staging: rtl8188eu: rename HalSetBrateCfg() - style
[linux/fpc-iii.git] / drivers / iommu / dma-iommu.c
blob511ff9a1d6d94087bffaaac226055bf892e08d91
1 /*
2 * A fairly generic DMA-API to IOMMU-API glue layer.
4 * Copyright (C) 2014-2015 ARM Ltd.
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 #include <linux/acpi_iort.h>
23 #include <linux/device.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/gfp.h>
26 #include <linux/huge_mm.h>
27 #include <linux/iommu.h>
28 #include <linux/iova.h>
29 #include <linux/irq.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/scatterlist.h>
33 #include <linux/vmalloc.h>
35 #define IOMMU_MAPPING_ERROR 0
37 struct iommu_dma_msi_page {
38 struct list_head list;
39 dma_addr_t iova;
40 phys_addr_t phys;
43 enum iommu_dma_cookie_type {
44 IOMMU_DMA_IOVA_COOKIE,
45 IOMMU_DMA_MSI_COOKIE,
48 struct iommu_dma_cookie {
49 enum iommu_dma_cookie_type type;
50 union {
51 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
52 struct iova_domain iovad;
53 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
54 dma_addr_t msi_iova;
56 struct list_head msi_page_list;
57 spinlock_t msi_lock;
60 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
62 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
63 return cookie->iovad.granule;
64 return PAGE_SIZE;
67 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
69 struct iommu_dma_cookie *cookie;
71 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
72 if (cookie) {
73 spin_lock_init(&cookie->msi_lock);
74 INIT_LIST_HEAD(&cookie->msi_page_list);
75 cookie->type = type;
77 return cookie;
80 int iommu_dma_init(void)
82 return iova_cache_get();
85 /**
86 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
87 * @domain: IOMMU domain to prepare for DMA-API usage
89 * IOMMU drivers should normally call this from their domain_alloc
90 * callback when domain->type == IOMMU_DOMAIN_DMA.
92 int iommu_get_dma_cookie(struct iommu_domain *domain)
94 if (domain->iova_cookie)
95 return -EEXIST;
97 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
98 if (!domain->iova_cookie)
99 return -ENOMEM;
101 return 0;
103 EXPORT_SYMBOL(iommu_get_dma_cookie);
106 * iommu_get_msi_cookie - Acquire just MSI remapping resources
107 * @domain: IOMMU domain to prepare
108 * @base: Start address of IOVA region for MSI mappings
110 * Users who manage their own IOVA allocation and do not want DMA API support,
111 * but would still like to take advantage of automatic MSI remapping, can use
112 * this to initialise their own domain appropriately. Users should reserve a
113 * contiguous IOVA region, starting at @base, large enough to accommodate the
114 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
115 * used by the devices attached to @domain.
117 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
119 struct iommu_dma_cookie *cookie;
121 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
122 return -EINVAL;
124 if (domain->iova_cookie)
125 return -EEXIST;
127 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
128 if (!cookie)
129 return -ENOMEM;
131 cookie->msi_iova = base;
132 domain->iova_cookie = cookie;
133 return 0;
135 EXPORT_SYMBOL(iommu_get_msi_cookie);
138 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
139 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
140 * iommu_get_msi_cookie()
142 * IOMMU drivers should normally call this from their domain_free callback.
144 void iommu_put_dma_cookie(struct iommu_domain *domain)
146 struct iommu_dma_cookie *cookie = domain->iova_cookie;
147 struct iommu_dma_msi_page *msi, *tmp;
149 if (!cookie)
150 return;
152 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
153 put_iova_domain(&cookie->iovad);
155 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
156 list_del(&msi->list);
157 kfree(msi);
159 kfree(cookie);
160 domain->iova_cookie = NULL;
162 EXPORT_SYMBOL(iommu_put_dma_cookie);
165 * iommu_dma_get_resv_regions - Reserved region driver helper
166 * @dev: Device from iommu_get_resv_regions()
167 * @list: Reserved region list from iommu_get_resv_regions()
169 * IOMMU drivers can use this to implement their .get_resv_regions callback
170 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
171 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
172 * reservation.
174 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
177 if (!is_of_node(dev->iommu_fwspec->iommu_fwnode))
178 iort_iommu_msi_get_resv_regions(dev, list);
181 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
183 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
184 phys_addr_t start, phys_addr_t end)
186 struct iova_domain *iovad = &cookie->iovad;
187 struct iommu_dma_msi_page *msi_page;
188 int i, num_pages;
190 start -= iova_offset(iovad, start);
191 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
193 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
194 if (!msi_page)
195 return -ENOMEM;
197 for (i = 0; i < num_pages; i++) {
198 msi_page[i].phys = start;
199 msi_page[i].iova = start;
200 INIT_LIST_HEAD(&msi_page[i].list);
201 list_add(&msi_page[i].list, &cookie->msi_page_list);
202 start += iovad->granule;
205 return 0;
208 static void iova_reserve_pci_windows(struct pci_dev *dev,
209 struct iova_domain *iovad)
211 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
212 struct resource_entry *window;
213 unsigned long lo, hi;
215 resource_list_for_each_entry(window, &bridge->windows) {
216 if (resource_type(window->res) != IORESOURCE_MEM)
217 continue;
219 lo = iova_pfn(iovad, window->res->start - window->offset);
220 hi = iova_pfn(iovad, window->res->end - window->offset);
221 reserve_iova(iovad, lo, hi);
225 static int iova_reserve_iommu_regions(struct device *dev,
226 struct iommu_domain *domain)
228 struct iommu_dma_cookie *cookie = domain->iova_cookie;
229 struct iova_domain *iovad = &cookie->iovad;
230 struct iommu_resv_region *region;
231 LIST_HEAD(resv_regions);
232 int ret = 0;
234 if (dev_is_pci(dev))
235 iova_reserve_pci_windows(to_pci_dev(dev), iovad);
237 iommu_get_resv_regions(dev, &resv_regions);
238 list_for_each_entry(region, &resv_regions, list) {
239 unsigned long lo, hi;
241 /* We ARE the software that manages these! */
242 if (region->type == IOMMU_RESV_SW_MSI)
243 continue;
245 lo = iova_pfn(iovad, region->start);
246 hi = iova_pfn(iovad, region->start + region->length - 1);
247 reserve_iova(iovad, lo, hi);
249 if (region->type == IOMMU_RESV_MSI)
250 ret = cookie_init_hw_msi_region(cookie, region->start,
251 region->start + region->length);
252 if (ret)
253 break;
255 iommu_put_resv_regions(dev, &resv_regions);
257 return ret;
261 * iommu_dma_init_domain - Initialise a DMA mapping domain
262 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
263 * @base: IOVA at which the mappable address space starts
264 * @size: Size of IOVA space
265 * @dev: Device the domain is being initialised for
267 * @base and @size should be exact multiples of IOMMU page granularity to
268 * avoid rounding surprises. If necessary, we reserve the page at address 0
269 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
270 * any change which could make prior IOVAs invalid will fail.
272 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
273 u64 size, struct device *dev)
275 struct iommu_dma_cookie *cookie = domain->iova_cookie;
276 struct iova_domain *iovad = &cookie->iovad;
277 unsigned long order, base_pfn, end_pfn;
279 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
280 return -EINVAL;
282 /* Use the smallest supported page size for IOVA granularity */
283 order = __ffs(domain->pgsize_bitmap);
284 base_pfn = max_t(unsigned long, 1, base >> order);
285 end_pfn = (base + size - 1) >> order;
287 /* Check the domain allows at least some access to the device... */
288 if (domain->geometry.force_aperture) {
289 if (base > domain->geometry.aperture_end ||
290 base + size <= domain->geometry.aperture_start) {
291 pr_warn("specified DMA range outside IOMMU capability\n");
292 return -EFAULT;
294 /* ...then finally give it a kicking to make sure it fits */
295 base_pfn = max_t(unsigned long, base_pfn,
296 domain->geometry.aperture_start >> order);
299 /* start_pfn is always nonzero for an already-initialised domain */
300 if (iovad->start_pfn) {
301 if (1UL << order != iovad->granule ||
302 base_pfn != iovad->start_pfn) {
303 pr_warn("Incompatible range for DMA domain\n");
304 return -EFAULT;
307 return 0;
310 init_iova_domain(iovad, 1UL << order, base_pfn);
311 if (!dev)
312 return 0;
314 return iova_reserve_iommu_regions(dev, domain);
316 EXPORT_SYMBOL(iommu_dma_init_domain);
319 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
320 * page flags.
321 * @dir: Direction of DMA transfer
322 * @coherent: Is the DMA master cache-coherent?
323 * @attrs: DMA attributes for the mapping
325 * Return: corresponding IOMMU API page protection flags
327 int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
328 unsigned long attrs)
330 int prot = coherent ? IOMMU_CACHE : 0;
332 if (attrs & DMA_ATTR_PRIVILEGED)
333 prot |= IOMMU_PRIV;
335 switch (dir) {
336 case DMA_BIDIRECTIONAL:
337 return prot | IOMMU_READ | IOMMU_WRITE;
338 case DMA_TO_DEVICE:
339 return prot | IOMMU_READ;
340 case DMA_FROM_DEVICE:
341 return prot | IOMMU_WRITE;
342 default:
343 return 0;
347 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
348 size_t size, dma_addr_t dma_limit, struct device *dev)
350 struct iommu_dma_cookie *cookie = domain->iova_cookie;
351 struct iova_domain *iovad = &cookie->iovad;
352 unsigned long shift, iova_len, iova = 0;
354 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
355 cookie->msi_iova += size;
356 return cookie->msi_iova - size;
359 shift = iova_shift(iovad);
360 iova_len = size >> shift;
362 * Freeing non-power-of-two-sized allocations back into the IOVA caches
363 * will come back to bite us badly, so we have to waste a bit of space
364 * rounding up anything cacheable to make sure that can't happen. The
365 * order of the unadjusted size will still match upon freeing.
367 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
368 iova_len = roundup_pow_of_two(iova_len);
370 if (dev->bus_dma_mask)
371 dma_limit &= dev->bus_dma_mask;
373 if (domain->geometry.force_aperture)
374 dma_limit = min(dma_limit, domain->geometry.aperture_end);
376 /* Try to get PCI devices a SAC address */
377 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
378 iova = alloc_iova_fast(iovad, iova_len,
379 DMA_BIT_MASK(32) >> shift, false);
381 if (!iova)
382 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
383 true);
385 return (dma_addr_t)iova << shift;
388 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
389 dma_addr_t iova, size_t size)
391 struct iova_domain *iovad = &cookie->iovad;
393 /* The MSI case is only ever cleaning up its most recent allocation */
394 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
395 cookie->msi_iova -= size;
396 else
397 free_iova_fast(iovad, iova_pfn(iovad, iova),
398 size >> iova_shift(iovad));
401 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
402 size_t size)
404 struct iommu_dma_cookie *cookie = domain->iova_cookie;
405 struct iova_domain *iovad = &cookie->iovad;
406 size_t iova_off = iova_offset(iovad, dma_addr);
408 dma_addr -= iova_off;
409 size = iova_align(iovad, size + iova_off);
411 WARN_ON(iommu_unmap(domain, dma_addr, size) != size);
412 iommu_dma_free_iova(cookie, dma_addr, size);
415 static void __iommu_dma_free_pages(struct page **pages, int count)
417 while (count--)
418 __free_page(pages[count]);
419 kvfree(pages);
422 static struct page **__iommu_dma_alloc_pages(unsigned int count,
423 unsigned long order_mask, gfp_t gfp)
425 struct page **pages;
426 unsigned int i = 0, array_size = count * sizeof(*pages);
428 order_mask &= (2U << MAX_ORDER) - 1;
429 if (!order_mask)
430 return NULL;
432 if (array_size <= PAGE_SIZE)
433 pages = kzalloc(array_size, GFP_KERNEL);
434 else
435 pages = vzalloc(array_size);
436 if (!pages)
437 return NULL;
439 /* IOMMU can map any pages, so himem can also be used here */
440 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
442 while (count) {
443 struct page *page = NULL;
444 unsigned int order_size;
447 * Higher-order allocations are a convenience rather
448 * than a necessity, hence using __GFP_NORETRY until
449 * falling back to minimum-order allocations.
451 for (order_mask &= (2U << __fls(count)) - 1;
452 order_mask; order_mask &= ~order_size) {
453 unsigned int order = __fls(order_mask);
455 order_size = 1U << order;
456 page = alloc_pages((order_mask - order_size) ?
457 gfp | __GFP_NORETRY : gfp, order);
458 if (!page)
459 continue;
460 if (!order)
461 break;
462 if (!PageCompound(page)) {
463 split_page(page, order);
464 break;
465 } else if (!split_huge_page(page)) {
466 break;
468 __free_pages(page, order);
470 if (!page) {
471 __iommu_dma_free_pages(pages, i);
472 return NULL;
474 count -= order_size;
475 while (order_size--)
476 pages[i++] = page++;
478 return pages;
482 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
483 * @dev: Device which owns this buffer
484 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
485 * @size: Size of buffer in bytes
486 * @handle: DMA address of buffer
488 * Frees both the pages associated with the buffer, and the array
489 * describing them
491 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
492 dma_addr_t *handle)
494 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle, size);
495 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
496 *handle = IOMMU_MAPPING_ERROR;
500 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
501 * @dev: Device to allocate memory for. Must be a real device
502 * attached to an iommu_dma_domain
503 * @size: Size of buffer in bytes
504 * @gfp: Allocation flags
505 * @attrs: DMA attributes for this allocation
506 * @prot: IOMMU mapping flags
507 * @handle: Out argument for allocated DMA handle
508 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
509 * given VA/PA are visible to the given non-coherent device.
511 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
512 * but an IOMMU which supports smaller pages might not map the whole thing.
514 * Return: Array of struct page pointers describing the buffer,
515 * or NULL on failure.
517 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
518 unsigned long attrs, int prot, dma_addr_t *handle,
519 void (*flush_page)(struct device *, const void *, phys_addr_t))
521 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
522 struct iommu_dma_cookie *cookie = domain->iova_cookie;
523 struct iova_domain *iovad = &cookie->iovad;
524 struct page **pages;
525 struct sg_table sgt;
526 dma_addr_t iova;
527 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
529 *handle = IOMMU_MAPPING_ERROR;
531 min_size = alloc_sizes & -alloc_sizes;
532 if (min_size < PAGE_SIZE) {
533 min_size = PAGE_SIZE;
534 alloc_sizes |= PAGE_SIZE;
535 } else {
536 size = ALIGN(size, min_size);
538 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
539 alloc_sizes = min_size;
541 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
542 pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
543 if (!pages)
544 return NULL;
546 size = iova_align(iovad, size);
547 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
548 if (!iova)
549 goto out_free_pages;
551 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
552 goto out_free_iova;
554 if (!(prot & IOMMU_CACHE)) {
555 struct sg_mapping_iter miter;
557 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
558 * sufficient here, so skip it by using the "wrong" direction.
560 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
561 while (sg_miter_next(&miter))
562 flush_page(dev, miter.addr, page_to_phys(miter.page));
563 sg_miter_stop(&miter);
566 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
567 < size)
568 goto out_free_sg;
570 *handle = iova;
571 sg_free_table(&sgt);
572 return pages;
574 out_free_sg:
575 sg_free_table(&sgt);
576 out_free_iova:
577 iommu_dma_free_iova(cookie, iova, size);
578 out_free_pages:
579 __iommu_dma_free_pages(pages, count);
580 return NULL;
584 * iommu_dma_mmap - Map a buffer into provided user VMA
585 * @pages: Array representing buffer from iommu_dma_alloc()
586 * @size: Size of buffer in bytes
587 * @vma: VMA describing requested userspace mapping
589 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
590 * for verifying the correct size and protection of @vma beforehand.
593 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
595 unsigned long uaddr = vma->vm_start;
596 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
597 int ret = -ENXIO;
599 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
600 ret = vm_insert_page(vma, uaddr, pages[i]);
601 if (ret)
602 break;
603 uaddr += PAGE_SIZE;
605 return ret;
608 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
609 size_t size, int prot)
611 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
612 struct iommu_dma_cookie *cookie = domain->iova_cookie;
613 size_t iova_off = 0;
614 dma_addr_t iova;
616 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
617 iova_off = iova_offset(&cookie->iovad, phys);
618 size = iova_align(&cookie->iovad, size + iova_off);
621 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
622 if (!iova)
623 return IOMMU_MAPPING_ERROR;
625 if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
626 iommu_dma_free_iova(cookie, iova, size);
627 return IOMMU_MAPPING_ERROR;
629 return iova + iova_off;
632 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
633 unsigned long offset, size_t size, int prot)
635 return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
638 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
639 enum dma_data_direction dir, unsigned long attrs)
641 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
645 * Prepare a successfully-mapped scatterlist to give back to the caller.
647 * At this point the segments are already laid out by iommu_dma_map_sg() to
648 * avoid individually crossing any boundaries, so we merely need to check a
649 * segment's start address to avoid concatenating across one.
651 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
652 dma_addr_t dma_addr)
654 struct scatterlist *s, *cur = sg;
655 unsigned long seg_mask = dma_get_seg_boundary(dev);
656 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
657 int i, count = 0;
659 for_each_sg(sg, s, nents, i) {
660 /* Restore this segment's original unaligned fields first */
661 unsigned int s_iova_off = sg_dma_address(s);
662 unsigned int s_length = sg_dma_len(s);
663 unsigned int s_iova_len = s->length;
665 s->offset += s_iova_off;
666 s->length = s_length;
667 sg_dma_address(s) = IOMMU_MAPPING_ERROR;
668 sg_dma_len(s) = 0;
671 * Now fill in the real DMA data. If...
672 * - there is a valid output segment to append to
673 * - and this segment starts on an IOVA page boundary
674 * - but doesn't fall at a segment boundary
675 * - and wouldn't make the resulting output segment too long
677 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
678 (cur_len + s_length <= max_len)) {
679 /* ...then concatenate it with the previous one */
680 cur_len += s_length;
681 } else {
682 /* Otherwise start the next output segment */
683 if (i > 0)
684 cur = sg_next(cur);
685 cur_len = s_length;
686 count++;
688 sg_dma_address(cur) = dma_addr + s_iova_off;
691 sg_dma_len(cur) = cur_len;
692 dma_addr += s_iova_len;
694 if (s_length + s_iova_off < s_iova_len)
695 cur_len = 0;
697 return count;
701 * If mapping failed, then just restore the original list,
702 * but making sure the DMA fields are invalidated.
704 static void __invalidate_sg(struct scatterlist *sg, int nents)
706 struct scatterlist *s;
707 int i;
709 for_each_sg(sg, s, nents, i) {
710 if (sg_dma_address(s) != IOMMU_MAPPING_ERROR)
711 s->offset += sg_dma_address(s);
712 if (sg_dma_len(s))
713 s->length = sg_dma_len(s);
714 sg_dma_address(s) = IOMMU_MAPPING_ERROR;
715 sg_dma_len(s) = 0;
720 * The DMA API client is passing in a scatterlist which could describe
721 * any old buffer layout, but the IOMMU API requires everything to be
722 * aligned to IOMMU pages. Hence the need for this complicated bit of
723 * impedance-matching, to be able to hand off a suitably-aligned list,
724 * but still preserve the original offsets and sizes for the caller.
726 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
727 int nents, int prot)
729 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
730 struct iommu_dma_cookie *cookie = domain->iova_cookie;
731 struct iova_domain *iovad = &cookie->iovad;
732 struct scatterlist *s, *prev = NULL;
733 dma_addr_t iova;
734 size_t iova_len = 0;
735 unsigned long mask = dma_get_seg_boundary(dev);
736 int i;
739 * Work out how much IOVA space we need, and align the segments to
740 * IOVA granules for the IOMMU driver to handle. With some clever
741 * trickery we can modify the list in-place, but reversibly, by
742 * stashing the unaligned parts in the as-yet-unused DMA fields.
744 for_each_sg(sg, s, nents, i) {
745 size_t s_iova_off = iova_offset(iovad, s->offset);
746 size_t s_length = s->length;
747 size_t pad_len = (mask - iova_len + 1) & mask;
749 sg_dma_address(s) = s_iova_off;
750 sg_dma_len(s) = s_length;
751 s->offset -= s_iova_off;
752 s_length = iova_align(iovad, s_length + s_iova_off);
753 s->length = s_length;
756 * Due to the alignment of our single IOVA allocation, we can
757 * depend on these assumptions about the segment boundary mask:
758 * - If mask size >= IOVA size, then the IOVA range cannot
759 * possibly fall across a boundary, so we don't care.
760 * - If mask size < IOVA size, then the IOVA range must start
761 * exactly on a boundary, therefore we can lay things out
762 * based purely on segment lengths without needing to know
763 * the actual addresses beforehand.
764 * - The mask must be a power of 2, so pad_len == 0 if
765 * iova_len == 0, thus we cannot dereference prev the first
766 * time through here (i.e. before it has a meaningful value).
768 if (pad_len && pad_len < s_length - 1) {
769 prev->length += pad_len;
770 iova_len += pad_len;
773 iova_len += s_length;
774 prev = s;
777 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
778 if (!iova)
779 goto out_restore_sg;
782 * We'll leave any physical concatenation to the IOMMU driver's
783 * implementation - it knows better than we do.
785 if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
786 goto out_free_iova;
788 return __finalise_sg(dev, sg, nents, iova);
790 out_free_iova:
791 iommu_dma_free_iova(cookie, iova, iova_len);
792 out_restore_sg:
793 __invalidate_sg(sg, nents);
794 return 0;
797 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
798 enum dma_data_direction dir, unsigned long attrs)
800 dma_addr_t start, end;
801 struct scatterlist *tmp;
802 int i;
804 * The scatterlist segments are mapped into a single
805 * contiguous IOVA allocation, so this is incredibly easy.
807 start = sg_dma_address(sg);
808 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
809 if (sg_dma_len(tmp) == 0)
810 break;
811 sg = tmp;
813 end = sg_dma_address(sg) + sg_dma_len(sg);
814 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), start, end - start);
817 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
818 size_t size, enum dma_data_direction dir, unsigned long attrs)
820 return __iommu_dma_map(dev, phys, size,
821 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
824 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
825 size_t size, enum dma_data_direction dir, unsigned long attrs)
827 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
830 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
832 return dma_addr == IOMMU_MAPPING_ERROR;
835 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
836 phys_addr_t msi_addr, struct iommu_domain *domain)
838 struct iommu_dma_cookie *cookie = domain->iova_cookie;
839 struct iommu_dma_msi_page *msi_page;
840 dma_addr_t iova;
841 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
842 size_t size = cookie_msi_granule(cookie);
844 msi_addr &= ~(phys_addr_t)(size - 1);
845 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
846 if (msi_page->phys == msi_addr)
847 return msi_page;
849 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
850 if (!msi_page)
851 return NULL;
853 iova = __iommu_dma_map(dev, msi_addr, size, prot);
854 if (iommu_dma_mapping_error(dev, iova))
855 goto out_free_page;
857 INIT_LIST_HEAD(&msi_page->list);
858 msi_page->phys = msi_addr;
859 msi_page->iova = iova;
860 list_add(&msi_page->list, &cookie->msi_page_list);
861 return msi_page;
863 out_free_page:
864 kfree(msi_page);
865 return NULL;
868 void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
870 struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
871 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
872 struct iommu_dma_cookie *cookie;
873 struct iommu_dma_msi_page *msi_page;
874 phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
875 unsigned long flags;
877 if (!domain || !domain->iova_cookie)
878 return;
880 cookie = domain->iova_cookie;
883 * We disable IRQs to rule out a possible inversion against
884 * irq_desc_lock if, say, someone tries to retarget the affinity
885 * of an MSI from within an IPI handler.
887 spin_lock_irqsave(&cookie->msi_lock, flags);
888 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
889 spin_unlock_irqrestore(&cookie->msi_lock, flags);
891 if (WARN_ON(!msi_page)) {
893 * We're called from a void callback, so the best we can do is
894 * 'fail' by filling the message with obviously bogus values.
895 * Since we got this far due to an IOMMU being present, it's
896 * not like the existing address would have worked anyway...
898 msg->address_hi = ~0U;
899 msg->address_lo = ~0U;
900 msg->data = ~0U;
901 } else {
902 msg->address_hi = upper_32_bits(msi_page->iova);
903 msg->address_lo &= cookie_msi_granule(cookie) - 1;
904 msg->address_lo += lower_32_bits(msi_page->iova);