2 * This contains encryption functions for per-file encryption.
4 * Copyright (C) 2015, Google, Inc.
5 * Copyright (C) 2015, Motorola Mobility
7 * Written by Michael Halcrow, 2014.
9 * Filename encryption additions
10 * Uday Savagaonkar, 2014
11 * Encryption policy handling additions
12 * Ildar Muslukhov, 2014
13 * Add fscrypt_pullback_bio_page()
16 * This has not yet undergone a rigorous security audit.
18 * The usage of AES-XTS should conform to recommendations in NIST
19 * Special Publication 800-38E and IEEE P1619/D16.
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/dcache.h>
28 #include <linux/namei.h>
29 #include "fscrypt_private.h"
31 static unsigned int num_prealloc_crypto_pages
= 32;
32 static unsigned int num_prealloc_crypto_ctxs
= 128;
34 module_param(num_prealloc_crypto_pages
, uint
, 0444);
35 MODULE_PARM_DESC(num_prealloc_crypto_pages
,
36 "Number of crypto pages to preallocate");
37 module_param(num_prealloc_crypto_ctxs
, uint
, 0444);
38 MODULE_PARM_DESC(num_prealloc_crypto_ctxs
,
39 "Number of crypto contexts to preallocate");
41 static mempool_t
*fscrypt_bounce_page_pool
= NULL
;
43 static LIST_HEAD(fscrypt_free_ctxs
);
44 static DEFINE_SPINLOCK(fscrypt_ctx_lock
);
46 struct workqueue_struct
*fscrypt_read_workqueue
;
47 static DEFINE_MUTEX(fscrypt_init_mutex
);
49 static struct kmem_cache
*fscrypt_ctx_cachep
;
50 struct kmem_cache
*fscrypt_info_cachep
;
53 * fscrypt_release_ctx() - Releases an encryption context
54 * @ctx: The encryption context to release.
56 * If the encryption context was allocated from the pre-allocated pool, returns
57 * it to that pool. Else, frees it.
59 * If there's a bounce page in the context, this frees that.
61 void fscrypt_release_ctx(struct fscrypt_ctx
*ctx
)
65 if (ctx
->flags
& FS_CTX_HAS_BOUNCE_BUFFER_FL
&& ctx
->w
.bounce_page
) {
66 mempool_free(ctx
->w
.bounce_page
, fscrypt_bounce_page_pool
);
67 ctx
->w
.bounce_page
= NULL
;
69 ctx
->w
.control_page
= NULL
;
70 if (ctx
->flags
& FS_CTX_REQUIRES_FREE_ENCRYPT_FL
) {
71 kmem_cache_free(fscrypt_ctx_cachep
, ctx
);
73 spin_lock_irqsave(&fscrypt_ctx_lock
, flags
);
74 list_add(&ctx
->free_list
, &fscrypt_free_ctxs
);
75 spin_unlock_irqrestore(&fscrypt_ctx_lock
, flags
);
78 EXPORT_SYMBOL(fscrypt_release_ctx
);
81 * fscrypt_get_ctx() - Gets an encryption context
82 * @inode: The inode for which we are doing the crypto
83 * @gfp_flags: The gfp flag for memory allocation
85 * Allocates and initializes an encryption context.
87 * Return: An allocated and initialized encryption context on success; error
88 * value or NULL otherwise.
90 struct fscrypt_ctx
*fscrypt_get_ctx(const struct inode
*inode
, gfp_t gfp_flags
)
92 struct fscrypt_ctx
*ctx
= NULL
;
93 struct fscrypt_info
*ci
= inode
->i_crypt_info
;
97 return ERR_PTR(-ENOKEY
);
100 * We first try getting the ctx from a free list because in
101 * the common case the ctx will have an allocated and
102 * initialized crypto tfm, so it's probably a worthwhile
103 * optimization. For the bounce page, we first try getting it
104 * from the kernel allocator because that's just about as fast
105 * as getting it from a list and because a cache of free pages
106 * should generally be a "last resort" option for a filesystem
107 * to be able to do its job.
109 spin_lock_irqsave(&fscrypt_ctx_lock
, flags
);
110 ctx
= list_first_entry_or_null(&fscrypt_free_ctxs
,
111 struct fscrypt_ctx
, free_list
);
113 list_del(&ctx
->free_list
);
114 spin_unlock_irqrestore(&fscrypt_ctx_lock
, flags
);
116 ctx
= kmem_cache_zalloc(fscrypt_ctx_cachep
, gfp_flags
);
118 return ERR_PTR(-ENOMEM
);
119 ctx
->flags
|= FS_CTX_REQUIRES_FREE_ENCRYPT_FL
;
121 ctx
->flags
&= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL
;
123 ctx
->flags
&= ~FS_CTX_HAS_BOUNCE_BUFFER_FL
;
126 EXPORT_SYMBOL(fscrypt_get_ctx
);
129 * page_crypt_complete() - completion callback for page crypto
130 * @req: The asynchronous cipher request context
131 * @res: The result of the cipher operation
133 static void page_crypt_complete(struct crypto_async_request
*req
, int res
)
135 struct fscrypt_completion_result
*ecr
= req
->data
;
137 if (res
== -EINPROGRESS
)
140 complete(&ecr
->completion
);
143 int fscrypt_do_page_crypto(const struct inode
*inode
, fscrypt_direction_t rw
,
144 u64 lblk_num
, struct page
*src_page
,
145 struct page
*dest_page
, unsigned int len
,
146 unsigned int offs
, gfp_t gfp_flags
)
150 u8 padding
[FS_XTS_TWEAK_SIZE
- sizeof(__le64
)];
152 struct skcipher_request
*req
= NULL
;
153 DECLARE_FS_COMPLETION_RESULT(ecr
);
154 struct scatterlist dst
, src
;
155 struct fscrypt_info
*ci
= inode
->i_crypt_info
;
156 struct crypto_skcipher
*tfm
= ci
->ci_ctfm
;
161 req
= skcipher_request_alloc(tfm
, gfp_flags
);
163 printk_ratelimited(KERN_ERR
164 "%s: crypto_request_alloc() failed\n",
169 skcipher_request_set_callback(
170 req
, CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
171 page_crypt_complete
, &ecr
);
173 BUILD_BUG_ON(sizeof(xts_tweak
) != FS_XTS_TWEAK_SIZE
);
174 xts_tweak
.index
= cpu_to_le64(lblk_num
);
175 memset(xts_tweak
.padding
, 0, sizeof(xts_tweak
.padding
));
177 sg_init_table(&dst
, 1);
178 sg_set_page(&dst
, dest_page
, len
, offs
);
179 sg_init_table(&src
, 1);
180 sg_set_page(&src
, src_page
, len
, offs
);
181 skcipher_request_set_crypt(req
, &src
, &dst
, len
, &xts_tweak
);
182 if (rw
== FS_DECRYPT
)
183 res
= crypto_skcipher_decrypt(req
);
185 res
= crypto_skcipher_encrypt(req
);
186 if (res
== -EINPROGRESS
|| res
== -EBUSY
) {
187 BUG_ON(req
->base
.data
!= &ecr
);
188 wait_for_completion(&ecr
.completion
);
191 skcipher_request_free(req
);
193 printk_ratelimited(KERN_ERR
194 "%s: crypto_skcipher_encrypt() returned %d\n",
201 struct page
*fscrypt_alloc_bounce_page(struct fscrypt_ctx
*ctx
,
204 ctx
->w
.bounce_page
= mempool_alloc(fscrypt_bounce_page_pool
, gfp_flags
);
205 if (ctx
->w
.bounce_page
== NULL
)
206 return ERR_PTR(-ENOMEM
);
207 ctx
->flags
|= FS_CTX_HAS_BOUNCE_BUFFER_FL
;
208 return ctx
->w
.bounce_page
;
212 * fscypt_encrypt_page() - Encrypts a page
213 * @inode: The inode for which the encryption should take place
214 * @page: The page to encrypt. Must be locked for bounce-page
216 * @len: Length of data to encrypt in @page and encrypted
217 * data in returned page.
218 * @offs: Offset of data within @page and returned
219 * page holding encrypted data.
220 * @lblk_num: Logical block number. This must be unique for multiple
221 * calls with same inode, except when overwriting
222 * previously written data.
223 * @gfp_flags: The gfp flag for memory allocation
225 * Encrypts @page using the ctx encryption context. Performs encryption
226 * either in-place or into a newly allocated bounce page.
227 * Called on the page write path.
229 * Bounce page allocation is the default.
230 * In this case, the contents of @page are encrypted and stored in an
231 * allocated bounce page. @page has to be locked and the caller must call
232 * fscrypt_restore_control_page() on the returned ciphertext page to
233 * release the bounce buffer and the encryption context.
235 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
236 * fscrypt_operations. Here, the input-page is returned with its content
239 * Return: A page with the encrypted content on success. Else, an
240 * error value or NULL.
242 struct page
*fscrypt_encrypt_page(const struct inode
*inode
,
246 u64 lblk_num
, gfp_t gfp_flags
)
249 struct fscrypt_ctx
*ctx
;
250 struct page
*ciphertext_page
= page
;
253 BUG_ON(len
% FS_CRYPTO_BLOCK_SIZE
!= 0);
255 if (inode
->i_sb
->s_cop
->flags
& FS_CFLG_OWN_PAGES
) {
256 /* with inplace-encryption we just encrypt the page */
257 err
= fscrypt_do_page_crypto(inode
, FS_ENCRYPT
, lblk_num
, page
,
258 ciphertext_page
, len
, offs
,
263 return ciphertext_page
;
266 BUG_ON(!PageLocked(page
));
268 ctx
= fscrypt_get_ctx(inode
, gfp_flags
);
270 return (struct page
*)ctx
;
272 /* The encryption operation will require a bounce page. */
273 ciphertext_page
= fscrypt_alloc_bounce_page(ctx
, gfp_flags
);
274 if (IS_ERR(ciphertext_page
))
277 ctx
->w
.control_page
= page
;
278 err
= fscrypt_do_page_crypto(inode
, FS_ENCRYPT
, lblk_num
,
279 page
, ciphertext_page
, len
, offs
,
282 ciphertext_page
= ERR_PTR(err
);
285 SetPagePrivate(ciphertext_page
);
286 set_page_private(ciphertext_page
, (unsigned long)ctx
);
287 lock_page(ciphertext_page
);
288 return ciphertext_page
;
291 fscrypt_release_ctx(ctx
);
292 return ciphertext_page
;
294 EXPORT_SYMBOL(fscrypt_encrypt_page
);
297 * fscrypt_decrypt_page() - Decrypts a page in-place
298 * @inode: The corresponding inode for the page to decrypt.
299 * @page: The page to decrypt. Must be locked in case
300 * it is a writeback page (FS_CFLG_OWN_PAGES unset).
301 * @len: Number of bytes in @page to be decrypted.
302 * @offs: Start of data in @page.
303 * @lblk_num: Logical block number.
305 * Decrypts page in-place using the ctx encryption context.
307 * Called from the read completion callback.
309 * Return: Zero on success, non-zero otherwise.
311 int fscrypt_decrypt_page(const struct inode
*inode
, struct page
*page
,
312 unsigned int len
, unsigned int offs
, u64 lblk_num
)
314 if (!(inode
->i_sb
->s_cop
->flags
& FS_CFLG_OWN_PAGES
))
315 BUG_ON(!PageLocked(page
));
317 return fscrypt_do_page_crypto(inode
, FS_DECRYPT
, lblk_num
, page
, page
,
318 len
, offs
, GFP_NOFS
);
320 EXPORT_SYMBOL(fscrypt_decrypt_page
);
323 * Validate dentries for encrypted directories to make sure we aren't
324 * potentially caching stale data after a key has been added or
327 static int fscrypt_d_revalidate(struct dentry
*dentry
, unsigned int flags
)
330 struct fscrypt_info
*ci
;
331 int dir_has_key
, cached_with_key
;
333 if (flags
& LOOKUP_RCU
)
336 dir
= dget_parent(dentry
);
337 if (!d_inode(dir
)->i_sb
->s_cop
->is_encrypted(d_inode(dir
))) {
342 ci
= d_inode(dir
)->i_crypt_info
;
343 if (ci
&& ci
->ci_keyring_key
&&
344 (ci
->ci_keyring_key
->flags
& ((1 << KEY_FLAG_INVALIDATED
) |
345 (1 << KEY_FLAG_REVOKED
) |
346 (1 << KEY_FLAG_DEAD
))))
349 /* this should eventually be an flag in d_flags */
350 spin_lock(&dentry
->d_lock
);
351 cached_with_key
= dentry
->d_flags
& DCACHE_ENCRYPTED_WITH_KEY
;
352 spin_unlock(&dentry
->d_lock
);
353 dir_has_key
= (ci
!= NULL
);
357 * If the dentry was cached without the key, and it is a
358 * negative dentry, it might be a valid name. We can't check
359 * if the key has since been made available due to locking
360 * reasons, so we fail the validation so ext4_lookup() can do
363 * We also fail the validation if the dentry was created with
364 * the key present, but we no longer have the key, or vice versa.
366 if ((!cached_with_key
&& d_is_negative(dentry
)) ||
367 (!cached_with_key
&& dir_has_key
) ||
368 (cached_with_key
&& !dir_has_key
))
373 const struct dentry_operations fscrypt_d_ops
= {
374 .d_revalidate
= fscrypt_d_revalidate
,
376 EXPORT_SYMBOL(fscrypt_d_ops
);
378 void fscrypt_restore_control_page(struct page
*page
)
380 struct fscrypt_ctx
*ctx
;
382 ctx
= (struct fscrypt_ctx
*)page_private(page
);
383 set_page_private(page
, (unsigned long)NULL
);
384 ClearPagePrivate(page
);
386 fscrypt_release_ctx(ctx
);
388 EXPORT_SYMBOL(fscrypt_restore_control_page
);
390 static void fscrypt_destroy(void)
392 struct fscrypt_ctx
*pos
, *n
;
394 list_for_each_entry_safe(pos
, n
, &fscrypt_free_ctxs
, free_list
)
395 kmem_cache_free(fscrypt_ctx_cachep
, pos
);
396 INIT_LIST_HEAD(&fscrypt_free_ctxs
);
397 mempool_destroy(fscrypt_bounce_page_pool
);
398 fscrypt_bounce_page_pool
= NULL
;
402 * fscrypt_initialize() - allocate major buffers for fs encryption.
403 * @cop_flags: fscrypt operations flags
405 * We only call this when we start accessing encrypted files, since it
406 * results in memory getting allocated that wouldn't otherwise be used.
408 * Return: Zero on success, non-zero otherwise.
410 int fscrypt_initialize(unsigned int cop_flags
)
412 int i
, res
= -ENOMEM
;
415 * No need to allocate a bounce page pool if there already is one or
416 * this FS won't use it.
418 if (cop_flags
& FS_CFLG_OWN_PAGES
|| fscrypt_bounce_page_pool
)
421 mutex_lock(&fscrypt_init_mutex
);
422 if (fscrypt_bounce_page_pool
)
423 goto already_initialized
;
425 for (i
= 0; i
< num_prealloc_crypto_ctxs
; i
++) {
426 struct fscrypt_ctx
*ctx
;
428 ctx
= kmem_cache_zalloc(fscrypt_ctx_cachep
, GFP_NOFS
);
431 list_add(&ctx
->free_list
, &fscrypt_free_ctxs
);
434 fscrypt_bounce_page_pool
=
435 mempool_create_page_pool(num_prealloc_crypto_pages
, 0);
436 if (!fscrypt_bounce_page_pool
)
440 mutex_unlock(&fscrypt_init_mutex
);
444 mutex_unlock(&fscrypt_init_mutex
);
449 * fscrypt_init() - Set up for fs encryption.
451 static int __init
fscrypt_init(void)
453 fscrypt_read_workqueue
= alloc_workqueue("fscrypt_read_queue",
455 if (!fscrypt_read_workqueue
)
458 fscrypt_ctx_cachep
= KMEM_CACHE(fscrypt_ctx
, SLAB_RECLAIM_ACCOUNT
);
459 if (!fscrypt_ctx_cachep
)
460 goto fail_free_queue
;
462 fscrypt_info_cachep
= KMEM_CACHE(fscrypt_info
, SLAB_RECLAIM_ACCOUNT
);
463 if (!fscrypt_info_cachep
)
469 kmem_cache_destroy(fscrypt_ctx_cachep
);
471 destroy_workqueue(fscrypt_read_workqueue
);
475 module_init(fscrypt_init
)
478 * fscrypt_exit() - Shutdown the fs encryption system
480 static void __exit
fscrypt_exit(void)
484 if (fscrypt_read_workqueue
)
485 destroy_workqueue(fscrypt_read_workqueue
);
486 kmem_cache_destroy(fscrypt_ctx_cachep
);
487 kmem_cache_destroy(fscrypt_info_cachep
);
489 module_exit(fscrypt_exit
);
491 MODULE_LICENSE("GPL");