cfg80211: Fix array-bounds warning in fragment copy
[linux/fpc-iii.git] / fs / crypto / crypto.c
blob02a7a9286449d467741d64e8e817bb2902309926
1 /*
2 * This contains encryption functions for per-file encryption.
4 * Copyright (C) 2015, Google, Inc.
5 * Copyright (C) 2015, Motorola Mobility
7 * Written by Michael Halcrow, 2014.
9 * Filename encryption additions
10 * Uday Savagaonkar, 2014
11 * Encryption policy handling additions
12 * Ildar Muslukhov, 2014
13 * Add fscrypt_pullback_bio_page()
14 * Jaegeuk Kim, 2015.
16 * This has not yet undergone a rigorous security audit.
18 * The usage of AES-XTS should conform to recommendations in NIST
19 * Special Publication 800-38E and IEEE P1619/D16.
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/dcache.h>
28 #include <linux/namei.h>
29 #include "fscrypt_private.h"
31 static unsigned int num_prealloc_crypto_pages = 32;
32 static unsigned int num_prealloc_crypto_ctxs = 128;
34 module_param(num_prealloc_crypto_pages, uint, 0444);
35 MODULE_PARM_DESC(num_prealloc_crypto_pages,
36 "Number of crypto pages to preallocate");
37 module_param(num_prealloc_crypto_ctxs, uint, 0444);
38 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
39 "Number of crypto contexts to preallocate");
41 static mempool_t *fscrypt_bounce_page_pool = NULL;
43 static LIST_HEAD(fscrypt_free_ctxs);
44 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
46 struct workqueue_struct *fscrypt_read_workqueue;
47 static DEFINE_MUTEX(fscrypt_init_mutex);
49 static struct kmem_cache *fscrypt_ctx_cachep;
50 struct kmem_cache *fscrypt_info_cachep;
52 /**
53 * fscrypt_release_ctx() - Releases an encryption context
54 * @ctx: The encryption context to release.
56 * If the encryption context was allocated from the pre-allocated pool, returns
57 * it to that pool. Else, frees it.
59 * If there's a bounce page in the context, this frees that.
61 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
63 unsigned long flags;
65 if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
66 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
67 ctx->w.bounce_page = NULL;
69 ctx->w.control_page = NULL;
70 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
71 kmem_cache_free(fscrypt_ctx_cachep, ctx);
72 } else {
73 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
74 list_add(&ctx->free_list, &fscrypt_free_ctxs);
75 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
78 EXPORT_SYMBOL(fscrypt_release_ctx);
80 /**
81 * fscrypt_get_ctx() - Gets an encryption context
82 * @inode: The inode for which we are doing the crypto
83 * @gfp_flags: The gfp flag for memory allocation
85 * Allocates and initializes an encryption context.
87 * Return: An allocated and initialized encryption context on success; error
88 * value or NULL otherwise.
90 struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
92 struct fscrypt_ctx *ctx = NULL;
93 struct fscrypt_info *ci = inode->i_crypt_info;
94 unsigned long flags;
96 if (ci == NULL)
97 return ERR_PTR(-ENOKEY);
100 * We first try getting the ctx from a free list because in
101 * the common case the ctx will have an allocated and
102 * initialized crypto tfm, so it's probably a worthwhile
103 * optimization. For the bounce page, we first try getting it
104 * from the kernel allocator because that's just about as fast
105 * as getting it from a list and because a cache of free pages
106 * should generally be a "last resort" option for a filesystem
107 * to be able to do its job.
109 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
110 ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
111 struct fscrypt_ctx, free_list);
112 if (ctx)
113 list_del(&ctx->free_list);
114 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
115 if (!ctx) {
116 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
117 if (!ctx)
118 return ERR_PTR(-ENOMEM);
119 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
120 } else {
121 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
123 ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
124 return ctx;
126 EXPORT_SYMBOL(fscrypt_get_ctx);
129 * page_crypt_complete() - completion callback for page crypto
130 * @req: The asynchronous cipher request context
131 * @res: The result of the cipher operation
133 static void page_crypt_complete(struct crypto_async_request *req, int res)
135 struct fscrypt_completion_result *ecr = req->data;
137 if (res == -EINPROGRESS)
138 return;
139 ecr->res = res;
140 complete(&ecr->completion);
143 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
144 u64 lblk_num, struct page *src_page,
145 struct page *dest_page, unsigned int len,
146 unsigned int offs, gfp_t gfp_flags)
148 struct {
149 __le64 index;
150 u8 padding[FS_XTS_TWEAK_SIZE - sizeof(__le64)];
151 } xts_tweak;
152 struct skcipher_request *req = NULL;
153 DECLARE_FS_COMPLETION_RESULT(ecr);
154 struct scatterlist dst, src;
155 struct fscrypt_info *ci = inode->i_crypt_info;
156 struct crypto_skcipher *tfm = ci->ci_ctfm;
157 int res = 0;
159 BUG_ON(len == 0);
161 req = skcipher_request_alloc(tfm, gfp_flags);
162 if (!req) {
163 printk_ratelimited(KERN_ERR
164 "%s: crypto_request_alloc() failed\n",
165 __func__);
166 return -ENOMEM;
169 skcipher_request_set_callback(
170 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
171 page_crypt_complete, &ecr);
173 BUILD_BUG_ON(sizeof(xts_tweak) != FS_XTS_TWEAK_SIZE);
174 xts_tweak.index = cpu_to_le64(lblk_num);
175 memset(xts_tweak.padding, 0, sizeof(xts_tweak.padding));
177 sg_init_table(&dst, 1);
178 sg_set_page(&dst, dest_page, len, offs);
179 sg_init_table(&src, 1);
180 sg_set_page(&src, src_page, len, offs);
181 skcipher_request_set_crypt(req, &src, &dst, len, &xts_tweak);
182 if (rw == FS_DECRYPT)
183 res = crypto_skcipher_decrypt(req);
184 else
185 res = crypto_skcipher_encrypt(req);
186 if (res == -EINPROGRESS || res == -EBUSY) {
187 BUG_ON(req->base.data != &ecr);
188 wait_for_completion(&ecr.completion);
189 res = ecr.res;
191 skcipher_request_free(req);
192 if (res) {
193 printk_ratelimited(KERN_ERR
194 "%s: crypto_skcipher_encrypt() returned %d\n",
195 __func__, res);
196 return res;
198 return 0;
201 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
202 gfp_t gfp_flags)
204 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
205 if (ctx->w.bounce_page == NULL)
206 return ERR_PTR(-ENOMEM);
207 ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
208 return ctx->w.bounce_page;
212 * fscypt_encrypt_page() - Encrypts a page
213 * @inode: The inode for which the encryption should take place
214 * @page: The page to encrypt. Must be locked for bounce-page
215 * encryption.
216 * @len: Length of data to encrypt in @page and encrypted
217 * data in returned page.
218 * @offs: Offset of data within @page and returned
219 * page holding encrypted data.
220 * @lblk_num: Logical block number. This must be unique for multiple
221 * calls with same inode, except when overwriting
222 * previously written data.
223 * @gfp_flags: The gfp flag for memory allocation
225 * Encrypts @page using the ctx encryption context. Performs encryption
226 * either in-place or into a newly allocated bounce page.
227 * Called on the page write path.
229 * Bounce page allocation is the default.
230 * In this case, the contents of @page are encrypted and stored in an
231 * allocated bounce page. @page has to be locked and the caller must call
232 * fscrypt_restore_control_page() on the returned ciphertext page to
233 * release the bounce buffer and the encryption context.
235 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
236 * fscrypt_operations. Here, the input-page is returned with its content
237 * encrypted.
239 * Return: A page with the encrypted content on success. Else, an
240 * error value or NULL.
242 struct page *fscrypt_encrypt_page(const struct inode *inode,
243 struct page *page,
244 unsigned int len,
245 unsigned int offs,
246 u64 lblk_num, gfp_t gfp_flags)
249 struct fscrypt_ctx *ctx;
250 struct page *ciphertext_page = page;
251 int err;
253 BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
255 if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
256 /* with inplace-encryption we just encrypt the page */
257 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
258 ciphertext_page, len, offs,
259 gfp_flags);
260 if (err)
261 return ERR_PTR(err);
263 return ciphertext_page;
266 BUG_ON(!PageLocked(page));
268 ctx = fscrypt_get_ctx(inode, gfp_flags);
269 if (IS_ERR(ctx))
270 return (struct page *)ctx;
272 /* The encryption operation will require a bounce page. */
273 ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
274 if (IS_ERR(ciphertext_page))
275 goto errout;
277 ctx->w.control_page = page;
278 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
279 page, ciphertext_page, len, offs,
280 gfp_flags);
281 if (err) {
282 ciphertext_page = ERR_PTR(err);
283 goto errout;
285 SetPagePrivate(ciphertext_page);
286 set_page_private(ciphertext_page, (unsigned long)ctx);
287 lock_page(ciphertext_page);
288 return ciphertext_page;
290 errout:
291 fscrypt_release_ctx(ctx);
292 return ciphertext_page;
294 EXPORT_SYMBOL(fscrypt_encrypt_page);
297 * fscrypt_decrypt_page() - Decrypts a page in-place
298 * @inode: The corresponding inode for the page to decrypt.
299 * @page: The page to decrypt. Must be locked in case
300 * it is a writeback page (FS_CFLG_OWN_PAGES unset).
301 * @len: Number of bytes in @page to be decrypted.
302 * @offs: Start of data in @page.
303 * @lblk_num: Logical block number.
305 * Decrypts page in-place using the ctx encryption context.
307 * Called from the read completion callback.
309 * Return: Zero on success, non-zero otherwise.
311 int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
312 unsigned int len, unsigned int offs, u64 lblk_num)
314 if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
315 BUG_ON(!PageLocked(page));
317 return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
318 len, offs, GFP_NOFS);
320 EXPORT_SYMBOL(fscrypt_decrypt_page);
323 * Validate dentries for encrypted directories to make sure we aren't
324 * potentially caching stale data after a key has been added or
325 * removed.
327 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
329 struct dentry *dir;
330 struct fscrypt_info *ci;
331 int dir_has_key, cached_with_key;
333 if (flags & LOOKUP_RCU)
334 return -ECHILD;
336 dir = dget_parent(dentry);
337 if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) {
338 dput(dir);
339 return 0;
342 ci = d_inode(dir)->i_crypt_info;
343 if (ci && ci->ci_keyring_key &&
344 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
345 (1 << KEY_FLAG_REVOKED) |
346 (1 << KEY_FLAG_DEAD))))
347 ci = NULL;
349 /* this should eventually be an flag in d_flags */
350 spin_lock(&dentry->d_lock);
351 cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
352 spin_unlock(&dentry->d_lock);
353 dir_has_key = (ci != NULL);
354 dput(dir);
357 * If the dentry was cached without the key, and it is a
358 * negative dentry, it might be a valid name. We can't check
359 * if the key has since been made available due to locking
360 * reasons, so we fail the validation so ext4_lookup() can do
361 * this check.
363 * We also fail the validation if the dentry was created with
364 * the key present, but we no longer have the key, or vice versa.
366 if ((!cached_with_key && d_is_negative(dentry)) ||
367 (!cached_with_key && dir_has_key) ||
368 (cached_with_key && !dir_has_key))
369 return 0;
370 return 1;
373 const struct dentry_operations fscrypt_d_ops = {
374 .d_revalidate = fscrypt_d_revalidate,
376 EXPORT_SYMBOL(fscrypt_d_ops);
378 void fscrypt_restore_control_page(struct page *page)
380 struct fscrypt_ctx *ctx;
382 ctx = (struct fscrypt_ctx *)page_private(page);
383 set_page_private(page, (unsigned long)NULL);
384 ClearPagePrivate(page);
385 unlock_page(page);
386 fscrypt_release_ctx(ctx);
388 EXPORT_SYMBOL(fscrypt_restore_control_page);
390 static void fscrypt_destroy(void)
392 struct fscrypt_ctx *pos, *n;
394 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
395 kmem_cache_free(fscrypt_ctx_cachep, pos);
396 INIT_LIST_HEAD(&fscrypt_free_ctxs);
397 mempool_destroy(fscrypt_bounce_page_pool);
398 fscrypt_bounce_page_pool = NULL;
402 * fscrypt_initialize() - allocate major buffers for fs encryption.
403 * @cop_flags: fscrypt operations flags
405 * We only call this when we start accessing encrypted files, since it
406 * results in memory getting allocated that wouldn't otherwise be used.
408 * Return: Zero on success, non-zero otherwise.
410 int fscrypt_initialize(unsigned int cop_flags)
412 int i, res = -ENOMEM;
415 * No need to allocate a bounce page pool if there already is one or
416 * this FS won't use it.
418 if (cop_flags & FS_CFLG_OWN_PAGES || fscrypt_bounce_page_pool)
419 return 0;
421 mutex_lock(&fscrypt_init_mutex);
422 if (fscrypt_bounce_page_pool)
423 goto already_initialized;
425 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
426 struct fscrypt_ctx *ctx;
428 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
429 if (!ctx)
430 goto fail;
431 list_add(&ctx->free_list, &fscrypt_free_ctxs);
434 fscrypt_bounce_page_pool =
435 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
436 if (!fscrypt_bounce_page_pool)
437 goto fail;
439 already_initialized:
440 mutex_unlock(&fscrypt_init_mutex);
441 return 0;
442 fail:
443 fscrypt_destroy();
444 mutex_unlock(&fscrypt_init_mutex);
445 return res;
449 * fscrypt_init() - Set up for fs encryption.
451 static int __init fscrypt_init(void)
453 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
454 WQ_HIGHPRI, 0);
455 if (!fscrypt_read_workqueue)
456 goto fail;
458 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
459 if (!fscrypt_ctx_cachep)
460 goto fail_free_queue;
462 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
463 if (!fscrypt_info_cachep)
464 goto fail_free_ctx;
466 return 0;
468 fail_free_ctx:
469 kmem_cache_destroy(fscrypt_ctx_cachep);
470 fail_free_queue:
471 destroy_workqueue(fscrypt_read_workqueue);
472 fail:
473 return -ENOMEM;
475 module_init(fscrypt_init)
478 * fscrypt_exit() - Shutdown the fs encryption system
480 static void __exit fscrypt_exit(void)
482 fscrypt_destroy();
484 if (fscrypt_read_workqueue)
485 destroy_workqueue(fscrypt_read_workqueue);
486 kmem_cache_destroy(fscrypt_ctx_cachep);
487 kmem_cache_destroy(fscrypt_info_cachep);
489 module_exit(fscrypt_exit);
491 MODULE_LICENSE("GPL");