2 * Copyright (C) 2014 Imagination Technologies
3 * Author: Paul Burton <paul.burton@imgtec.com>
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
11 #include <linux/cpuhotplug.h>
12 #include <linux/init.h>
13 #include <linux/percpu.h>
14 #include <linux/slab.h>
16 #include <asm/asm-offsets.h>
17 #include <asm/cacheflush.h>
18 #include <asm/cacheops.h>
20 #include <asm/mips-cm.h>
21 #include <asm/mips-cpc.h>
22 #include <asm/mipsmtregs.h>
24 #include <asm/pm-cps.h>
25 #include <asm/smp-cps.h>
29 * cps_nc_entry_fn - type of a generated non-coherent state entry function
30 * @online: the count of online coupled VPEs
31 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
33 * The code entering & exiting non-coherent states is generated at runtime
34 * using uasm, in order to ensure that the compiler cannot insert a stray
35 * memory access at an unfortunate time and to allow the generation of optimal
36 * core-specific code particularly for cache routines. If coupled_coherence
37 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
38 * returns the number of VPEs that were in the wait state at the point this
39 * VPE left it. Returns garbage if coupled_coherence is zero or this is not
40 * the entry function for CPS_PM_NC_WAIT.
42 typedef unsigned (*cps_nc_entry_fn
)(unsigned online
, u32
*nc_ready_count
);
45 * The entry point of the generated non-coherent idle state entry/exit
46 * functions. Actually per-core rather than per-CPU.
48 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn
[CPS_PM_STATE_COUNT
],
51 /* Bitmap indicating which states are supported by the system */
52 DECLARE_BITMAP(state_support
, CPS_PM_STATE_COUNT
);
55 * Indicates the number of coupled VPEs ready to operate in a non-coherent
56 * state. Actually per-core rather than per-CPU.
58 static DEFINE_PER_CPU_ALIGNED(u32
*, ready_count
);
59 static DEFINE_PER_CPU_ALIGNED(void*, ready_count_alloc
);
61 /* Indicates online CPUs coupled with the current CPU */
62 static DEFINE_PER_CPU_ALIGNED(cpumask_t
, online_coupled
);
65 * Used to synchronize entry to deep idle states. Actually per-core rather
68 static DEFINE_PER_CPU_ALIGNED(atomic_t
, pm_barrier
);
70 /* Saved CPU state across the CPS_PM_POWER_GATED state */
71 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state
, cps_cpu_state
);
73 /* A somewhat arbitrary number of labels & relocs for uasm */
74 static struct uasm_label labels
[32];
75 static struct uasm_reloc relocs
[32];
78 zero
, at
, v0
, v1
, a0
, a1
, a2
, a3
,
79 t0
, t1
, t2
, t3
, t4
, t5
, t6
, t7
,
80 s0
, s1
, s2
, s3
, s4
, s5
, s6
, s7
,
81 t8
, t9
, k0
, k1
, gp
, sp
, fp
, ra
,
84 bool cps_pm_support_state(enum cps_pm_state state
)
86 return test_bit(state
, state_support
);
89 static void coupled_barrier(atomic_t
*a
, unsigned online
)
92 * This function is effectively the same as
93 * cpuidle_coupled_parallel_barrier, which can't be used here since
94 * there's no cpuidle device.
97 if (!coupled_coherence
)
100 smp_mb__before_atomic();
103 while (atomic_read(a
) < online
)
106 if (atomic_inc_return(a
) == online
* 2) {
111 while (atomic_read(a
) > online
)
115 int cps_pm_enter_state(enum cps_pm_state state
)
117 unsigned cpu
= smp_processor_id();
118 unsigned core
= current_cpu_data
.core
;
119 unsigned online
, left
;
120 cpumask_t
*coupled_mask
= this_cpu_ptr(&online_coupled
);
121 u32
*core_ready_count
, *nc_core_ready_count
;
123 cps_nc_entry_fn entry
;
124 struct core_boot_config
*core_cfg
;
125 struct vpe_boot_config
*vpe_cfg
;
127 /* Check that there is an entry function for this state */
128 entry
= per_cpu(nc_asm_enter
, core
)[state
];
132 /* Calculate which coupled CPUs (VPEs) are online */
133 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
134 if (cpu_online(cpu
)) {
135 cpumask_and(coupled_mask
, cpu_online_mask
,
136 &cpu_sibling_map
[cpu
]);
137 online
= cpumask_weight(coupled_mask
);
138 cpumask_clear_cpu(cpu
, coupled_mask
);
142 cpumask_clear(coupled_mask
);
146 /* Setup the VPE to run mips_cps_pm_restore when started again */
147 if (IS_ENABLED(CONFIG_CPU_PM
) && state
== CPS_PM_POWER_GATED
) {
148 /* Power gating relies upon CPS SMP */
149 if (!mips_cps_smp_in_use())
152 core_cfg
= &mips_cps_core_bootcfg
[core
];
153 vpe_cfg
= &core_cfg
->vpe_config
[cpu_vpe_id(¤t_cpu_data
)];
154 vpe_cfg
->pc
= (unsigned long)mips_cps_pm_restore
;
155 vpe_cfg
->gp
= (unsigned long)current_thread_info();
159 /* Indicate that this CPU might not be coherent */
160 cpumask_clear_cpu(cpu
, &cpu_coherent_mask
);
161 smp_mb__after_atomic();
163 /* Create a non-coherent mapping of the core ready_count */
164 core_ready_count
= per_cpu(ready_count
, core
);
165 nc_addr
= kmap_noncoherent(virt_to_page(core_ready_count
),
166 (unsigned long)core_ready_count
);
167 nc_addr
+= ((unsigned long)core_ready_count
& ~PAGE_MASK
);
168 nc_core_ready_count
= nc_addr
;
170 /* Ensure ready_count is zero-initialised before the assembly runs */
171 ACCESS_ONCE(*nc_core_ready_count
) = 0;
172 coupled_barrier(&per_cpu(pm_barrier
, core
), online
);
174 /* Run the generated entry code */
175 left
= entry(online
, nc_core_ready_count
);
177 /* Remove the non-coherent mapping of ready_count */
178 kunmap_noncoherent();
180 /* Indicate that this CPU is definitely coherent */
181 cpumask_set_cpu(cpu
, &cpu_coherent_mask
);
184 * If this VPE is the first to leave the non-coherent wait state then
185 * it needs to wake up any coupled VPEs still running their wait
186 * instruction so that they return to cpuidle, which can then complete
187 * coordination between the coupled VPEs & provide the governor with
188 * a chance to reflect on the length of time the VPEs were in the
191 if (coupled_coherence
&& (state
== CPS_PM_NC_WAIT
) && (left
== online
))
192 arch_send_call_function_ipi_mask(coupled_mask
);
197 static void cps_gen_cache_routine(u32
**pp
, struct uasm_label
**pl
,
198 struct uasm_reloc
**pr
,
199 const struct cache_desc
*cache
,
200 unsigned op
, int lbl
)
202 unsigned cache_size
= cache
->ways
<< cache
->waybit
;
204 const unsigned unroll_lines
= 32;
206 /* If the cache isn't present this function has it easy */
207 if (cache
->flags
& MIPS_CACHE_NOT_PRESENT
)
210 /* Load base address */
211 UASM_i_LA(pp
, t0
, (long)CKSEG0
);
213 /* Calculate end address */
214 if (cache_size
< 0x8000)
215 uasm_i_addiu(pp
, t1
, t0
, cache_size
);
217 UASM_i_LA(pp
, t1
, (long)(CKSEG0
+ cache_size
));
219 /* Start of cache op loop */
220 uasm_build_label(pl
, *pp
, lbl
);
222 /* Generate the cache ops */
223 for (i
= 0; i
< unroll_lines
; i
++) {
224 if (cpu_has_mips_r6
) {
225 uasm_i_cache(pp
, op
, 0, t0
);
226 uasm_i_addiu(pp
, t0
, t0
, cache
->linesz
);
228 uasm_i_cache(pp
, op
, i
* cache
->linesz
, t0
);
232 if (!cpu_has_mips_r6
)
233 /* Update the base address */
234 uasm_i_addiu(pp
, t0
, t0
, unroll_lines
* cache
->linesz
);
236 /* Loop if we haven't reached the end address yet */
237 uasm_il_bne(pp
, pr
, t0
, t1
, lbl
);
241 static int cps_gen_flush_fsb(u32
**pp
, struct uasm_label
**pl
,
242 struct uasm_reloc
**pr
,
243 const struct cpuinfo_mips
*cpu_info
,
246 unsigned i
, fsb_size
= 8;
247 unsigned num_loads
= (fsb_size
* 3) / 2;
248 unsigned line_stride
= 2;
249 unsigned line_size
= cpu_info
->dcache
.linesz
;
250 unsigned perf_counter
, perf_event
;
251 unsigned revision
= cpu_info
->processor_id
& PRID_REV_MASK
;
254 * Determine whether this CPU requires an FSB flush, and if so which
255 * performance counter/event reflect stalls due to a full FSB.
257 switch (__get_cpu_type(cpu_info
->cputype
)) {
264 /* Newer proAptiv cores don't require this workaround */
265 if (revision
>= PRID_REV_ENCODE_332(1, 1, 0))
268 /* On older ones it's unavailable */
272 /* Assume that the CPU does not need this workaround */
277 * Ensure that the fill/store buffer (FSB) is not holding the results
278 * of a prefetch, since if it is then the CPC sequencer may become
279 * stuck in the D3 (ClrBus) state whilst entering a low power state.
282 /* Preserve perf counter setup */
283 uasm_i_mfc0(pp
, t2
, 25, (perf_counter
* 2) + 0); /* PerfCtlN */
284 uasm_i_mfc0(pp
, t3
, 25, (perf_counter
* 2) + 1); /* PerfCntN */
286 /* Setup perf counter to count FSB full pipeline stalls */
287 uasm_i_addiu(pp
, t0
, zero
, (perf_event
<< 5) | 0xf);
288 uasm_i_mtc0(pp
, t0
, 25, (perf_counter
* 2) + 0); /* PerfCtlN */
290 uasm_i_mtc0(pp
, zero
, 25, (perf_counter
* 2) + 1); /* PerfCntN */
293 /* Base address for loads */
294 UASM_i_LA(pp
, t0
, (long)CKSEG0
);
296 /* Start of clear loop */
297 uasm_build_label(pl
, *pp
, lbl
);
299 /* Perform some loads to fill the FSB */
300 for (i
= 0; i
< num_loads
; i
++)
301 uasm_i_lw(pp
, zero
, i
* line_size
* line_stride
, t0
);
304 * Invalidate the new D-cache entries so that the cache will need
305 * refilling (via the FSB) if the loop is executed again.
307 for (i
= 0; i
< num_loads
; i
++) {
308 uasm_i_cache(pp
, Hit_Invalidate_D
,
309 i
* line_size
* line_stride
, t0
);
310 uasm_i_cache(pp
, Hit_Writeback_Inv_SD
,
311 i
* line_size
* line_stride
, t0
);
314 /* Barrier ensuring previous cache invalidates are complete */
315 uasm_i_sync(pp
, STYPE_SYNC
);
318 /* Check whether the pipeline stalled due to the FSB being full */
319 uasm_i_mfc0(pp
, t1
, 25, (perf_counter
* 2) + 1); /* PerfCntN */
321 /* Loop if it didn't */
322 uasm_il_beqz(pp
, pr
, t1
, lbl
);
325 /* Restore perf counter 1. The count may well now be wrong... */
326 uasm_i_mtc0(pp
, t2
, 25, (perf_counter
* 2) + 0); /* PerfCtlN */
328 uasm_i_mtc0(pp
, t3
, 25, (perf_counter
* 2) + 1); /* PerfCntN */
334 static void cps_gen_set_top_bit(u32
**pp
, struct uasm_label
**pl
,
335 struct uasm_reloc
**pr
,
336 unsigned r_addr
, int lbl
)
338 uasm_i_lui(pp
, t0
, uasm_rel_hi(0x80000000));
339 uasm_build_label(pl
, *pp
, lbl
);
340 uasm_i_ll(pp
, t1
, 0, r_addr
);
341 uasm_i_or(pp
, t1
, t1
, t0
);
342 uasm_i_sc(pp
, t1
, 0, r_addr
);
343 uasm_il_beqz(pp
, pr
, t1
, lbl
);
347 static void *cps_gen_entry_code(unsigned cpu
, enum cps_pm_state state
)
349 struct uasm_label
*l
= labels
;
350 struct uasm_reloc
*r
= relocs
;
352 const unsigned r_online
= a0
;
353 const unsigned r_nc_count
= a1
;
354 const unsigned r_pcohctl
= t7
;
355 const unsigned max_instrs
= 256;
362 lbl_disable_coherence
,
372 /* Allocate a buffer to hold the generated code */
373 p
= buf
= kcalloc(max_instrs
, sizeof(u32
), GFP_KERNEL
);
377 /* Clear labels & relocs ready for (re)use */
378 memset(labels
, 0, sizeof(labels
));
379 memset(relocs
, 0, sizeof(relocs
));
381 if (IS_ENABLED(CONFIG_CPU_PM
) && state
== CPS_PM_POWER_GATED
) {
382 /* Power gating relies upon CPS SMP */
383 if (!mips_cps_smp_in_use())
387 * Save CPU state. Note the non-standard calling convention
388 * with the return address placed in v0 to avoid clobbering
389 * the ra register before it is saved.
391 UASM_i_LA(&p
, t0
, (long)mips_cps_pm_save
);
392 uasm_i_jalr(&p
, v0
, t0
);
397 * Load addresses of required CM & CPC registers. This is done early
398 * because they're needed in both the enable & disable coherence steps
399 * but in the coupled case the enable step will only run on one VPE.
401 UASM_i_LA(&p
, r_pcohctl
, (long)addr_gcr_cl_coherence());
403 if (coupled_coherence
) {
404 /* Increment ready_count */
405 uasm_i_sync(&p
, STYPE_SYNC_MB
);
406 uasm_build_label(&l
, p
, lbl_incready
);
407 uasm_i_ll(&p
, t1
, 0, r_nc_count
);
408 uasm_i_addiu(&p
, t2
, t1
, 1);
409 uasm_i_sc(&p
, t2
, 0, r_nc_count
);
410 uasm_il_beqz(&p
, &r
, t2
, lbl_incready
);
411 uasm_i_addiu(&p
, t1
, t1
, 1);
413 /* Barrier ensuring all CPUs see the updated r_nc_count value */
414 uasm_i_sync(&p
, STYPE_SYNC_MB
);
417 * If this is the last VPE to become ready for non-coherence
418 * then it should branch below.
420 uasm_il_beq(&p
, &r
, t1
, r_online
, lbl_disable_coherence
);
423 if (state
< CPS_PM_POWER_GATED
) {
425 * Otherwise this is not the last VPE to become ready
426 * for non-coherence. It needs to wait until coherence
427 * has been disabled before proceeding, which it will do
428 * by polling for the top bit of ready_count being set.
430 uasm_i_addiu(&p
, t1
, zero
, -1);
431 uasm_build_label(&l
, p
, lbl_poll_cont
);
432 uasm_i_lw(&p
, t0
, 0, r_nc_count
);
433 uasm_il_bltz(&p
, &r
, t0
, lbl_secondary_cont
);
436 uasm_i_yield(&p
, zero
, t1
);
437 uasm_il_b(&p
, &r
, lbl_poll_cont
);
441 * The core will lose power & this VPE will not continue
442 * so it can simply halt here.
444 if (cpu_has_mipsmt
) {
445 /* Halt the VPE via C0 tchalt register */
446 uasm_i_addiu(&p
, t0
, zero
, TCHALT_H
);
447 uasm_i_mtc0(&p
, t0
, 2, 4);
448 } else if (cpu_has_vp
) {
449 /* Halt the VP via the CPC VP_STOP register */
452 vpe_id
= cpu_vpe_id(&cpu_data
[cpu
]);
453 uasm_i_addiu(&p
, t0
, zero
, 1 << vpe_id
);
454 UASM_i_LA(&p
, t1
, (long)addr_cpc_cl_vp_stop());
455 uasm_i_sw(&p
, t0
, 0, t1
);
459 uasm_build_label(&l
, p
, lbl_secondary_hang
);
460 uasm_il_b(&p
, &r
, lbl_secondary_hang
);
466 * This is the point of no return - this VPE will now proceed to
467 * disable coherence. At this point we *must* be sure that no other
468 * VPE within the core will interfere with the L1 dcache.
470 uasm_build_label(&l
, p
, lbl_disable_coherence
);
472 /* Invalidate the L1 icache */
473 cps_gen_cache_routine(&p
, &l
, &r
, &cpu_data
[cpu
].icache
,
474 Index_Invalidate_I
, lbl_invicache
);
476 /* Writeback & invalidate the L1 dcache */
477 cps_gen_cache_routine(&p
, &l
, &r
, &cpu_data
[cpu
].dcache
,
478 Index_Writeback_Inv_D
, lbl_flushdcache
);
480 /* Barrier ensuring previous cache invalidates are complete */
481 uasm_i_sync(&p
, STYPE_SYNC
);
484 if (mips_cm_revision() < CM_REV_CM3
) {
486 * Disable all but self interventions. The load from COHCTL is
487 * defined by the interAptiv & proAptiv SUMs as ensuring that the
488 * operation resulting from the preceding store is complete.
490 uasm_i_addiu(&p
, t0
, zero
, 1 << cpu_data
[cpu
].core
);
491 uasm_i_sw(&p
, t0
, 0, r_pcohctl
);
492 uasm_i_lw(&p
, t0
, 0, r_pcohctl
);
494 /* Barrier to ensure write to coherence control is complete */
495 uasm_i_sync(&p
, STYPE_SYNC
);
499 /* Disable coherence */
500 uasm_i_sw(&p
, zero
, 0, r_pcohctl
);
501 uasm_i_lw(&p
, t0
, 0, r_pcohctl
);
503 if (state
>= CPS_PM_CLOCK_GATED
) {
504 err
= cps_gen_flush_fsb(&p
, &l
, &r
, &cpu_data
[cpu
],
509 /* Determine the CPC command to issue */
511 case CPS_PM_CLOCK_GATED
:
512 cpc_cmd
= CPC_Cx_CMD_CLOCKOFF
;
514 case CPS_PM_POWER_GATED
:
515 cpc_cmd
= CPC_Cx_CMD_PWRDOWN
;
522 /* Issue the CPC command */
523 UASM_i_LA(&p
, t0
, (long)addr_cpc_cl_cmd());
524 uasm_i_addiu(&p
, t1
, zero
, cpc_cmd
);
525 uasm_i_sw(&p
, t1
, 0, t0
);
527 if (state
== CPS_PM_POWER_GATED
) {
528 /* If anything goes wrong just hang */
529 uasm_build_label(&l
, p
, lbl_hang
);
530 uasm_il_b(&p
, &r
, lbl_hang
);
534 * There's no point generating more code, the core is
535 * powered down & if powered back up will run from the
536 * reset vector not from here.
541 /* Barrier to ensure write to CPC command is complete */
542 uasm_i_sync(&p
, STYPE_SYNC
);
546 if (state
== CPS_PM_NC_WAIT
) {
548 * At this point it is safe for all VPEs to proceed with
549 * execution. This VPE will set the top bit of ready_count
550 * to indicate to the other VPEs that they may continue.
552 if (coupled_coherence
)
553 cps_gen_set_top_bit(&p
, &l
, &r
, r_nc_count
,
557 * VPEs which did not disable coherence will continue
558 * executing, after coherence has been disabled, from this
561 uasm_build_label(&l
, p
, lbl_secondary_cont
);
563 /* Now perform our wait */
568 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
569 * will run this. The first will actually re-enable coherence & the
570 * rest will just be performing a rather unusual nop.
572 uasm_i_addiu(&p
, t0
, zero
, mips_cm_revision() < CM_REV_CM3
573 ? CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK
574 : CM3_GCR_Cx_COHERENCE_COHEN_MSK
);
576 uasm_i_sw(&p
, t0
, 0, r_pcohctl
);
577 uasm_i_lw(&p
, t0
, 0, r_pcohctl
);
579 /* Barrier to ensure write to coherence control is complete */
580 uasm_i_sync(&p
, STYPE_SYNC
);
583 if (coupled_coherence
&& (state
== CPS_PM_NC_WAIT
)) {
584 /* Decrement ready_count */
585 uasm_build_label(&l
, p
, lbl_decready
);
586 uasm_i_sync(&p
, STYPE_SYNC_MB
);
587 uasm_i_ll(&p
, t1
, 0, r_nc_count
);
588 uasm_i_addiu(&p
, t2
, t1
, -1);
589 uasm_i_sc(&p
, t2
, 0, r_nc_count
);
590 uasm_il_beqz(&p
, &r
, t2
, lbl_decready
);
591 uasm_i_andi(&p
, v0
, t1
, (1 << fls(smp_num_siblings
)) - 1);
593 /* Barrier ensuring all CPUs see the updated r_nc_count value */
594 uasm_i_sync(&p
, STYPE_SYNC_MB
);
597 if (coupled_coherence
&& (state
== CPS_PM_CLOCK_GATED
)) {
599 * At this point it is safe for all VPEs to proceed with
600 * execution. This VPE will set the top bit of ready_count
601 * to indicate to the other VPEs that they may continue.
603 cps_gen_set_top_bit(&p
, &l
, &r
, r_nc_count
, lbl_set_cont
);
606 * This core will be reliant upon another core sending a
607 * power-up command to the CPC in order to resume operation.
608 * Thus an arbitrary VPE can't trigger the core leaving the
609 * idle state and the one that disables coherence might as well
610 * be the one to re-enable it. The rest will continue from here
611 * after that has been done.
613 uasm_build_label(&l
, p
, lbl_secondary_cont
);
615 /* Barrier ensuring all CPUs see the updated r_nc_count value */
616 uasm_i_sync(&p
, STYPE_SYNC_MB
);
619 /* The core is coherent, time to return to C code */
624 /* Ensure the code didn't exceed the resources allocated for it */
625 BUG_ON((p
- buf
) > max_instrs
);
626 BUG_ON((l
- labels
) > ARRAY_SIZE(labels
));
627 BUG_ON((r
- relocs
) > ARRAY_SIZE(relocs
));
629 /* Patch branch offsets */
630 uasm_resolve_relocs(relocs
, labels
);
632 /* Flush the icache */
633 local_flush_icache_range((unsigned long)buf
, (unsigned long)p
);
641 static int cps_pm_online_cpu(unsigned int cpu
)
643 enum cps_pm_state state
;
644 unsigned core
= cpu_data
[cpu
].core
;
645 unsigned dlinesz
= cpu_data
[cpu
].dcache
.linesz
;
646 void *entry_fn
, *core_rc
;
648 for (state
= CPS_PM_NC_WAIT
; state
< CPS_PM_STATE_COUNT
; state
++) {
649 if (per_cpu(nc_asm_enter
, core
)[state
])
651 if (!test_bit(state
, state_support
))
654 entry_fn
= cps_gen_entry_code(cpu
, state
);
656 pr_err("Failed to generate core %u state %u entry\n",
658 clear_bit(state
, state_support
);
661 per_cpu(nc_asm_enter
, core
)[state
] = entry_fn
;
664 if (!per_cpu(ready_count
, core
)) {
665 core_rc
= kmalloc(dlinesz
* 2, GFP_KERNEL
);
667 pr_err("Failed allocate core %u ready_count\n", core
);
670 per_cpu(ready_count_alloc
, core
) = core_rc
;
672 /* Ensure ready_count is aligned to a cacheline boundary */
673 core_rc
+= dlinesz
- 1;
674 core_rc
= (void *)((unsigned long)core_rc
& ~(dlinesz
- 1));
675 per_cpu(ready_count
, core
) = core_rc
;
681 static int __init
cps_pm_init(void)
683 /* A CM is required for all non-coherent states */
684 if (!mips_cm_present()) {
685 pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
690 * If interrupts were enabled whilst running a wait instruction on a
691 * non-coherent core then the VPE may end up processing interrupts
692 * whilst non-coherent. That would be bad.
694 if (cpu_wait
== r4k_wait_irqoff
)
695 set_bit(CPS_PM_NC_WAIT
, state_support
);
697 pr_warn("pm-cps: non-coherent wait unavailable\n");
699 /* Detect whether a CPC is present */
700 if (mips_cpc_present()) {
701 /* Detect whether clock gating is implemented */
702 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK
)
703 set_bit(CPS_PM_CLOCK_GATED
, state_support
);
705 pr_warn("pm-cps: CPC does not support clock gating\n");
707 /* Power gating is available with CPS SMP & any CPC */
708 if (mips_cps_smp_in_use())
709 set_bit(CPS_PM_POWER_GATED
, state_support
);
711 pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
713 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
716 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "mips/cps_pm:online",
717 cps_pm_online_cpu
, NULL
);
719 arch_initcall(cps_pm_init
);