staging: rtl8188eu: rename HalSetBrateCfg() - style
[linux/fpc-iii.git] / drivers / iio / adc / stm32-adc.c
blob378411853d7516b1fc3121da560f9e1679583ed4
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file is part of STM32 ADC driver
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7 */
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/buffer.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/iopoll.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
28 #include "stm32-adc-core.h"
30 /* STM32F4 - Registers for each ADC instance */
31 #define STM32F4_ADC_SR 0x00
32 #define STM32F4_ADC_CR1 0x04
33 #define STM32F4_ADC_CR2 0x08
34 #define STM32F4_ADC_SMPR1 0x0C
35 #define STM32F4_ADC_SMPR2 0x10
36 #define STM32F4_ADC_HTR 0x24
37 #define STM32F4_ADC_LTR 0x28
38 #define STM32F4_ADC_SQR1 0x2C
39 #define STM32F4_ADC_SQR2 0x30
40 #define STM32F4_ADC_SQR3 0x34
41 #define STM32F4_ADC_JSQR 0x38
42 #define STM32F4_ADC_JDR1 0x3C
43 #define STM32F4_ADC_JDR2 0x40
44 #define STM32F4_ADC_JDR3 0x44
45 #define STM32F4_ADC_JDR4 0x48
46 #define STM32F4_ADC_DR 0x4C
48 /* STM32F4_ADC_SR - bit fields */
49 #define STM32F4_STRT BIT(4)
50 #define STM32F4_EOC BIT(1)
52 /* STM32F4_ADC_CR1 - bit fields */
53 #define STM32F4_RES_SHIFT 24
54 #define STM32F4_RES_MASK GENMASK(25, 24)
55 #define STM32F4_SCAN BIT(8)
56 #define STM32F4_EOCIE BIT(5)
58 /* STM32F4_ADC_CR2 - bit fields */
59 #define STM32F4_SWSTART BIT(30)
60 #define STM32F4_EXTEN_SHIFT 28
61 #define STM32F4_EXTEN_MASK GENMASK(29, 28)
62 #define STM32F4_EXTSEL_SHIFT 24
63 #define STM32F4_EXTSEL_MASK GENMASK(27, 24)
64 #define STM32F4_EOCS BIT(10)
65 #define STM32F4_DDS BIT(9)
66 #define STM32F4_DMA BIT(8)
67 #define STM32F4_ADON BIT(0)
69 /* STM32H7 - Registers for each ADC instance */
70 #define STM32H7_ADC_ISR 0x00
71 #define STM32H7_ADC_IER 0x04
72 #define STM32H7_ADC_CR 0x08
73 #define STM32H7_ADC_CFGR 0x0C
74 #define STM32H7_ADC_SMPR1 0x14
75 #define STM32H7_ADC_SMPR2 0x18
76 #define STM32H7_ADC_PCSEL 0x1C
77 #define STM32H7_ADC_SQR1 0x30
78 #define STM32H7_ADC_SQR2 0x34
79 #define STM32H7_ADC_SQR3 0x38
80 #define STM32H7_ADC_SQR4 0x3C
81 #define STM32H7_ADC_DR 0x40
82 #define STM32H7_ADC_DIFSEL 0xC0
83 #define STM32H7_ADC_CALFACT 0xC4
84 #define STM32H7_ADC_CALFACT2 0xC8
86 /* STM32H7_ADC_ISR - bit fields */
87 #define STM32MP1_VREGREADY BIT(12)
88 #define STM32H7_EOC BIT(2)
89 #define STM32H7_ADRDY BIT(0)
91 /* STM32H7_ADC_IER - bit fields */
92 #define STM32H7_EOCIE STM32H7_EOC
94 /* STM32H7_ADC_CR - bit fields */
95 #define STM32H7_ADCAL BIT(31)
96 #define STM32H7_ADCALDIF BIT(30)
97 #define STM32H7_DEEPPWD BIT(29)
98 #define STM32H7_ADVREGEN BIT(28)
99 #define STM32H7_LINCALRDYW6 BIT(27)
100 #define STM32H7_LINCALRDYW5 BIT(26)
101 #define STM32H7_LINCALRDYW4 BIT(25)
102 #define STM32H7_LINCALRDYW3 BIT(24)
103 #define STM32H7_LINCALRDYW2 BIT(23)
104 #define STM32H7_LINCALRDYW1 BIT(22)
105 #define STM32H7_ADCALLIN BIT(16)
106 #define STM32H7_BOOST BIT(8)
107 #define STM32H7_ADSTP BIT(4)
108 #define STM32H7_ADSTART BIT(2)
109 #define STM32H7_ADDIS BIT(1)
110 #define STM32H7_ADEN BIT(0)
112 /* STM32H7_ADC_CFGR bit fields */
113 #define STM32H7_EXTEN_SHIFT 10
114 #define STM32H7_EXTEN_MASK GENMASK(11, 10)
115 #define STM32H7_EXTSEL_SHIFT 5
116 #define STM32H7_EXTSEL_MASK GENMASK(9, 5)
117 #define STM32H7_RES_SHIFT 2
118 #define STM32H7_RES_MASK GENMASK(4, 2)
119 #define STM32H7_DMNGT_SHIFT 0
120 #define STM32H7_DMNGT_MASK GENMASK(1, 0)
122 enum stm32h7_adc_dmngt {
123 STM32H7_DMNGT_DR_ONLY, /* Regular data in DR only */
124 STM32H7_DMNGT_DMA_ONESHOT, /* DMA one shot mode */
125 STM32H7_DMNGT_DFSDM, /* DFSDM mode */
126 STM32H7_DMNGT_DMA_CIRC, /* DMA circular mode */
129 /* STM32H7_ADC_CALFACT - bit fields */
130 #define STM32H7_CALFACT_D_SHIFT 16
131 #define STM32H7_CALFACT_D_MASK GENMASK(26, 16)
132 #define STM32H7_CALFACT_S_SHIFT 0
133 #define STM32H7_CALFACT_S_MASK GENMASK(10, 0)
135 /* STM32H7_ADC_CALFACT2 - bit fields */
136 #define STM32H7_LINCALFACT_SHIFT 0
137 #define STM32H7_LINCALFACT_MASK GENMASK(29, 0)
139 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
140 #define STM32H7_LINCALFACT_NUM 6
142 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
143 #define STM32H7_BOOST_CLKRATE 20000000UL
145 #define STM32_ADC_CH_MAX 20 /* max number of channels */
146 #define STM32_ADC_CH_SZ 10 /* max channel name size */
147 #define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */
148 #define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */
149 #define STM32_ADC_TIMEOUT_US 100000
150 #define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
152 #define STM32_DMA_BUFFER_SIZE PAGE_SIZE
154 /* External trigger enable */
155 enum stm32_adc_exten {
156 STM32_EXTEN_SWTRIG,
157 STM32_EXTEN_HWTRIG_RISING_EDGE,
158 STM32_EXTEN_HWTRIG_FALLING_EDGE,
159 STM32_EXTEN_HWTRIG_BOTH_EDGES,
162 /* extsel - trigger mux selection value */
163 enum stm32_adc_extsel {
164 STM32_EXT0,
165 STM32_EXT1,
166 STM32_EXT2,
167 STM32_EXT3,
168 STM32_EXT4,
169 STM32_EXT5,
170 STM32_EXT6,
171 STM32_EXT7,
172 STM32_EXT8,
173 STM32_EXT9,
174 STM32_EXT10,
175 STM32_EXT11,
176 STM32_EXT12,
177 STM32_EXT13,
178 STM32_EXT14,
179 STM32_EXT15,
180 STM32_EXT16,
181 STM32_EXT17,
182 STM32_EXT18,
183 STM32_EXT19,
184 STM32_EXT20,
188 * struct stm32_adc_trig_info - ADC trigger info
189 * @name: name of the trigger, corresponding to its source
190 * @extsel: trigger selection
192 struct stm32_adc_trig_info {
193 const char *name;
194 enum stm32_adc_extsel extsel;
198 * struct stm32_adc_calib - optional adc calibration data
199 * @calfact_s: Calibration offset for single ended channels
200 * @calfact_d: Calibration offset in differential
201 * @lincalfact: Linearity calibration factor
203 struct stm32_adc_calib {
204 u32 calfact_s;
205 u32 calfact_d;
206 u32 lincalfact[STM32H7_LINCALFACT_NUM];
210 * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
211 * @reg: register offset
212 * @mask: bitfield mask
213 * @shift: left shift
215 struct stm32_adc_regs {
216 int reg;
217 int mask;
218 int shift;
222 * stm32_adc_regspec - stm32 registers definition, compatible dependent data
223 * @dr: data register offset
224 * @ier_eoc: interrupt enable register & eocie bitfield
225 * @isr_eoc: interrupt status register & eoc bitfield
226 * @sqr: reference to sequence registers array
227 * @exten: trigger control register & bitfield
228 * @extsel: trigger selection register & bitfield
229 * @res: resolution selection register & bitfield
230 * @smpr: smpr1 & smpr2 registers offset array
231 * @smp_bits: smpr1 & smpr2 index and bitfields
233 struct stm32_adc_regspec {
234 const u32 dr;
235 const struct stm32_adc_regs ier_eoc;
236 const struct stm32_adc_regs isr_eoc;
237 const struct stm32_adc_regs *sqr;
238 const struct stm32_adc_regs exten;
239 const struct stm32_adc_regs extsel;
240 const struct stm32_adc_regs res;
241 const u32 smpr[2];
242 const struct stm32_adc_regs *smp_bits;
245 struct stm32_adc;
248 * stm32_adc_cfg - stm32 compatible configuration data
249 * @regs: registers descriptions
250 * @adc_info: per instance input channels definitions
251 * @trigs: external trigger sources
252 * @clk_required: clock is required
253 * @has_vregready: vregready status flag presence
254 * @selfcalib: optional routine for self-calibration
255 * @prepare: optional prepare routine (power-up, enable)
256 * @start_conv: routine to start conversions
257 * @stop_conv: routine to stop conversions
258 * @unprepare: optional unprepare routine (disable, power-down)
259 * @smp_cycles: programmable sampling time (ADC clock cycles)
261 struct stm32_adc_cfg {
262 const struct stm32_adc_regspec *regs;
263 const struct stm32_adc_info *adc_info;
264 struct stm32_adc_trig_info *trigs;
265 bool clk_required;
266 bool has_vregready;
267 int (*selfcalib)(struct stm32_adc *);
268 int (*prepare)(struct stm32_adc *);
269 void (*start_conv)(struct stm32_adc *, bool dma);
270 void (*stop_conv)(struct stm32_adc *);
271 void (*unprepare)(struct stm32_adc *);
272 const unsigned int *smp_cycles;
276 * struct stm32_adc - private data of each ADC IIO instance
277 * @common: reference to ADC block common data
278 * @offset: ADC instance register offset in ADC block
279 * @cfg: compatible configuration data
280 * @completion: end of single conversion completion
281 * @buffer: data buffer
282 * @clk: clock for this adc instance
283 * @irq: interrupt for this adc instance
284 * @lock: spinlock
285 * @bufi: data buffer index
286 * @num_conv: expected number of scan conversions
287 * @res: data resolution (e.g. RES bitfield value)
288 * @trigger_polarity: external trigger polarity (e.g. exten)
289 * @dma_chan: dma channel
290 * @rx_buf: dma rx buffer cpu address
291 * @rx_dma_buf: dma rx buffer bus address
292 * @rx_buf_sz: dma rx buffer size
293 * @difsel bitmask to set single-ended/differential channel
294 * @pcsel bitmask to preselect channels on some devices
295 * @smpr_val: sampling time settings (e.g. smpr1 / smpr2)
296 * @cal: optional calibration data on some devices
297 * @chan_name: channel name array
299 struct stm32_adc {
300 struct stm32_adc_common *common;
301 u32 offset;
302 const struct stm32_adc_cfg *cfg;
303 struct completion completion;
304 u16 buffer[STM32_ADC_MAX_SQ];
305 struct clk *clk;
306 int irq;
307 spinlock_t lock; /* interrupt lock */
308 unsigned int bufi;
309 unsigned int num_conv;
310 u32 res;
311 u32 trigger_polarity;
312 struct dma_chan *dma_chan;
313 u8 *rx_buf;
314 dma_addr_t rx_dma_buf;
315 unsigned int rx_buf_sz;
316 u32 difsel;
317 u32 pcsel;
318 u32 smpr_val[2];
319 struct stm32_adc_calib cal;
320 char chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
323 struct stm32_adc_diff_channel {
324 u32 vinp;
325 u32 vinn;
329 * struct stm32_adc_info - stm32 ADC, per instance config data
330 * @max_channels: Number of channels
331 * @resolutions: available resolutions
332 * @num_res: number of available resolutions
334 struct stm32_adc_info {
335 int max_channels;
336 const unsigned int *resolutions;
337 const unsigned int num_res;
340 static const unsigned int stm32f4_adc_resolutions[] = {
341 /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
342 12, 10, 8, 6,
345 /* stm32f4 can have up to 16 channels */
346 static const struct stm32_adc_info stm32f4_adc_info = {
347 .max_channels = 16,
348 .resolutions = stm32f4_adc_resolutions,
349 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
352 static const unsigned int stm32h7_adc_resolutions[] = {
353 /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
354 16, 14, 12, 10, 8,
357 /* stm32h7 can have up to 20 channels */
358 static const struct stm32_adc_info stm32h7_adc_info = {
359 .max_channels = STM32_ADC_CH_MAX,
360 .resolutions = stm32h7_adc_resolutions,
361 .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
365 * stm32f4_sq - describe regular sequence registers
366 * - L: sequence len (register & bit field)
367 * - SQ1..SQ16: sequence entries (register & bit field)
369 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
370 /* L: len bit field description to be kept as first element */
371 { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
372 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
373 { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
374 { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
375 { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
376 { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
377 { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
378 { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
379 { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
380 { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
381 { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
382 { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
383 { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
384 { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
385 { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
386 { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
387 { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
388 { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
391 /* STM32F4 external trigger sources for all instances */
392 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
393 { TIM1_CH1, STM32_EXT0 },
394 { TIM1_CH2, STM32_EXT1 },
395 { TIM1_CH3, STM32_EXT2 },
396 { TIM2_CH2, STM32_EXT3 },
397 { TIM2_CH3, STM32_EXT4 },
398 { TIM2_CH4, STM32_EXT5 },
399 { TIM2_TRGO, STM32_EXT6 },
400 { TIM3_CH1, STM32_EXT7 },
401 { TIM3_TRGO, STM32_EXT8 },
402 { TIM4_CH4, STM32_EXT9 },
403 { TIM5_CH1, STM32_EXT10 },
404 { TIM5_CH2, STM32_EXT11 },
405 { TIM5_CH3, STM32_EXT12 },
406 { TIM8_CH1, STM32_EXT13 },
407 { TIM8_TRGO, STM32_EXT14 },
408 {}, /* sentinel */
412 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
413 * Sorted so it can be indexed by channel number.
415 static const struct stm32_adc_regs stm32f4_smp_bits[] = {
416 /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
417 { 1, GENMASK(2, 0), 0 },
418 { 1, GENMASK(5, 3), 3 },
419 { 1, GENMASK(8, 6), 6 },
420 { 1, GENMASK(11, 9), 9 },
421 { 1, GENMASK(14, 12), 12 },
422 { 1, GENMASK(17, 15), 15 },
423 { 1, GENMASK(20, 18), 18 },
424 { 1, GENMASK(23, 21), 21 },
425 { 1, GENMASK(26, 24), 24 },
426 { 1, GENMASK(29, 27), 27 },
427 /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
428 { 0, GENMASK(2, 0), 0 },
429 { 0, GENMASK(5, 3), 3 },
430 { 0, GENMASK(8, 6), 6 },
431 { 0, GENMASK(11, 9), 9 },
432 { 0, GENMASK(14, 12), 12 },
433 { 0, GENMASK(17, 15), 15 },
434 { 0, GENMASK(20, 18), 18 },
435 { 0, GENMASK(23, 21), 21 },
436 { 0, GENMASK(26, 24), 24 },
439 /* STM32F4 programmable sampling time (ADC clock cycles) */
440 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
441 3, 15, 28, 56, 84, 112, 144, 480,
444 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
445 .dr = STM32F4_ADC_DR,
446 .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
447 .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
448 .sqr = stm32f4_sq,
449 .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
450 .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
451 STM32F4_EXTSEL_SHIFT },
452 .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
453 .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
454 .smp_bits = stm32f4_smp_bits,
457 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
458 /* L: len bit field description to be kept as first element */
459 { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
460 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
461 { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
462 { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
463 { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
464 { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
465 { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
466 { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
467 { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
468 { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
469 { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
470 { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
471 { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
472 { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
473 { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
474 { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
475 { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
476 { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
479 /* STM32H7 external trigger sources for all instances */
480 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
481 { TIM1_CH1, STM32_EXT0 },
482 { TIM1_CH2, STM32_EXT1 },
483 { TIM1_CH3, STM32_EXT2 },
484 { TIM2_CH2, STM32_EXT3 },
485 { TIM3_TRGO, STM32_EXT4 },
486 { TIM4_CH4, STM32_EXT5 },
487 { TIM8_TRGO, STM32_EXT7 },
488 { TIM8_TRGO2, STM32_EXT8 },
489 { TIM1_TRGO, STM32_EXT9 },
490 { TIM1_TRGO2, STM32_EXT10 },
491 { TIM2_TRGO, STM32_EXT11 },
492 { TIM4_TRGO, STM32_EXT12 },
493 { TIM6_TRGO, STM32_EXT13 },
494 { TIM15_TRGO, STM32_EXT14 },
495 { TIM3_CH4, STM32_EXT15 },
496 { LPTIM1_OUT, STM32_EXT18 },
497 { LPTIM2_OUT, STM32_EXT19 },
498 { LPTIM3_OUT, STM32_EXT20 },
503 * stm32h7_smp_bits - describe sampling time register index & bit fields
504 * Sorted so it can be indexed by channel number.
506 static const struct stm32_adc_regs stm32h7_smp_bits[] = {
507 /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
508 { 0, GENMASK(2, 0), 0 },
509 { 0, GENMASK(5, 3), 3 },
510 { 0, GENMASK(8, 6), 6 },
511 { 0, GENMASK(11, 9), 9 },
512 { 0, GENMASK(14, 12), 12 },
513 { 0, GENMASK(17, 15), 15 },
514 { 0, GENMASK(20, 18), 18 },
515 { 0, GENMASK(23, 21), 21 },
516 { 0, GENMASK(26, 24), 24 },
517 { 0, GENMASK(29, 27), 27 },
518 /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
519 { 1, GENMASK(2, 0), 0 },
520 { 1, GENMASK(5, 3), 3 },
521 { 1, GENMASK(8, 6), 6 },
522 { 1, GENMASK(11, 9), 9 },
523 { 1, GENMASK(14, 12), 12 },
524 { 1, GENMASK(17, 15), 15 },
525 { 1, GENMASK(20, 18), 18 },
526 { 1, GENMASK(23, 21), 21 },
527 { 1, GENMASK(26, 24), 24 },
528 { 1, GENMASK(29, 27), 27 },
531 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
532 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
533 1, 2, 8, 16, 32, 64, 387, 810,
536 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
537 .dr = STM32H7_ADC_DR,
538 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
539 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
540 .sqr = stm32h7_sq,
541 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
542 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
543 STM32H7_EXTSEL_SHIFT },
544 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
545 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
546 .smp_bits = stm32h7_smp_bits,
550 * STM32 ADC registers access routines
551 * @adc: stm32 adc instance
552 * @reg: reg offset in adc instance
554 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
555 * for adc1, adc2 and adc3.
557 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
559 return readl_relaxed(adc->common->base + adc->offset + reg);
562 #define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
564 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
565 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
566 cond, sleep_us, timeout_us)
568 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
570 return readw_relaxed(adc->common->base + adc->offset + reg);
573 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
575 writel_relaxed(val, adc->common->base + adc->offset + reg);
578 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
580 unsigned long flags;
582 spin_lock_irqsave(&adc->lock, flags);
583 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
584 spin_unlock_irqrestore(&adc->lock, flags);
587 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
589 unsigned long flags;
591 spin_lock_irqsave(&adc->lock, flags);
592 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
593 spin_unlock_irqrestore(&adc->lock, flags);
597 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
598 * @adc: stm32 adc instance
600 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
602 stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
603 adc->cfg->regs->ier_eoc.mask);
607 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
608 * @adc: stm32 adc instance
610 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
612 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
613 adc->cfg->regs->ier_eoc.mask);
616 static void stm32_adc_set_res(struct stm32_adc *adc)
618 const struct stm32_adc_regs *res = &adc->cfg->regs->res;
619 u32 val;
621 val = stm32_adc_readl(adc, res->reg);
622 val = (val & ~res->mask) | (adc->res << res->shift);
623 stm32_adc_writel(adc, res->reg, val);
627 * stm32f4_adc_start_conv() - Start conversions for regular channels.
628 * @adc: stm32 adc instance
629 * @dma: use dma to transfer conversion result
631 * Start conversions for regular channels.
632 * Also take care of normal or DMA mode. Circular DMA may be used for regular
633 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
634 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
636 static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
638 stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
640 if (dma)
641 stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
642 STM32F4_DMA | STM32F4_DDS);
644 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
646 /* Wait for Power-up time (tSTAB from datasheet) */
647 usleep_range(2, 3);
649 /* Software start ? (e.g. trigger detection disabled ?) */
650 if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
651 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
654 static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
656 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
657 stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
659 stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
660 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
661 STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
664 static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
666 enum stm32h7_adc_dmngt dmngt;
667 unsigned long flags;
668 u32 val;
670 if (dma)
671 dmngt = STM32H7_DMNGT_DMA_CIRC;
672 else
673 dmngt = STM32H7_DMNGT_DR_ONLY;
675 spin_lock_irqsave(&adc->lock, flags);
676 val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
677 val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
678 stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
679 spin_unlock_irqrestore(&adc->lock, flags);
681 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
684 static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
686 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
687 int ret;
688 u32 val;
690 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
692 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
693 !(val & (STM32H7_ADSTART)),
694 100, STM32_ADC_TIMEOUT_US);
695 if (ret)
696 dev_warn(&indio_dev->dev, "stop failed\n");
698 stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
701 static int stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
703 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
704 int ret;
705 u32 val;
707 /* Exit deep power down, then enable ADC voltage regulator */
708 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
709 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
711 if (adc->common->rate > STM32H7_BOOST_CLKRATE)
712 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
714 /* Wait for startup time */
715 if (!adc->cfg->has_vregready) {
716 usleep_range(10, 20);
717 return 0;
720 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
721 val & STM32MP1_VREGREADY, 100,
722 STM32_ADC_TIMEOUT_US);
723 if (ret) {
724 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
725 dev_err(&indio_dev->dev, "Failed to exit power down\n");
728 return ret;
731 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
733 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
735 /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
736 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
739 static int stm32h7_adc_enable(struct stm32_adc *adc)
741 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
742 int ret;
743 u32 val;
745 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
747 /* Poll for ADRDY to be set (after adc startup time) */
748 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
749 val & STM32H7_ADRDY,
750 100, STM32_ADC_TIMEOUT_US);
751 if (ret) {
752 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
753 dev_err(&indio_dev->dev, "Failed to enable ADC\n");
754 } else {
755 /* Clear ADRDY by writing one */
756 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
759 return ret;
762 static void stm32h7_adc_disable(struct stm32_adc *adc)
764 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
765 int ret;
766 u32 val;
768 /* Disable ADC and wait until it's effectively disabled */
769 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
770 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
771 !(val & STM32H7_ADEN), 100,
772 STM32_ADC_TIMEOUT_US);
773 if (ret)
774 dev_warn(&indio_dev->dev, "Failed to disable\n");
778 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
779 * @adc: stm32 adc instance
781 static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
783 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
784 int i, ret;
785 u32 lincalrdyw_mask, val;
787 /* Enable adc so LINCALRDYW1..6 bits are writable */
788 ret = stm32h7_adc_enable(adc);
789 if (ret)
790 return ret;
792 /* Read linearity calibration */
793 lincalrdyw_mask = STM32H7_LINCALRDYW6;
794 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
795 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
796 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
798 /* Poll: wait calib data to be ready in CALFACT2 register */
799 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
800 !(val & lincalrdyw_mask),
801 100, STM32_ADC_TIMEOUT_US);
802 if (ret) {
803 dev_err(&indio_dev->dev, "Failed to read calfact\n");
804 goto disable;
807 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
808 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
809 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
811 lincalrdyw_mask >>= 1;
814 /* Read offset calibration */
815 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
816 adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
817 adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
818 adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
819 adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
821 disable:
822 stm32h7_adc_disable(adc);
824 return ret;
828 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
829 * @adc: stm32 adc instance
830 * Note: ADC must be enabled, with no on-going conversions.
832 static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
834 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
835 int i, ret;
836 u32 lincalrdyw_mask, val;
838 val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
839 (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
840 stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
842 lincalrdyw_mask = STM32H7_LINCALRDYW6;
843 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
845 * Write saved calibration data to shadow registers:
846 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
847 * data write. Then poll to wait for complete transfer.
849 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
850 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
851 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
852 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
853 val & lincalrdyw_mask,
854 100, STM32_ADC_TIMEOUT_US);
855 if (ret) {
856 dev_err(&indio_dev->dev, "Failed to write calfact\n");
857 return ret;
861 * Read back calibration data, has two effects:
862 * - It ensures bits LINCALRDYW[6..1] are kept cleared
863 * for next time calibration needs to be restored.
864 * - BTW, bit clear triggers a read, then check data has been
865 * correctly written.
867 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
868 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
869 !(val & lincalrdyw_mask),
870 100, STM32_ADC_TIMEOUT_US);
871 if (ret) {
872 dev_err(&indio_dev->dev, "Failed to read calfact\n");
873 return ret;
875 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
876 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
877 dev_err(&indio_dev->dev, "calfact not consistent\n");
878 return -EIO;
881 lincalrdyw_mask >>= 1;
884 return 0;
888 * Fixed timeout value for ADC calibration.
889 * worst cases:
890 * - low clock frequency
891 * - maximum prescalers
892 * Calibration requires:
893 * - 131,072 ADC clock cycle for the linear calibration
894 * - 20 ADC clock cycle for the offset calibration
896 * Set to 100ms for now
898 #define STM32H7_ADC_CALIB_TIMEOUT_US 100000
901 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC (from power down)
902 * @adc: stm32 adc instance
903 * Exit from power down, calibrate ADC, then return to power down.
905 static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
907 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
908 int ret;
909 u32 val;
911 ret = stm32h7_adc_exit_pwr_down(adc);
912 if (ret)
913 return ret;
916 * Select calibration mode:
917 * - Offset calibration for single ended inputs
918 * - No linearity calibration (do it later, before reading it)
920 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
921 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
923 /* Start calibration, then wait for completion */
924 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
925 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
926 !(val & STM32H7_ADCAL), 100,
927 STM32H7_ADC_CALIB_TIMEOUT_US);
928 if (ret) {
929 dev_err(&indio_dev->dev, "calibration failed\n");
930 goto pwr_dwn;
934 * Select calibration mode, then start calibration:
935 * - Offset calibration for differential input
936 * - Linearity calibration (needs to be done only once for single/diff)
937 * will run simultaneously with offset calibration.
939 stm32_adc_set_bits(adc, STM32H7_ADC_CR,
940 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
941 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
942 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
943 !(val & STM32H7_ADCAL), 100,
944 STM32H7_ADC_CALIB_TIMEOUT_US);
945 if (ret) {
946 dev_err(&indio_dev->dev, "calibration failed\n");
947 goto pwr_dwn;
950 stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
951 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
953 /* Read calibration result for future reference */
954 ret = stm32h7_adc_read_selfcalib(adc);
956 pwr_dwn:
957 stm32h7_adc_enter_pwr_down(adc);
959 return ret;
963 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
964 * @adc: stm32 adc instance
965 * Leave power down mode.
966 * Configure channels as single ended or differential before enabling ADC.
967 * Enable ADC.
968 * Restore calibration data.
969 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
970 * - Only one input is selected for single ended (e.g. 'vinp')
971 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
973 static int stm32h7_adc_prepare(struct stm32_adc *adc)
975 int ret;
977 ret = stm32h7_adc_exit_pwr_down(adc);
978 if (ret)
979 return ret;
981 stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
983 ret = stm32h7_adc_enable(adc);
984 if (ret)
985 goto pwr_dwn;
987 ret = stm32h7_adc_restore_selfcalib(adc);
988 if (ret)
989 goto disable;
991 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
993 return 0;
995 disable:
996 stm32h7_adc_disable(adc);
997 pwr_dwn:
998 stm32h7_adc_enter_pwr_down(adc);
1000 return ret;
1003 static void stm32h7_adc_unprepare(struct stm32_adc *adc)
1005 stm32h7_adc_disable(adc);
1006 stm32h7_adc_enter_pwr_down(adc);
1010 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
1011 * @indio_dev: IIO device
1012 * @scan_mask: channels to be converted
1014 * Conversion sequence :
1015 * Apply sampling time settings for all channels.
1016 * Configure ADC scan sequence based on selected channels in scan_mask.
1017 * Add channels to SQR registers, from scan_mask LSB to MSB, then
1018 * program sequence len.
1020 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
1021 const unsigned long *scan_mask)
1023 struct stm32_adc *adc = iio_priv(indio_dev);
1024 const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1025 const struct iio_chan_spec *chan;
1026 u32 val, bit;
1027 int i = 0;
1029 /* Apply sampling time settings */
1030 stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1031 stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1033 for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
1034 chan = indio_dev->channels + bit;
1036 * Assign one channel per SQ entry in regular
1037 * sequence, starting with SQ1.
1039 i++;
1040 if (i > STM32_ADC_MAX_SQ)
1041 return -EINVAL;
1043 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1044 __func__, chan->channel, i);
1046 val = stm32_adc_readl(adc, sqr[i].reg);
1047 val &= ~sqr[i].mask;
1048 val |= chan->channel << sqr[i].shift;
1049 stm32_adc_writel(adc, sqr[i].reg, val);
1052 if (!i)
1053 return -EINVAL;
1055 /* Sequence len */
1056 val = stm32_adc_readl(adc, sqr[0].reg);
1057 val &= ~sqr[0].mask;
1058 val |= ((i - 1) << sqr[0].shift);
1059 stm32_adc_writel(adc, sqr[0].reg, val);
1061 return 0;
1065 * stm32_adc_get_trig_extsel() - Get external trigger selection
1066 * @trig: trigger
1068 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1070 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1071 struct iio_trigger *trig)
1073 struct stm32_adc *adc = iio_priv(indio_dev);
1074 int i;
1076 /* lookup triggers registered by stm32 timer trigger driver */
1077 for (i = 0; adc->cfg->trigs[i].name; i++) {
1079 * Checking both stm32 timer trigger type and trig name
1080 * should be safe against arbitrary trigger names.
1082 if ((is_stm32_timer_trigger(trig) ||
1083 is_stm32_lptim_trigger(trig)) &&
1084 !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1085 return adc->cfg->trigs[i].extsel;
1089 return -EINVAL;
1093 * stm32_adc_set_trig() - Set a regular trigger
1094 * @indio_dev: IIO device
1095 * @trig: IIO trigger
1097 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1098 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1099 * - if HW trigger enabled, set source & polarity
1101 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1102 struct iio_trigger *trig)
1104 struct stm32_adc *adc = iio_priv(indio_dev);
1105 u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1106 unsigned long flags;
1107 int ret;
1109 if (trig) {
1110 ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1111 if (ret < 0)
1112 return ret;
1114 /* set trigger source and polarity (default to rising edge) */
1115 extsel = ret;
1116 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1119 spin_lock_irqsave(&adc->lock, flags);
1120 val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1121 val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1122 val |= exten << adc->cfg->regs->exten.shift;
1123 val |= extsel << adc->cfg->regs->extsel.shift;
1124 stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
1125 spin_unlock_irqrestore(&adc->lock, flags);
1127 return 0;
1130 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1131 const struct iio_chan_spec *chan,
1132 unsigned int type)
1134 struct stm32_adc *adc = iio_priv(indio_dev);
1136 adc->trigger_polarity = type;
1138 return 0;
1141 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1142 const struct iio_chan_spec *chan)
1144 struct stm32_adc *adc = iio_priv(indio_dev);
1146 return adc->trigger_polarity;
1149 static const char * const stm32_trig_pol_items[] = {
1150 "rising-edge", "falling-edge", "both-edges",
1153 static const struct iio_enum stm32_adc_trig_pol = {
1154 .items = stm32_trig_pol_items,
1155 .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1156 .get = stm32_adc_get_trig_pol,
1157 .set = stm32_adc_set_trig_pol,
1161 * stm32_adc_single_conv() - Performs a single conversion
1162 * @indio_dev: IIO device
1163 * @chan: IIO channel
1164 * @res: conversion result
1166 * The function performs a single conversion on a given channel:
1167 * - Apply sampling time settings
1168 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1169 * - Use SW trigger
1170 * - Start conversion, then wait for interrupt completion.
1172 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1173 const struct iio_chan_spec *chan,
1174 int *res)
1176 struct stm32_adc *adc = iio_priv(indio_dev);
1177 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1178 long timeout;
1179 u32 val;
1180 int ret;
1182 reinit_completion(&adc->completion);
1184 adc->bufi = 0;
1186 if (adc->cfg->prepare) {
1187 ret = adc->cfg->prepare(adc);
1188 if (ret)
1189 return ret;
1192 /* Apply sampling time settings */
1193 stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1194 stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1196 /* Program chan number in regular sequence (SQ1) */
1197 val = stm32_adc_readl(adc, regs->sqr[1].reg);
1198 val &= ~regs->sqr[1].mask;
1199 val |= chan->channel << regs->sqr[1].shift;
1200 stm32_adc_writel(adc, regs->sqr[1].reg, val);
1202 /* Set regular sequence len (0 for 1 conversion) */
1203 stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1205 /* Trigger detection disabled (conversion can be launched in SW) */
1206 stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1208 stm32_adc_conv_irq_enable(adc);
1210 adc->cfg->start_conv(adc, false);
1212 timeout = wait_for_completion_interruptible_timeout(
1213 &adc->completion, STM32_ADC_TIMEOUT);
1214 if (timeout == 0) {
1215 ret = -ETIMEDOUT;
1216 } else if (timeout < 0) {
1217 ret = timeout;
1218 } else {
1219 *res = adc->buffer[0];
1220 ret = IIO_VAL_INT;
1223 adc->cfg->stop_conv(adc);
1225 stm32_adc_conv_irq_disable(adc);
1227 if (adc->cfg->unprepare)
1228 adc->cfg->unprepare(adc);
1230 return ret;
1233 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1234 struct iio_chan_spec const *chan,
1235 int *val, int *val2, long mask)
1237 struct stm32_adc *adc = iio_priv(indio_dev);
1238 int ret;
1240 switch (mask) {
1241 case IIO_CHAN_INFO_RAW:
1242 ret = iio_device_claim_direct_mode(indio_dev);
1243 if (ret)
1244 return ret;
1245 if (chan->type == IIO_VOLTAGE)
1246 ret = stm32_adc_single_conv(indio_dev, chan, val);
1247 else
1248 ret = -EINVAL;
1249 iio_device_release_direct_mode(indio_dev);
1250 return ret;
1252 case IIO_CHAN_INFO_SCALE:
1253 if (chan->differential) {
1254 *val = adc->common->vref_mv * 2;
1255 *val2 = chan->scan_type.realbits;
1256 } else {
1257 *val = adc->common->vref_mv;
1258 *val2 = chan->scan_type.realbits;
1260 return IIO_VAL_FRACTIONAL_LOG2;
1262 case IIO_CHAN_INFO_OFFSET:
1263 if (chan->differential)
1264 /* ADC_full_scale / 2 */
1265 *val = -((1 << chan->scan_type.realbits) / 2);
1266 else
1267 *val = 0;
1268 return IIO_VAL_INT;
1270 default:
1271 return -EINVAL;
1275 static irqreturn_t stm32_adc_isr(int irq, void *data)
1277 struct stm32_adc *adc = data;
1278 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1279 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1280 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1282 if (status & regs->isr_eoc.mask) {
1283 /* Reading DR also clears EOC status flag */
1284 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1285 if (iio_buffer_enabled(indio_dev)) {
1286 adc->bufi++;
1287 if (adc->bufi >= adc->num_conv) {
1288 stm32_adc_conv_irq_disable(adc);
1289 iio_trigger_poll(indio_dev->trig);
1291 } else {
1292 complete(&adc->completion);
1294 return IRQ_HANDLED;
1297 return IRQ_NONE;
1301 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1302 * @indio_dev: IIO device
1303 * @trig: new trigger
1305 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1306 * driver, -EINVAL otherwise.
1308 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1309 struct iio_trigger *trig)
1311 return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1314 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1316 struct stm32_adc *adc = iio_priv(indio_dev);
1317 unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1318 unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1321 * dma cyclic transfers are used, buffer is split into two periods.
1322 * There should be :
1323 * - always one buffer (period) dma is working on
1324 * - one buffer (period) driver can push with iio_trigger_poll().
1326 watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1327 adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1329 return 0;
1332 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1333 const unsigned long *scan_mask)
1335 struct stm32_adc *adc = iio_priv(indio_dev);
1336 int ret;
1338 adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1340 ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1341 if (ret)
1342 return ret;
1344 return 0;
1347 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1348 const struct of_phandle_args *iiospec)
1350 int i;
1352 for (i = 0; i < indio_dev->num_channels; i++)
1353 if (indio_dev->channels[i].channel == iiospec->args[0])
1354 return i;
1356 return -EINVAL;
1360 * stm32_adc_debugfs_reg_access - read or write register value
1362 * To read a value from an ADC register:
1363 * echo [ADC reg offset] > direct_reg_access
1364 * cat direct_reg_access
1366 * To write a value in a ADC register:
1367 * echo [ADC_reg_offset] [value] > direct_reg_access
1369 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1370 unsigned reg, unsigned writeval,
1371 unsigned *readval)
1373 struct stm32_adc *adc = iio_priv(indio_dev);
1375 if (!readval)
1376 stm32_adc_writel(adc, reg, writeval);
1377 else
1378 *readval = stm32_adc_readl(adc, reg);
1380 return 0;
1383 static const struct iio_info stm32_adc_iio_info = {
1384 .read_raw = stm32_adc_read_raw,
1385 .validate_trigger = stm32_adc_validate_trigger,
1386 .hwfifo_set_watermark = stm32_adc_set_watermark,
1387 .update_scan_mode = stm32_adc_update_scan_mode,
1388 .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1389 .of_xlate = stm32_adc_of_xlate,
1392 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1394 struct dma_tx_state state;
1395 enum dma_status status;
1397 status = dmaengine_tx_status(adc->dma_chan,
1398 adc->dma_chan->cookie,
1399 &state);
1400 if (status == DMA_IN_PROGRESS) {
1401 /* Residue is size in bytes from end of buffer */
1402 unsigned int i = adc->rx_buf_sz - state.residue;
1403 unsigned int size;
1405 /* Return available bytes */
1406 if (i >= adc->bufi)
1407 size = i - adc->bufi;
1408 else
1409 size = adc->rx_buf_sz + i - adc->bufi;
1411 return size;
1414 return 0;
1417 static void stm32_adc_dma_buffer_done(void *data)
1419 struct iio_dev *indio_dev = data;
1421 iio_trigger_poll_chained(indio_dev->trig);
1424 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1426 struct stm32_adc *adc = iio_priv(indio_dev);
1427 struct dma_async_tx_descriptor *desc;
1428 dma_cookie_t cookie;
1429 int ret;
1431 if (!adc->dma_chan)
1432 return 0;
1434 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1435 adc->rx_buf_sz, adc->rx_buf_sz / 2);
1437 /* Prepare a DMA cyclic transaction */
1438 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1439 adc->rx_dma_buf,
1440 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1441 DMA_DEV_TO_MEM,
1442 DMA_PREP_INTERRUPT);
1443 if (!desc)
1444 return -EBUSY;
1446 desc->callback = stm32_adc_dma_buffer_done;
1447 desc->callback_param = indio_dev;
1449 cookie = dmaengine_submit(desc);
1450 ret = dma_submit_error(cookie);
1451 if (ret) {
1452 dmaengine_terminate_all(adc->dma_chan);
1453 return ret;
1456 /* Issue pending DMA requests */
1457 dma_async_issue_pending(adc->dma_chan);
1459 return 0;
1462 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1464 struct stm32_adc *adc = iio_priv(indio_dev);
1465 int ret;
1467 if (adc->cfg->prepare) {
1468 ret = adc->cfg->prepare(adc);
1469 if (ret)
1470 return ret;
1473 ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1474 if (ret) {
1475 dev_err(&indio_dev->dev, "Can't set trigger\n");
1476 goto err_unprepare;
1479 ret = stm32_adc_dma_start(indio_dev);
1480 if (ret) {
1481 dev_err(&indio_dev->dev, "Can't start dma\n");
1482 goto err_clr_trig;
1485 ret = iio_triggered_buffer_postenable(indio_dev);
1486 if (ret < 0)
1487 goto err_stop_dma;
1489 /* Reset adc buffer index */
1490 adc->bufi = 0;
1492 if (!adc->dma_chan)
1493 stm32_adc_conv_irq_enable(adc);
1495 adc->cfg->start_conv(adc, !!adc->dma_chan);
1497 return 0;
1499 err_stop_dma:
1500 if (adc->dma_chan)
1501 dmaengine_terminate_all(adc->dma_chan);
1502 err_clr_trig:
1503 stm32_adc_set_trig(indio_dev, NULL);
1504 err_unprepare:
1505 if (adc->cfg->unprepare)
1506 adc->cfg->unprepare(adc);
1508 return ret;
1511 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1513 struct stm32_adc *adc = iio_priv(indio_dev);
1514 int ret;
1516 adc->cfg->stop_conv(adc);
1517 if (!adc->dma_chan)
1518 stm32_adc_conv_irq_disable(adc);
1520 ret = iio_triggered_buffer_predisable(indio_dev);
1521 if (ret < 0)
1522 dev_err(&indio_dev->dev, "predisable failed\n");
1524 if (adc->dma_chan)
1525 dmaengine_terminate_all(adc->dma_chan);
1527 if (stm32_adc_set_trig(indio_dev, NULL))
1528 dev_err(&indio_dev->dev, "Can't clear trigger\n");
1530 if (adc->cfg->unprepare)
1531 adc->cfg->unprepare(adc);
1533 return ret;
1536 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1537 .postenable = &stm32_adc_buffer_postenable,
1538 .predisable = &stm32_adc_buffer_predisable,
1541 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1543 struct iio_poll_func *pf = p;
1544 struct iio_dev *indio_dev = pf->indio_dev;
1545 struct stm32_adc *adc = iio_priv(indio_dev);
1547 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1549 if (!adc->dma_chan) {
1550 /* reset buffer index */
1551 adc->bufi = 0;
1552 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1553 pf->timestamp);
1554 } else {
1555 int residue = stm32_adc_dma_residue(adc);
1557 while (residue >= indio_dev->scan_bytes) {
1558 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1560 iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1561 pf->timestamp);
1562 residue -= indio_dev->scan_bytes;
1563 adc->bufi += indio_dev->scan_bytes;
1564 if (adc->bufi >= adc->rx_buf_sz)
1565 adc->bufi = 0;
1569 iio_trigger_notify_done(indio_dev->trig);
1571 /* re-enable eoc irq */
1572 if (!adc->dma_chan)
1573 stm32_adc_conv_irq_enable(adc);
1575 return IRQ_HANDLED;
1578 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1579 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1581 .name = "trigger_polarity_available",
1582 .shared = IIO_SHARED_BY_ALL,
1583 .read = iio_enum_available_read,
1584 .private = (uintptr_t)&stm32_adc_trig_pol,
1589 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1591 struct device_node *node = indio_dev->dev.of_node;
1592 struct stm32_adc *adc = iio_priv(indio_dev);
1593 unsigned int i;
1594 u32 res;
1596 if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1597 res = adc->cfg->adc_info->resolutions[0];
1599 for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1600 if (res == adc->cfg->adc_info->resolutions[i])
1601 break;
1602 if (i >= adc->cfg->adc_info->num_res) {
1603 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1604 return -EINVAL;
1607 dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1608 adc->res = i;
1610 return 0;
1613 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1615 const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1616 u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1617 unsigned int smp, r = smpr->reg;
1619 /* Determine sampling time (ADC clock cycles) */
1620 period_ns = NSEC_PER_SEC / adc->common->rate;
1621 for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1622 if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1623 break;
1624 if (smp > STM32_ADC_MAX_SMP)
1625 smp = STM32_ADC_MAX_SMP;
1627 /* pre-build sampling time registers (e.g. smpr1, smpr2) */
1628 adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1631 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1632 struct iio_chan_spec *chan, u32 vinp,
1633 u32 vinn, int scan_index, bool differential)
1635 struct stm32_adc *adc = iio_priv(indio_dev);
1636 char *name = adc->chan_name[vinp];
1638 chan->type = IIO_VOLTAGE;
1639 chan->channel = vinp;
1640 if (differential) {
1641 chan->differential = 1;
1642 chan->channel2 = vinn;
1643 snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1644 } else {
1645 snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1647 chan->datasheet_name = name;
1648 chan->scan_index = scan_index;
1649 chan->indexed = 1;
1650 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1651 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1652 BIT(IIO_CHAN_INFO_OFFSET);
1653 chan->scan_type.sign = 'u';
1654 chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1655 chan->scan_type.storagebits = 16;
1656 chan->ext_info = stm32_adc_ext_info;
1658 /* pre-build selected channels mask */
1659 adc->pcsel |= BIT(chan->channel);
1660 if (differential) {
1661 /* pre-build diff channels mask */
1662 adc->difsel |= BIT(chan->channel);
1663 /* Also add negative input to pre-selected channels */
1664 adc->pcsel |= BIT(chan->channel2);
1668 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1670 struct device_node *node = indio_dev->dev.of_node;
1671 struct stm32_adc *adc = iio_priv(indio_dev);
1672 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1673 struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1674 struct property *prop;
1675 const __be32 *cur;
1676 struct iio_chan_spec *channels;
1677 int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1678 u32 val, smp = 0;
1680 ret = of_property_count_u32_elems(node, "st,adc-channels");
1681 if (ret > adc_info->max_channels) {
1682 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1683 return -EINVAL;
1684 } else if (ret > 0) {
1685 num_channels += ret;
1688 ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1689 sizeof(*diff));
1690 if (ret > adc_info->max_channels) {
1691 dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1692 return -EINVAL;
1693 } else if (ret > 0) {
1694 int size = ret * sizeof(*diff) / sizeof(u32);
1696 num_diff = ret;
1697 num_channels += ret;
1698 ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1699 (u32 *)diff, size);
1700 if (ret)
1701 return ret;
1704 if (!num_channels) {
1705 dev_err(&indio_dev->dev, "No channels configured\n");
1706 return -ENODATA;
1709 /* Optional sample time is provided either for each, or all channels */
1710 ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1711 if (ret > 1 && ret != num_channels) {
1712 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1713 return -EINVAL;
1716 channels = devm_kcalloc(&indio_dev->dev, num_channels,
1717 sizeof(struct iio_chan_spec), GFP_KERNEL);
1718 if (!channels)
1719 return -ENOMEM;
1721 of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1722 if (val >= adc_info->max_channels) {
1723 dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1724 return -EINVAL;
1727 /* Channel can't be configured both as single-ended & diff */
1728 for (i = 0; i < num_diff; i++) {
1729 if (val == diff[i].vinp) {
1730 dev_err(&indio_dev->dev,
1731 "channel %d miss-configured\n", val);
1732 return -EINVAL;
1735 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1736 0, scan_index, false);
1737 scan_index++;
1740 for (i = 0; i < num_diff; i++) {
1741 if (diff[i].vinp >= adc_info->max_channels ||
1742 diff[i].vinn >= adc_info->max_channels) {
1743 dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1744 diff[i].vinp, diff[i].vinn);
1745 return -EINVAL;
1747 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1748 diff[i].vinp, diff[i].vinn, scan_index,
1749 true);
1750 scan_index++;
1753 for (i = 0; i < scan_index; i++) {
1755 * Using of_property_read_u32_index(), smp value will only be
1756 * modified if valid u32 value can be decoded. This allows to
1757 * get either no value, 1 shared value for all indexes, or one
1758 * value per channel.
1760 of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1761 i, &smp);
1762 /* Prepare sampling time settings */
1763 stm32_adc_smpr_init(adc, channels[i].channel, smp);
1766 indio_dev->num_channels = scan_index;
1767 indio_dev->channels = channels;
1769 return 0;
1772 static int stm32_adc_dma_request(struct iio_dev *indio_dev)
1774 struct stm32_adc *adc = iio_priv(indio_dev);
1775 struct dma_slave_config config;
1776 int ret;
1778 adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1779 if (!adc->dma_chan)
1780 return 0;
1782 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1783 STM32_DMA_BUFFER_SIZE,
1784 &adc->rx_dma_buf, GFP_KERNEL);
1785 if (!adc->rx_buf) {
1786 ret = -ENOMEM;
1787 goto err_release;
1790 /* Configure DMA channel to read data register */
1791 memset(&config, 0, sizeof(config));
1792 config.src_addr = (dma_addr_t)adc->common->phys_base;
1793 config.src_addr += adc->offset + adc->cfg->regs->dr;
1794 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1796 ret = dmaengine_slave_config(adc->dma_chan, &config);
1797 if (ret)
1798 goto err_free;
1800 return 0;
1802 err_free:
1803 dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1804 adc->rx_buf, adc->rx_dma_buf);
1805 err_release:
1806 dma_release_channel(adc->dma_chan);
1808 return ret;
1811 static int stm32_adc_probe(struct platform_device *pdev)
1813 struct iio_dev *indio_dev;
1814 struct device *dev = &pdev->dev;
1815 struct stm32_adc *adc;
1816 int ret;
1818 if (!pdev->dev.of_node)
1819 return -ENODEV;
1821 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1822 if (!indio_dev)
1823 return -ENOMEM;
1825 adc = iio_priv(indio_dev);
1826 adc->common = dev_get_drvdata(pdev->dev.parent);
1827 spin_lock_init(&adc->lock);
1828 init_completion(&adc->completion);
1829 adc->cfg = (const struct stm32_adc_cfg *)
1830 of_match_device(dev->driver->of_match_table, dev)->data;
1832 indio_dev->name = dev_name(&pdev->dev);
1833 indio_dev->dev.parent = &pdev->dev;
1834 indio_dev->dev.of_node = pdev->dev.of_node;
1835 indio_dev->info = &stm32_adc_iio_info;
1836 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1838 platform_set_drvdata(pdev, adc);
1840 ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1841 if (ret != 0) {
1842 dev_err(&pdev->dev, "missing reg property\n");
1843 return -EINVAL;
1846 adc->irq = platform_get_irq(pdev, 0);
1847 if (adc->irq < 0) {
1848 dev_err(&pdev->dev, "failed to get irq\n");
1849 return adc->irq;
1852 ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1853 0, pdev->name, adc);
1854 if (ret) {
1855 dev_err(&pdev->dev, "failed to request IRQ\n");
1856 return ret;
1859 adc->clk = devm_clk_get(&pdev->dev, NULL);
1860 if (IS_ERR(adc->clk)) {
1861 ret = PTR_ERR(adc->clk);
1862 if (ret == -ENOENT && !adc->cfg->clk_required) {
1863 adc->clk = NULL;
1864 } else {
1865 dev_err(&pdev->dev, "Can't get clock\n");
1866 return ret;
1870 if (adc->clk) {
1871 ret = clk_prepare_enable(adc->clk);
1872 if (ret < 0) {
1873 dev_err(&pdev->dev, "clk enable failed\n");
1874 return ret;
1878 ret = stm32_adc_of_get_resolution(indio_dev);
1879 if (ret < 0)
1880 goto err_clk_disable;
1881 stm32_adc_set_res(adc);
1883 if (adc->cfg->selfcalib) {
1884 ret = adc->cfg->selfcalib(adc);
1885 if (ret)
1886 goto err_clk_disable;
1889 ret = stm32_adc_chan_of_init(indio_dev);
1890 if (ret < 0)
1891 goto err_clk_disable;
1893 ret = stm32_adc_dma_request(indio_dev);
1894 if (ret < 0)
1895 goto err_clk_disable;
1897 ret = iio_triggered_buffer_setup(indio_dev,
1898 &iio_pollfunc_store_time,
1899 &stm32_adc_trigger_handler,
1900 &stm32_adc_buffer_setup_ops);
1901 if (ret) {
1902 dev_err(&pdev->dev, "buffer setup failed\n");
1903 goto err_dma_disable;
1906 ret = iio_device_register(indio_dev);
1907 if (ret) {
1908 dev_err(&pdev->dev, "iio dev register failed\n");
1909 goto err_buffer_cleanup;
1912 return 0;
1914 err_buffer_cleanup:
1915 iio_triggered_buffer_cleanup(indio_dev);
1917 err_dma_disable:
1918 if (adc->dma_chan) {
1919 dma_free_coherent(adc->dma_chan->device->dev,
1920 STM32_DMA_BUFFER_SIZE,
1921 adc->rx_buf, adc->rx_dma_buf);
1922 dma_release_channel(adc->dma_chan);
1924 err_clk_disable:
1925 if (adc->clk)
1926 clk_disable_unprepare(adc->clk);
1928 return ret;
1931 static int stm32_adc_remove(struct platform_device *pdev)
1933 struct stm32_adc *adc = platform_get_drvdata(pdev);
1934 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1936 iio_device_unregister(indio_dev);
1937 iio_triggered_buffer_cleanup(indio_dev);
1938 if (adc->dma_chan) {
1939 dma_free_coherent(adc->dma_chan->device->dev,
1940 STM32_DMA_BUFFER_SIZE,
1941 adc->rx_buf, adc->rx_dma_buf);
1942 dma_release_channel(adc->dma_chan);
1944 if (adc->clk)
1945 clk_disable_unprepare(adc->clk);
1947 return 0;
1950 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
1951 .regs = &stm32f4_adc_regspec,
1952 .adc_info = &stm32f4_adc_info,
1953 .trigs = stm32f4_adc_trigs,
1954 .clk_required = true,
1955 .start_conv = stm32f4_adc_start_conv,
1956 .stop_conv = stm32f4_adc_stop_conv,
1957 .smp_cycles = stm32f4_adc_smp_cycles,
1960 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
1961 .regs = &stm32h7_adc_regspec,
1962 .adc_info = &stm32h7_adc_info,
1963 .trigs = stm32h7_adc_trigs,
1964 .selfcalib = stm32h7_adc_selfcalib,
1965 .start_conv = stm32h7_adc_start_conv,
1966 .stop_conv = stm32h7_adc_stop_conv,
1967 .prepare = stm32h7_adc_prepare,
1968 .unprepare = stm32h7_adc_unprepare,
1969 .smp_cycles = stm32h7_adc_smp_cycles,
1972 static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
1973 .regs = &stm32h7_adc_regspec,
1974 .adc_info = &stm32h7_adc_info,
1975 .trigs = stm32h7_adc_trigs,
1976 .has_vregready = true,
1977 .selfcalib = stm32h7_adc_selfcalib,
1978 .start_conv = stm32h7_adc_start_conv,
1979 .stop_conv = stm32h7_adc_stop_conv,
1980 .prepare = stm32h7_adc_prepare,
1981 .unprepare = stm32h7_adc_unprepare,
1982 .smp_cycles = stm32h7_adc_smp_cycles,
1985 static const struct of_device_id stm32_adc_of_match[] = {
1986 { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
1987 { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
1988 { .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
1991 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
1993 static struct platform_driver stm32_adc_driver = {
1994 .probe = stm32_adc_probe,
1995 .remove = stm32_adc_remove,
1996 .driver = {
1997 .name = "stm32-adc",
1998 .of_match_table = stm32_adc_of_match,
2001 module_platform_driver(stm32_adc_driver);
2003 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2004 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2005 MODULE_LICENSE("GPL v2");
2006 MODULE_ALIAS("platform:stm32-adc");