2 * CPU-agnostic ARM page table allocator.
4 * ARMv7 Short-descriptor format, supporting
5 * - Basic memory attributes
6 * - Simplified access permissions (AP[2:1] model)
7 * - Backwards-compatible TEX remap
8 * - Large pages/supersections (if indicated by the caller)
11 * - Legacy access permissions (AP[2:0] model)
13 * Almost certainly never supporting:
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License version 2 as
19 * published by the Free Software Foundation.
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
26 * You should have received a copy of the GNU General Public License
27 * along with this program. If not, see <http://www.gnu.org/licenses/>.
29 * Copyright (C) 2014-2015 ARM Limited
30 * Copyright (c) 2014-2015 MediaTek Inc.
33 #define pr_fmt(fmt) "arm-v7s io-pgtable: " fmt
35 #include <linux/atomic.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/gfp.h>
38 #include <linux/iommu.h>
39 #include <linux/kernel.h>
40 #include <linux/kmemleak.h>
41 #include <linux/sizes.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/types.h>
46 #include <asm/barrier.h>
48 #include "io-pgtable.h"
50 /* Struct accessors */
51 #define io_pgtable_to_data(x) \
52 container_of((x), struct arm_v7s_io_pgtable, iop)
54 #define io_pgtable_ops_to_data(x) \
55 io_pgtable_to_data(io_pgtable_ops_to_pgtable(x))
58 * We have 32 bits total; 12 bits resolved at level 1, 8 bits at level 2,
59 * and 12 bits in a page. With some carefully-chosen coefficients we can
60 * hide the ugly inconsistencies behind these macros and at least let the
61 * rest of the code pretend to be somewhat sane.
63 #define ARM_V7S_ADDR_BITS 32
64 #define _ARM_V7S_LVL_BITS(lvl) (16 - (lvl) * 4)
65 #define ARM_V7S_LVL_SHIFT(lvl) (ARM_V7S_ADDR_BITS - (4 + 8 * (lvl)))
66 #define ARM_V7S_TABLE_SHIFT 10
68 #define ARM_V7S_PTES_PER_LVL(lvl) (1 << _ARM_V7S_LVL_BITS(lvl))
69 #define ARM_V7S_TABLE_SIZE(lvl) \
70 (ARM_V7S_PTES_PER_LVL(lvl) * sizeof(arm_v7s_iopte))
72 #define ARM_V7S_BLOCK_SIZE(lvl) (1UL << ARM_V7S_LVL_SHIFT(lvl))
73 #define ARM_V7S_LVL_MASK(lvl) ((u32)(~0U << ARM_V7S_LVL_SHIFT(lvl)))
74 #define ARM_V7S_TABLE_MASK ((u32)(~0U << ARM_V7S_TABLE_SHIFT))
75 #define _ARM_V7S_IDX_MASK(lvl) (ARM_V7S_PTES_PER_LVL(lvl) - 1)
76 #define ARM_V7S_LVL_IDX(addr, lvl) ({ \
78 ((u32)(addr) >> ARM_V7S_LVL_SHIFT(_l)) & _ARM_V7S_IDX_MASK(_l); \
82 * Large page/supersection entries are effectively a block of 16 page/section
83 * entries, along the lines of the LPAE contiguous hint, but all with the
84 * same output address. For want of a better common name we'll call them
85 * "contiguous" versions of their respective page/section entries here, but
86 * noting the distinction (WRT to TLB maintenance) that they represent *one*
87 * entry repeated 16 times, not 16 separate entries (as in the LPAE case).
89 #define ARM_V7S_CONT_PAGES 16
91 /* PTE type bits: these are all mixed up with XN/PXN bits in most cases */
92 #define ARM_V7S_PTE_TYPE_TABLE 0x1
93 #define ARM_V7S_PTE_TYPE_PAGE 0x2
94 #define ARM_V7S_PTE_TYPE_CONT_PAGE 0x1
96 #define ARM_V7S_PTE_IS_VALID(pte) (((pte) & 0x3) != 0)
97 #define ARM_V7S_PTE_IS_TABLE(pte, lvl) \
98 ((lvl) == 1 && (((pte) & 0x3) == ARM_V7S_PTE_TYPE_TABLE))
100 /* Page table bits */
101 #define ARM_V7S_ATTR_XN(lvl) BIT(4 * (2 - (lvl)))
102 #define ARM_V7S_ATTR_B BIT(2)
103 #define ARM_V7S_ATTR_C BIT(3)
104 #define ARM_V7S_ATTR_NS_TABLE BIT(3)
105 #define ARM_V7S_ATTR_NS_SECTION BIT(19)
107 #define ARM_V7S_CONT_SECTION BIT(18)
108 #define ARM_V7S_CONT_PAGE_XN_SHIFT 15
111 * The attribute bits are consistently ordered*, but occupy bits [17:10] of
112 * a level 1 PTE vs. bits [11:4] at level 2. Thus we define the individual
113 * fields relative to that 8-bit block, plus a total shift relative to the PTE.
115 #define ARM_V7S_ATTR_SHIFT(lvl) (16 - (lvl) * 6)
117 #define ARM_V7S_ATTR_MASK 0xff
118 #define ARM_V7S_ATTR_AP0 BIT(0)
119 #define ARM_V7S_ATTR_AP1 BIT(1)
120 #define ARM_V7S_ATTR_AP2 BIT(5)
121 #define ARM_V7S_ATTR_S BIT(6)
122 #define ARM_V7S_ATTR_NG BIT(7)
123 #define ARM_V7S_TEX_SHIFT 2
124 #define ARM_V7S_TEX_MASK 0x7
125 #define ARM_V7S_ATTR_TEX(val) (((val) & ARM_V7S_TEX_MASK) << ARM_V7S_TEX_SHIFT)
127 #define ARM_V7S_ATTR_MTK_4GB BIT(9) /* MTK extend it for 4GB mode */
129 /* *well, except for TEX on level 2 large pages, of course :( */
130 #define ARM_V7S_CONT_PAGE_TEX_SHIFT 6
131 #define ARM_V7S_CONT_PAGE_TEX_MASK (ARM_V7S_TEX_MASK << ARM_V7S_CONT_PAGE_TEX_SHIFT)
133 /* Simplified access permissions */
134 #define ARM_V7S_PTE_AF ARM_V7S_ATTR_AP0
135 #define ARM_V7S_PTE_AP_UNPRIV ARM_V7S_ATTR_AP1
136 #define ARM_V7S_PTE_AP_RDONLY ARM_V7S_ATTR_AP2
139 #define ARM_V7S_RGN_NC 0
140 #define ARM_V7S_RGN_WBWA 1
141 #define ARM_V7S_RGN_WT 2
142 #define ARM_V7S_RGN_WB 3
144 #define ARM_V7S_PRRR_TYPE_DEVICE 1
145 #define ARM_V7S_PRRR_TYPE_NORMAL 2
146 #define ARM_V7S_PRRR_TR(n, type) (((type) & 0x3) << ((n) * 2))
147 #define ARM_V7S_PRRR_DS0 BIT(16)
148 #define ARM_V7S_PRRR_DS1 BIT(17)
149 #define ARM_V7S_PRRR_NS0 BIT(18)
150 #define ARM_V7S_PRRR_NS1 BIT(19)
151 #define ARM_V7S_PRRR_NOS(n) BIT((n) + 24)
153 #define ARM_V7S_NMRR_IR(n, attr) (((attr) & 0x3) << ((n) * 2))
154 #define ARM_V7S_NMRR_OR(n, attr) (((attr) & 0x3) << ((n) * 2 + 16))
156 #define ARM_V7S_TTBR_S BIT(1)
157 #define ARM_V7S_TTBR_NOS BIT(5)
158 #define ARM_V7S_TTBR_ORGN_ATTR(attr) (((attr) & 0x3) << 3)
159 #define ARM_V7S_TTBR_IRGN_ATTR(attr) \
160 ((((attr) & 0x1) << 6) | (((attr) & 0x2) >> 1))
162 #define ARM_V7S_TCR_PD1 BIT(5)
164 typedef u32 arm_v7s_iopte
;
166 static bool selftest_running
;
168 struct arm_v7s_io_pgtable
{
169 struct io_pgtable iop
;
172 struct kmem_cache
*l2_tables
;
173 spinlock_t split_lock
;
176 static dma_addr_t
__arm_v7s_dma_addr(void *pages
)
178 return (dma_addr_t
)virt_to_phys(pages
);
181 static arm_v7s_iopte
*iopte_deref(arm_v7s_iopte pte
, int lvl
)
183 if (ARM_V7S_PTE_IS_TABLE(pte
, lvl
))
184 pte
&= ARM_V7S_TABLE_MASK
;
186 pte
&= ARM_V7S_LVL_MASK(lvl
);
187 return phys_to_virt(pte
);
190 static void *__arm_v7s_alloc_table(int lvl
, gfp_t gfp
,
191 struct arm_v7s_io_pgtable
*data
)
193 struct io_pgtable_cfg
*cfg
= &data
->iop
.cfg
;
194 struct device
*dev
= cfg
->iommu_dev
;
197 size_t size
= ARM_V7S_TABLE_SIZE(lvl
);
201 table
= (void *)__get_dma_pages(__GFP_ZERO
, get_order(size
));
203 table
= kmem_cache_zalloc(data
->l2_tables
, gfp
| GFP_DMA
);
204 phys
= virt_to_phys(table
);
205 if (phys
!= (arm_v7s_iopte
)phys
)
206 /* Doesn't fit in PTE */
208 if (table
&& !(cfg
->quirks
& IO_PGTABLE_QUIRK_NO_DMA
)) {
209 dma
= dma_map_single(dev
, table
, size
, DMA_TO_DEVICE
);
210 if (dma_mapping_error(dev
, dma
))
213 * We depend on the IOMMU being able to work with any physical
214 * address directly, so if the DMA layer suggests otherwise by
215 * translating or truncating them, that bodes very badly...
220 kmemleak_ignore(table
);
224 dev_err(dev
, "Cannot accommodate DMA translation for IOMMU page tables\n");
225 dma_unmap_single(dev
, dma
, size
, DMA_TO_DEVICE
);
228 free_pages((unsigned long)table
, get_order(size
));
230 kmem_cache_free(data
->l2_tables
, table
);
234 static void __arm_v7s_free_table(void *table
, int lvl
,
235 struct arm_v7s_io_pgtable
*data
)
237 struct io_pgtable_cfg
*cfg
= &data
->iop
.cfg
;
238 struct device
*dev
= cfg
->iommu_dev
;
239 size_t size
= ARM_V7S_TABLE_SIZE(lvl
);
241 if (!(cfg
->quirks
& IO_PGTABLE_QUIRK_NO_DMA
))
242 dma_unmap_single(dev
, __arm_v7s_dma_addr(table
), size
,
245 free_pages((unsigned long)table
, get_order(size
));
247 kmem_cache_free(data
->l2_tables
, table
);
250 static void __arm_v7s_pte_sync(arm_v7s_iopte
*ptep
, int num_entries
,
251 struct io_pgtable_cfg
*cfg
)
253 if (cfg
->quirks
& IO_PGTABLE_QUIRK_NO_DMA
)
256 dma_sync_single_for_device(cfg
->iommu_dev
, __arm_v7s_dma_addr(ptep
),
257 num_entries
* sizeof(*ptep
), DMA_TO_DEVICE
);
259 static void __arm_v7s_set_pte(arm_v7s_iopte
*ptep
, arm_v7s_iopte pte
,
260 int num_entries
, struct io_pgtable_cfg
*cfg
)
264 for (i
= 0; i
< num_entries
; i
++)
267 __arm_v7s_pte_sync(ptep
, num_entries
, cfg
);
270 static arm_v7s_iopte
arm_v7s_prot_to_pte(int prot
, int lvl
,
271 struct io_pgtable_cfg
*cfg
)
273 bool ap
= !(cfg
->quirks
& IO_PGTABLE_QUIRK_NO_PERMS
);
274 arm_v7s_iopte pte
= ARM_V7S_ATTR_NG
| ARM_V7S_ATTR_S
;
276 if (!(prot
& IOMMU_MMIO
))
277 pte
|= ARM_V7S_ATTR_TEX(1);
279 pte
|= ARM_V7S_PTE_AF
;
280 if (!(prot
& IOMMU_PRIV
))
281 pte
|= ARM_V7S_PTE_AP_UNPRIV
;
282 if (!(prot
& IOMMU_WRITE
))
283 pte
|= ARM_V7S_PTE_AP_RDONLY
;
285 pte
<<= ARM_V7S_ATTR_SHIFT(lvl
);
287 if ((prot
& IOMMU_NOEXEC
) && ap
)
288 pte
|= ARM_V7S_ATTR_XN(lvl
);
289 if (prot
& IOMMU_MMIO
)
290 pte
|= ARM_V7S_ATTR_B
;
291 else if (prot
& IOMMU_CACHE
)
292 pte
|= ARM_V7S_ATTR_B
| ARM_V7S_ATTR_C
;
294 pte
|= ARM_V7S_PTE_TYPE_PAGE
;
295 if (lvl
== 1 && (cfg
->quirks
& IO_PGTABLE_QUIRK_ARM_NS
))
296 pte
|= ARM_V7S_ATTR_NS_SECTION
;
298 if (cfg
->quirks
& IO_PGTABLE_QUIRK_ARM_MTK_4GB
)
299 pte
|= ARM_V7S_ATTR_MTK_4GB
;
304 static int arm_v7s_pte_to_prot(arm_v7s_iopte pte
, int lvl
)
306 int prot
= IOMMU_READ
;
307 arm_v7s_iopte attr
= pte
>> ARM_V7S_ATTR_SHIFT(lvl
);
309 if (!(attr
& ARM_V7S_PTE_AP_RDONLY
))
311 if (!(attr
& ARM_V7S_PTE_AP_UNPRIV
))
313 if ((attr
& (ARM_V7S_TEX_MASK
<< ARM_V7S_TEX_SHIFT
)) == 0)
315 else if (pte
& ARM_V7S_ATTR_C
)
317 if (pte
& ARM_V7S_ATTR_XN(lvl
))
318 prot
|= IOMMU_NOEXEC
;
323 static arm_v7s_iopte
arm_v7s_pte_to_cont(arm_v7s_iopte pte
, int lvl
)
326 pte
|= ARM_V7S_CONT_SECTION
;
327 } else if (lvl
== 2) {
328 arm_v7s_iopte xn
= pte
& ARM_V7S_ATTR_XN(lvl
);
329 arm_v7s_iopte tex
= pte
& ARM_V7S_CONT_PAGE_TEX_MASK
;
331 pte
^= xn
| tex
| ARM_V7S_PTE_TYPE_PAGE
;
332 pte
|= (xn
<< ARM_V7S_CONT_PAGE_XN_SHIFT
) |
333 (tex
<< ARM_V7S_CONT_PAGE_TEX_SHIFT
) |
334 ARM_V7S_PTE_TYPE_CONT_PAGE
;
339 static arm_v7s_iopte
arm_v7s_cont_to_pte(arm_v7s_iopte pte
, int lvl
)
342 pte
&= ~ARM_V7S_CONT_SECTION
;
343 } else if (lvl
== 2) {
344 arm_v7s_iopte xn
= pte
& BIT(ARM_V7S_CONT_PAGE_XN_SHIFT
);
345 arm_v7s_iopte tex
= pte
& (ARM_V7S_CONT_PAGE_TEX_MASK
<<
346 ARM_V7S_CONT_PAGE_TEX_SHIFT
);
348 pte
^= xn
| tex
| ARM_V7S_PTE_TYPE_CONT_PAGE
;
349 pte
|= (xn
>> ARM_V7S_CONT_PAGE_XN_SHIFT
) |
350 (tex
>> ARM_V7S_CONT_PAGE_TEX_SHIFT
) |
351 ARM_V7S_PTE_TYPE_PAGE
;
356 static bool arm_v7s_pte_is_cont(arm_v7s_iopte pte
, int lvl
)
358 if (lvl
== 1 && !ARM_V7S_PTE_IS_TABLE(pte
, lvl
))
359 return pte
& ARM_V7S_CONT_SECTION
;
361 return !(pte
& ARM_V7S_PTE_TYPE_PAGE
);
365 static size_t __arm_v7s_unmap(struct arm_v7s_io_pgtable
*, unsigned long,
366 size_t, int, arm_v7s_iopte
*);
368 static int arm_v7s_init_pte(struct arm_v7s_io_pgtable
*data
,
369 unsigned long iova
, phys_addr_t paddr
, int prot
,
370 int lvl
, int num_entries
, arm_v7s_iopte
*ptep
)
372 struct io_pgtable_cfg
*cfg
= &data
->iop
.cfg
;
376 for (i
= 0; i
< num_entries
; i
++)
377 if (ARM_V7S_PTE_IS_TABLE(ptep
[i
], lvl
)) {
379 * We need to unmap and free the old table before
380 * overwriting it with a block entry.
383 size_t sz
= ARM_V7S_BLOCK_SIZE(lvl
);
385 tblp
= ptep
- ARM_V7S_LVL_IDX(iova
, lvl
);
386 if (WARN_ON(__arm_v7s_unmap(data
, iova
+ i
* sz
,
387 sz
, lvl
, tblp
) != sz
))
389 } else if (ptep
[i
]) {
390 /* We require an unmap first */
391 WARN_ON(!selftest_running
);
395 pte
= arm_v7s_prot_to_pte(prot
, lvl
, cfg
);
397 pte
= arm_v7s_pte_to_cont(pte
, lvl
);
399 pte
|= paddr
& ARM_V7S_LVL_MASK(lvl
);
401 __arm_v7s_set_pte(ptep
, pte
, num_entries
, cfg
);
405 static arm_v7s_iopte
arm_v7s_install_table(arm_v7s_iopte
*table
,
408 struct io_pgtable_cfg
*cfg
)
410 arm_v7s_iopte old
, new;
412 new = virt_to_phys(table
) | ARM_V7S_PTE_TYPE_TABLE
;
413 if (cfg
->quirks
& IO_PGTABLE_QUIRK_ARM_NS
)
414 new |= ARM_V7S_ATTR_NS_TABLE
;
417 * Ensure the table itself is visible before its PTE can be.
418 * Whilst we could get away with cmpxchg64_release below, this
419 * doesn't have any ordering semantics when !CONFIG_SMP.
423 old
= cmpxchg_relaxed(ptep
, curr
, new);
424 __arm_v7s_pte_sync(ptep
, 1, cfg
);
429 static int __arm_v7s_map(struct arm_v7s_io_pgtable
*data
, unsigned long iova
,
430 phys_addr_t paddr
, size_t size
, int prot
,
431 int lvl
, arm_v7s_iopte
*ptep
)
433 struct io_pgtable_cfg
*cfg
= &data
->iop
.cfg
;
434 arm_v7s_iopte pte
, *cptep
;
435 int num_entries
= size
>> ARM_V7S_LVL_SHIFT(lvl
);
437 /* Find our entry at the current level */
438 ptep
+= ARM_V7S_LVL_IDX(iova
, lvl
);
440 /* If we can install a leaf entry at this level, then do so */
442 return arm_v7s_init_pte(data
, iova
, paddr
, prot
,
443 lvl
, num_entries
, ptep
);
445 /* We can't allocate tables at the final level */
446 if (WARN_ON(lvl
== 2))
449 /* Grab a pointer to the next level */
450 pte
= READ_ONCE(*ptep
);
452 cptep
= __arm_v7s_alloc_table(lvl
+ 1, GFP_ATOMIC
, data
);
456 pte
= arm_v7s_install_table(cptep
, ptep
, 0, cfg
);
458 __arm_v7s_free_table(cptep
, lvl
+ 1, data
);
460 /* We've no easy way of knowing if it's synced yet, so... */
461 __arm_v7s_pte_sync(ptep
, 1, cfg
);
464 if (ARM_V7S_PTE_IS_TABLE(pte
, lvl
)) {
465 cptep
= iopte_deref(pte
, lvl
);
467 /* We require an unmap first */
468 WARN_ON(!selftest_running
);
473 return __arm_v7s_map(data
, iova
, paddr
, size
, prot
, lvl
+ 1, cptep
);
476 static int arm_v7s_map(struct io_pgtable_ops
*ops
, unsigned long iova
,
477 phys_addr_t paddr
, size_t size
, int prot
)
479 struct arm_v7s_io_pgtable
*data
= io_pgtable_ops_to_data(ops
);
480 struct io_pgtable
*iop
= &data
->iop
;
483 /* If no access, then nothing to do */
484 if (!(prot
& (IOMMU_READ
| IOMMU_WRITE
)))
487 if (WARN_ON(upper_32_bits(iova
) || upper_32_bits(paddr
)))
490 ret
= __arm_v7s_map(data
, iova
, paddr
, size
, prot
, 1, data
->pgd
);
492 * Synchronise all PTE updates for the new mapping before there's
493 * a chance for anything to kick off a table walk for the new iova.
495 if (iop
->cfg
.quirks
& IO_PGTABLE_QUIRK_TLBI_ON_MAP
) {
496 io_pgtable_tlb_add_flush(iop
, iova
, size
,
497 ARM_V7S_BLOCK_SIZE(2), false);
498 io_pgtable_tlb_sync(iop
);
506 static void arm_v7s_free_pgtable(struct io_pgtable
*iop
)
508 struct arm_v7s_io_pgtable
*data
= io_pgtable_to_data(iop
);
511 for (i
= 0; i
< ARM_V7S_PTES_PER_LVL(1); i
++) {
512 arm_v7s_iopte pte
= data
->pgd
[i
];
514 if (ARM_V7S_PTE_IS_TABLE(pte
, 1))
515 __arm_v7s_free_table(iopte_deref(pte
, 1), 2, data
);
517 __arm_v7s_free_table(data
->pgd
, 1, data
);
518 kmem_cache_destroy(data
->l2_tables
);
522 static arm_v7s_iopte
arm_v7s_split_cont(struct arm_v7s_io_pgtable
*data
,
523 unsigned long iova
, int idx
, int lvl
,
526 struct io_pgtable
*iop
= &data
->iop
;
528 size_t size
= ARM_V7S_BLOCK_SIZE(lvl
);
531 /* Check that we didn't lose a race to get the lock */
533 if (!arm_v7s_pte_is_cont(pte
, lvl
))
536 ptep
-= idx
& (ARM_V7S_CONT_PAGES
- 1);
537 pte
= arm_v7s_cont_to_pte(pte
, lvl
);
538 for (i
= 0; i
< ARM_V7S_CONT_PAGES
; i
++)
539 ptep
[i
] = pte
+ i
* size
;
541 __arm_v7s_pte_sync(ptep
, ARM_V7S_CONT_PAGES
, &iop
->cfg
);
543 size
*= ARM_V7S_CONT_PAGES
;
544 io_pgtable_tlb_add_flush(iop
, iova
, size
, size
, true);
545 io_pgtable_tlb_sync(iop
);
549 static size_t arm_v7s_split_blk_unmap(struct arm_v7s_io_pgtable
*data
,
550 unsigned long iova
, size_t size
,
551 arm_v7s_iopte blk_pte
,
554 struct io_pgtable_cfg
*cfg
= &data
->iop
.cfg
;
555 arm_v7s_iopte pte
, *tablep
;
556 int i
, unmap_idx
, num_entries
, num_ptes
;
558 tablep
= __arm_v7s_alloc_table(2, GFP_ATOMIC
, data
);
560 return 0; /* Bytes unmapped */
562 num_ptes
= ARM_V7S_PTES_PER_LVL(2);
563 num_entries
= size
>> ARM_V7S_LVL_SHIFT(2);
564 unmap_idx
= ARM_V7S_LVL_IDX(iova
, 2);
566 pte
= arm_v7s_prot_to_pte(arm_v7s_pte_to_prot(blk_pte
, 1), 2, cfg
);
568 pte
= arm_v7s_pte_to_cont(pte
, 2);
570 for (i
= 0; i
< num_ptes
; i
+= num_entries
, pte
+= size
) {
575 __arm_v7s_set_pte(&tablep
[i
], pte
, num_entries
, cfg
);
578 pte
= arm_v7s_install_table(tablep
, ptep
, blk_pte
, cfg
);
579 if (pte
!= blk_pte
) {
580 __arm_v7s_free_table(tablep
, 2, data
);
582 if (!ARM_V7S_PTE_IS_TABLE(pte
, 1))
585 tablep
= iopte_deref(pte
, 1);
586 return __arm_v7s_unmap(data
, iova
, size
, 2, tablep
);
589 io_pgtable_tlb_add_flush(&data
->iop
, iova
, size
, size
, true);
593 static size_t __arm_v7s_unmap(struct arm_v7s_io_pgtable
*data
,
594 unsigned long iova
, size_t size
, int lvl
,
597 arm_v7s_iopte pte
[ARM_V7S_CONT_PAGES
];
598 struct io_pgtable
*iop
= &data
->iop
;
599 int idx
, i
= 0, num_entries
= size
>> ARM_V7S_LVL_SHIFT(lvl
);
601 /* Something went horribly wrong and we ran out of page table */
602 if (WARN_ON(lvl
> 2))
605 idx
= ARM_V7S_LVL_IDX(iova
, lvl
);
608 pte
[i
] = READ_ONCE(ptep
[i
]);
609 if (WARN_ON(!ARM_V7S_PTE_IS_VALID(pte
[i
])))
611 } while (++i
< num_entries
);
614 * If we've hit a contiguous 'large page' entry at this level, it
615 * needs splitting first, unless we're unmapping the whole lot.
617 * For splitting, we can't rewrite 16 PTEs atomically, and since we
618 * can't necessarily assume TEX remap we don't have a software bit to
619 * mark live entries being split. In practice (i.e. DMA API code), we
620 * will never be splitting large pages anyway, so just wrap this edge
621 * case in a lock for the sake of correctness and be done with it.
623 if (num_entries
<= 1 && arm_v7s_pte_is_cont(pte
[0], lvl
)) {
626 spin_lock_irqsave(&data
->split_lock
, flags
);
627 pte
[0] = arm_v7s_split_cont(data
, iova
, idx
, lvl
, ptep
);
628 spin_unlock_irqrestore(&data
->split_lock
, flags
);
631 /* If the size matches this level, we're in the right place */
633 size_t blk_size
= ARM_V7S_BLOCK_SIZE(lvl
);
635 __arm_v7s_set_pte(ptep
, 0, num_entries
, &iop
->cfg
);
637 for (i
= 0; i
< num_entries
; i
++) {
638 if (ARM_V7S_PTE_IS_TABLE(pte
[i
], lvl
)) {
639 /* Also flush any partial walks */
640 io_pgtable_tlb_add_flush(iop
, iova
, blk_size
,
641 ARM_V7S_BLOCK_SIZE(lvl
+ 1), false);
642 io_pgtable_tlb_sync(iop
);
643 ptep
= iopte_deref(pte
[i
], lvl
);
644 __arm_v7s_free_table(ptep
, lvl
+ 1, data
);
646 io_pgtable_tlb_add_flush(iop
, iova
, blk_size
,
652 } else if (lvl
== 1 && !ARM_V7S_PTE_IS_TABLE(pte
[0], lvl
)) {
654 * Insert a table at the next level to map the old region,
655 * minus the part we want to unmap
657 return arm_v7s_split_blk_unmap(data
, iova
, size
, pte
[0], ptep
);
660 /* Keep on walkin' */
661 ptep
= iopte_deref(pte
[0], lvl
);
662 return __arm_v7s_unmap(data
, iova
, size
, lvl
+ 1, ptep
);
665 static size_t arm_v7s_unmap(struct io_pgtable_ops
*ops
, unsigned long iova
,
668 struct arm_v7s_io_pgtable
*data
= io_pgtable_ops_to_data(ops
);
670 if (WARN_ON(upper_32_bits(iova
)))
673 return __arm_v7s_unmap(data
, iova
, size
, 1, data
->pgd
);
676 static phys_addr_t
arm_v7s_iova_to_phys(struct io_pgtable_ops
*ops
,
679 struct arm_v7s_io_pgtable
*data
= io_pgtable_ops_to_data(ops
);
680 arm_v7s_iopte
*ptep
= data
->pgd
, pte
;
685 ptep
+= ARM_V7S_LVL_IDX(iova
, ++lvl
);
686 pte
= READ_ONCE(*ptep
);
687 ptep
= iopte_deref(pte
, lvl
);
688 } while (ARM_V7S_PTE_IS_TABLE(pte
, lvl
));
690 if (!ARM_V7S_PTE_IS_VALID(pte
))
693 mask
= ARM_V7S_LVL_MASK(lvl
);
694 if (arm_v7s_pte_is_cont(pte
, lvl
))
695 mask
*= ARM_V7S_CONT_PAGES
;
696 return (pte
& mask
) | (iova
& ~mask
);
699 static struct io_pgtable
*arm_v7s_alloc_pgtable(struct io_pgtable_cfg
*cfg
,
702 struct arm_v7s_io_pgtable
*data
;
705 if (upper_32_bits(PHYS_OFFSET
))
708 if (cfg
->ias
> ARM_V7S_ADDR_BITS
|| cfg
->oas
> ARM_V7S_ADDR_BITS
)
711 if (cfg
->quirks
& ~(IO_PGTABLE_QUIRK_ARM_NS
|
712 IO_PGTABLE_QUIRK_NO_PERMS
|
713 IO_PGTABLE_QUIRK_TLBI_ON_MAP
|
714 IO_PGTABLE_QUIRK_ARM_MTK_4GB
|
715 IO_PGTABLE_QUIRK_NO_DMA
))
718 /* If ARM_MTK_4GB is enabled, the NO_PERMS is also expected. */
719 if (cfg
->quirks
& IO_PGTABLE_QUIRK_ARM_MTK_4GB
&&
720 !(cfg
->quirks
& IO_PGTABLE_QUIRK_NO_PERMS
))
723 data
= kmalloc(sizeof(*data
), GFP_KERNEL
);
727 spin_lock_init(&data
->split_lock
);
728 data
->l2_tables
= kmem_cache_create("io-pgtable_armv7s_l2",
729 ARM_V7S_TABLE_SIZE(2),
730 ARM_V7S_TABLE_SIZE(2),
731 SLAB_CACHE_DMA
, NULL
);
732 if (!data
->l2_tables
)
735 data
->iop
.ops
= (struct io_pgtable_ops
) {
737 .unmap
= arm_v7s_unmap
,
738 .iova_to_phys
= arm_v7s_iova_to_phys
,
741 /* We have to do this early for __arm_v7s_alloc_table to work... */
742 data
->iop
.cfg
= *cfg
;
745 * Unless the IOMMU driver indicates supersection support by
746 * having SZ_16M set in the initial bitmap, they won't be used.
748 cfg
->pgsize_bitmap
&= SZ_4K
| SZ_64K
| SZ_1M
| SZ_16M
;
750 /* TCR: T0SZ=0, disable TTBR1 */
751 cfg
->arm_v7s_cfg
.tcr
= ARM_V7S_TCR_PD1
;
754 * TEX remap: the indices used map to the closest equivalent types
755 * under the non-TEX-remap interpretation of those attribute bits,
756 * excepting various implementation-defined aspects of shareability.
758 cfg
->arm_v7s_cfg
.prrr
= ARM_V7S_PRRR_TR(1, ARM_V7S_PRRR_TYPE_DEVICE
) |
759 ARM_V7S_PRRR_TR(4, ARM_V7S_PRRR_TYPE_NORMAL
) |
760 ARM_V7S_PRRR_TR(7, ARM_V7S_PRRR_TYPE_NORMAL
) |
761 ARM_V7S_PRRR_DS0
| ARM_V7S_PRRR_DS1
|
762 ARM_V7S_PRRR_NS1
| ARM_V7S_PRRR_NOS(7);
763 cfg
->arm_v7s_cfg
.nmrr
= ARM_V7S_NMRR_IR(7, ARM_V7S_RGN_WBWA
) |
764 ARM_V7S_NMRR_OR(7, ARM_V7S_RGN_WBWA
);
766 /* Looking good; allocate a pgd */
767 data
->pgd
= __arm_v7s_alloc_table(1, GFP_KERNEL
, data
);
771 /* Ensure the empty pgd is visible before any actual TTBR write */
775 cfg
->arm_v7s_cfg
.ttbr
[0] = virt_to_phys(data
->pgd
) |
776 ARM_V7S_TTBR_S
| ARM_V7S_TTBR_NOS
|
777 ARM_V7S_TTBR_IRGN_ATTR(ARM_V7S_RGN_WBWA
) |
778 ARM_V7S_TTBR_ORGN_ATTR(ARM_V7S_RGN_WBWA
);
779 cfg
->arm_v7s_cfg
.ttbr
[1] = 0;
783 kmem_cache_destroy(data
->l2_tables
);
788 struct io_pgtable_init_fns io_pgtable_arm_v7s_init_fns
= {
789 .alloc
= arm_v7s_alloc_pgtable
,
790 .free
= arm_v7s_free_pgtable
,
793 #ifdef CONFIG_IOMMU_IO_PGTABLE_ARMV7S_SELFTEST
795 static struct io_pgtable_cfg
*cfg_cookie
;
797 static void dummy_tlb_flush_all(void *cookie
)
799 WARN_ON(cookie
!= cfg_cookie
);
802 static void dummy_tlb_add_flush(unsigned long iova
, size_t size
,
803 size_t granule
, bool leaf
, void *cookie
)
805 WARN_ON(cookie
!= cfg_cookie
);
806 WARN_ON(!(size
& cfg_cookie
->pgsize_bitmap
));
809 static void dummy_tlb_sync(void *cookie
)
811 WARN_ON(cookie
!= cfg_cookie
);
814 static const struct iommu_gather_ops dummy_tlb_ops
= {
815 .tlb_flush_all
= dummy_tlb_flush_all
,
816 .tlb_add_flush
= dummy_tlb_add_flush
,
817 .tlb_sync
= dummy_tlb_sync
,
820 #define __FAIL(ops) ({ \
821 WARN(1, "selftest: test failed\n"); \
822 selftest_running = false; \
826 static int __init
arm_v7s_do_selftests(void)
828 struct io_pgtable_ops
*ops
;
829 struct io_pgtable_cfg cfg
= {
830 .tlb
= &dummy_tlb_ops
,
833 .quirks
= IO_PGTABLE_QUIRK_ARM_NS
| IO_PGTABLE_QUIRK_NO_DMA
,
834 .pgsize_bitmap
= SZ_4K
| SZ_64K
| SZ_1M
| SZ_16M
,
836 unsigned int iova
, size
, iova_start
;
837 unsigned int i
, loopnr
= 0;
839 selftest_running
= true;
843 ops
= alloc_io_pgtable_ops(ARM_V7S
, &cfg
, &cfg
);
845 pr_err("selftest: failed to allocate io pgtable ops\n");
850 * Initial sanity checks.
851 * Empty page tables shouldn't provide any translations.
853 if (ops
->iova_to_phys(ops
, 42))
856 if (ops
->iova_to_phys(ops
, SZ_1G
+ 42))
859 if (ops
->iova_to_phys(ops
, SZ_2G
+ 42))
863 * Distinct mappings of different granule sizes.
866 for_each_set_bit(i
, &cfg
.pgsize_bitmap
, BITS_PER_LONG
) {
868 if (ops
->map(ops
, iova
, iova
, size
, IOMMU_READ
|
874 /* Overlapping mappings */
875 if (!ops
->map(ops
, iova
, iova
+ size
, size
,
876 IOMMU_READ
| IOMMU_NOEXEC
))
879 if (ops
->iova_to_phys(ops
, iova
+ 42) != (iova
+ 42))
888 size
= 1UL << __ffs(cfg
.pgsize_bitmap
);
890 iova_start
= i
* SZ_16M
;
891 if (ops
->unmap(ops
, iova_start
+ size
, size
) != size
)
894 /* Remap of partial unmap */
895 if (ops
->map(ops
, iova_start
+ size
, size
, size
, IOMMU_READ
))
898 if (ops
->iova_to_phys(ops
, iova_start
+ size
+ 42)
906 for_each_set_bit(i
, &cfg
.pgsize_bitmap
, BITS_PER_LONG
) {
909 if (ops
->unmap(ops
, iova
, size
) != size
)
912 if (ops
->iova_to_phys(ops
, iova
+ 42))
915 /* Remap full block */
916 if (ops
->map(ops
, iova
, iova
, size
, IOMMU_WRITE
))
919 if (ops
->iova_to_phys(ops
, iova
+ 42) != (iova
+ 42))
925 free_io_pgtable_ops(ops
);
927 selftest_running
= false;
929 pr_info("self test ok\n");
932 subsys_initcall(arm_v7s_do_selftests
);