staging: rtl8188eu: rename HalSetBrateCfg() - style
[linux/fpc-iii.git] / drivers / block / loop.c
blobea9debf59b225c19d815e7ff1fd8aa950f5dcb1b
1 /*
2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
81 #include "loop.h"
83 #include <linux/uaccess.h>
85 static DEFINE_IDR(loop_index_idr);
86 static DEFINE_MUTEX(loop_index_mutex);
88 static int max_part;
89 static int part_shift;
91 static int transfer_xor(struct loop_device *lo, int cmd,
92 struct page *raw_page, unsigned raw_off,
93 struct page *loop_page, unsigned loop_off,
94 int size, sector_t real_block)
96 char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 char *loop_buf = kmap_atomic(loop_page) + loop_off;
98 char *in, *out, *key;
99 int i, keysize;
101 if (cmd == READ) {
102 in = raw_buf;
103 out = loop_buf;
104 } else {
105 in = loop_buf;
106 out = raw_buf;
109 key = lo->lo_encrypt_key;
110 keysize = lo->lo_encrypt_key_size;
111 for (i = 0; i < size; i++)
112 *out++ = *in++ ^ key[(i & 511) % keysize];
114 kunmap_atomic(loop_buf);
115 kunmap_atomic(raw_buf);
116 cond_resched();
117 return 0;
120 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122 if (unlikely(info->lo_encrypt_key_size <= 0))
123 return -EINVAL;
124 return 0;
127 static struct loop_func_table none_funcs = {
128 .number = LO_CRYPT_NONE,
131 static struct loop_func_table xor_funcs = {
132 .number = LO_CRYPT_XOR,
133 .transfer = transfer_xor,
134 .init = xor_init
137 /* xfer_funcs[0] is special - its release function is never called */
138 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
139 &none_funcs,
140 &xor_funcs
143 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145 loff_t loopsize;
147 /* Compute loopsize in bytes */
148 loopsize = i_size_read(file->f_mapping->host);
149 if (offset > 0)
150 loopsize -= offset;
151 /* offset is beyond i_size, weird but possible */
152 if (loopsize < 0)
153 return 0;
155 if (sizelimit > 0 && sizelimit < loopsize)
156 loopsize = sizelimit;
158 * Unfortunately, if we want to do I/O on the device,
159 * the number of 512-byte sectors has to fit into a sector_t.
161 return loopsize >> 9;
164 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
169 static void __loop_update_dio(struct loop_device *lo, bool dio)
171 struct file *file = lo->lo_backing_file;
172 struct address_space *mapping = file->f_mapping;
173 struct inode *inode = mapping->host;
174 unsigned short sb_bsize = 0;
175 unsigned dio_align = 0;
176 bool use_dio;
178 if (inode->i_sb->s_bdev) {
179 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
180 dio_align = sb_bsize - 1;
184 * We support direct I/O only if lo_offset is aligned with the
185 * logical I/O size of backing device, and the logical block
186 * size of loop is bigger than the backing device's and the loop
187 * needn't transform transfer.
189 * TODO: the above condition may be loosed in the future, and
190 * direct I/O may be switched runtime at that time because most
191 * of requests in sane applications should be PAGE_SIZE aligned
193 if (dio) {
194 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
195 !(lo->lo_offset & dio_align) &&
196 mapping->a_ops->direct_IO &&
197 !lo->transfer)
198 use_dio = true;
199 else
200 use_dio = false;
201 } else {
202 use_dio = false;
205 if (lo->use_dio == use_dio)
206 return;
208 /* flush dirty pages before changing direct IO */
209 vfs_fsync(file, 0);
212 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
213 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
214 * will get updated by ioctl(LOOP_GET_STATUS)
216 blk_mq_freeze_queue(lo->lo_queue);
217 lo->use_dio = use_dio;
218 if (use_dio) {
219 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
220 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
221 } else {
222 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
223 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
225 blk_mq_unfreeze_queue(lo->lo_queue);
228 static int
229 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
231 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
232 sector_t x = (sector_t)size;
233 struct block_device *bdev = lo->lo_device;
235 if (unlikely((loff_t)x != size))
236 return -EFBIG;
237 if (lo->lo_offset != offset)
238 lo->lo_offset = offset;
239 if (lo->lo_sizelimit != sizelimit)
240 lo->lo_sizelimit = sizelimit;
241 set_capacity(lo->lo_disk, x);
242 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
243 /* let user-space know about the new size */
244 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
245 return 0;
248 static inline int
249 lo_do_transfer(struct loop_device *lo, int cmd,
250 struct page *rpage, unsigned roffs,
251 struct page *lpage, unsigned loffs,
252 int size, sector_t rblock)
254 int ret;
256 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
257 if (likely(!ret))
258 return 0;
260 printk_ratelimited(KERN_ERR
261 "loop: Transfer error at byte offset %llu, length %i.\n",
262 (unsigned long long)rblock << 9, size);
263 return ret;
266 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
268 struct iov_iter i;
269 ssize_t bw;
271 iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len);
273 file_start_write(file);
274 bw = vfs_iter_write(file, &i, ppos, 0);
275 file_end_write(file);
277 if (likely(bw == bvec->bv_len))
278 return 0;
280 printk_ratelimited(KERN_ERR
281 "loop: Write error at byte offset %llu, length %i.\n",
282 (unsigned long long)*ppos, bvec->bv_len);
283 if (bw >= 0)
284 bw = -EIO;
285 return bw;
288 static int lo_write_simple(struct loop_device *lo, struct request *rq,
289 loff_t pos)
291 struct bio_vec bvec;
292 struct req_iterator iter;
293 int ret = 0;
295 rq_for_each_segment(bvec, rq, iter) {
296 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
297 if (ret < 0)
298 break;
299 cond_resched();
302 return ret;
306 * This is the slow, transforming version that needs to double buffer the
307 * data as it cannot do the transformations in place without having direct
308 * access to the destination pages of the backing file.
310 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
311 loff_t pos)
313 struct bio_vec bvec, b;
314 struct req_iterator iter;
315 struct page *page;
316 int ret = 0;
318 page = alloc_page(GFP_NOIO);
319 if (unlikely(!page))
320 return -ENOMEM;
322 rq_for_each_segment(bvec, rq, iter) {
323 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
324 bvec.bv_offset, bvec.bv_len, pos >> 9);
325 if (unlikely(ret))
326 break;
328 b.bv_page = page;
329 b.bv_offset = 0;
330 b.bv_len = bvec.bv_len;
331 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
332 if (ret < 0)
333 break;
336 __free_page(page);
337 return ret;
340 static int lo_read_simple(struct loop_device *lo, struct request *rq,
341 loff_t pos)
343 struct bio_vec bvec;
344 struct req_iterator iter;
345 struct iov_iter i;
346 ssize_t len;
348 rq_for_each_segment(bvec, rq, iter) {
349 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
350 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
351 if (len < 0)
352 return len;
354 flush_dcache_page(bvec.bv_page);
356 if (len != bvec.bv_len) {
357 struct bio *bio;
359 __rq_for_each_bio(bio, rq)
360 zero_fill_bio(bio);
361 break;
363 cond_resched();
366 return 0;
369 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
370 loff_t pos)
372 struct bio_vec bvec, b;
373 struct req_iterator iter;
374 struct iov_iter i;
375 struct page *page;
376 ssize_t len;
377 int ret = 0;
379 page = alloc_page(GFP_NOIO);
380 if (unlikely(!page))
381 return -ENOMEM;
383 rq_for_each_segment(bvec, rq, iter) {
384 loff_t offset = pos;
386 b.bv_page = page;
387 b.bv_offset = 0;
388 b.bv_len = bvec.bv_len;
390 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
391 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
392 if (len < 0) {
393 ret = len;
394 goto out_free_page;
397 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
398 bvec.bv_offset, len, offset >> 9);
399 if (ret)
400 goto out_free_page;
402 flush_dcache_page(bvec.bv_page);
404 if (len != bvec.bv_len) {
405 struct bio *bio;
407 __rq_for_each_bio(bio, rq)
408 zero_fill_bio(bio);
409 break;
413 ret = 0;
414 out_free_page:
415 __free_page(page);
416 return ret;
419 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
422 * We use punch hole to reclaim the free space used by the
423 * image a.k.a. discard. However we do not support discard if
424 * encryption is enabled, because it may give an attacker
425 * useful information.
427 struct file *file = lo->lo_backing_file;
428 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
429 int ret;
431 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
432 ret = -EOPNOTSUPP;
433 goto out;
436 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
437 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
438 ret = -EIO;
439 out:
440 return ret;
443 static int lo_req_flush(struct loop_device *lo, struct request *rq)
445 struct file *file = lo->lo_backing_file;
446 int ret = vfs_fsync(file, 0);
447 if (unlikely(ret && ret != -EINVAL))
448 ret = -EIO;
450 return ret;
453 static void lo_complete_rq(struct request *rq)
455 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
456 blk_status_t ret = BLK_STS_OK;
458 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
459 req_op(rq) != REQ_OP_READ) {
460 if (cmd->ret < 0)
461 ret = BLK_STS_IOERR;
462 goto end_io;
466 * Short READ - if we got some data, advance our request and
467 * retry it. If we got no data, end the rest with EIO.
469 if (cmd->ret) {
470 blk_update_request(rq, BLK_STS_OK, cmd->ret);
471 cmd->ret = 0;
472 blk_mq_requeue_request(rq, true);
473 } else {
474 if (cmd->use_aio) {
475 struct bio *bio = rq->bio;
477 while (bio) {
478 zero_fill_bio(bio);
479 bio = bio->bi_next;
482 ret = BLK_STS_IOERR;
483 end_io:
484 blk_mq_end_request(rq, ret);
488 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
490 struct request *rq = blk_mq_rq_from_pdu(cmd);
492 if (!atomic_dec_and_test(&cmd->ref))
493 return;
494 kfree(cmd->bvec);
495 cmd->bvec = NULL;
496 blk_mq_complete_request(rq);
499 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
501 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
503 if (cmd->css)
504 css_put(cmd->css);
505 cmd->ret = ret;
506 lo_rw_aio_do_completion(cmd);
509 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
510 loff_t pos, bool rw)
512 struct iov_iter iter;
513 struct bio_vec *bvec;
514 struct request *rq = blk_mq_rq_from_pdu(cmd);
515 struct bio *bio = rq->bio;
516 struct file *file = lo->lo_backing_file;
517 unsigned int offset;
518 int segments = 0;
519 int ret;
521 if (rq->bio != rq->biotail) {
522 struct req_iterator iter;
523 struct bio_vec tmp;
525 __rq_for_each_bio(bio, rq)
526 segments += bio_segments(bio);
527 bvec = kmalloc_array(segments, sizeof(struct bio_vec),
528 GFP_NOIO);
529 if (!bvec)
530 return -EIO;
531 cmd->bvec = bvec;
534 * The bios of the request may be started from the middle of
535 * the 'bvec' because of bio splitting, so we can't directly
536 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
537 * API will take care of all details for us.
539 rq_for_each_segment(tmp, rq, iter) {
540 *bvec = tmp;
541 bvec++;
543 bvec = cmd->bvec;
544 offset = 0;
545 } else {
547 * Same here, this bio may be started from the middle of the
548 * 'bvec' because of bio splitting, so offset from the bvec
549 * must be passed to iov iterator
551 offset = bio->bi_iter.bi_bvec_done;
552 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
553 segments = bio_segments(bio);
555 atomic_set(&cmd->ref, 2);
557 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
558 segments, blk_rq_bytes(rq));
559 iter.iov_offset = offset;
561 cmd->iocb.ki_pos = pos;
562 cmd->iocb.ki_filp = file;
563 cmd->iocb.ki_complete = lo_rw_aio_complete;
564 cmd->iocb.ki_flags = IOCB_DIRECT;
565 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
566 if (cmd->css)
567 kthread_associate_blkcg(cmd->css);
569 if (rw == WRITE)
570 ret = call_write_iter(file, &cmd->iocb, &iter);
571 else
572 ret = call_read_iter(file, &cmd->iocb, &iter);
574 lo_rw_aio_do_completion(cmd);
575 kthread_associate_blkcg(NULL);
577 if (ret != -EIOCBQUEUED)
578 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
579 return 0;
582 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
584 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
585 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
588 * lo_write_simple and lo_read_simple should have been covered
589 * by io submit style function like lo_rw_aio(), one blocker
590 * is that lo_read_simple() need to call flush_dcache_page after
591 * the page is written from kernel, and it isn't easy to handle
592 * this in io submit style function which submits all segments
593 * of the req at one time. And direct read IO doesn't need to
594 * run flush_dcache_page().
596 switch (req_op(rq)) {
597 case REQ_OP_FLUSH:
598 return lo_req_flush(lo, rq);
599 case REQ_OP_DISCARD:
600 case REQ_OP_WRITE_ZEROES:
601 return lo_discard(lo, rq, pos);
602 case REQ_OP_WRITE:
603 if (lo->transfer)
604 return lo_write_transfer(lo, rq, pos);
605 else if (cmd->use_aio)
606 return lo_rw_aio(lo, cmd, pos, WRITE);
607 else
608 return lo_write_simple(lo, rq, pos);
609 case REQ_OP_READ:
610 if (lo->transfer)
611 return lo_read_transfer(lo, rq, pos);
612 else if (cmd->use_aio)
613 return lo_rw_aio(lo, cmd, pos, READ);
614 else
615 return lo_read_simple(lo, rq, pos);
616 default:
617 WARN_ON_ONCE(1);
618 return -EIO;
619 break;
623 static inline void loop_update_dio(struct loop_device *lo)
625 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
626 lo->use_dio);
629 static void loop_reread_partitions(struct loop_device *lo,
630 struct block_device *bdev)
632 int rc;
635 * bd_mutex has been held already in release path, so don't
636 * acquire it if this function is called in such case.
638 * If the reread partition isn't from release path, lo_refcnt
639 * must be at least one and it can only become zero when the
640 * current holder is released.
642 if (!atomic_read(&lo->lo_refcnt))
643 rc = __blkdev_reread_part(bdev);
644 else
645 rc = blkdev_reread_part(bdev);
646 if (rc)
647 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
648 __func__, lo->lo_number, lo->lo_file_name, rc);
651 static inline int is_loop_device(struct file *file)
653 struct inode *i = file->f_mapping->host;
655 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
658 static int loop_validate_file(struct file *file, struct block_device *bdev)
660 struct inode *inode = file->f_mapping->host;
661 struct file *f = file;
663 /* Avoid recursion */
664 while (is_loop_device(f)) {
665 struct loop_device *l;
667 if (f->f_mapping->host->i_bdev == bdev)
668 return -EBADF;
670 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
671 if (l->lo_state == Lo_unbound) {
672 return -EINVAL;
674 f = l->lo_backing_file;
676 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
677 return -EINVAL;
678 return 0;
682 * loop_change_fd switched the backing store of a loopback device to
683 * a new file. This is useful for operating system installers to free up
684 * the original file and in High Availability environments to switch to
685 * an alternative location for the content in case of server meltdown.
686 * This can only work if the loop device is used read-only, and if the
687 * new backing store is the same size and type as the old backing store.
689 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
690 unsigned int arg)
692 struct file *file, *old_file;
693 int error;
695 error = -ENXIO;
696 if (lo->lo_state != Lo_bound)
697 goto out;
699 /* the loop device has to be read-only */
700 error = -EINVAL;
701 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
702 goto out;
704 error = -EBADF;
705 file = fget(arg);
706 if (!file)
707 goto out;
709 error = loop_validate_file(file, bdev);
710 if (error)
711 goto out_putf;
713 old_file = lo->lo_backing_file;
715 error = -EINVAL;
717 /* size of the new backing store needs to be the same */
718 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
719 goto out_putf;
721 /* and ... switch */
722 blk_mq_freeze_queue(lo->lo_queue);
723 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
724 lo->lo_backing_file = file;
725 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
726 mapping_set_gfp_mask(file->f_mapping,
727 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
728 loop_update_dio(lo);
729 blk_mq_unfreeze_queue(lo->lo_queue);
731 fput(old_file);
732 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
733 loop_reread_partitions(lo, bdev);
734 return 0;
736 out_putf:
737 fput(file);
738 out:
739 return error;
742 /* loop sysfs attributes */
744 static ssize_t loop_attr_show(struct device *dev, char *page,
745 ssize_t (*callback)(struct loop_device *, char *))
747 struct gendisk *disk = dev_to_disk(dev);
748 struct loop_device *lo = disk->private_data;
750 return callback(lo, page);
753 #define LOOP_ATTR_RO(_name) \
754 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
755 static ssize_t loop_attr_do_show_##_name(struct device *d, \
756 struct device_attribute *attr, char *b) \
758 return loop_attr_show(d, b, loop_attr_##_name##_show); \
760 static struct device_attribute loop_attr_##_name = \
761 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
763 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
765 ssize_t ret;
766 char *p = NULL;
768 spin_lock_irq(&lo->lo_lock);
769 if (lo->lo_backing_file)
770 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
771 spin_unlock_irq(&lo->lo_lock);
773 if (IS_ERR_OR_NULL(p))
774 ret = PTR_ERR(p);
775 else {
776 ret = strlen(p);
777 memmove(buf, p, ret);
778 buf[ret++] = '\n';
779 buf[ret] = 0;
782 return ret;
785 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
787 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
790 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
792 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
795 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
797 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
799 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
802 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
804 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
806 return sprintf(buf, "%s\n", partscan ? "1" : "0");
809 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
811 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
813 return sprintf(buf, "%s\n", dio ? "1" : "0");
816 LOOP_ATTR_RO(backing_file);
817 LOOP_ATTR_RO(offset);
818 LOOP_ATTR_RO(sizelimit);
819 LOOP_ATTR_RO(autoclear);
820 LOOP_ATTR_RO(partscan);
821 LOOP_ATTR_RO(dio);
823 static struct attribute *loop_attrs[] = {
824 &loop_attr_backing_file.attr,
825 &loop_attr_offset.attr,
826 &loop_attr_sizelimit.attr,
827 &loop_attr_autoclear.attr,
828 &loop_attr_partscan.attr,
829 &loop_attr_dio.attr,
830 NULL,
833 static struct attribute_group loop_attribute_group = {
834 .name = "loop",
835 .attrs= loop_attrs,
838 static void loop_sysfs_init(struct loop_device *lo)
840 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
841 &loop_attribute_group);
844 static void loop_sysfs_exit(struct loop_device *lo)
846 if (lo->sysfs_inited)
847 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
848 &loop_attribute_group);
851 static void loop_config_discard(struct loop_device *lo)
853 struct file *file = lo->lo_backing_file;
854 struct inode *inode = file->f_mapping->host;
855 struct request_queue *q = lo->lo_queue;
858 * We use punch hole to reclaim the free space used by the
859 * image a.k.a. discard. However we do not support discard if
860 * encryption is enabled, because it may give an attacker
861 * useful information.
863 if ((!file->f_op->fallocate) ||
864 lo->lo_encrypt_key_size) {
865 q->limits.discard_granularity = 0;
866 q->limits.discard_alignment = 0;
867 blk_queue_max_discard_sectors(q, 0);
868 blk_queue_max_write_zeroes_sectors(q, 0);
869 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
870 return;
873 q->limits.discard_granularity = inode->i_sb->s_blocksize;
874 q->limits.discard_alignment = 0;
876 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
877 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
878 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
881 static void loop_unprepare_queue(struct loop_device *lo)
883 kthread_flush_worker(&lo->worker);
884 kthread_stop(lo->worker_task);
887 static int loop_kthread_worker_fn(void *worker_ptr)
889 current->flags |= PF_LESS_THROTTLE;
890 return kthread_worker_fn(worker_ptr);
893 static int loop_prepare_queue(struct loop_device *lo)
895 kthread_init_worker(&lo->worker);
896 lo->worker_task = kthread_run(loop_kthread_worker_fn,
897 &lo->worker, "loop%d", lo->lo_number);
898 if (IS_ERR(lo->worker_task))
899 return -ENOMEM;
900 set_user_nice(lo->worker_task, MIN_NICE);
901 return 0;
904 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
905 struct block_device *bdev, unsigned int arg)
907 struct file *file;
908 struct inode *inode;
909 struct address_space *mapping;
910 int lo_flags = 0;
911 int error;
912 loff_t size;
914 /* This is safe, since we have a reference from open(). */
915 __module_get(THIS_MODULE);
917 error = -EBADF;
918 file = fget(arg);
919 if (!file)
920 goto out;
922 error = -EBUSY;
923 if (lo->lo_state != Lo_unbound)
924 goto out_putf;
926 error = loop_validate_file(file, bdev);
927 if (error)
928 goto out_putf;
930 mapping = file->f_mapping;
931 inode = mapping->host;
933 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
934 !file->f_op->write_iter)
935 lo_flags |= LO_FLAGS_READ_ONLY;
937 error = -EFBIG;
938 size = get_loop_size(lo, file);
939 if ((loff_t)(sector_t)size != size)
940 goto out_putf;
941 error = loop_prepare_queue(lo);
942 if (error)
943 goto out_putf;
945 error = 0;
947 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
949 lo->use_dio = false;
950 lo->lo_device = bdev;
951 lo->lo_flags = lo_flags;
952 lo->lo_backing_file = file;
953 lo->transfer = NULL;
954 lo->ioctl = NULL;
955 lo->lo_sizelimit = 0;
956 lo->old_gfp_mask = mapping_gfp_mask(mapping);
957 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
959 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
960 blk_queue_write_cache(lo->lo_queue, true, false);
962 loop_update_dio(lo);
963 set_capacity(lo->lo_disk, size);
964 bd_set_size(bdev, size << 9);
965 loop_sysfs_init(lo);
966 /* let user-space know about the new size */
967 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
969 set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
970 block_size(inode->i_bdev) : PAGE_SIZE);
972 lo->lo_state = Lo_bound;
973 if (part_shift)
974 lo->lo_flags |= LO_FLAGS_PARTSCAN;
975 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
976 loop_reread_partitions(lo, bdev);
978 /* Grab the block_device to prevent its destruction after we
979 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
981 bdgrab(bdev);
982 return 0;
984 out_putf:
985 fput(file);
986 out:
987 /* This is safe: open() is still holding a reference. */
988 module_put(THIS_MODULE);
989 return error;
992 static int
993 loop_release_xfer(struct loop_device *lo)
995 int err = 0;
996 struct loop_func_table *xfer = lo->lo_encryption;
998 if (xfer) {
999 if (xfer->release)
1000 err = xfer->release(lo);
1001 lo->transfer = NULL;
1002 lo->lo_encryption = NULL;
1003 module_put(xfer->owner);
1005 return err;
1008 static int
1009 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1010 const struct loop_info64 *i)
1012 int err = 0;
1014 if (xfer) {
1015 struct module *owner = xfer->owner;
1017 if (!try_module_get(owner))
1018 return -EINVAL;
1019 if (xfer->init)
1020 err = xfer->init(lo, i);
1021 if (err)
1022 module_put(owner);
1023 else
1024 lo->lo_encryption = xfer;
1026 return err;
1029 static int loop_clr_fd(struct loop_device *lo)
1031 struct file *filp = lo->lo_backing_file;
1032 gfp_t gfp = lo->old_gfp_mask;
1033 struct block_device *bdev = lo->lo_device;
1035 if (lo->lo_state != Lo_bound)
1036 return -ENXIO;
1039 * If we've explicitly asked to tear down the loop device,
1040 * and it has an elevated reference count, set it for auto-teardown when
1041 * the last reference goes away. This stops $!~#$@ udev from
1042 * preventing teardown because it decided that it needs to run blkid on
1043 * the loopback device whenever they appear. xfstests is notorious for
1044 * failing tests because blkid via udev races with a losetup
1045 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1046 * command to fail with EBUSY.
1048 if (atomic_read(&lo->lo_refcnt) > 1) {
1049 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1050 mutex_unlock(&lo->lo_ctl_mutex);
1051 return 0;
1054 if (filp == NULL)
1055 return -EINVAL;
1057 /* freeze request queue during the transition */
1058 blk_mq_freeze_queue(lo->lo_queue);
1060 spin_lock_irq(&lo->lo_lock);
1061 lo->lo_state = Lo_rundown;
1062 lo->lo_backing_file = NULL;
1063 spin_unlock_irq(&lo->lo_lock);
1065 loop_release_xfer(lo);
1066 lo->transfer = NULL;
1067 lo->ioctl = NULL;
1068 lo->lo_device = NULL;
1069 lo->lo_encryption = NULL;
1070 lo->lo_offset = 0;
1071 lo->lo_sizelimit = 0;
1072 lo->lo_encrypt_key_size = 0;
1073 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1074 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1075 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1076 blk_queue_logical_block_size(lo->lo_queue, 512);
1077 blk_queue_physical_block_size(lo->lo_queue, 512);
1078 blk_queue_io_min(lo->lo_queue, 512);
1079 if (bdev) {
1080 bdput(bdev);
1081 invalidate_bdev(bdev);
1082 bdev->bd_inode->i_mapping->wb_err = 0;
1084 set_capacity(lo->lo_disk, 0);
1085 loop_sysfs_exit(lo);
1086 if (bdev) {
1087 bd_set_size(bdev, 0);
1088 /* let user-space know about this change */
1089 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1091 mapping_set_gfp_mask(filp->f_mapping, gfp);
1092 lo->lo_state = Lo_unbound;
1093 /* This is safe: open() is still holding a reference. */
1094 module_put(THIS_MODULE);
1095 blk_mq_unfreeze_queue(lo->lo_queue);
1097 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1098 loop_reread_partitions(lo, bdev);
1099 lo->lo_flags = 0;
1100 if (!part_shift)
1101 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1102 loop_unprepare_queue(lo);
1103 mutex_unlock(&lo->lo_ctl_mutex);
1105 * Need not hold lo_ctl_mutex to fput backing file.
1106 * Calling fput holding lo_ctl_mutex triggers a circular
1107 * lock dependency possibility warning as fput can take
1108 * bd_mutex which is usually taken before lo_ctl_mutex.
1110 fput(filp);
1111 return 0;
1114 static int
1115 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1117 int err;
1118 struct loop_func_table *xfer;
1119 kuid_t uid = current_uid();
1121 if (lo->lo_encrypt_key_size &&
1122 !uid_eq(lo->lo_key_owner, uid) &&
1123 !capable(CAP_SYS_ADMIN))
1124 return -EPERM;
1125 if (lo->lo_state != Lo_bound)
1126 return -ENXIO;
1127 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1128 return -EINVAL;
1130 /* I/O need to be drained during transfer transition */
1131 blk_mq_freeze_queue(lo->lo_queue);
1133 err = loop_release_xfer(lo);
1134 if (err)
1135 goto exit;
1137 if (info->lo_encrypt_type) {
1138 unsigned int type = info->lo_encrypt_type;
1140 if (type >= MAX_LO_CRYPT) {
1141 err = -EINVAL;
1142 goto exit;
1144 xfer = xfer_funcs[type];
1145 if (xfer == NULL) {
1146 err = -EINVAL;
1147 goto exit;
1149 } else
1150 xfer = NULL;
1152 err = loop_init_xfer(lo, xfer, info);
1153 if (err)
1154 goto exit;
1156 if (lo->lo_offset != info->lo_offset ||
1157 lo->lo_sizelimit != info->lo_sizelimit) {
1158 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1159 err = -EFBIG;
1160 goto exit;
1164 loop_config_discard(lo);
1166 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1167 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1168 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1169 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1171 if (!xfer)
1172 xfer = &none_funcs;
1173 lo->transfer = xfer->transfer;
1174 lo->ioctl = xfer->ioctl;
1176 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1177 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1178 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1180 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1181 lo->lo_init[0] = info->lo_init[0];
1182 lo->lo_init[1] = info->lo_init[1];
1183 if (info->lo_encrypt_key_size) {
1184 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1185 info->lo_encrypt_key_size);
1186 lo->lo_key_owner = uid;
1189 /* update dio if lo_offset or transfer is changed */
1190 __loop_update_dio(lo, lo->use_dio);
1192 exit:
1193 blk_mq_unfreeze_queue(lo->lo_queue);
1195 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1196 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1197 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1198 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1199 loop_reread_partitions(lo, lo->lo_device);
1202 return err;
1205 static int
1206 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1208 struct file *file;
1209 struct kstat stat;
1210 int ret;
1212 if (lo->lo_state != Lo_bound) {
1213 mutex_unlock(&lo->lo_ctl_mutex);
1214 return -ENXIO;
1217 memset(info, 0, sizeof(*info));
1218 info->lo_number = lo->lo_number;
1219 info->lo_offset = lo->lo_offset;
1220 info->lo_sizelimit = lo->lo_sizelimit;
1221 info->lo_flags = lo->lo_flags;
1222 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1223 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1224 info->lo_encrypt_type =
1225 lo->lo_encryption ? lo->lo_encryption->number : 0;
1226 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1227 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1228 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1229 lo->lo_encrypt_key_size);
1232 /* Drop lo_ctl_mutex while we call into the filesystem. */
1233 file = get_file(lo->lo_backing_file);
1234 mutex_unlock(&lo->lo_ctl_mutex);
1235 ret = vfs_getattr(&file->f_path, &stat, STATX_INO,
1236 AT_STATX_SYNC_AS_STAT);
1237 if (!ret) {
1238 info->lo_device = huge_encode_dev(stat.dev);
1239 info->lo_inode = stat.ino;
1240 info->lo_rdevice = huge_encode_dev(stat.rdev);
1242 fput(file);
1243 return ret;
1246 static void
1247 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1249 memset(info64, 0, sizeof(*info64));
1250 info64->lo_number = info->lo_number;
1251 info64->lo_device = info->lo_device;
1252 info64->lo_inode = info->lo_inode;
1253 info64->lo_rdevice = info->lo_rdevice;
1254 info64->lo_offset = info->lo_offset;
1255 info64->lo_sizelimit = 0;
1256 info64->lo_encrypt_type = info->lo_encrypt_type;
1257 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1258 info64->lo_flags = info->lo_flags;
1259 info64->lo_init[0] = info->lo_init[0];
1260 info64->lo_init[1] = info->lo_init[1];
1261 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1262 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1263 else
1264 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1265 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1268 static int
1269 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1271 memset(info, 0, sizeof(*info));
1272 info->lo_number = info64->lo_number;
1273 info->lo_device = info64->lo_device;
1274 info->lo_inode = info64->lo_inode;
1275 info->lo_rdevice = info64->lo_rdevice;
1276 info->lo_offset = info64->lo_offset;
1277 info->lo_encrypt_type = info64->lo_encrypt_type;
1278 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1279 info->lo_flags = info64->lo_flags;
1280 info->lo_init[0] = info64->lo_init[0];
1281 info->lo_init[1] = info64->lo_init[1];
1282 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1283 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1284 else
1285 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1286 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1288 /* error in case values were truncated */
1289 if (info->lo_device != info64->lo_device ||
1290 info->lo_rdevice != info64->lo_rdevice ||
1291 info->lo_inode != info64->lo_inode ||
1292 info->lo_offset != info64->lo_offset)
1293 return -EOVERFLOW;
1295 return 0;
1298 static int
1299 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1301 struct loop_info info;
1302 struct loop_info64 info64;
1304 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1305 return -EFAULT;
1306 loop_info64_from_old(&info, &info64);
1307 return loop_set_status(lo, &info64);
1310 static int
1311 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1313 struct loop_info64 info64;
1315 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1316 return -EFAULT;
1317 return loop_set_status(lo, &info64);
1320 static int
1321 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1322 struct loop_info info;
1323 struct loop_info64 info64;
1324 int err;
1326 if (!arg) {
1327 mutex_unlock(&lo->lo_ctl_mutex);
1328 return -EINVAL;
1330 err = loop_get_status(lo, &info64);
1331 if (!err)
1332 err = loop_info64_to_old(&info64, &info);
1333 if (!err && copy_to_user(arg, &info, sizeof(info)))
1334 err = -EFAULT;
1336 return err;
1339 static int
1340 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1341 struct loop_info64 info64;
1342 int err;
1344 if (!arg) {
1345 mutex_unlock(&lo->lo_ctl_mutex);
1346 return -EINVAL;
1348 err = loop_get_status(lo, &info64);
1349 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1350 err = -EFAULT;
1352 return err;
1355 static int loop_set_capacity(struct loop_device *lo)
1357 if (unlikely(lo->lo_state != Lo_bound))
1358 return -ENXIO;
1360 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1363 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1365 int error = -ENXIO;
1366 if (lo->lo_state != Lo_bound)
1367 goto out;
1369 __loop_update_dio(lo, !!arg);
1370 if (lo->use_dio == !!arg)
1371 return 0;
1372 error = -EINVAL;
1373 out:
1374 return error;
1377 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1379 if (lo->lo_state != Lo_bound)
1380 return -ENXIO;
1382 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1383 return -EINVAL;
1385 blk_mq_freeze_queue(lo->lo_queue);
1387 blk_queue_logical_block_size(lo->lo_queue, arg);
1388 blk_queue_physical_block_size(lo->lo_queue, arg);
1389 blk_queue_io_min(lo->lo_queue, arg);
1390 loop_update_dio(lo);
1392 blk_mq_unfreeze_queue(lo->lo_queue);
1394 return 0;
1397 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1398 unsigned int cmd, unsigned long arg)
1400 struct loop_device *lo = bdev->bd_disk->private_data;
1401 int err;
1403 err = mutex_lock_killable_nested(&lo->lo_ctl_mutex, 1);
1404 if (err)
1405 goto out_unlocked;
1407 switch (cmd) {
1408 case LOOP_SET_FD:
1409 err = loop_set_fd(lo, mode, bdev, arg);
1410 break;
1411 case LOOP_CHANGE_FD:
1412 err = loop_change_fd(lo, bdev, arg);
1413 break;
1414 case LOOP_CLR_FD:
1415 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1416 err = loop_clr_fd(lo);
1417 if (!err)
1418 goto out_unlocked;
1419 break;
1420 case LOOP_SET_STATUS:
1421 err = -EPERM;
1422 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1423 err = loop_set_status_old(lo,
1424 (struct loop_info __user *)arg);
1425 break;
1426 case LOOP_GET_STATUS:
1427 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1428 /* loop_get_status() unlocks lo_ctl_mutex */
1429 goto out_unlocked;
1430 case LOOP_SET_STATUS64:
1431 err = -EPERM;
1432 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1433 err = loop_set_status64(lo,
1434 (struct loop_info64 __user *) arg);
1435 break;
1436 case LOOP_GET_STATUS64:
1437 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1438 /* loop_get_status() unlocks lo_ctl_mutex */
1439 goto out_unlocked;
1440 case LOOP_SET_CAPACITY:
1441 err = -EPERM;
1442 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1443 err = loop_set_capacity(lo);
1444 break;
1445 case LOOP_SET_DIRECT_IO:
1446 err = -EPERM;
1447 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1448 err = loop_set_dio(lo, arg);
1449 break;
1450 case LOOP_SET_BLOCK_SIZE:
1451 err = -EPERM;
1452 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1453 err = loop_set_block_size(lo, arg);
1454 break;
1455 default:
1456 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1458 mutex_unlock(&lo->lo_ctl_mutex);
1460 out_unlocked:
1461 return err;
1464 #ifdef CONFIG_COMPAT
1465 struct compat_loop_info {
1466 compat_int_t lo_number; /* ioctl r/o */
1467 compat_dev_t lo_device; /* ioctl r/o */
1468 compat_ulong_t lo_inode; /* ioctl r/o */
1469 compat_dev_t lo_rdevice; /* ioctl r/o */
1470 compat_int_t lo_offset;
1471 compat_int_t lo_encrypt_type;
1472 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1473 compat_int_t lo_flags; /* ioctl r/o */
1474 char lo_name[LO_NAME_SIZE];
1475 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1476 compat_ulong_t lo_init[2];
1477 char reserved[4];
1481 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1482 * - noinlined to reduce stack space usage in main part of driver
1484 static noinline int
1485 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1486 struct loop_info64 *info64)
1488 struct compat_loop_info info;
1490 if (copy_from_user(&info, arg, sizeof(info)))
1491 return -EFAULT;
1493 memset(info64, 0, sizeof(*info64));
1494 info64->lo_number = info.lo_number;
1495 info64->lo_device = info.lo_device;
1496 info64->lo_inode = info.lo_inode;
1497 info64->lo_rdevice = info.lo_rdevice;
1498 info64->lo_offset = info.lo_offset;
1499 info64->lo_sizelimit = 0;
1500 info64->lo_encrypt_type = info.lo_encrypt_type;
1501 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1502 info64->lo_flags = info.lo_flags;
1503 info64->lo_init[0] = info.lo_init[0];
1504 info64->lo_init[1] = info.lo_init[1];
1505 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1506 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1507 else
1508 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1509 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1510 return 0;
1514 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1515 * - noinlined to reduce stack space usage in main part of driver
1517 static noinline int
1518 loop_info64_to_compat(const struct loop_info64 *info64,
1519 struct compat_loop_info __user *arg)
1521 struct compat_loop_info info;
1523 memset(&info, 0, sizeof(info));
1524 info.lo_number = info64->lo_number;
1525 info.lo_device = info64->lo_device;
1526 info.lo_inode = info64->lo_inode;
1527 info.lo_rdevice = info64->lo_rdevice;
1528 info.lo_offset = info64->lo_offset;
1529 info.lo_encrypt_type = info64->lo_encrypt_type;
1530 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1531 info.lo_flags = info64->lo_flags;
1532 info.lo_init[0] = info64->lo_init[0];
1533 info.lo_init[1] = info64->lo_init[1];
1534 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1535 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1536 else
1537 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1538 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1540 /* error in case values were truncated */
1541 if (info.lo_device != info64->lo_device ||
1542 info.lo_rdevice != info64->lo_rdevice ||
1543 info.lo_inode != info64->lo_inode ||
1544 info.lo_offset != info64->lo_offset ||
1545 info.lo_init[0] != info64->lo_init[0] ||
1546 info.lo_init[1] != info64->lo_init[1])
1547 return -EOVERFLOW;
1549 if (copy_to_user(arg, &info, sizeof(info)))
1550 return -EFAULT;
1551 return 0;
1554 static int
1555 loop_set_status_compat(struct loop_device *lo,
1556 const struct compat_loop_info __user *arg)
1558 struct loop_info64 info64;
1559 int ret;
1561 ret = loop_info64_from_compat(arg, &info64);
1562 if (ret < 0)
1563 return ret;
1564 return loop_set_status(lo, &info64);
1567 static int
1568 loop_get_status_compat(struct loop_device *lo,
1569 struct compat_loop_info __user *arg)
1571 struct loop_info64 info64;
1572 int err;
1574 if (!arg) {
1575 mutex_unlock(&lo->lo_ctl_mutex);
1576 return -EINVAL;
1578 err = loop_get_status(lo, &info64);
1579 if (!err)
1580 err = loop_info64_to_compat(&info64, arg);
1581 return err;
1584 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1585 unsigned int cmd, unsigned long arg)
1587 struct loop_device *lo = bdev->bd_disk->private_data;
1588 int err;
1590 switch(cmd) {
1591 case LOOP_SET_STATUS:
1592 err = mutex_lock_killable(&lo->lo_ctl_mutex);
1593 if (!err) {
1594 err = loop_set_status_compat(lo,
1595 (const struct compat_loop_info __user *)arg);
1596 mutex_unlock(&lo->lo_ctl_mutex);
1598 break;
1599 case LOOP_GET_STATUS:
1600 err = mutex_lock_killable(&lo->lo_ctl_mutex);
1601 if (!err) {
1602 err = loop_get_status_compat(lo,
1603 (struct compat_loop_info __user *)arg);
1604 /* loop_get_status() unlocks lo_ctl_mutex */
1606 break;
1607 case LOOP_SET_CAPACITY:
1608 case LOOP_CLR_FD:
1609 case LOOP_GET_STATUS64:
1610 case LOOP_SET_STATUS64:
1611 arg = (unsigned long) compat_ptr(arg);
1612 /* fall through */
1613 case LOOP_SET_FD:
1614 case LOOP_CHANGE_FD:
1615 case LOOP_SET_BLOCK_SIZE:
1616 err = lo_ioctl(bdev, mode, cmd, arg);
1617 break;
1618 default:
1619 err = -ENOIOCTLCMD;
1620 break;
1622 return err;
1624 #endif
1626 static int lo_open(struct block_device *bdev, fmode_t mode)
1628 struct loop_device *lo;
1629 int err = 0;
1631 mutex_lock(&loop_index_mutex);
1632 lo = bdev->bd_disk->private_data;
1633 if (!lo) {
1634 err = -ENXIO;
1635 goto out;
1638 atomic_inc(&lo->lo_refcnt);
1639 out:
1640 mutex_unlock(&loop_index_mutex);
1641 return err;
1644 static void __lo_release(struct loop_device *lo)
1646 int err;
1648 if (atomic_dec_return(&lo->lo_refcnt))
1649 return;
1651 mutex_lock(&lo->lo_ctl_mutex);
1652 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1654 * In autoclear mode, stop the loop thread
1655 * and remove configuration after last close.
1657 err = loop_clr_fd(lo);
1658 if (!err)
1659 return;
1660 } else if (lo->lo_state == Lo_bound) {
1662 * Otherwise keep thread (if running) and config,
1663 * but flush possible ongoing bios in thread.
1665 blk_mq_freeze_queue(lo->lo_queue);
1666 blk_mq_unfreeze_queue(lo->lo_queue);
1669 mutex_unlock(&lo->lo_ctl_mutex);
1672 static void lo_release(struct gendisk *disk, fmode_t mode)
1674 mutex_lock(&loop_index_mutex);
1675 __lo_release(disk->private_data);
1676 mutex_unlock(&loop_index_mutex);
1679 static const struct block_device_operations lo_fops = {
1680 .owner = THIS_MODULE,
1681 .open = lo_open,
1682 .release = lo_release,
1683 .ioctl = lo_ioctl,
1684 #ifdef CONFIG_COMPAT
1685 .compat_ioctl = lo_compat_ioctl,
1686 #endif
1690 * And now the modules code and kernel interface.
1692 static int max_loop;
1693 module_param(max_loop, int, 0444);
1694 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1695 module_param(max_part, int, 0444);
1696 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1697 MODULE_LICENSE("GPL");
1698 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1700 int loop_register_transfer(struct loop_func_table *funcs)
1702 unsigned int n = funcs->number;
1704 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1705 return -EINVAL;
1706 xfer_funcs[n] = funcs;
1707 return 0;
1710 static int unregister_transfer_cb(int id, void *ptr, void *data)
1712 struct loop_device *lo = ptr;
1713 struct loop_func_table *xfer = data;
1715 mutex_lock(&lo->lo_ctl_mutex);
1716 if (lo->lo_encryption == xfer)
1717 loop_release_xfer(lo);
1718 mutex_unlock(&lo->lo_ctl_mutex);
1719 return 0;
1722 int loop_unregister_transfer(int number)
1724 unsigned int n = number;
1725 struct loop_func_table *xfer;
1727 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1728 return -EINVAL;
1730 xfer_funcs[n] = NULL;
1731 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1732 return 0;
1735 EXPORT_SYMBOL(loop_register_transfer);
1736 EXPORT_SYMBOL(loop_unregister_transfer);
1738 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1739 const struct blk_mq_queue_data *bd)
1741 struct request *rq = bd->rq;
1742 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1743 struct loop_device *lo = rq->q->queuedata;
1745 blk_mq_start_request(rq);
1747 if (lo->lo_state != Lo_bound)
1748 return BLK_STS_IOERR;
1750 switch (req_op(rq)) {
1751 case REQ_OP_FLUSH:
1752 case REQ_OP_DISCARD:
1753 case REQ_OP_WRITE_ZEROES:
1754 cmd->use_aio = false;
1755 break;
1756 default:
1757 cmd->use_aio = lo->use_dio;
1758 break;
1761 /* always use the first bio's css */
1762 #ifdef CONFIG_BLK_CGROUP
1763 if (cmd->use_aio && rq->bio && rq->bio->bi_css) {
1764 cmd->css = rq->bio->bi_css;
1765 css_get(cmd->css);
1766 } else
1767 #endif
1768 cmd->css = NULL;
1769 kthread_queue_work(&lo->worker, &cmd->work);
1771 return BLK_STS_OK;
1774 static void loop_handle_cmd(struct loop_cmd *cmd)
1776 struct request *rq = blk_mq_rq_from_pdu(cmd);
1777 const bool write = op_is_write(req_op(rq));
1778 struct loop_device *lo = rq->q->queuedata;
1779 int ret = 0;
1781 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1782 ret = -EIO;
1783 goto failed;
1786 ret = do_req_filebacked(lo, rq);
1787 failed:
1788 /* complete non-aio request */
1789 if (!cmd->use_aio || ret) {
1790 cmd->ret = ret ? -EIO : 0;
1791 blk_mq_complete_request(rq);
1795 static void loop_queue_work(struct kthread_work *work)
1797 struct loop_cmd *cmd =
1798 container_of(work, struct loop_cmd, work);
1800 loop_handle_cmd(cmd);
1803 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1804 unsigned int hctx_idx, unsigned int numa_node)
1806 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1808 kthread_init_work(&cmd->work, loop_queue_work);
1809 return 0;
1812 static const struct blk_mq_ops loop_mq_ops = {
1813 .queue_rq = loop_queue_rq,
1814 .init_request = loop_init_request,
1815 .complete = lo_complete_rq,
1818 static int loop_add(struct loop_device **l, int i)
1820 struct loop_device *lo;
1821 struct gendisk *disk;
1822 int err;
1824 err = -ENOMEM;
1825 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1826 if (!lo)
1827 goto out;
1829 lo->lo_state = Lo_unbound;
1831 /* allocate id, if @id >= 0, we're requesting that specific id */
1832 if (i >= 0) {
1833 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1834 if (err == -ENOSPC)
1835 err = -EEXIST;
1836 } else {
1837 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1839 if (err < 0)
1840 goto out_free_dev;
1841 i = err;
1843 err = -ENOMEM;
1844 lo->tag_set.ops = &loop_mq_ops;
1845 lo->tag_set.nr_hw_queues = 1;
1846 lo->tag_set.queue_depth = 128;
1847 lo->tag_set.numa_node = NUMA_NO_NODE;
1848 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1849 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1850 lo->tag_set.driver_data = lo;
1852 err = blk_mq_alloc_tag_set(&lo->tag_set);
1853 if (err)
1854 goto out_free_idr;
1856 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1857 if (IS_ERR_OR_NULL(lo->lo_queue)) {
1858 err = PTR_ERR(lo->lo_queue);
1859 goto out_cleanup_tags;
1861 lo->lo_queue->queuedata = lo;
1863 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1866 * By default, we do buffer IO, so it doesn't make sense to enable
1867 * merge because the I/O submitted to backing file is handled page by
1868 * page. For directio mode, merge does help to dispatch bigger request
1869 * to underlayer disk. We will enable merge once directio is enabled.
1871 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1873 err = -ENOMEM;
1874 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1875 if (!disk)
1876 goto out_free_queue;
1879 * Disable partition scanning by default. The in-kernel partition
1880 * scanning can be requested individually per-device during its
1881 * setup. Userspace can always add and remove partitions from all
1882 * devices. The needed partition minors are allocated from the
1883 * extended minor space, the main loop device numbers will continue
1884 * to match the loop minors, regardless of the number of partitions
1885 * used.
1887 * If max_part is given, partition scanning is globally enabled for
1888 * all loop devices. The minors for the main loop devices will be
1889 * multiples of max_part.
1891 * Note: Global-for-all-devices, set-only-at-init, read-only module
1892 * parameteters like 'max_loop' and 'max_part' make things needlessly
1893 * complicated, are too static, inflexible and may surprise
1894 * userspace tools. Parameters like this in general should be avoided.
1896 if (!part_shift)
1897 disk->flags |= GENHD_FL_NO_PART_SCAN;
1898 disk->flags |= GENHD_FL_EXT_DEVT;
1899 mutex_init(&lo->lo_ctl_mutex);
1900 atomic_set(&lo->lo_refcnt, 0);
1901 lo->lo_number = i;
1902 spin_lock_init(&lo->lo_lock);
1903 disk->major = LOOP_MAJOR;
1904 disk->first_minor = i << part_shift;
1905 disk->fops = &lo_fops;
1906 disk->private_data = lo;
1907 disk->queue = lo->lo_queue;
1908 sprintf(disk->disk_name, "loop%d", i);
1909 add_disk(disk);
1910 *l = lo;
1911 return lo->lo_number;
1913 out_free_queue:
1914 blk_cleanup_queue(lo->lo_queue);
1915 out_cleanup_tags:
1916 blk_mq_free_tag_set(&lo->tag_set);
1917 out_free_idr:
1918 idr_remove(&loop_index_idr, i);
1919 out_free_dev:
1920 kfree(lo);
1921 out:
1922 return err;
1925 static void loop_remove(struct loop_device *lo)
1927 del_gendisk(lo->lo_disk);
1928 blk_cleanup_queue(lo->lo_queue);
1929 blk_mq_free_tag_set(&lo->tag_set);
1930 put_disk(lo->lo_disk);
1931 kfree(lo);
1934 static int find_free_cb(int id, void *ptr, void *data)
1936 struct loop_device *lo = ptr;
1937 struct loop_device **l = data;
1939 if (lo->lo_state == Lo_unbound) {
1940 *l = lo;
1941 return 1;
1943 return 0;
1946 static int loop_lookup(struct loop_device **l, int i)
1948 struct loop_device *lo;
1949 int ret = -ENODEV;
1951 if (i < 0) {
1952 int err;
1954 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1955 if (err == 1) {
1956 *l = lo;
1957 ret = lo->lo_number;
1959 goto out;
1962 /* lookup and return a specific i */
1963 lo = idr_find(&loop_index_idr, i);
1964 if (lo) {
1965 *l = lo;
1966 ret = lo->lo_number;
1968 out:
1969 return ret;
1972 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1974 struct loop_device *lo;
1975 struct kobject *kobj;
1976 int err;
1978 mutex_lock(&loop_index_mutex);
1979 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1980 if (err < 0)
1981 err = loop_add(&lo, MINOR(dev) >> part_shift);
1982 if (err < 0)
1983 kobj = NULL;
1984 else
1985 kobj = get_disk_and_module(lo->lo_disk);
1986 mutex_unlock(&loop_index_mutex);
1988 *part = 0;
1989 return kobj;
1992 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1993 unsigned long parm)
1995 struct loop_device *lo;
1996 int ret = -ENOSYS;
1998 mutex_lock(&loop_index_mutex);
1999 switch (cmd) {
2000 case LOOP_CTL_ADD:
2001 ret = loop_lookup(&lo, parm);
2002 if (ret >= 0) {
2003 ret = -EEXIST;
2004 break;
2006 ret = loop_add(&lo, parm);
2007 break;
2008 case LOOP_CTL_REMOVE:
2009 ret = loop_lookup(&lo, parm);
2010 if (ret < 0)
2011 break;
2012 ret = mutex_lock_killable(&lo->lo_ctl_mutex);
2013 if (ret)
2014 break;
2015 if (lo->lo_state != Lo_unbound) {
2016 ret = -EBUSY;
2017 mutex_unlock(&lo->lo_ctl_mutex);
2018 break;
2020 if (atomic_read(&lo->lo_refcnt) > 0) {
2021 ret = -EBUSY;
2022 mutex_unlock(&lo->lo_ctl_mutex);
2023 break;
2025 lo->lo_disk->private_data = NULL;
2026 mutex_unlock(&lo->lo_ctl_mutex);
2027 idr_remove(&loop_index_idr, lo->lo_number);
2028 loop_remove(lo);
2029 break;
2030 case LOOP_CTL_GET_FREE:
2031 ret = loop_lookup(&lo, -1);
2032 if (ret >= 0)
2033 break;
2034 ret = loop_add(&lo, -1);
2036 mutex_unlock(&loop_index_mutex);
2038 return ret;
2041 static const struct file_operations loop_ctl_fops = {
2042 .open = nonseekable_open,
2043 .unlocked_ioctl = loop_control_ioctl,
2044 .compat_ioctl = loop_control_ioctl,
2045 .owner = THIS_MODULE,
2046 .llseek = noop_llseek,
2049 static struct miscdevice loop_misc = {
2050 .minor = LOOP_CTRL_MINOR,
2051 .name = "loop-control",
2052 .fops = &loop_ctl_fops,
2055 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2056 MODULE_ALIAS("devname:loop-control");
2058 static int __init loop_init(void)
2060 int i, nr;
2061 unsigned long range;
2062 struct loop_device *lo;
2063 int err;
2065 part_shift = 0;
2066 if (max_part > 0) {
2067 part_shift = fls(max_part);
2070 * Adjust max_part according to part_shift as it is exported
2071 * to user space so that user can decide correct minor number
2072 * if [s]he want to create more devices.
2074 * Note that -1 is required because partition 0 is reserved
2075 * for the whole disk.
2077 max_part = (1UL << part_shift) - 1;
2080 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2081 err = -EINVAL;
2082 goto err_out;
2085 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2086 err = -EINVAL;
2087 goto err_out;
2091 * If max_loop is specified, create that many devices upfront.
2092 * This also becomes a hard limit. If max_loop is not specified,
2093 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2094 * init time. Loop devices can be requested on-demand with the
2095 * /dev/loop-control interface, or be instantiated by accessing
2096 * a 'dead' device node.
2098 if (max_loop) {
2099 nr = max_loop;
2100 range = max_loop << part_shift;
2101 } else {
2102 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2103 range = 1UL << MINORBITS;
2106 err = misc_register(&loop_misc);
2107 if (err < 0)
2108 goto err_out;
2111 if (register_blkdev(LOOP_MAJOR, "loop")) {
2112 err = -EIO;
2113 goto misc_out;
2116 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2117 THIS_MODULE, loop_probe, NULL, NULL);
2119 /* pre-create number of devices given by config or max_loop */
2120 mutex_lock(&loop_index_mutex);
2121 for (i = 0; i < nr; i++)
2122 loop_add(&lo, i);
2123 mutex_unlock(&loop_index_mutex);
2125 printk(KERN_INFO "loop: module loaded\n");
2126 return 0;
2128 misc_out:
2129 misc_deregister(&loop_misc);
2130 err_out:
2131 return err;
2134 static int loop_exit_cb(int id, void *ptr, void *data)
2136 struct loop_device *lo = ptr;
2138 loop_remove(lo);
2139 return 0;
2142 static void __exit loop_exit(void)
2144 unsigned long range;
2146 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2148 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2149 idr_destroy(&loop_index_idr);
2151 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2152 unregister_blkdev(LOOP_MAJOR, "loop");
2154 misc_deregister(&loop_misc);
2157 module_init(loop_init);
2158 module_exit(loop_exit);
2160 #ifndef MODULE
2161 static int __init max_loop_setup(char *str)
2163 max_loop = simple_strtol(str, NULL, 0);
2164 return 1;
2167 __setup("max_loop=", max_loop_setup);
2168 #endif