilst entering a low power state.
282 /* Preserve perf counter setup */
283 uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
284 uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
286 /* Setup perf counter to count FSB full pipeline stalls */
287 uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
288 uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
289 uasm_i_ehb(pp);
290 uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
291 uasm_i_ehb(pp);
293 /* Base address for loads */
294 UASM_i_LA(pp, t0, (long)CKSEG0);
296 /* Start of clear loop */
297 uasm_build_label(pl, *pp, lbl);
299 /* Perform some loads to fill the FSB */
300 for (i = 0; i < num_loads; i++)
301 uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
304 * Invalidate the new D-cache entries so that the cache will need
305 * refilling (via the FSB) if the loop is executed again.
307 for (i = 0; i < num_loads; i++) {
308 uasm_i_cache(pp, Hit_Invalidate_D,
309 i * line_size * line_stride, t0);
310 uasm_i_cache(pp, Hit_Writeback_Inv_SD,
311 i * line_size * line_stride, t0);
314 /* Barrier ensuring previous cache invalidates are complete */
315 uasm_i_sync(pp, STYPE_SYNC);
316 uasm_i_ehb(pp);
318 /* Check whether the pipeline stalled due to the FSB being full */
319 uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
321 /* Loop if it didn't */
322 uasm_il_beqz(pp, pr, t1, lbl);
323 uasm_i_nop(pp);
325 /* Restore perf counter 1. The count may well now be wrong... */
326 uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
327 uasm_i_ehb(pp);
328 uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
329 uasm_i_ehb(pp);
331 return 0;
334 static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
335 struct uasm_reloc **pr,
336 unsigned r_addr, int lbl)
338 uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
339 uasm_build_label(pl, *pp, lbl);
340 uasm_i_ll(pp, t1, 0, r_addr);
341 uasm_i_or(pp, t1, t1, t0);
342 uasm_i_sc(pp, t1, 0, r_addr);
343 uasm_il_beqz(pp, pr, t1, lbl);
344 uasm_i_nop(pp);
347 static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
349 struct uasm_label *l = labels;
350 struct uasm_reloc *r = relocs;
351 u32 *buf, *p;
352 const unsigned r_online = a0;
353 const unsigned r_nc_count = a1;
354 const unsigned r_pcohctl = t7;
355 const unsigned max_instrs = 256;
356 unsigned cpc_cmd;
357 int err;
358 enum {
359 lbl_incready = 1,
360 lbl_poll_cont,
361 lbl_secondary_hang,
362 lbl_disable_coherence,
363 lbl_flush_fsb,
364 lbl_invicache,
365 lbl_flushdcache,
366 lbl_hang,
367 lbl_set_cont,
368 lbl_secondary_cont,
369 lbl_decready,
372 /* Allocate a buffer to hold the generated code */
373 p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
374 if (!buf)
375 return NULL;
377 /* Clear labels & relocs ready for (re)use */
378 memset(labels, 0, sizeof(labels));
379 memset(relocs, 0, sizeof(relocs));
381 if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
382 /* Power gating relies upon CPS SMP */
383 if (!mips_cps_smp_in_use())
384 goto out_err;
387 * Save CPU state. Note the non-standard calling convention
388 * with the return address placed in v0 to avoid clobbering
389 * the ra register before it is saved.
391 UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
392 uasm_i_jalr(&p, v0, t0);
393 uasm_i_nop(&p);
397 * Load addresses of required CM & CPC registers. This is done early
398 * because they're needed in both the enable & disable coherence steps
399 * but in the coupled case the enable step will only run on one VPE.
401 UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
403 if (coupled_coherence) {
404 /* Increment ready_count */
405 uasm_i_sync(&p, STYPE_SYNC_MB);
406 uasm_build_label(&l, p, lbl_incready);
407 uasm_i_ll(&p, t1, 0, r_nc_count);
408 uasm_i_addiu(&p, t2, t1, 1);
409 uasm_i_sc(&p, t2, 0, r_nc_count);
410 uasm_il_beqz(&p, &r, t2, lbl_incready);
411 uasm_i_addiu(&p, t1, t1, 1);
413 /* Barrier ensuring all CPUs see the updated r_nc_count value */
414 uasm_i_sync(&p, STYPE_SYNC_MB);
417 * If this is the last VPE to become ready for non-coherence
418 * then it should branch below.
420 uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
421 uasm_i_nop(&p);
423 if (state < CPS_PM_POWER_GATED) {
425 * Otherwise this is not the last VPE to become ready
426 * for non-coherence. It needs to wait until coherence
427 * has been disabled before proceeding, which it will do
428 * by polling for the top bit of ready_count being set.
430 uasm_i_addiu(&p, t1, zero, -1);
431 uasm_build_label(&l, p, lbl_poll_cont);
432 uasm_i_lw(&p, t0, 0, r_nc_count);
433 uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
434 uasm_i_ehb(&p);
435 if (cpu_has_mipsmt)
436 uasm_i_yield(&p, zero, t1);
437 uasm_il_b(&p, &r, lbl_poll_cont);
438 uasm_i_nop(&p);
439 } else {
441 * The core will lose power & this VPE will not continue
442 * so it can simply halt here.
444 if (cpu_has_mipsmt) {
445 /* Halt the VPE via C0 tchalt register */
446 uasm_i_addiu(&p, t0, zero, TCHALT_H);
447 uasm_i_mtc0(&p, t0, 2, 4);
448 } else if (cpu_has_vp) {
449 /* Halt the VP via the CPC VP_STOP register */
450 unsigned int vpe_id;
452 vpe_id = cpu_vpe_id(&cpu_data[cpu]);
453 uasm_i_addiu(&p, t0, zero, 1 << vpe_id);
454 UASM_i_LA(&p, t1, (long)addr_cpc_cl_vp_stop());
455 uasm_i_sw(&p, t0, 0, t1);
456 } else {
457 BUG();
459 uasm_build_label(&l, p, lbl_secondary_hang);
460 uasm_il_b(&p, &r, lbl_secondary_hang);
461 uasm_i_nop(&p);
466 * This is the point of no return - this VPE will now proceed to
467 * disable coherence. At this point we *must* be sure that no other
468 * VPE within the core will interfere with the L1 dcache.
470 uasm_build_label(&l, p, lbl_disable_coherence);
472 /* Invalidate the L1 icache */
473 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
474 Index_Invalidate_I, lbl_invicache);
476 /* Writeback & invalidate the L1 dcache */
477 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
478 Index_Writeback_Inv_D, lbl_flushdcache);
480 /* Barrier ensuring previous cache invalidates are complete */
481 uasm_i_sync(&p, STYPE_SYNC);
482 uasm_i_ehb(&p);
484 if (mips_cm_revision() < CM_REV_CM3) {
486 * Disable all but self interventions. The load from COHCTL is
487 * defined by the interAptiv & proAptiv SUMs as ensuring that the
488 * operation resulting from the preceding store is complete.
490 uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core);
491 uasm_i_sw(&p, t0, 0, r_pcohctl);
492 uasm_i_lw(&p, t0, 0, r_pcohctl);
494 /* Barrier to ensure write to coherence control is complete */
495 uasm_i_sync(&p, STYPE_SYNC);
496 uasm_i_ehb(&p);
499 /* Disable coherence */
500 uasm_i_sw(&p, zero, 0, r_pcohctl);
501 uasm_i_lw(&p, t0, 0, r_pcohctl);
503 if (state >= CPS_PM_CLOCK_GATED) {
504 err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
505 lbl_flush_fsb);
506 if (err)
507 goto out_err;
509 /* Determine the CPC command to issue */
510 switch (state) {
511 case CPS_PM_CLOCK_GATED:
512 cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
513 break;
514 case CPS_PM_POWER_GATED:
515 cpc_cmd = CPC_Cx_CMD_PWRDOWN;
516 break;
517 default:
518 BUG();
519 goto out_err;
522 /* Issue the CPC command */
523 UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
524 uasm_i_addiu(&p, t1, zero, cpc_cmd);
525 uasm_i_sw(&p, t1, 0, t0);
527 if (state == CPS_PM_POWER_GATED) {
528 /* If anything goes wrong just hang */
529 uasm_build_label(&l, p, lbl_hang);
530 uasm_il_b(&p, &r, lbl_hang);
531 uasm_i_nop(&p);
534 * There's no point generating more code, the core is
535 * powered down & if powered back up will run from the
536 * reset vector not from here.
538 goto gen_done;
541 /* Barrier to ensure write to CPC command is complete */
542 uasm_i_sync(&p, STYPE_SYNC);
543 uasm_i_ehb(&p);
546 if (state == CPS_PM_NC_WAIT) {
548 * At this point it is safe for all VPEs to proceed with
549 * execution. This VPE will set the top bit of ready_count
550 * to indicate to the other VPEs that they may continue.
552 if (coupled_coherence)
553 cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
554 lbl_set_cont);
557 * VPEs which did not disable coherence will continue
558 * executing, after coherence has been disabled, from this
559 * point.
561 uasm_build_label(&l, p, lbl_secondary_cont);
563 /* Now perform our wait */
564 uasm_i_wait(&p, 0);
568 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
569 * will run this. The first will actually re-enable coherence & the
570 * rest will just be performing a rather unusual nop.
572 uasm_i_addiu(&p, t0, zero, mips_cm_revision() < CM_REV_CM3
573 ? CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK
574 : CM3_GCR_Cx_COHERENCE_COHEN_MSK);
576 uasm_i_sw(&p, t0, 0, r_pcohctl);
577 uasm_i_lw(&p, t0, 0, r_pcohctl);
579 /* Barrier to ensure write to coherence control is complete */
580 uasm_i_sync(&p, STYPE_SYNC);
581 uasm_i_ehb(&p);
583 if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
584 /* Decrement ready_count */
585 uasm_build_label(&l, p, lbl_decready);
586 uasm_i_sync(&p, STYPE_SYNC_MB);
587 uasm_i_ll(&p, t1, 0, r_nc_count);
588 uasm_i_addiu(&p, t2, t1, -1);
589 uasm_i_sc(&p, t2, 0, r_nc_count);
590 uasm_il_beqz(&p, &r, t2, lbl_decready);
591 uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
593 /* Barrier ensuring all CPUs see the updated r_nc_count value */
594 uasm_i_sync(&p, STYPE_SYNC_MB);
597 if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
599 * At this point it is safe for all VPEs to proceed with
600 * execution. This VPE will set the top bit of ready_count
601 * to indicate to the other VPEs that they may continue.
603 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
606 * This core will be reliant upon another core sending a
607 * power-up command to the CPC in order to resume operation.
608 * Thus an arbitrary VPE can't trigger the core leaving the
609 * idle state and the one that disables coherence might as well
610 * be the one to re-enable it. The rest will continue from here
611 * after that has been done.
613 uasm_build_label(&l, p, lbl_secondary_cont);
615 /* Barrier ensuring all CPUs see the updated r_nc_count value */
616 uasm_i_sync(&p, STYPE_SYNC_MB);
619 /* The core is coherent, time to return to C code */
620 uasm_i_jr(&p, ra);
621 uasm_i_nop(&p);
623 gen_done:
624 /* Ensure the code didn't exceed the resources allocated for it */
625 BUG_ON((p - buf) > max_instrs);
626 BUG_ON((l - labels) > ARRAY_SIZE(labels));
627 BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
629 /* Patch branch offsets */
630 uasm_resolve_relocs(relocs, labels);
632 /* Flush the icache */
633 local_flush_icache_range((unsigned long)buf, (unsigned long)p);
635 return buf;
636 out_err:
637 kfree(buf);
638 return NULL;
641 static int cps_pm_online_cpu(unsigned int cpu)
643 enum cps_pm_state state;
644 unsigned core = cpu_data[cpu].core;
645 unsigned dlinesz = cpu_data[cpu].dcache.linesz;
646 void *entry_fn, *core_rc;
648 for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
649 if (per_cpu(nc_asm_enter, core)[state])
650 continue;
651 if (!test_bit(state, state_support))
652 continue;
654 entry_fn = cps_gen_entry_code(cpu, state);
655 if (!entry_fn) {
656 pr_err("Failed to generate core %u state %u entry\n",
657 core, state);
658 clear_bit(state, state_support);
661 per_cpu(nc_asm_enter, core)[state] = entry_fn;
664 if (!per_cpu(ready_count, core)) {
665 core_rc = kmalloc(dlinesz * 2, GFP_KERNEL);
666 if (!core_rc) {
667 pr_err("Failed allocate core %u ready_count\n", core);
668 return -ENOMEM;
670 per_cpu(ready_count_alloc, core) = core_rc;
672 /* Ensure ready_count is aligned to a cacheline boundary */
673 core_rc += dlinesz - 1;
674 core_rc = (void *)((unsigned long)core_rc & ~(dlinesz - 1));
675 per_cpu(ready_count, core) = core_rc;
678 return 0;
681 static int __init cps_pm_init(void)
683 /* A CM is required for all non-coherent states */
684 if (!mips_cm_present()) {
685 pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
686 return 0;
690 * If interrupts were enabled whilst running a wait instruction on a
691 * non-coherent core then the VPE may end up processing interrupts
692 * whilst non-coherent. That would be bad.
694 if (cpu_wait == r4k_wait_irqoff)
695 set_bit(CPS_PM_NC_WAIT, state_support);
696 else
697 pr_warn("pm-cps: non-coherent wait unavailable\n");
699 /* Detect whether a CPC is present */
700 if (mips_cpc_present()) {
701 /* Detect whether clock gating is implemented */
702 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK)
703 set_bit(CPS_PM_CLOCK_GATED, state_support);
704 else
705 pr_warn("pm-cps: CPC does not support clock gating\n");
707 /* Power gating is available with CPS SMP & any CPC */
708 if (mips_cps_smp_in_use())
709 set_bit(CPS_PM_POWER_GATED, state_support);
710 else
711 pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
712 } else {
713 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
716 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online",
717 cps_pm_online_cpu, NULL);
719 arch_initcall(cps_pm_init);