2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
25 #define DM_MSG_PREFIX "thin"
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
35 static unsigned no_space_timeout_secs
= NO_SPACE_TIMEOUT_SECS
;
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle
,
38 "A percentage of time allocated for copy on write");
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
48 * Device id is restricted to 24 bits.
50 #define MAX_DEV_ID ((1 << 24) - 1)
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
66 * Let's say we write to a shared block in what was the origin. The
69 * i) plug io further to this physical block. (see bio_prison code).
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
88 * Steps (ii) and (iii) occur in parallel.
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
98 * - The snap mapping still points to the old block. As it would after
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
110 /*----------------------------------------------------------------*/
120 static void build_key(struct dm_thin_device
*td
, enum lock_space ls
,
121 dm_block_t b
, dm_block_t e
, struct dm_cell_key
*key
)
123 key
->virtual = (ls
== VIRTUAL
);
124 key
->dev
= dm_thin_dev_id(td
);
125 key
->block_begin
= b
;
129 static void build_data_key(struct dm_thin_device
*td
, dm_block_t b
,
130 struct dm_cell_key
*key
)
132 build_key(td
, PHYSICAL
, b
, b
+ 1llu, key
);
135 static void build_virtual_key(struct dm_thin_device
*td
, dm_block_t b
,
136 struct dm_cell_key
*key
)
138 build_key(td
, VIRTUAL
, b
, b
+ 1llu, key
);
141 /*----------------------------------------------------------------*/
143 #define THROTTLE_THRESHOLD (1 * HZ)
146 struct rw_semaphore lock
;
147 unsigned long threshold
;
148 bool throttle_applied
;
151 static void throttle_init(struct throttle
*t
)
153 init_rwsem(&t
->lock
);
154 t
->throttle_applied
= false;
157 static void throttle_work_start(struct throttle
*t
)
159 t
->threshold
= jiffies
+ THROTTLE_THRESHOLD
;
162 static void throttle_work_update(struct throttle
*t
)
164 if (!t
->throttle_applied
&& jiffies
> t
->threshold
) {
165 down_write(&t
->lock
);
166 t
->throttle_applied
= true;
170 static void throttle_work_complete(struct throttle
*t
)
172 if (t
->throttle_applied
) {
173 t
->throttle_applied
= false;
178 static void throttle_lock(struct throttle
*t
)
183 static void throttle_unlock(struct throttle
*t
)
188 /*----------------------------------------------------------------*/
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
195 struct dm_thin_new_mapping
;
198 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
201 PM_WRITE
, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE
, /* metadata may be changed, though data may not be allocated */
205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
207 PM_OUT_OF_METADATA_SPACE
,
208 PM_READ_ONLY
, /* metadata may not be changed */
210 PM_FAIL
, /* all I/O fails */
213 struct pool_features
{
216 bool zero_new_blocks
:1;
217 bool discard_enabled
:1;
218 bool discard_passdown
:1;
219 bool error_if_no_space
:1;
223 typedef void (*process_bio_fn
)(struct thin_c
*tc
, struct bio
*bio
);
224 typedef void (*process_cell_fn
)(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
);
225 typedef void (*process_mapping_fn
)(struct dm_thin_new_mapping
*m
);
227 #define CELL_SORT_ARRAY_SIZE 8192
230 struct list_head list
;
231 struct dm_target
*ti
; /* Only set if a pool target is bound */
233 struct mapped_device
*pool_md
;
234 struct block_device
*md_dev
;
235 struct dm_pool_metadata
*pmd
;
237 dm_block_t low_water_blocks
;
238 uint32_t sectors_per_block
;
239 int sectors_per_block_shift
;
241 struct pool_features pf
;
242 bool low_water_triggered
:1; /* A dm event has been sent */
244 bool out_of_data_space
:1;
246 struct dm_bio_prison
*prison
;
247 struct dm_kcopyd_client
*copier
;
249 struct work_struct worker
;
250 struct workqueue_struct
*wq
;
251 struct throttle throttle
;
252 struct delayed_work waker
;
253 struct delayed_work no_space_timeout
;
255 unsigned long last_commit_jiffies
;
259 struct bio_list deferred_flush_bios
;
260 struct list_head prepared_mappings
;
261 struct list_head prepared_discards
;
262 struct list_head prepared_discards_pt2
;
263 struct list_head active_thins
;
265 struct dm_deferred_set
*shared_read_ds
;
266 struct dm_deferred_set
*all_io_ds
;
268 struct dm_thin_new_mapping
*next_mapping
;
270 process_bio_fn process_bio
;
271 process_bio_fn process_discard
;
273 process_cell_fn process_cell
;
274 process_cell_fn process_discard_cell
;
276 process_mapping_fn process_prepared_mapping
;
277 process_mapping_fn process_prepared_discard
;
278 process_mapping_fn process_prepared_discard_pt2
;
280 struct dm_bio_prison_cell
**cell_sort_array
;
282 mempool_t mapping_pool
;
285 static enum pool_mode
get_pool_mode(struct pool
*pool
);
286 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
);
289 * Target context for a pool.
292 struct dm_target
*ti
;
294 struct dm_dev
*data_dev
;
295 struct dm_dev
*metadata_dev
;
296 struct dm_target_callbacks callbacks
;
298 dm_block_t low_water_blocks
;
299 struct pool_features requested_pf
; /* Features requested during table load */
300 struct pool_features adjusted_pf
; /* Features used after adjusting for constituent devices */
304 * Target context for a thin.
307 struct list_head list
;
308 struct dm_dev
*pool_dev
;
309 struct dm_dev
*origin_dev
;
310 sector_t origin_size
;
314 struct dm_thin_device
*td
;
315 struct mapped_device
*thin_md
;
319 struct list_head deferred_cells
;
320 struct bio_list deferred_bio_list
;
321 struct bio_list retry_on_resume_list
;
322 struct rb_root sort_bio_list
; /* sorted list of deferred bios */
325 * Ensures the thin is not destroyed until the worker has finished
326 * iterating the active_thins list.
329 struct completion can_destroy
;
332 /*----------------------------------------------------------------*/
334 static bool block_size_is_power_of_two(struct pool
*pool
)
336 return pool
->sectors_per_block_shift
>= 0;
339 static sector_t
block_to_sectors(struct pool
*pool
, dm_block_t b
)
341 return block_size_is_power_of_two(pool
) ?
342 (b
<< pool
->sectors_per_block_shift
) :
343 (b
* pool
->sectors_per_block
);
346 /*----------------------------------------------------------------*/
350 struct blk_plug plug
;
351 struct bio
*parent_bio
;
355 static void begin_discard(struct discard_op
*op
, struct thin_c
*tc
, struct bio
*parent
)
360 blk_start_plug(&op
->plug
);
361 op
->parent_bio
= parent
;
365 static int issue_discard(struct discard_op
*op
, dm_block_t data_b
, dm_block_t data_e
)
367 struct thin_c
*tc
= op
->tc
;
368 sector_t s
= block_to_sectors(tc
->pool
, data_b
);
369 sector_t len
= block_to_sectors(tc
->pool
, data_e
- data_b
);
371 return __blkdev_issue_discard(tc
->pool_dev
->bdev
, s
, len
,
372 GFP_NOWAIT
, 0, &op
->bio
);
375 static void end_discard(struct discard_op
*op
, int r
)
379 * Even if one of the calls to issue_discard failed, we
380 * need to wait for the chain to complete.
382 bio_chain(op
->bio
, op
->parent_bio
);
383 bio_set_op_attrs(op
->bio
, REQ_OP_DISCARD
, 0);
387 blk_finish_plug(&op
->plug
);
390 * Even if r is set, there could be sub discards in flight that we
393 if (r
&& !op
->parent_bio
->bi_status
)
394 op
->parent_bio
->bi_status
= errno_to_blk_status(r
);
395 bio_endio(op
->parent_bio
);
398 /*----------------------------------------------------------------*/
401 * wake_worker() is used when new work is queued and when pool_resume is
402 * ready to continue deferred IO processing.
404 static void wake_worker(struct pool
*pool
)
406 queue_work(pool
->wq
, &pool
->worker
);
409 /*----------------------------------------------------------------*/
411 static int bio_detain(struct pool
*pool
, struct dm_cell_key
*key
, struct bio
*bio
,
412 struct dm_bio_prison_cell
**cell_result
)
415 struct dm_bio_prison_cell
*cell_prealloc
;
418 * Allocate a cell from the prison's mempool.
419 * This might block but it can't fail.
421 cell_prealloc
= dm_bio_prison_alloc_cell(pool
->prison
, GFP_NOIO
);
423 r
= dm_bio_detain(pool
->prison
, key
, bio
, cell_prealloc
, cell_result
);
426 * We reused an old cell; we can get rid of
429 dm_bio_prison_free_cell(pool
->prison
, cell_prealloc
);
434 static void cell_release(struct pool
*pool
,
435 struct dm_bio_prison_cell
*cell
,
436 struct bio_list
*bios
)
438 dm_cell_release(pool
->prison
, cell
, bios
);
439 dm_bio_prison_free_cell(pool
->prison
, cell
);
442 static void cell_visit_release(struct pool
*pool
,
443 void (*fn
)(void *, struct dm_bio_prison_cell
*),
445 struct dm_bio_prison_cell
*cell
)
447 dm_cell_visit_release(pool
->prison
, fn
, context
, cell
);
448 dm_bio_prison_free_cell(pool
->prison
, cell
);
451 static void cell_release_no_holder(struct pool
*pool
,
452 struct dm_bio_prison_cell
*cell
,
453 struct bio_list
*bios
)
455 dm_cell_release_no_holder(pool
->prison
, cell
, bios
);
456 dm_bio_prison_free_cell(pool
->prison
, cell
);
459 static void cell_error_with_code(struct pool
*pool
,
460 struct dm_bio_prison_cell
*cell
, blk_status_t error_code
)
462 dm_cell_error(pool
->prison
, cell
, error_code
);
463 dm_bio_prison_free_cell(pool
->prison
, cell
);
466 static blk_status_t
get_pool_io_error_code(struct pool
*pool
)
468 return pool
->out_of_data_space
? BLK_STS_NOSPC
: BLK_STS_IOERR
;
471 static void cell_error(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
473 cell_error_with_code(pool
, cell
, get_pool_io_error_code(pool
));
476 static void cell_success(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
478 cell_error_with_code(pool
, cell
, 0);
481 static void cell_requeue(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
483 cell_error_with_code(pool
, cell
, BLK_STS_DM_REQUEUE
);
486 /*----------------------------------------------------------------*/
489 * A global list of pools that uses a struct mapped_device as a key.
491 static struct dm_thin_pool_table
{
493 struct list_head pools
;
494 } dm_thin_pool_table
;
496 static void pool_table_init(void)
498 mutex_init(&dm_thin_pool_table
.mutex
);
499 INIT_LIST_HEAD(&dm_thin_pool_table
.pools
);
502 static void pool_table_exit(void)
504 mutex_destroy(&dm_thin_pool_table
.mutex
);
507 static void __pool_table_insert(struct pool
*pool
)
509 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
510 list_add(&pool
->list
, &dm_thin_pool_table
.pools
);
513 static void __pool_table_remove(struct pool
*pool
)
515 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
516 list_del(&pool
->list
);
519 static struct pool
*__pool_table_lookup(struct mapped_device
*md
)
521 struct pool
*pool
= NULL
, *tmp
;
523 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
525 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
526 if (tmp
->pool_md
== md
) {
535 static struct pool
*__pool_table_lookup_metadata_dev(struct block_device
*md_dev
)
537 struct pool
*pool
= NULL
, *tmp
;
539 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
541 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
542 if (tmp
->md_dev
== md_dev
) {
551 /*----------------------------------------------------------------*/
553 struct dm_thin_endio_hook
{
555 struct dm_deferred_entry
*shared_read_entry
;
556 struct dm_deferred_entry
*all_io_entry
;
557 struct dm_thin_new_mapping
*overwrite_mapping
;
558 struct rb_node rb_node
;
559 struct dm_bio_prison_cell
*cell
;
562 static void __merge_bio_list(struct bio_list
*bios
, struct bio_list
*master
)
564 bio_list_merge(bios
, master
);
565 bio_list_init(master
);
568 static void error_bio_list(struct bio_list
*bios
, blk_status_t error
)
572 while ((bio
= bio_list_pop(bios
))) {
573 bio
->bi_status
= error
;
578 static void error_thin_bio_list(struct thin_c
*tc
, struct bio_list
*master
,
581 struct bio_list bios
;
584 bio_list_init(&bios
);
586 spin_lock_irqsave(&tc
->lock
, flags
);
587 __merge_bio_list(&bios
, master
);
588 spin_unlock_irqrestore(&tc
->lock
, flags
);
590 error_bio_list(&bios
, error
);
593 static void requeue_deferred_cells(struct thin_c
*tc
)
595 struct pool
*pool
= tc
->pool
;
597 struct list_head cells
;
598 struct dm_bio_prison_cell
*cell
, *tmp
;
600 INIT_LIST_HEAD(&cells
);
602 spin_lock_irqsave(&tc
->lock
, flags
);
603 list_splice_init(&tc
->deferred_cells
, &cells
);
604 spin_unlock_irqrestore(&tc
->lock
, flags
);
606 list_for_each_entry_safe(cell
, tmp
, &cells
, user_list
)
607 cell_requeue(pool
, cell
);
610 static void requeue_io(struct thin_c
*tc
)
612 struct bio_list bios
;
615 bio_list_init(&bios
);
617 spin_lock_irqsave(&tc
->lock
, flags
);
618 __merge_bio_list(&bios
, &tc
->deferred_bio_list
);
619 __merge_bio_list(&bios
, &tc
->retry_on_resume_list
);
620 spin_unlock_irqrestore(&tc
->lock
, flags
);
622 error_bio_list(&bios
, BLK_STS_DM_REQUEUE
);
623 requeue_deferred_cells(tc
);
626 static void error_retry_list_with_code(struct pool
*pool
, blk_status_t error
)
631 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
)
632 error_thin_bio_list(tc
, &tc
->retry_on_resume_list
, error
);
636 static void error_retry_list(struct pool
*pool
)
638 error_retry_list_with_code(pool
, get_pool_io_error_code(pool
));
642 * This section of code contains the logic for processing a thin device's IO.
643 * Much of the code depends on pool object resources (lists, workqueues, etc)
644 * but most is exclusively called from the thin target rather than the thin-pool
648 static dm_block_t
get_bio_block(struct thin_c
*tc
, struct bio
*bio
)
650 struct pool
*pool
= tc
->pool
;
651 sector_t block_nr
= bio
->bi_iter
.bi_sector
;
653 if (block_size_is_power_of_two(pool
))
654 block_nr
>>= pool
->sectors_per_block_shift
;
656 (void) sector_div(block_nr
, pool
->sectors_per_block
);
662 * Returns the _complete_ blocks that this bio covers.
664 static void get_bio_block_range(struct thin_c
*tc
, struct bio
*bio
,
665 dm_block_t
*begin
, dm_block_t
*end
)
667 struct pool
*pool
= tc
->pool
;
668 sector_t b
= bio
->bi_iter
.bi_sector
;
669 sector_t e
= b
+ (bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
);
671 b
+= pool
->sectors_per_block
- 1ull; /* so we round up */
673 if (block_size_is_power_of_two(pool
)) {
674 b
>>= pool
->sectors_per_block_shift
;
675 e
>>= pool
->sectors_per_block_shift
;
677 (void) sector_div(b
, pool
->sectors_per_block
);
678 (void) sector_div(e
, pool
->sectors_per_block
);
682 /* Can happen if the bio is within a single block. */
689 static void remap(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
)
691 struct pool
*pool
= tc
->pool
;
692 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
694 bio_set_dev(bio
, tc
->pool_dev
->bdev
);
695 if (block_size_is_power_of_two(pool
))
696 bio
->bi_iter
.bi_sector
=
697 (block
<< pool
->sectors_per_block_shift
) |
698 (bi_sector
& (pool
->sectors_per_block
- 1));
700 bio
->bi_iter
.bi_sector
= (block
* pool
->sectors_per_block
) +
701 sector_div(bi_sector
, pool
->sectors_per_block
);
704 static void remap_to_origin(struct thin_c
*tc
, struct bio
*bio
)
706 bio_set_dev(bio
, tc
->origin_dev
->bdev
);
709 static int bio_triggers_commit(struct thin_c
*tc
, struct bio
*bio
)
711 return op_is_flush(bio
->bi_opf
) &&
712 dm_thin_changed_this_transaction(tc
->td
);
715 static void inc_all_io_entry(struct pool
*pool
, struct bio
*bio
)
717 struct dm_thin_endio_hook
*h
;
719 if (bio_op(bio
) == REQ_OP_DISCARD
)
722 h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
723 h
->all_io_entry
= dm_deferred_entry_inc(pool
->all_io_ds
);
726 static void issue(struct thin_c
*tc
, struct bio
*bio
)
728 struct pool
*pool
= tc
->pool
;
731 if (!bio_triggers_commit(tc
, bio
)) {
732 generic_make_request(bio
);
737 * Complete bio with an error if earlier I/O caused changes to
738 * the metadata that can't be committed e.g, due to I/O errors
739 * on the metadata device.
741 if (dm_thin_aborted_changes(tc
->td
)) {
747 * Batch together any bios that trigger commits and then issue a
748 * single commit for them in process_deferred_bios().
750 spin_lock_irqsave(&pool
->lock
, flags
);
751 bio_list_add(&pool
->deferred_flush_bios
, bio
);
752 spin_unlock_irqrestore(&pool
->lock
, flags
);
755 static void remap_to_origin_and_issue(struct thin_c
*tc
, struct bio
*bio
)
757 remap_to_origin(tc
, bio
);
761 static void remap_and_issue(struct thin_c
*tc
, struct bio
*bio
,
764 remap(tc
, bio
, block
);
768 /*----------------------------------------------------------------*/
771 * Bio endio functions.
773 struct dm_thin_new_mapping
{
774 struct list_head list
;
780 * Track quiescing, copying and zeroing preparation actions. When this
781 * counter hits zero the block is prepared and can be inserted into the
784 atomic_t prepare_actions
;
788 dm_block_t virt_begin
, virt_end
;
789 dm_block_t data_block
;
790 struct dm_bio_prison_cell
*cell
;
793 * If the bio covers the whole area of a block then we can avoid
794 * zeroing or copying. Instead this bio is hooked. The bio will
795 * still be in the cell, so care has to be taken to avoid issuing
799 bio_end_io_t
*saved_bi_end_io
;
802 static void __complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
804 struct pool
*pool
= m
->tc
->pool
;
806 if (atomic_dec_and_test(&m
->prepare_actions
)) {
807 list_add_tail(&m
->list
, &pool
->prepared_mappings
);
812 static void complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
815 struct pool
*pool
= m
->tc
->pool
;
817 spin_lock_irqsave(&pool
->lock
, flags
);
818 __complete_mapping_preparation(m
);
819 spin_unlock_irqrestore(&pool
->lock
, flags
);
822 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
824 struct dm_thin_new_mapping
*m
= context
;
826 m
->status
= read_err
|| write_err
? BLK_STS_IOERR
: 0;
827 complete_mapping_preparation(m
);
830 static void overwrite_endio(struct bio
*bio
)
832 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
833 struct dm_thin_new_mapping
*m
= h
->overwrite_mapping
;
835 bio
->bi_end_io
= m
->saved_bi_end_io
;
837 m
->status
= bio
->bi_status
;
838 complete_mapping_preparation(m
);
841 /*----------------------------------------------------------------*/
848 * Prepared mapping jobs.
852 * This sends the bios in the cell, except the original holder, back
853 * to the deferred_bios list.
855 static void cell_defer_no_holder(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
857 struct pool
*pool
= tc
->pool
;
860 spin_lock_irqsave(&tc
->lock
, flags
);
861 cell_release_no_holder(pool
, cell
, &tc
->deferred_bio_list
);
862 spin_unlock_irqrestore(&tc
->lock
, flags
);
867 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
);
871 struct bio_list defer_bios
;
872 struct bio_list issue_bios
;
875 static void __inc_remap_and_issue_cell(void *context
,
876 struct dm_bio_prison_cell
*cell
)
878 struct remap_info
*info
= context
;
881 while ((bio
= bio_list_pop(&cell
->bios
))) {
882 if (op_is_flush(bio
->bi_opf
) || bio_op(bio
) == REQ_OP_DISCARD
)
883 bio_list_add(&info
->defer_bios
, bio
);
885 inc_all_io_entry(info
->tc
->pool
, bio
);
888 * We can't issue the bios with the bio prison lock
889 * held, so we add them to a list to issue on
890 * return from this function.
892 bio_list_add(&info
->issue_bios
, bio
);
897 static void inc_remap_and_issue_cell(struct thin_c
*tc
,
898 struct dm_bio_prison_cell
*cell
,
902 struct remap_info info
;
905 bio_list_init(&info
.defer_bios
);
906 bio_list_init(&info
.issue_bios
);
909 * We have to be careful to inc any bios we're about to issue
910 * before the cell is released, and avoid a race with new bios
911 * being added to the cell.
913 cell_visit_release(tc
->pool
, __inc_remap_and_issue_cell
,
916 while ((bio
= bio_list_pop(&info
.defer_bios
)))
917 thin_defer_bio(tc
, bio
);
919 while ((bio
= bio_list_pop(&info
.issue_bios
)))
920 remap_and_issue(info
.tc
, bio
, block
);
923 static void process_prepared_mapping_fail(struct dm_thin_new_mapping
*m
)
925 cell_error(m
->tc
->pool
, m
->cell
);
927 mempool_free(m
, &m
->tc
->pool
->mapping_pool
);
930 static void process_prepared_mapping(struct dm_thin_new_mapping
*m
)
932 struct thin_c
*tc
= m
->tc
;
933 struct pool
*pool
= tc
->pool
;
934 struct bio
*bio
= m
->bio
;
938 cell_error(pool
, m
->cell
);
943 * Commit the prepared block into the mapping btree.
944 * Any I/O for this block arriving after this point will get
945 * remapped to it directly.
947 r
= dm_thin_insert_block(tc
->td
, m
->virt_begin
, m
->data_block
);
949 metadata_operation_failed(pool
, "dm_thin_insert_block", r
);
950 cell_error(pool
, m
->cell
);
955 * Release any bios held while the block was being provisioned.
956 * If we are processing a write bio that completely covers the block,
957 * we already processed it so can ignore it now when processing
958 * the bios in the cell.
961 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
964 inc_all_io_entry(tc
->pool
, m
->cell
->holder
);
965 remap_and_issue(tc
, m
->cell
->holder
, m
->data_block
);
966 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
971 mempool_free(m
, &pool
->mapping_pool
);
974 /*----------------------------------------------------------------*/
976 static void free_discard_mapping(struct dm_thin_new_mapping
*m
)
978 struct thin_c
*tc
= m
->tc
;
980 cell_defer_no_holder(tc
, m
->cell
);
981 mempool_free(m
, &tc
->pool
->mapping_pool
);
984 static void process_prepared_discard_fail(struct dm_thin_new_mapping
*m
)
986 bio_io_error(m
->bio
);
987 free_discard_mapping(m
);
990 static void process_prepared_discard_success(struct dm_thin_new_mapping
*m
)
993 free_discard_mapping(m
);
996 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping
*m
)
999 struct thin_c
*tc
= m
->tc
;
1001 r
= dm_thin_remove_range(tc
->td
, m
->cell
->key
.block_begin
, m
->cell
->key
.block_end
);
1003 metadata_operation_failed(tc
->pool
, "dm_thin_remove_range", r
);
1004 bio_io_error(m
->bio
);
1008 cell_defer_no_holder(tc
, m
->cell
);
1009 mempool_free(m
, &tc
->pool
->mapping_pool
);
1012 /*----------------------------------------------------------------*/
1014 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping
*m
,
1015 struct bio
*discard_parent
)
1018 * We've already unmapped this range of blocks, but before we
1019 * passdown we have to check that these blocks are now unused.
1023 struct thin_c
*tc
= m
->tc
;
1024 struct pool
*pool
= tc
->pool
;
1025 dm_block_t b
= m
->data_block
, e
, end
= m
->data_block
+ m
->virt_end
- m
->virt_begin
;
1026 struct discard_op op
;
1028 begin_discard(&op
, tc
, discard_parent
);
1030 /* find start of unmapped run */
1031 for (; b
< end
; b
++) {
1032 r
= dm_pool_block_is_used(pool
->pmd
, b
, &used
);
1043 /* find end of run */
1044 for (e
= b
+ 1; e
!= end
; e
++) {
1045 r
= dm_pool_block_is_used(pool
->pmd
, e
, &used
);
1053 r
= issue_discard(&op
, b
, e
);
1060 end_discard(&op
, r
);
1063 static void queue_passdown_pt2(struct dm_thin_new_mapping
*m
)
1065 unsigned long flags
;
1066 struct pool
*pool
= m
->tc
->pool
;
1068 spin_lock_irqsave(&pool
->lock
, flags
);
1069 list_add_tail(&m
->list
, &pool
->prepared_discards_pt2
);
1070 spin_unlock_irqrestore(&pool
->lock
, flags
);
1074 static void passdown_endio(struct bio
*bio
)
1077 * It doesn't matter if the passdown discard failed, we still want
1078 * to unmap (we ignore err).
1080 queue_passdown_pt2(bio
->bi_private
);
1084 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping
*m
)
1087 struct thin_c
*tc
= m
->tc
;
1088 struct pool
*pool
= tc
->pool
;
1089 struct bio
*discard_parent
;
1090 dm_block_t data_end
= m
->data_block
+ (m
->virt_end
- m
->virt_begin
);
1093 * Only this thread allocates blocks, so we can be sure that the
1094 * newly unmapped blocks will not be allocated before the end of
1097 r
= dm_thin_remove_range(tc
->td
, m
->virt_begin
, m
->virt_end
);
1099 metadata_operation_failed(pool
, "dm_thin_remove_range", r
);
1100 bio_io_error(m
->bio
);
1101 cell_defer_no_holder(tc
, m
->cell
);
1102 mempool_free(m
, &pool
->mapping_pool
);
1107 * Increment the unmapped blocks. This prevents a race between the
1108 * passdown io and reallocation of freed blocks.
1110 r
= dm_pool_inc_data_range(pool
->pmd
, m
->data_block
, data_end
);
1112 metadata_operation_failed(pool
, "dm_pool_inc_data_range", r
);
1113 bio_io_error(m
->bio
);
1114 cell_defer_no_holder(tc
, m
->cell
);
1115 mempool_free(m
, &pool
->mapping_pool
);
1119 discard_parent
= bio_alloc(GFP_NOIO
, 1);
1120 if (!discard_parent
) {
1121 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1122 dm_device_name(tc
->pool
->pool_md
));
1123 queue_passdown_pt2(m
);
1126 discard_parent
->bi_end_io
= passdown_endio
;
1127 discard_parent
->bi_private
= m
;
1129 if (m
->maybe_shared
)
1130 passdown_double_checking_shared_status(m
, discard_parent
);
1132 struct discard_op op
;
1134 begin_discard(&op
, tc
, discard_parent
);
1135 r
= issue_discard(&op
, m
->data_block
, data_end
);
1136 end_discard(&op
, r
);
1141 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping
*m
)
1144 struct thin_c
*tc
= m
->tc
;
1145 struct pool
*pool
= tc
->pool
;
1148 * The passdown has completed, so now we can decrement all those
1151 r
= dm_pool_dec_data_range(pool
->pmd
, m
->data_block
,
1152 m
->data_block
+ (m
->virt_end
- m
->virt_begin
));
1154 metadata_operation_failed(pool
, "dm_pool_dec_data_range", r
);
1155 bio_io_error(m
->bio
);
1159 cell_defer_no_holder(tc
, m
->cell
);
1160 mempool_free(m
, &pool
->mapping_pool
);
1163 static void process_prepared(struct pool
*pool
, struct list_head
*head
,
1164 process_mapping_fn
*fn
)
1166 unsigned long flags
;
1167 struct list_head maps
;
1168 struct dm_thin_new_mapping
*m
, *tmp
;
1170 INIT_LIST_HEAD(&maps
);
1171 spin_lock_irqsave(&pool
->lock
, flags
);
1172 list_splice_init(head
, &maps
);
1173 spin_unlock_irqrestore(&pool
->lock
, flags
);
1175 list_for_each_entry_safe(m
, tmp
, &maps
, list
)
1180 * Deferred bio jobs.
1182 static int io_overlaps_block(struct pool
*pool
, struct bio
*bio
)
1184 return bio
->bi_iter
.bi_size
==
1185 (pool
->sectors_per_block
<< SECTOR_SHIFT
);
1188 static int io_overwrites_block(struct pool
*pool
, struct bio
*bio
)
1190 return (bio_data_dir(bio
) == WRITE
) &&
1191 io_overlaps_block(pool
, bio
);
1194 static void save_and_set_endio(struct bio
*bio
, bio_end_io_t
**save
,
1197 *save
= bio
->bi_end_io
;
1198 bio
->bi_end_io
= fn
;
1201 static int ensure_next_mapping(struct pool
*pool
)
1203 if (pool
->next_mapping
)
1206 pool
->next_mapping
= mempool_alloc(&pool
->mapping_pool
, GFP_ATOMIC
);
1208 return pool
->next_mapping
? 0 : -ENOMEM
;
1211 static struct dm_thin_new_mapping
*get_next_mapping(struct pool
*pool
)
1213 struct dm_thin_new_mapping
*m
= pool
->next_mapping
;
1215 BUG_ON(!pool
->next_mapping
);
1217 memset(m
, 0, sizeof(struct dm_thin_new_mapping
));
1218 INIT_LIST_HEAD(&m
->list
);
1221 pool
->next_mapping
= NULL
;
1226 static void ll_zero(struct thin_c
*tc
, struct dm_thin_new_mapping
*m
,
1227 sector_t begin
, sector_t end
)
1229 struct dm_io_region to
;
1231 to
.bdev
= tc
->pool_dev
->bdev
;
1233 to
.count
= end
- begin
;
1235 dm_kcopyd_zero(tc
->pool
->copier
, 1, &to
, 0, copy_complete
, m
);
1238 static void remap_and_issue_overwrite(struct thin_c
*tc
, struct bio
*bio
,
1239 dm_block_t data_begin
,
1240 struct dm_thin_new_mapping
*m
)
1242 struct pool
*pool
= tc
->pool
;
1243 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1245 h
->overwrite_mapping
= m
;
1247 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
1248 inc_all_io_entry(pool
, bio
);
1249 remap_and_issue(tc
, bio
, data_begin
);
1253 * A partial copy also needs to zero the uncopied region.
1255 static void schedule_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1256 struct dm_dev
*origin
, dm_block_t data_origin
,
1257 dm_block_t data_dest
,
1258 struct dm_bio_prison_cell
*cell
, struct bio
*bio
,
1261 struct pool
*pool
= tc
->pool
;
1262 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1265 m
->virt_begin
= virt_block
;
1266 m
->virt_end
= virt_block
+ 1u;
1267 m
->data_block
= data_dest
;
1271 * quiesce action + copy action + an extra reference held for the
1272 * duration of this function (we may need to inc later for a
1275 atomic_set(&m
->prepare_actions
, 3);
1277 if (!dm_deferred_set_add_work(pool
->shared_read_ds
, &m
->list
))
1278 complete_mapping_preparation(m
); /* already quiesced */
1281 * IO to pool_dev remaps to the pool target's data_dev.
1283 * If the whole block of data is being overwritten, we can issue the
1284 * bio immediately. Otherwise we use kcopyd to clone the data first.
1286 if (io_overwrites_block(pool
, bio
))
1287 remap_and_issue_overwrite(tc
, bio
, data_dest
, m
);
1289 struct dm_io_region from
, to
;
1291 from
.bdev
= origin
->bdev
;
1292 from
.sector
= data_origin
* pool
->sectors_per_block
;
1295 to
.bdev
= tc
->pool_dev
->bdev
;
1296 to
.sector
= data_dest
* pool
->sectors_per_block
;
1299 dm_kcopyd_copy(pool
->copier
, &from
, 1, &to
,
1300 0, copy_complete
, m
);
1303 * Do we need to zero a tail region?
1305 if (len
< pool
->sectors_per_block
&& pool
->pf
.zero_new_blocks
) {
1306 atomic_inc(&m
->prepare_actions
);
1308 data_dest
* pool
->sectors_per_block
+ len
,
1309 (data_dest
+ 1) * pool
->sectors_per_block
);
1313 complete_mapping_preparation(m
); /* drop our ref */
1316 static void schedule_internal_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1317 dm_block_t data_origin
, dm_block_t data_dest
,
1318 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1320 schedule_copy(tc
, virt_block
, tc
->pool_dev
,
1321 data_origin
, data_dest
, cell
, bio
,
1322 tc
->pool
->sectors_per_block
);
1325 static void schedule_zero(struct thin_c
*tc
, dm_block_t virt_block
,
1326 dm_block_t data_block
, struct dm_bio_prison_cell
*cell
,
1329 struct pool
*pool
= tc
->pool
;
1330 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1332 atomic_set(&m
->prepare_actions
, 1); /* no need to quiesce */
1334 m
->virt_begin
= virt_block
;
1335 m
->virt_end
= virt_block
+ 1u;
1336 m
->data_block
= data_block
;
1340 * If the whole block of data is being overwritten or we are not
1341 * zeroing pre-existing data, we can issue the bio immediately.
1342 * Otherwise we use kcopyd to zero the data first.
1344 if (pool
->pf
.zero_new_blocks
) {
1345 if (io_overwrites_block(pool
, bio
))
1346 remap_and_issue_overwrite(tc
, bio
, data_block
, m
);
1348 ll_zero(tc
, m
, data_block
* pool
->sectors_per_block
,
1349 (data_block
+ 1) * pool
->sectors_per_block
);
1351 process_prepared_mapping(m
);
1354 static void schedule_external_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1355 dm_block_t data_dest
,
1356 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1358 struct pool
*pool
= tc
->pool
;
1359 sector_t virt_block_begin
= virt_block
* pool
->sectors_per_block
;
1360 sector_t virt_block_end
= (virt_block
+ 1) * pool
->sectors_per_block
;
1362 if (virt_block_end
<= tc
->origin_size
)
1363 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1364 virt_block
, data_dest
, cell
, bio
,
1365 pool
->sectors_per_block
);
1367 else if (virt_block_begin
< tc
->origin_size
)
1368 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1369 virt_block
, data_dest
, cell
, bio
,
1370 tc
->origin_size
- virt_block_begin
);
1373 schedule_zero(tc
, virt_block
, data_dest
, cell
, bio
);
1376 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
);
1378 static void requeue_bios(struct pool
*pool
);
1380 static bool is_read_only_pool_mode(enum pool_mode mode
)
1382 return (mode
== PM_OUT_OF_METADATA_SPACE
|| mode
== PM_READ_ONLY
);
1385 static bool is_read_only(struct pool
*pool
)
1387 return is_read_only_pool_mode(get_pool_mode(pool
));
1390 static void check_for_metadata_space(struct pool
*pool
)
1393 const char *ooms_reason
= NULL
;
1396 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free
);
1398 ooms_reason
= "Could not get free metadata blocks";
1400 ooms_reason
= "No free metadata blocks";
1402 if (ooms_reason
&& !is_read_only(pool
)) {
1403 DMERR("%s", ooms_reason
);
1404 set_pool_mode(pool
, PM_OUT_OF_METADATA_SPACE
);
1408 static void check_for_data_space(struct pool
*pool
)
1413 if (get_pool_mode(pool
) != PM_OUT_OF_DATA_SPACE
)
1416 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free
);
1421 set_pool_mode(pool
, PM_WRITE
);
1427 * A non-zero return indicates read_only or fail_io mode.
1428 * Many callers don't care about the return value.
1430 static int commit(struct pool
*pool
)
1434 if (get_pool_mode(pool
) >= PM_OUT_OF_METADATA_SPACE
)
1437 r
= dm_pool_commit_metadata(pool
->pmd
);
1439 metadata_operation_failed(pool
, "dm_pool_commit_metadata", r
);
1441 check_for_metadata_space(pool
);
1442 check_for_data_space(pool
);
1448 static void check_low_water_mark(struct pool
*pool
, dm_block_t free_blocks
)
1450 unsigned long flags
;
1452 if (free_blocks
<= pool
->low_water_blocks
&& !pool
->low_water_triggered
) {
1453 DMWARN("%s: reached low water mark for data device: sending event.",
1454 dm_device_name(pool
->pool_md
));
1455 spin_lock_irqsave(&pool
->lock
, flags
);
1456 pool
->low_water_triggered
= true;
1457 spin_unlock_irqrestore(&pool
->lock
, flags
);
1458 dm_table_event(pool
->ti
->table
);
1462 static int alloc_data_block(struct thin_c
*tc
, dm_block_t
*result
)
1465 dm_block_t free_blocks
;
1466 struct pool
*pool
= tc
->pool
;
1468 if (WARN_ON(get_pool_mode(pool
) != PM_WRITE
))
1471 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1473 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1477 check_low_water_mark(pool
, free_blocks
);
1481 * Try to commit to see if that will free up some
1488 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1490 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1495 set_pool_mode(pool
, PM_OUT_OF_DATA_SPACE
);
1500 r
= dm_pool_alloc_data_block(pool
->pmd
, result
);
1503 set_pool_mode(pool
, PM_OUT_OF_DATA_SPACE
);
1505 metadata_operation_failed(pool
, "dm_pool_alloc_data_block", r
);
1509 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &free_blocks
);
1511 metadata_operation_failed(pool
, "dm_pool_get_free_metadata_block_count", r
);
1516 /* Let's commit before we use up the metadata reserve. */
1526 * If we have run out of space, queue bios until the device is
1527 * resumed, presumably after having been reloaded with more space.
1529 static void retry_on_resume(struct bio
*bio
)
1531 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1532 struct thin_c
*tc
= h
->tc
;
1533 unsigned long flags
;
1535 spin_lock_irqsave(&tc
->lock
, flags
);
1536 bio_list_add(&tc
->retry_on_resume_list
, bio
);
1537 spin_unlock_irqrestore(&tc
->lock
, flags
);
1540 static blk_status_t
should_error_unserviceable_bio(struct pool
*pool
)
1542 enum pool_mode m
= get_pool_mode(pool
);
1546 /* Shouldn't get here */
1547 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1548 return BLK_STS_IOERR
;
1550 case PM_OUT_OF_DATA_SPACE
:
1551 return pool
->pf
.error_if_no_space
? BLK_STS_NOSPC
: 0;
1553 case PM_OUT_OF_METADATA_SPACE
:
1556 return BLK_STS_IOERR
;
1558 /* Shouldn't get here */
1559 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1560 return BLK_STS_IOERR
;
1564 static void handle_unserviceable_bio(struct pool
*pool
, struct bio
*bio
)
1566 blk_status_t error
= should_error_unserviceable_bio(pool
);
1569 bio
->bi_status
= error
;
1572 retry_on_resume(bio
);
1575 static void retry_bios_on_resume(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
1578 struct bio_list bios
;
1581 error
= should_error_unserviceable_bio(pool
);
1583 cell_error_with_code(pool
, cell
, error
);
1587 bio_list_init(&bios
);
1588 cell_release(pool
, cell
, &bios
);
1590 while ((bio
= bio_list_pop(&bios
)))
1591 retry_on_resume(bio
);
1594 static void process_discard_cell_no_passdown(struct thin_c
*tc
,
1595 struct dm_bio_prison_cell
*virt_cell
)
1597 struct pool
*pool
= tc
->pool
;
1598 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1601 * We don't need to lock the data blocks, since there's no
1602 * passdown. We only lock data blocks for allocation and breaking sharing.
1605 m
->virt_begin
= virt_cell
->key
.block_begin
;
1606 m
->virt_end
= virt_cell
->key
.block_end
;
1607 m
->cell
= virt_cell
;
1608 m
->bio
= virt_cell
->holder
;
1610 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1611 pool
->process_prepared_discard(m
);
1614 static void break_up_discard_bio(struct thin_c
*tc
, dm_block_t begin
, dm_block_t end
,
1617 struct pool
*pool
= tc
->pool
;
1621 struct dm_cell_key data_key
;
1622 struct dm_bio_prison_cell
*data_cell
;
1623 struct dm_thin_new_mapping
*m
;
1624 dm_block_t virt_begin
, virt_end
, data_begin
;
1626 while (begin
!= end
) {
1627 r
= ensure_next_mapping(pool
);
1629 /* we did our best */
1632 r
= dm_thin_find_mapped_range(tc
->td
, begin
, end
, &virt_begin
, &virt_end
,
1633 &data_begin
, &maybe_shared
);
1636 * Silently fail, letting any mappings we've
1641 build_key(tc
->td
, PHYSICAL
, data_begin
, data_begin
+ (virt_end
- virt_begin
), &data_key
);
1642 if (bio_detain(tc
->pool
, &data_key
, NULL
, &data_cell
)) {
1643 /* contention, we'll give up with this range */
1649 * IO may still be going to the destination block. We must
1650 * quiesce before we can do the removal.
1652 m
= get_next_mapping(pool
);
1654 m
->maybe_shared
= maybe_shared
;
1655 m
->virt_begin
= virt_begin
;
1656 m
->virt_end
= virt_end
;
1657 m
->data_block
= data_begin
;
1658 m
->cell
= data_cell
;
1662 * The parent bio must not complete before sub discard bios are
1663 * chained to it (see end_discard's bio_chain)!
1665 * This per-mapping bi_remaining increment is paired with
1666 * the implicit decrement that occurs via bio_endio() in
1669 bio_inc_remaining(bio
);
1670 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1671 pool
->process_prepared_discard(m
);
1677 static void process_discard_cell_passdown(struct thin_c
*tc
, struct dm_bio_prison_cell
*virt_cell
)
1679 struct bio
*bio
= virt_cell
->holder
;
1680 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1683 * The virt_cell will only get freed once the origin bio completes.
1684 * This means it will remain locked while all the individual
1685 * passdown bios are in flight.
1687 h
->cell
= virt_cell
;
1688 break_up_discard_bio(tc
, virt_cell
->key
.block_begin
, virt_cell
->key
.block_end
, bio
);
1691 * We complete the bio now, knowing that the bi_remaining field
1692 * will prevent completion until the sub range discards have
1698 static void process_discard_bio(struct thin_c
*tc
, struct bio
*bio
)
1700 dm_block_t begin
, end
;
1701 struct dm_cell_key virt_key
;
1702 struct dm_bio_prison_cell
*virt_cell
;
1704 get_bio_block_range(tc
, bio
, &begin
, &end
);
1707 * The discard covers less than a block.
1713 build_key(tc
->td
, VIRTUAL
, begin
, end
, &virt_key
);
1714 if (bio_detain(tc
->pool
, &virt_key
, bio
, &virt_cell
))
1716 * Potential starvation issue: We're relying on the
1717 * fs/application being well behaved, and not trying to
1718 * send IO to a region at the same time as discarding it.
1719 * If they do this persistently then it's possible this
1720 * cell will never be granted.
1724 tc
->pool
->process_discard_cell(tc
, virt_cell
);
1727 static void break_sharing(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1728 struct dm_cell_key
*key
,
1729 struct dm_thin_lookup_result
*lookup_result
,
1730 struct dm_bio_prison_cell
*cell
)
1733 dm_block_t data_block
;
1734 struct pool
*pool
= tc
->pool
;
1736 r
= alloc_data_block(tc
, &data_block
);
1739 schedule_internal_copy(tc
, block
, lookup_result
->block
,
1740 data_block
, cell
, bio
);
1744 retry_bios_on_resume(pool
, cell
);
1748 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1750 cell_error(pool
, cell
);
1755 static void __remap_and_issue_shared_cell(void *context
,
1756 struct dm_bio_prison_cell
*cell
)
1758 struct remap_info
*info
= context
;
1761 while ((bio
= bio_list_pop(&cell
->bios
))) {
1762 if (bio_data_dir(bio
) == WRITE
|| op_is_flush(bio
->bi_opf
) ||
1763 bio_op(bio
) == REQ_OP_DISCARD
)
1764 bio_list_add(&info
->defer_bios
, bio
);
1766 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1768 h
->shared_read_entry
= dm_deferred_entry_inc(info
->tc
->pool
->shared_read_ds
);
1769 inc_all_io_entry(info
->tc
->pool
, bio
);
1770 bio_list_add(&info
->issue_bios
, bio
);
1775 static void remap_and_issue_shared_cell(struct thin_c
*tc
,
1776 struct dm_bio_prison_cell
*cell
,
1780 struct remap_info info
;
1783 bio_list_init(&info
.defer_bios
);
1784 bio_list_init(&info
.issue_bios
);
1786 cell_visit_release(tc
->pool
, __remap_and_issue_shared_cell
,
1789 while ((bio
= bio_list_pop(&info
.defer_bios
)))
1790 thin_defer_bio(tc
, bio
);
1792 while ((bio
= bio_list_pop(&info
.issue_bios
)))
1793 remap_and_issue(tc
, bio
, block
);
1796 static void process_shared_bio(struct thin_c
*tc
, struct bio
*bio
,
1798 struct dm_thin_lookup_result
*lookup_result
,
1799 struct dm_bio_prison_cell
*virt_cell
)
1801 struct dm_bio_prison_cell
*data_cell
;
1802 struct pool
*pool
= tc
->pool
;
1803 struct dm_cell_key key
;
1806 * If cell is already occupied, then sharing is already in the process
1807 * of being broken so we have nothing further to do here.
1809 build_data_key(tc
->td
, lookup_result
->block
, &key
);
1810 if (bio_detain(pool
, &key
, bio
, &data_cell
)) {
1811 cell_defer_no_holder(tc
, virt_cell
);
1815 if (bio_data_dir(bio
) == WRITE
&& bio
->bi_iter
.bi_size
) {
1816 break_sharing(tc
, bio
, block
, &key
, lookup_result
, data_cell
);
1817 cell_defer_no_holder(tc
, virt_cell
);
1819 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1821 h
->shared_read_entry
= dm_deferred_entry_inc(pool
->shared_read_ds
);
1822 inc_all_io_entry(pool
, bio
);
1823 remap_and_issue(tc
, bio
, lookup_result
->block
);
1825 remap_and_issue_shared_cell(tc
, data_cell
, lookup_result
->block
);
1826 remap_and_issue_shared_cell(tc
, virt_cell
, lookup_result
->block
);
1830 static void provision_block(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1831 struct dm_bio_prison_cell
*cell
)
1834 dm_block_t data_block
;
1835 struct pool
*pool
= tc
->pool
;
1838 * Remap empty bios (flushes) immediately, without provisioning.
1840 if (!bio
->bi_iter
.bi_size
) {
1841 inc_all_io_entry(pool
, bio
);
1842 cell_defer_no_holder(tc
, cell
);
1844 remap_and_issue(tc
, bio
, 0);
1849 * Fill read bios with zeroes and complete them immediately.
1851 if (bio_data_dir(bio
) == READ
) {
1853 cell_defer_no_holder(tc
, cell
);
1858 r
= alloc_data_block(tc
, &data_block
);
1862 schedule_external_copy(tc
, block
, data_block
, cell
, bio
);
1864 schedule_zero(tc
, block
, data_block
, cell
, bio
);
1868 retry_bios_on_resume(pool
, cell
);
1872 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1874 cell_error(pool
, cell
);
1879 static void process_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1882 struct pool
*pool
= tc
->pool
;
1883 struct bio
*bio
= cell
->holder
;
1884 dm_block_t block
= get_bio_block(tc
, bio
);
1885 struct dm_thin_lookup_result lookup_result
;
1887 if (tc
->requeue_mode
) {
1888 cell_requeue(pool
, cell
);
1892 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1895 if (lookup_result
.shared
)
1896 process_shared_bio(tc
, bio
, block
, &lookup_result
, cell
);
1898 inc_all_io_entry(pool
, bio
);
1899 remap_and_issue(tc
, bio
, lookup_result
.block
);
1900 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
1905 if (bio_data_dir(bio
) == READ
&& tc
->origin_dev
) {
1906 inc_all_io_entry(pool
, bio
);
1907 cell_defer_no_holder(tc
, cell
);
1909 if (bio_end_sector(bio
) <= tc
->origin_size
)
1910 remap_to_origin_and_issue(tc
, bio
);
1912 else if (bio
->bi_iter
.bi_sector
< tc
->origin_size
) {
1914 bio
->bi_iter
.bi_size
= (tc
->origin_size
- bio
->bi_iter
.bi_sector
) << SECTOR_SHIFT
;
1915 remap_to_origin_and_issue(tc
, bio
);
1922 provision_block(tc
, bio
, block
, cell
);
1926 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1928 cell_defer_no_holder(tc
, cell
);
1934 static void process_bio(struct thin_c
*tc
, struct bio
*bio
)
1936 struct pool
*pool
= tc
->pool
;
1937 dm_block_t block
= get_bio_block(tc
, bio
);
1938 struct dm_bio_prison_cell
*cell
;
1939 struct dm_cell_key key
;
1942 * If cell is already occupied, then the block is already
1943 * being provisioned so we have nothing further to do here.
1945 build_virtual_key(tc
->td
, block
, &key
);
1946 if (bio_detain(pool
, &key
, bio
, &cell
))
1949 process_cell(tc
, cell
);
1952 static void __process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
,
1953 struct dm_bio_prison_cell
*cell
)
1956 int rw
= bio_data_dir(bio
);
1957 dm_block_t block
= get_bio_block(tc
, bio
);
1958 struct dm_thin_lookup_result lookup_result
;
1960 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1963 if (lookup_result
.shared
&& (rw
== WRITE
) && bio
->bi_iter
.bi_size
) {
1964 handle_unserviceable_bio(tc
->pool
, bio
);
1966 cell_defer_no_holder(tc
, cell
);
1968 inc_all_io_entry(tc
->pool
, bio
);
1969 remap_and_issue(tc
, bio
, lookup_result
.block
);
1971 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
1977 cell_defer_no_holder(tc
, cell
);
1979 handle_unserviceable_bio(tc
->pool
, bio
);
1983 if (tc
->origin_dev
) {
1984 inc_all_io_entry(tc
->pool
, bio
);
1985 remap_to_origin_and_issue(tc
, bio
);
1994 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1997 cell_defer_no_holder(tc
, cell
);
2003 static void process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
)
2005 __process_bio_read_only(tc
, bio
, NULL
);
2008 static void process_cell_read_only(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2010 __process_bio_read_only(tc
, cell
->holder
, cell
);
2013 static void process_bio_success(struct thin_c
*tc
, struct bio
*bio
)
2018 static void process_bio_fail(struct thin_c
*tc
, struct bio
*bio
)
2023 static void process_cell_success(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2025 cell_success(tc
->pool
, cell
);
2028 static void process_cell_fail(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2030 cell_error(tc
->pool
, cell
);
2034 * FIXME: should we also commit due to size of transaction, measured in
2037 static int need_commit_due_to_time(struct pool
*pool
)
2039 return !time_in_range(jiffies
, pool
->last_commit_jiffies
,
2040 pool
->last_commit_jiffies
+ COMMIT_PERIOD
);
2043 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2044 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2046 static void __thin_bio_rb_add(struct thin_c
*tc
, struct bio
*bio
)
2048 struct rb_node
**rbp
, *parent
;
2049 struct dm_thin_endio_hook
*pbd
;
2050 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
2052 rbp
= &tc
->sort_bio_list
.rb_node
;
2056 pbd
= thin_pbd(parent
);
2058 if (bi_sector
< thin_bio(pbd
)->bi_iter
.bi_sector
)
2059 rbp
= &(*rbp
)->rb_left
;
2061 rbp
= &(*rbp
)->rb_right
;
2064 pbd
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2065 rb_link_node(&pbd
->rb_node
, parent
, rbp
);
2066 rb_insert_color(&pbd
->rb_node
, &tc
->sort_bio_list
);
2069 static void __extract_sorted_bios(struct thin_c
*tc
)
2071 struct rb_node
*node
;
2072 struct dm_thin_endio_hook
*pbd
;
2075 for (node
= rb_first(&tc
->sort_bio_list
); node
; node
= rb_next(node
)) {
2076 pbd
= thin_pbd(node
);
2077 bio
= thin_bio(pbd
);
2079 bio_list_add(&tc
->deferred_bio_list
, bio
);
2080 rb_erase(&pbd
->rb_node
, &tc
->sort_bio_list
);
2083 WARN_ON(!RB_EMPTY_ROOT(&tc
->sort_bio_list
));
2086 static void __sort_thin_deferred_bios(struct thin_c
*tc
)
2089 struct bio_list bios
;
2091 bio_list_init(&bios
);
2092 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
2093 bio_list_init(&tc
->deferred_bio_list
);
2095 /* Sort deferred_bio_list using rb-tree */
2096 while ((bio
= bio_list_pop(&bios
)))
2097 __thin_bio_rb_add(tc
, bio
);
2100 * Transfer the sorted bios in sort_bio_list back to
2101 * deferred_bio_list to allow lockless submission of
2104 __extract_sorted_bios(tc
);
2107 static void process_thin_deferred_bios(struct thin_c
*tc
)
2109 struct pool
*pool
= tc
->pool
;
2110 unsigned long flags
;
2112 struct bio_list bios
;
2113 struct blk_plug plug
;
2116 if (tc
->requeue_mode
) {
2117 error_thin_bio_list(tc
, &tc
->deferred_bio_list
,
2118 BLK_STS_DM_REQUEUE
);
2122 bio_list_init(&bios
);
2124 spin_lock_irqsave(&tc
->lock
, flags
);
2126 if (bio_list_empty(&tc
->deferred_bio_list
)) {
2127 spin_unlock_irqrestore(&tc
->lock
, flags
);
2131 __sort_thin_deferred_bios(tc
);
2133 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
2134 bio_list_init(&tc
->deferred_bio_list
);
2136 spin_unlock_irqrestore(&tc
->lock
, flags
);
2138 blk_start_plug(&plug
);
2139 while ((bio
= bio_list_pop(&bios
))) {
2141 * If we've got no free new_mapping structs, and processing
2142 * this bio might require one, we pause until there are some
2143 * prepared mappings to process.
2145 if (ensure_next_mapping(pool
)) {
2146 spin_lock_irqsave(&tc
->lock
, flags
);
2147 bio_list_add(&tc
->deferred_bio_list
, bio
);
2148 bio_list_merge(&tc
->deferred_bio_list
, &bios
);
2149 spin_unlock_irqrestore(&tc
->lock
, flags
);
2153 if (bio_op(bio
) == REQ_OP_DISCARD
)
2154 pool
->process_discard(tc
, bio
);
2156 pool
->process_bio(tc
, bio
);
2158 if ((count
++ & 127) == 0) {
2159 throttle_work_update(&pool
->throttle
);
2160 dm_pool_issue_prefetches(pool
->pmd
);
2163 blk_finish_plug(&plug
);
2166 static int cmp_cells(const void *lhs
, const void *rhs
)
2168 struct dm_bio_prison_cell
*lhs_cell
= *((struct dm_bio_prison_cell
**) lhs
);
2169 struct dm_bio_prison_cell
*rhs_cell
= *((struct dm_bio_prison_cell
**) rhs
);
2171 BUG_ON(!lhs_cell
->holder
);
2172 BUG_ON(!rhs_cell
->holder
);
2174 if (lhs_cell
->holder
->bi_iter
.bi_sector
< rhs_cell
->holder
->bi_iter
.bi_sector
)
2177 if (lhs_cell
->holder
->bi_iter
.bi_sector
> rhs_cell
->holder
->bi_iter
.bi_sector
)
2183 static unsigned sort_cells(struct pool
*pool
, struct list_head
*cells
)
2186 struct dm_bio_prison_cell
*cell
, *tmp
;
2188 list_for_each_entry_safe(cell
, tmp
, cells
, user_list
) {
2189 if (count
>= CELL_SORT_ARRAY_SIZE
)
2192 pool
->cell_sort_array
[count
++] = cell
;
2193 list_del(&cell
->user_list
);
2196 sort(pool
->cell_sort_array
, count
, sizeof(cell
), cmp_cells
, NULL
);
2201 static void process_thin_deferred_cells(struct thin_c
*tc
)
2203 struct pool
*pool
= tc
->pool
;
2204 unsigned long flags
;
2205 struct list_head cells
;
2206 struct dm_bio_prison_cell
*cell
;
2207 unsigned i
, j
, count
;
2209 INIT_LIST_HEAD(&cells
);
2211 spin_lock_irqsave(&tc
->lock
, flags
);
2212 list_splice_init(&tc
->deferred_cells
, &cells
);
2213 spin_unlock_irqrestore(&tc
->lock
, flags
);
2215 if (list_empty(&cells
))
2219 count
= sort_cells(tc
->pool
, &cells
);
2221 for (i
= 0; i
< count
; i
++) {
2222 cell
= pool
->cell_sort_array
[i
];
2223 BUG_ON(!cell
->holder
);
2226 * If we've got no free new_mapping structs, and processing
2227 * this bio might require one, we pause until there are some
2228 * prepared mappings to process.
2230 if (ensure_next_mapping(pool
)) {
2231 for (j
= i
; j
< count
; j
++)
2232 list_add(&pool
->cell_sort_array
[j
]->user_list
, &cells
);
2234 spin_lock_irqsave(&tc
->lock
, flags
);
2235 list_splice(&cells
, &tc
->deferred_cells
);
2236 spin_unlock_irqrestore(&tc
->lock
, flags
);
2240 if (bio_op(cell
->holder
) == REQ_OP_DISCARD
)
2241 pool
->process_discard_cell(tc
, cell
);
2243 pool
->process_cell(tc
, cell
);
2245 } while (!list_empty(&cells
));
2248 static void thin_get(struct thin_c
*tc
);
2249 static void thin_put(struct thin_c
*tc
);
2252 * We can't hold rcu_read_lock() around code that can block. So we
2253 * find a thin with the rcu lock held; bump a refcount; then drop
2256 static struct thin_c
*get_first_thin(struct pool
*pool
)
2258 struct thin_c
*tc
= NULL
;
2261 if (!list_empty(&pool
->active_thins
)) {
2262 tc
= list_entry_rcu(pool
->active_thins
.next
, struct thin_c
, list
);
2270 static struct thin_c
*get_next_thin(struct pool
*pool
, struct thin_c
*tc
)
2272 struct thin_c
*old_tc
= tc
;
2275 list_for_each_entry_continue_rcu(tc
, &pool
->active_thins
, list
) {
2287 static void process_deferred_bios(struct pool
*pool
)
2289 unsigned long flags
;
2291 struct bio_list bios
;
2294 tc
= get_first_thin(pool
);
2296 process_thin_deferred_cells(tc
);
2297 process_thin_deferred_bios(tc
);
2298 tc
= get_next_thin(pool
, tc
);
2302 * If there are any deferred flush bios, we must commit
2303 * the metadata before issuing them.
2305 bio_list_init(&bios
);
2306 spin_lock_irqsave(&pool
->lock
, flags
);
2307 bio_list_merge(&bios
, &pool
->deferred_flush_bios
);
2308 bio_list_init(&pool
->deferred_flush_bios
);
2309 spin_unlock_irqrestore(&pool
->lock
, flags
);
2311 if (bio_list_empty(&bios
) &&
2312 !(dm_pool_changed_this_transaction(pool
->pmd
) && need_commit_due_to_time(pool
)))
2316 while ((bio
= bio_list_pop(&bios
)))
2320 pool
->last_commit_jiffies
= jiffies
;
2322 while ((bio
= bio_list_pop(&bios
)))
2323 generic_make_request(bio
);
2326 static void do_worker(struct work_struct
*ws
)
2328 struct pool
*pool
= container_of(ws
, struct pool
, worker
);
2330 throttle_work_start(&pool
->throttle
);
2331 dm_pool_issue_prefetches(pool
->pmd
);
2332 throttle_work_update(&pool
->throttle
);
2333 process_prepared(pool
, &pool
->prepared_mappings
, &pool
->process_prepared_mapping
);
2334 throttle_work_update(&pool
->throttle
);
2335 process_prepared(pool
, &pool
->prepared_discards
, &pool
->process_prepared_discard
);
2336 throttle_work_update(&pool
->throttle
);
2337 process_prepared(pool
, &pool
->prepared_discards_pt2
, &pool
->process_prepared_discard_pt2
);
2338 throttle_work_update(&pool
->throttle
);
2339 process_deferred_bios(pool
);
2340 throttle_work_complete(&pool
->throttle
);
2344 * We want to commit periodically so that not too much
2345 * unwritten data builds up.
2347 static void do_waker(struct work_struct
*ws
)
2349 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
, waker
);
2351 queue_delayed_work(pool
->wq
, &pool
->waker
, COMMIT_PERIOD
);
2354 static void notify_of_pool_mode_change_to_oods(struct pool
*pool
);
2357 * We're holding onto IO to allow userland time to react. After the
2358 * timeout either the pool will have been resized (and thus back in
2359 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2361 static void do_no_space_timeout(struct work_struct
*ws
)
2363 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
,
2366 if (get_pool_mode(pool
) == PM_OUT_OF_DATA_SPACE
&& !pool
->pf
.error_if_no_space
) {
2367 pool
->pf
.error_if_no_space
= true;
2368 notify_of_pool_mode_change_to_oods(pool
);
2369 error_retry_list_with_code(pool
, BLK_STS_NOSPC
);
2373 /*----------------------------------------------------------------*/
2376 struct work_struct worker
;
2377 struct completion complete
;
2380 static struct pool_work
*to_pool_work(struct work_struct
*ws
)
2382 return container_of(ws
, struct pool_work
, worker
);
2385 static void pool_work_complete(struct pool_work
*pw
)
2387 complete(&pw
->complete
);
2390 static void pool_work_wait(struct pool_work
*pw
, struct pool
*pool
,
2391 void (*fn
)(struct work_struct
*))
2393 INIT_WORK_ONSTACK(&pw
->worker
, fn
);
2394 init_completion(&pw
->complete
);
2395 queue_work(pool
->wq
, &pw
->worker
);
2396 wait_for_completion(&pw
->complete
);
2399 /*----------------------------------------------------------------*/
2401 struct noflush_work
{
2402 struct pool_work pw
;
2406 static struct noflush_work
*to_noflush(struct work_struct
*ws
)
2408 return container_of(to_pool_work(ws
), struct noflush_work
, pw
);
2411 static void do_noflush_start(struct work_struct
*ws
)
2413 struct noflush_work
*w
= to_noflush(ws
);
2414 w
->tc
->requeue_mode
= true;
2416 pool_work_complete(&w
->pw
);
2419 static void do_noflush_stop(struct work_struct
*ws
)
2421 struct noflush_work
*w
= to_noflush(ws
);
2422 w
->tc
->requeue_mode
= false;
2423 pool_work_complete(&w
->pw
);
2426 static void noflush_work(struct thin_c
*tc
, void (*fn
)(struct work_struct
*))
2428 struct noflush_work w
;
2431 pool_work_wait(&w
.pw
, tc
->pool
, fn
);
2434 /*----------------------------------------------------------------*/
2436 static enum pool_mode
get_pool_mode(struct pool
*pool
)
2438 return pool
->pf
.mode
;
2441 static void notify_of_pool_mode_change(struct pool
*pool
, const char *new_mode
)
2443 dm_table_event(pool
->ti
->table
);
2444 DMINFO("%s: switching pool to %s mode",
2445 dm_device_name(pool
->pool_md
), new_mode
);
2448 static void notify_of_pool_mode_change_to_oods(struct pool
*pool
)
2450 if (!pool
->pf
.error_if_no_space
)
2451 notify_of_pool_mode_change(pool
, "out-of-data-space (queue IO)");
2453 notify_of_pool_mode_change(pool
, "out-of-data-space (error IO)");
2456 static bool passdown_enabled(struct pool_c
*pt
)
2458 return pt
->adjusted_pf
.discard_passdown
;
2461 static void set_discard_callbacks(struct pool
*pool
)
2463 struct pool_c
*pt
= pool
->ti
->private;
2465 if (passdown_enabled(pt
)) {
2466 pool
->process_discard_cell
= process_discard_cell_passdown
;
2467 pool
->process_prepared_discard
= process_prepared_discard_passdown_pt1
;
2468 pool
->process_prepared_discard_pt2
= process_prepared_discard_passdown_pt2
;
2470 pool
->process_discard_cell
= process_discard_cell_no_passdown
;
2471 pool
->process_prepared_discard
= process_prepared_discard_no_passdown
;
2475 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
)
2477 struct pool_c
*pt
= pool
->ti
->private;
2478 bool needs_check
= dm_pool_metadata_needs_check(pool
->pmd
);
2479 enum pool_mode old_mode
= get_pool_mode(pool
);
2480 unsigned long no_space_timeout
= READ_ONCE(no_space_timeout_secs
) * HZ
;
2483 * Never allow the pool to transition to PM_WRITE mode if user
2484 * intervention is required to verify metadata and data consistency.
2486 if (new_mode
== PM_WRITE
&& needs_check
) {
2487 DMERR("%s: unable to switch pool to write mode until repaired.",
2488 dm_device_name(pool
->pool_md
));
2489 if (old_mode
!= new_mode
)
2490 new_mode
= old_mode
;
2492 new_mode
= PM_READ_ONLY
;
2495 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2496 * not going to recover without a thin_repair. So we never let the
2497 * pool move out of the old mode.
2499 if (old_mode
== PM_FAIL
)
2500 new_mode
= old_mode
;
2504 if (old_mode
!= new_mode
)
2505 notify_of_pool_mode_change(pool
, "failure");
2506 dm_pool_metadata_read_only(pool
->pmd
);
2507 pool
->process_bio
= process_bio_fail
;
2508 pool
->process_discard
= process_bio_fail
;
2509 pool
->process_cell
= process_cell_fail
;
2510 pool
->process_discard_cell
= process_cell_fail
;
2511 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2512 pool
->process_prepared_discard
= process_prepared_discard_fail
;
2514 error_retry_list(pool
);
2517 case PM_OUT_OF_METADATA_SPACE
:
2519 if (!is_read_only_pool_mode(old_mode
))
2520 notify_of_pool_mode_change(pool
, "read-only");
2521 dm_pool_metadata_read_only(pool
->pmd
);
2522 pool
->process_bio
= process_bio_read_only
;
2523 pool
->process_discard
= process_bio_success
;
2524 pool
->process_cell
= process_cell_read_only
;
2525 pool
->process_discard_cell
= process_cell_success
;
2526 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2527 pool
->process_prepared_discard
= process_prepared_discard_success
;
2529 error_retry_list(pool
);
2532 case PM_OUT_OF_DATA_SPACE
:
2534 * Ideally we'd never hit this state; the low water mark
2535 * would trigger userland to extend the pool before we
2536 * completely run out of data space. However, many small
2537 * IOs to unprovisioned space can consume data space at an
2538 * alarming rate. Adjust your low water mark if you're
2539 * frequently seeing this mode.
2541 if (old_mode
!= new_mode
)
2542 notify_of_pool_mode_change_to_oods(pool
);
2543 pool
->out_of_data_space
= true;
2544 pool
->process_bio
= process_bio_read_only
;
2545 pool
->process_discard
= process_discard_bio
;
2546 pool
->process_cell
= process_cell_read_only
;
2547 pool
->process_prepared_mapping
= process_prepared_mapping
;
2548 set_discard_callbacks(pool
);
2550 if (!pool
->pf
.error_if_no_space
&& no_space_timeout
)
2551 queue_delayed_work(pool
->wq
, &pool
->no_space_timeout
, no_space_timeout
);
2555 if (old_mode
!= new_mode
)
2556 notify_of_pool_mode_change(pool
, "write");
2557 if (old_mode
== PM_OUT_OF_DATA_SPACE
)
2558 cancel_delayed_work_sync(&pool
->no_space_timeout
);
2559 pool
->out_of_data_space
= false;
2560 pool
->pf
.error_if_no_space
= pt
->requested_pf
.error_if_no_space
;
2561 dm_pool_metadata_read_write(pool
->pmd
);
2562 pool
->process_bio
= process_bio
;
2563 pool
->process_discard
= process_discard_bio
;
2564 pool
->process_cell
= process_cell
;
2565 pool
->process_prepared_mapping
= process_prepared_mapping
;
2566 set_discard_callbacks(pool
);
2570 pool
->pf
.mode
= new_mode
;
2572 * The pool mode may have changed, sync it so bind_control_target()
2573 * doesn't cause an unexpected mode transition on resume.
2575 pt
->adjusted_pf
.mode
= new_mode
;
2578 static void abort_transaction(struct pool
*pool
)
2580 const char *dev_name
= dm_device_name(pool
->pool_md
);
2582 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name
);
2583 if (dm_pool_abort_metadata(pool
->pmd
)) {
2584 DMERR("%s: failed to abort metadata transaction", dev_name
);
2585 set_pool_mode(pool
, PM_FAIL
);
2588 if (dm_pool_metadata_set_needs_check(pool
->pmd
)) {
2589 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name
);
2590 set_pool_mode(pool
, PM_FAIL
);
2594 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
)
2596 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2597 dm_device_name(pool
->pool_md
), op
, r
);
2599 abort_transaction(pool
);
2600 set_pool_mode(pool
, PM_READ_ONLY
);
2603 /*----------------------------------------------------------------*/
2606 * Mapping functions.
2610 * Called only while mapping a thin bio to hand it over to the workqueue.
2612 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
)
2614 unsigned long flags
;
2615 struct pool
*pool
= tc
->pool
;
2617 spin_lock_irqsave(&tc
->lock
, flags
);
2618 bio_list_add(&tc
->deferred_bio_list
, bio
);
2619 spin_unlock_irqrestore(&tc
->lock
, flags
);
2624 static void thin_defer_bio_with_throttle(struct thin_c
*tc
, struct bio
*bio
)
2626 struct pool
*pool
= tc
->pool
;
2628 throttle_lock(&pool
->throttle
);
2629 thin_defer_bio(tc
, bio
);
2630 throttle_unlock(&pool
->throttle
);
2633 static void thin_defer_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2635 unsigned long flags
;
2636 struct pool
*pool
= tc
->pool
;
2638 throttle_lock(&pool
->throttle
);
2639 spin_lock_irqsave(&tc
->lock
, flags
);
2640 list_add_tail(&cell
->user_list
, &tc
->deferred_cells
);
2641 spin_unlock_irqrestore(&tc
->lock
, flags
);
2642 throttle_unlock(&pool
->throttle
);
2647 static void thin_hook_bio(struct thin_c
*tc
, struct bio
*bio
)
2649 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2652 h
->shared_read_entry
= NULL
;
2653 h
->all_io_entry
= NULL
;
2654 h
->overwrite_mapping
= NULL
;
2659 * Non-blocking function called from the thin target's map function.
2661 static int thin_bio_map(struct dm_target
*ti
, struct bio
*bio
)
2664 struct thin_c
*tc
= ti
->private;
2665 dm_block_t block
= get_bio_block(tc
, bio
);
2666 struct dm_thin_device
*td
= tc
->td
;
2667 struct dm_thin_lookup_result result
;
2668 struct dm_bio_prison_cell
*virt_cell
, *data_cell
;
2669 struct dm_cell_key key
;
2671 thin_hook_bio(tc
, bio
);
2673 if (tc
->requeue_mode
) {
2674 bio
->bi_status
= BLK_STS_DM_REQUEUE
;
2676 return DM_MAPIO_SUBMITTED
;
2679 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
2681 return DM_MAPIO_SUBMITTED
;
2684 if (op_is_flush(bio
->bi_opf
) || bio_op(bio
) == REQ_OP_DISCARD
) {
2685 thin_defer_bio_with_throttle(tc
, bio
);
2686 return DM_MAPIO_SUBMITTED
;
2690 * We must hold the virtual cell before doing the lookup, otherwise
2691 * there's a race with discard.
2693 build_virtual_key(tc
->td
, block
, &key
);
2694 if (bio_detain(tc
->pool
, &key
, bio
, &virt_cell
))
2695 return DM_MAPIO_SUBMITTED
;
2697 r
= dm_thin_find_block(td
, block
, 0, &result
);
2700 * Note that we defer readahead too.
2704 if (unlikely(result
.shared
)) {
2706 * We have a race condition here between the
2707 * result.shared value returned by the lookup and
2708 * snapshot creation, which may cause new
2711 * To avoid this always quiesce the origin before
2712 * taking the snap. You want to do this anyway to
2713 * ensure a consistent application view
2716 * More distant ancestors are irrelevant. The
2717 * shared flag will be set in their case.
2719 thin_defer_cell(tc
, virt_cell
);
2720 return DM_MAPIO_SUBMITTED
;
2723 build_data_key(tc
->td
, result
.block
, &key
);
2724 if (bio_detain(tc
->pool
, &key
, bio
, &data_cell
)) {
2725 cell_defer_no_holder(tc
, virt_cell
);
2726 return DM_MAPIO_SUBMITTED
;
2729 inc_all_io_entry(tc
->pool
, bio
);
2730 cell_defer_no_holder(tc
, data_cell
);
2731 cell_defer_no_holder(tc
, virt_cell
);
2733 remap(tc
, bio
, result
.block
);
2734 return DM_MAPIO_REMAPPED
;
2738 thin_defer_cell(tc
, virt_cell
);
2739 return DM_MAPIO_SUBMITTED
;
2743 * Must always call bio_io_error on failure.
2744 * dm_thin_find_block can fail with -EINVAL if the
2745 * pool is switched to fail-io mode.
2748 cell_defer_no_holder(tc
, virt_cell
);
2749 return DM_MAPIO_SUBMITTED
;
2753 static int pool_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
2755 struct pool_c
*pt
= container_of(cb
, struct pool_c
, callbacks
);
2756 struct request_queue
*q
;
2758 if (get_pool_mode(pt
->pool
) == PM_OUT_OF_DATA_SPACE
)
2761 q
= bdev_get_queue(pt
->data_dev
->bdev
);
2762 return bdi_congested(q
->backing_dev_info
, bdi_bits
);
2765 static void requeue_bios(struct pool
*pool
)
2767 unsigned long flags
;
2771 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
) {
2772 spin_lock_irqsave(&tc
->lock
, flags
);
2773 bio_list_merge(&tc
->deferred_bio_list
, &tc
->retry_on_resume_list
);
2774 bio_list_init(&tc
->retry_on_resume_list
);
2775 spin_unlock_irqrestore(&tc
->lock
, flags
);
2780 /*----------------------------------------------------------------
2781 * Binding of control targets to a pool object
2782 *--------------------------------------------------------------*/
2783 static bool data_dev_supports_discard(struct pool_c
*pt
)
2785 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
2787 return q
&& blk_queue_discard(q
);
2790 static bool is_factor(sector_t block_size
, uint32_t n
)
2792 return !sector_div(block_size
, n
);
2796 * If discard_passdown was enabled verify that the data device
2797 * supports discards. Disable discard_passdown if not.
2799 static void disable_passdown_if_not_supported(struct pool_c
*pt
)
2801 struct pool
*pool
= pt
->pool
;
2802 struct block_device
*data_bdev
= pt
->data_dev
->bdev
;
2803 struct queue_limits
*data_limits
= &bdev_get_queue(data_bdev
)->limits
;
2804 const char *reason
= NULL
;
2805 char buf
[BDEVNAME_SIZE
];
2807 if (!pt
->adjusted_pf
.discard_passdown
)
2810 if (!data_dev_supports_discard(pt
))
2811 reason
= "discard unsupported";
2813 else if (data_limits
->max_discard_sectors
< pool
->sectors_per_block
)
2814 reason
= "max discard sectors smaller than a block";
2817 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev
, buf
), reason
);
2818 pt
->adjusted_pf
.discard_passdown
= false;
2822 static int bind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2824 struct pool_c
*pt
= ti
->private;
2827 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2829 enum pool_mode old_mode
= get_pool_mode(pool
);
2830 enum pool_mode new_mode
= pt
->adjusted_pf
.mode
;
2833 * Don't change the pool's mode until set_pool_mode() below.
2834 * Otherwise the pool's process_* function pointers may
2835 * not match the desired pool mode.
2837 pt
->adjusted_pf
.mode
= old_mode
;
2840 pool
->pf
= pt
->adjusted_pf
;
2841 pool
->low_water_blocks
= pt
->low_water_blocks
;
2843 set_pool_mode(pool
, new_mode
);
2848 static void unbind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2854 /*----------------------------------------------------------------
2856 *--------------------------------------------------------------*/
2857 /* Initialize pool features. */
2858 static void pool_features_init(struct pool_features
*pf
)
2860 pf
->mode
= PM_WRITE
;
2861 pf
->zero_new_blocks
= true;
2862 pf
->discard_enabled
= true;
2863 pf
->discard_passdown
= true;
2864 pf
->error_if_no_space
= false;
2867 static void __pool_destroy(struct pool
*pool
)
2869 __pool_table_remove(pool
);
2871 vfree(pool
->cell_sort_array
);
2872 if (dm_pool_metadata_close(pool
->pmd
) < 0)
2873 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2875 dm_bio_prison_destroy(pool
->prison
);
2876 dm_kcopyd_client_destroy(pool
->copier
);
2879 destroy_workqueue(pool
->wq
);
2881 if (pool
->next_mapping
)
2882 mempool_free(pool
->next_mapping
, &pool
->mapping_pool
);
2883 mempool_exit(&pool
->mapping_pool
);
2884 dm_deferred_set_destroy(pool
->shared_read_ds
);
2885 dm_deferred_set_destroy(pool
->all_io_ds
);
2889 static struct kmem_cache
*_new_mapping_cache
;
2891 static struct pool
*pool_create(struct mapped_device
*pool_md
,
2892 struct block_device
*metadata_dev
,
2893 unsigned long block_size
,
2894 int read_only
, char **error
)
2899 struct dm_pool_metadata
*pmd
;
2900 bool format_device
= read_only
? false : true;
2902 pmd
= dm_pool_metadata_open(metadata_dev
, block_size
, format_device
);
2904 *error
= "Error creating metadata object";
2905 return (struct pool
*)pmd
;
2908 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2910 *error
= "Error allocating memory for pool";
2911 err_p
= ERR_PTR(-ENOMEM
);
2916 pool
->sectors_per_block
= block_size
;
2917 if (block_size
& (block_size
- 1))
2918 pool
->sectors_per_block_shift
= -1;
2920 pool
->sectors_per_block_shift
= __ffs(block_size
);
2921 pool
->low_water_blocks
= 0;
2922 pool_features_init(&pool
->pf
);
2923 pool
->prison
= dm_bio_prison_create();
2924 if (!pool
->prison
) {
2925 *error
= "Error creating pool's bio prison";
2926 err_p
= ERR_PTR(-ENOMEM
);
2930 pool
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
2931 if (IS_ERR(pool
->copier
)) {
2932 r
= PTR_ERR(pool
->copier
);
2933 *error
= "Error creating pool's kcopyd client";
2935 goto bad_kcopyd_client
;
2939 * Create singlethreaded workqueue that will service all devices
2940 * that use this metadata.
2942 pool
->wq
= alloc_ordered_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
);
2944 *error
= "Error creating pool's workqueue";
2945 err_p
= ERR_PTR(-ENOMEM
);
2949 throttle_init(&pool
->throttle
);
2950 INIT_WORK(&pool
->worker
, do_worker
);
2951 INIT_DELAYED_WORK(&pool
->waker
, do_waker
);
2952 INIT_DELAYED_WORK(&pool
->no_space_timeout
, do_no_space_timeout
);
2953 spin_lock_init(&pool
->lock
);
2954 bio_list_init(&pool
->deferred_flush_bios
);
2955 INIT_LIST_HEAD(&pool
->prepared_mappings
);
2956 INIT_LIST_HEAD(&pool
->prepared_discards
);
2957 INIT_LIST_HEAD(&pool
->prepared_discards_pt2
);
2958 INIT_LIST_HEAD(&pool
->active_thins
);
2959 pool
->low_water_triggered
= false;
2960 pool
->suspended
= true;
2961 pool
->out_of_data_space
= false;
2963 pool
->shared_read_ds
= dm_deferred_set_create();
2964 if (!pool
->shared_read_ds
) {
2965 *error
= "Error creating pool's shared read deferred set";
2966 err_p
= ERR_PTR(-ENOMEM
);
2967 goto bad_shared_read_ds
;
2970 pool
->all_io_ds
= dm_deferred_set_create();
2971 if (!pool
->all_io_ds
) {
2972 *error
= "Error creating pool's all io deferred set";
2973 err_p
= ERR_PTR(-ENOMEM
);
2977 pool
->next_mapping
= NULL
;
2978 r
= mempool_init_slab_pool(&pool
->mapping_pool
, MAPPING_POOL_SIZE
,
2979 _new_mapping_cache
);
2981 *error
= "Error creating pool's mapping mempool";
2983 goto bad_mapping_pool
;
2986 pool
->cell_sort_array
=
2987 vmalloc(array_size(CELL_SORT_ARRAY_SIZE
,
2988 sizeof(*pool
->cell_sort_array
)));
2989 if (!pool
->cell_sort_array
) {
2990 *error
= "Error allocating cell sort array";
2991 err_p
= ERR_PTR(-ENOMEM
);
2992 goto bad_sort_array
;
2995 pool
->ref_count
= 1;
2996 pool
->last_commit_jiffies
= jiffies
;
2997 pool
->pool_md
= pool_md
;
2998 pool
->md_dev
= metadata_dev
;
2999 __pool_table_insert(pool
);
3004 mempool_exit(&pool
->mapping_pool
);
3006 dm_deferred_set_destroy(pool
->all_io_ds
);
3008 dm_deferred_set_destroy(pool
->shared_read_ds
);
3010 destroy_workqueue(pool
->wq
);
3012 dm_kcopyd_client_destroy(pool
->copier
);
3014 dm_bio_prison_destroy(pool
->prison
);
3018 if (dm_pool_metadata_close(pmd
))
3019 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
3024 static void __pool_inc(struct pool
*pool
)
3026 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
3030 static void __pool_dec(struct pool
*pool
)
3032 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
3033 BUG_ON(!pool
->ref_count
);
3034 if (!--pool
->ref_count
)
3035 __pool_destroy(pool
);
3038 static struct pool
*__pool_find(struct mapped_device
*pool_md
,
3039 struct block_device
*metadata_dev
,
3040 unsigned long block_size
, int read_only
,
3041 char **error
, int *created
)
3043 struct pool
*pool
= __pool_table_lookup_metadata_dev(metadata_dev
);
3046 if (pool
->pool_md
!= pool_md
) {
3047 *error
= "metadata device already in use by a pool";
3048 return ERR_PTR(-EBUSY
);
3053 pool
= __pool_table_lookup(pool_md
);
3055 if (pool
->md_dev
!= metadata_dev
) {
3056 *error
= "different pool cannot replace a pool";
3057 return ERR_PTR(-EINVAL
);
3062 pool
= pool_create(pool_md
, metadata_dev
, block_size
, read_only
, error
);
3070 /*----------------------------------------------------------------
3071 * Pool target methods
3072 *--------------------------------------------------------------*/
3073 static void pool_dtr(struct dm_target
*ti
)
3075 struct pool_c
*pt
= ti
->private;
3077 mutex_lock(&dm_thin_pool_table
.mutex
);
3079 unbind_control_target(pt
->pool
, ti
);
3080 __pool_dec(pt
->pool
);
3081 dm_put_device(ti
, pt
->metadata_dev
);
3082 dm_put_device(ti
, pt
->data_dev
);
3085 mutex_unlock(&dm_thin_pool_table
.mutex
);
3088 static int parse_pool_features(struct dm_arg_set
*as
, struct pool_features
*pf
,
3089 struct dm_target
*ti
)
3093 const char *arg_name
;
3095 static const struct dm_arg _args
[] = {
3096 {0, 4, "Invalid number of pool feature arguments"},
3100 * No feature arguments supplied.
3105 r
= dm_read_arg_group(_args
, as
, &argc
, &ti
->error
);
3109 while (argc
&& !r
) {
3110 arg_name
= dm_shift_arg(as
);
3113 if (!strcasecmp(arg_name
, "skip_block_zeroing"))
3114 pf
->zero_new_blocks
= false;
3116 else if (!strcasecmp(arg_name
, "ignore_discard"))
3117 pf
->discard_enabled
= false;
3119 else if (!strcasecmp(arg_name
, "no_discard_passdown"))
3120 pf
->discard_passdown
= false;
3122 else if (!strcasecmp(arg_name
, "read_only"))
3123 pf
->mode
= PM_READ_ONLY
;
3125 else if (!strcasecmp(arg_name
, "error_if_no_space"))
3126 pf
->error_if_no_space
= true;
3129 ti
->error
= "Unrecognised pool feature requested";
3138 static void metadata_low_callback(void *context
)
3140 struct pool
*pool
= context
;
3142 DMWARN("%s: reached low water mark for metadata device: sending event.",
3143 dm_device_name(pool
->pool_md
));
3145 dm_table_event(pool
->ti
->table
);
3148 static sector_t
get_dev_size(struct block_device
*bdev
)
3150 return i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
3153 static void warn_if_metadata_device_too_big(struct block_device
*bdev
)
3155 sector_t metadata_dev_size
= get_dev_size(bdev
);
3156 char buffer
[BDEVNAME_SIZE
];
3158 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS_WARNING
)
3159 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3160 bdevname(bdev
, buffer
), THIN_METADATA_MAX_SECTORS
);
3163 static sector_t
get_metadata_dev_size(struct block_device
*bdev
)
3165 sector_t metadata_dev_size
= get_dev_size(bdev
);
3167 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS
)
3168 metadata_dev_size
= THIN_METADATA_MAX_SECTORS
;
3170 return metadata_dev_size
;
3173 static dm_block_t
get_metadata_dev_size_in_blocks(struct block_device
*bdev
)
3175 sector_t metadata_dev_size
= get_metadata_dev_size(bdev
);
3177 sector_div(metadata_dev_size
, THIN_METADATA_BLOCK_SIZE
);
3179 return metadata_dev_size
;
3183 * When a metadata threshold is crossed a dm event is triggered, and
3184 * userland should respond by growing the metadata device. We could let
3185 * userland set the threshold, like we do with the data threshold, but I'm
3186 * not sure they know enough to do this well.
3188 static dm_block_t
calc_metadata_threshold(struct pool_c
*pt
)
3191 * 4M is ample for all ops with the possible exception of thin
3192 * device deletion which is harmless if it fails (just retry the
3193 * delete after you've grown the device).
3195 dm_block_t quarter
= get_metadata_dev_size_in_blocks(pt
->metadata_dev
->bdev
) / 4;
3196 return min((dm_block_t
)1024ULL /* 4M */, quarter
);
3200 * thin-pool <metadata dev> <data dev>
3201 * <data block size (sectors)>
3202 * <low water mark (blocks)>
3203 * [<#feature args> [<arg>]*]
3205 * Optional feature arguments are:
3206 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3207 * ignore_discard: disable discard
3208 * no_discard_passdown: don't pass discards down to the data device
3209 * read_only: Don't allow any changes to be made to the pool metadata.
3210 * error_if_no_space: error IOs, instead of queueing, if no space.
3212 static int pool_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
3214 int r
, pool_created
= 0;
3217 struct pool_features pf
;
3218 struct dm_arg_set as
;
3219 struct dm_dev
*data_dev
;
3220 unsigned long block_size
;
3221 dm_block_t low_water_blocks
;
3222 struct dm_dev
*metadata_dev
;
3223 fmode_t metadata_mode
;
3226 * FIXME Remove validation from scope of lock.
3228 mutex_lock(&dm_thin_pool_table
.mutex
);
3231 ti
->error
= "Invalid argument count";
3240 * Set default pool features.
3242 pool_features_init(&pf
);
3244 dm_consume_args(&as
, 4);
3245 r
= parse_pool_features(&as
, &pf
, ti
);
3249 metadata_mode
= FMODE_READ
| ((pf
.mode
== PM_READ_ONLY
) ? 0 : FMODE_WRITE
);
3250 r
= dm_get_device(ti
, argv
[0], metadata_mode
, &metadata_dev
);
3252 ti
->error
= "Error opening metadata block device";
3255 warn_if_metadata_device_too_big(metadata_dev
->bdev
);
3257 r
= dm_get_device(ti
, argv
[1], FMODE_READ
| FMODE_WRITE
, &data_dev
);
3259 ti
->error
= "Error getting data device";
3263 if (kstrtoul(argv
[2], 10, &block_size
) || !block_size
||
3264 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
3265 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
3266 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
3267 ti
->error
= "Invalid block size";
3272 if (kstrtoull(argv
[3], 10, (unsigned long long *)&low_water_blocks
)) {
3273 ti
->error
= "Invalid low water mark";
3278 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
3284 pool
= __pool_find(dm_table_get_md(ti
->table
), metadata_dev
->bdev
,
3285 block_size
, pf
.mode
== PM_READ_ONLY
, &ti
->error
, &pool_created
);
3292 * 'pool_created' reflects whether this is the first table load.
3293 * Top level discard support is not allowed to be changed after
3294 * initial load. This would require a pool reload to trigger thin
3297 if (!pool_created
&& pf
.discard_enabled
!= pool
->pf
.discard_enabled
) {
3298 ti
->error
= "Discard support cannot be disabled once enabled";
3300 goto out_flags_changed
;
3305 pt
->metadata_dev
= metadata_dev
;
3306 pt
->data_dev
= data_dev
;
3307 pt
->low_water_blocks
= low_water_blocks
;
3308 pt
->adjusted_pf
= pt
->requested_pf
= pf
;
3309 ti
->num_flush_bios
= 1;
3312 * Only need to enable discards if the pool should pass
3313 * them down to the data device. The thin device's discard
3314 * processing will cause mappings to be removed from the btree.
3316 if (pf
.discard_enabled
&& pf
.discard_passdown
) {
3317 ti
->num_discard_bios
= 1;
3320 * Setting 'discards_supported' circumvents the normal
3321 * stacking of discard limits (this keeps the pool and
3322 * thin devices' discard limits consistent).
3324 ti
->discards_supported
= true;
3328 r
= dm_pool_register_metadata_threshold(pt
->pool
->pmd
,
3329 calc_metadata_threshold(pt
),
3330 metadata_low_callback
,
3333 goto out_flags_changed
;
3335 pt
->callbacks
.congested_fn
= pool_is_congested
;
3336 dm_table_add_target_callbacks(ti
->table
, &pt
->callbacks
);
3338 mutex_unlock(&dm_thin_pool_table
.mutex
);
3347 dm_put_device(ti
, data_dev
);
3349 dm_put_device(ti
, metadata_dev
);
3351 mutex_unlock(&dm_thin_pool_table
.mutex
);
3356 static int pool_map(struct dm_target
*ti
, struct bio
*bio
)
3359 struct pool_c
*pt
= ti
->private;
3360 struct pool
*pool
= pt
->pool
;
3361 unsigned long flags
;
3364 * As this is a singleton target, ti->begin is always zero.
3366 spin_lock_irqsave(&pool
->lock
, flags
);
3367 bio_set_dev(bio
, pt
->data_dev
->bdev
);
3368 r
= DM_MAPIO_REMAPPED
;
3369 spin_unlock_irqrestore(&pool
->lock
, flags
);
3374 static int maybe_resize_data_dev(struct dm_target
*ti
, bool *need_commit
)
3377 struct pool_c
*pt
= ti
->private;
3378 struct pool
*pool
= pt
->pool
;
3379 sector_t data_size
= ti
->len
;
3380 dm_block_t sb_data_size
;
3382 *need_commit
= false;
3384 (void) sector_div(data_size
, pool
->sectors_per_block
);
3386 r
= dm_pool_get_data_dev_size(pool
->pmd
, &sb_data_size
);
3388 DMERR("%s: failed to retrieve data device size",
3389 dm_device_name(pool
->pool_md
));
3393 if (data_size
< sb_data_size
) {
3394 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3395 dm_device_name(pool
->pool_md
),
3396 (unsigned long long)data_size
, sb_data_size
);
3399 } else if (data_size
> sb_data_size
) {
3400 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3401 DMERR("%s: unable to grow the data device until repaired.",
3402 dm_device_name(pool
->pool_md
));
3407 DMINFO("%s: growing the data device from %llu to %llu blocks",
3408 dm_device_name(pool
->pool_md
),
3409 sb_data_size
, (unsigned long long)data_size
);
3410 r
= dm_pool_resize_data_dev(pool
->pmd
, data_size
);
3412 metadata_operation_failed(pool
, "dm_pool_resize_data_dev", r
);
3416 *need_commit
= true;
3422 static int maybe_resize_metadata_dev(struct dm_target
*ti
, bool *need_commit
)
3425 struct pool_c
*pt
= ti
->private;
3426 struct pool
*pool
= pt
->pool
;
3427 dm_block_t metadata_dev_size
, sb_metadata_dev_size
;
3429 *need_commit
= false;
3431 metadata_dev_size
= get_metadata_dev_size_in_blocks(pool
->md_dev
);
3433 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &sb_metadata_dev_size
);
3435 DMERR("%s: failed to retrieve metadata device size",
3436 dm_device_name(pool
->pool_md
));
3440 if (metadata_dev_size
< sb_metadata_dev_size
) {
3441 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3442 dm_device_name(pool
->pool_md
),
3443 metadata_dev_size
, sb_metadata_dev_size
);
3446 } else if (metadata_dev_size
> sb_metadata_dev_size
) {
3447 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3448 DMERR("%s: unable to grow the metadata device until repaired.",
3449 dm_device_name(pool
->pool_md
));
3453 warn_if_metadata_device_too_big(pool
->md_dev
);
3454 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3455 dm_device_name(pool
->pool_md
),
3456 sb_metadata_dev_size
, metadata_dev_size
);
3458 if (get_pool_mode(pool
) == PM_OUT_OF_METADATA_SPACE
)
3459 set_pool_mode(pool
, PM_WRITE
);
3461 r
= dm_pool_resize_metadata_dev(pool
->pmd
, metadata_dev_size
);
3463 metadata_operation_failed(pool
, "dm_pool_resize_metadata_dev", r
);
3467 *need_commit
= true;
3474 * Retrieves the number of blocks of the data device from
3475 * the superblock and compares it to the actual device size,
3476 * thus resizing the data device in case it has grown.
3478 * This both copes with opening preallocated data devices in the ctr
3479 * being followed by a resume
3481 * calling the resume method individually after userspace has
3482 * grown the data device in reaction to a table event.
3484 static int pool_preresume(struct dm_target
*ti
)
3487 bool need_commit1
, need_commit2
;
3488 struct pool_c
*pt
= ti
->private;
3489 struct pool
*pool
= pt
->pool
;
3492 * Take control of the pool object.
3494 r
= bind_control_target(pool
, ti
);
3498 r
= maybe_resize_data_dev(ti
, &need_commit1
);
3502 r
= maybe_resize_metadata_dev(ti
, &need_commit2
);
3506 if (need_commit1
|| need_commit2
)
3507 (void) commit(pool
);
3512 static void pool_suspend_active_thins(struct pool
*pool
)
3516 /* Suspend all active thin devices */
3517 tc
= get_first_thin(pool
);
3519 dm_internal_suspend_noflush(tc
->thin_md
);
3520 tc
= get_next_thin(pool
, tc
);
3524 static void pool_resume_active_thins(struct pool
*pool
)
3528 /* Resume all active thin devices */
3529 tc
= get_first_thin(pool
);
3531 dm_internal_resume(tc
->thin_md
);
3532 tc
= get_next_thin(pool
, tc
);
3536 static void pool_resume(struct dm_target
*ti
)
3538 struct pool_c
*pt
= ti
->private;
3539 struct pool
*pool
= pt
->pool
;
3540 unsigned long flags
;
3543 * Must requeue active_thins' bios and then resume
3544 * active_thins _before_ clearing 'suspend' flag.
3547 pool_resume_active_thins(pool
);
3549 spin_lock_irqsave(&pool
->lock
, flags
);
3550 pool
->low_water_triggered
= false;
3551 pool
->suspended
= false;
3552 spin_unlock_irqrestore(&pool
->lock
, flags
);
3554 do_waker(&pool
->waker
.work
);
3557 static void pool_presuspend(struct dm_target
*ti
)
3559 struct pool_c
*pt
= ti
->private;
3560 struct pool
*pool
= pt
->pool
;
3561 unsigned long flags
;
3563 spin_lock_irqsave(&pool
->lock
, flags
);
3564 pool
->suspended
= true;
3565 spin_unlock_irqrestore(&pool
->lock
, flags
);
3567 pool_suspend_active_thins(pool
);
3570 static void pool_presuspend_undo(struct dm_target
*ti
)
3572 struct pool_c
*pt
= ti
->private;
3573 struct pool
*pool
= pt
->pool
;
3574 unsigned long flags
;
3576 pool_resume_active_thins(pool
);
3578 spin_lock_irqsave(&pool
->lock
, flags
);
3579 pool
->suspended
= false;
3580 spin_unlock_irqrestore(&pool
->lock
, flags
);
3583 static void pool_postsuspend(struct dm_target
*ti
)
3585 struct pool_c
*pt
= ti
->private;
3586 struct pool
*pool
= pt
->pool
;
3588 cancel_delayed_work_sync(&pool
->waker
);
3589 cancel_delayed_work_sync(&pool
->no_space_timeout
);
3590 flush_workqueue(pool
->wq
);
3591 (void) commit(pool
);
3594 static int check_arg_count(unsigned argc
, unsigned args_required
)
3596 if (argc
!= args_required
) {
3597 DMWARN("Message received with %u arguments instead of %u.",
3598 argc
, args_required
);
3605 static int read_dev_id(char *arg
, dm_thin_id
*dev_id
, int warning
)
3607 if (!kstrtoull(arg
, 10, (unsigned long long *)dev_id
) &&
3608 *dev_id
<= MAX_DEV_ID
)
3612 DMWARN("Message received with invalid device id: %s", arg
);
3617 static int process_create_thin_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3622 r
= check_arg_count(argc
, 2);
3626 r
= read_dev_id(argv
[1], &dev_id
, 1);
3630 r
= dm_pool_create_thin(pool
->pmd
, dev_id
);
3632 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3640 static int process_create_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3643 dm_thin_id origin_dev_id
;
3646 r
= check_arg_count(argc
, 3);
3650 r
= read_dev_id(argv
[1], &dev_id
, 1);
3654 r
= read_dev_id(argv
[2], &origin_dev_id
, 1);
3658 r
= dm_pool_create_snap(pool
->pmd
, dev_id
, origin_dev_id
);
3660 DMWARN("Creation of new snapshot %s of device %s failed.",
3668 static int process_delete_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3673 r
= check_arg_count(argc
, 2);
3677 r
= read_dev_id(argv
[1], &dev_id
, 1);
3681 r
= dm_pool_delete_thin_device(pool
->pmd
, dev_id
);
3683 DMWARN("Deletion of thin device %s failed.", argv
[1]);
3688 static int process_set_transaction_id_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3690 dm_thin_id old_id
, new_id
;
3693 r
= check_arg_count(argc
, 3);
3697 if (kstrtoull(argv
[1], 10, (unsigned long long *)&old_id
)) {
3698 DMWARN("set_transaction_id message: Unrecognised id %s.", argv
[1]);
3702 if (kstrtoull(argv
[2], 10, (unsigned long long *)&new_id
)) {
3703 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv
[2]);
3707 r
= dm_pool_set_metadata_transaction_id(pool
->pmd
, old_id
, new_id
);
3709 DMWARN("Failed to change transaction id from %s to %s.",
3717 static int process_reserve_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3721 r
= check_arg_count(argc
, 1);
3725 (void) commit(pool
);
3727 r
= dm_pool_reserve_metadata_snap(pool
->pmd
);
3729 DMWARN("reserve_metadata_snap message failed.");
3734 static int process_release_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3738 r
= check_arg_count(argc
, 1);
3742 r
= dm_pool_release_metadata_snap(pool
->pmd
);
3744 DMWARN("release_metadata_snap message failed.");
3750 * Messages supported:
3751 * create_thin <dev_id>
3752 * create_snap <dev_id> <origin_id>
3754 * set_transaction_id <current_trans_id> <new_trans_id>
3755 * reserve_metadata_snap
3756 * release_metadata_snap
3758 static int pool_message(struct dm_target
*ti
, unsigned argc
, char **argv
,
3759 char *result
, unsigned maxlen
)
3762 struct pool_c
*pt
= ti
->private;
3763 struct pool
*pool
= pt
->pool
;
3765 if (get_pool_mode(pool
) >= PM_OUT_OF_METADATA_SPACE
) {
3766 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3767 dm_device_name(pool
->pool_md
));
3771 if (!strcasecmp(argv
[0], "create_thin"))
3772 r
= process_create_thin_mesg(argc
, argv
, pool
);
3774 else if (!strcasecmp(argv
[0], "create_snap"))
3775 r
= process_create_snap_mesg(argc
, argv
, pool
);
3777 else if (!strcasecmp(argv
[0], "delete"))
3778 r
= process_delete_mesg(argc
, argv
, pool
);
3780 else if (!strcasecmp(argv
[0], "set_transaction_id"))
3781 r
= process_set_transaction_id_mesg(argc
, argv
, pool
);
3783 else if (!strcasecmp(argv
[0], "reserve_metadata_snap"))
3784 r
= process_reserve_metadata_snap_mesg(argc
, argv
, pool
);
3786 else if (!strcasecmp(argv
[0], "release_metadata_snap"))
3787 r
= process_release_metadata_snap_mesg(argc
, argv
, pool
);
3790 DMWARN("Unrecognised thin pool target message received: %s", argv
[0]);
3793 (void) commit(pool
);
3798 static void emit_flags(struct pool_features
*pf
, char *result
,
3799 unsigned sz
, unsigned maxlen
)
3801 unsigned count
= !pf
->zero_new_blocks
+ !pf
->discard_enabled
+
3802 !pf
->discard_passdown
+ (pf
->mode
== PM_READ_ONLY
) +
3803 pf
->error_if_no_space
;
3804 DMEMIT("%u ", count
);
3806 if (!pf
->zero_new_blocks
)
3807 DMEMIT("skip_block_zeroing ");
3809 if (!pf
->discard_enabled
)
3810 DMEMIT("ignore_discard ");
3812 if (!pf
->discard_passdown
)
3813 DMEMIT("no_discard_passdown ");
3815 if (pf
->mode
== PM_READ_ONLY
)
3816 DMEMIT("read_only ");
3818 if (pf
->error_if_no_space
)
3819 DMEMIT("error_if_no_space ");
3824 * <transaction id> <used metadata sectors>/<total metadata sectors>
3825 * <used data sectors>/<total data sectors> <held metadata root>
3826 * <pool mode> <discard config> <no space config> <needs_check>
3828 static void pool_status(struct dm_target
*ti
, status_type_t type
,
3829 unsigned status_flags
, char *result
, unsigned maxlen
)
3833 uint64_t transaction_id
;
3834 dm_block_t nr_free_blocks_data
;
3835 dm_block_t nr_free_blocks_metadata
;
3836 dm_block_t nr_blocks_data
;
3837 dm_block_t nr_blocks_metadata
;
3838 dm_block_t held_root
;
3839 enum pool_mode mode
;
3840 char buf
[BDEVNAME_SIZE
];
3841 char buf2
[BDEVNAME_SIZE
];
3842 struct pool_c
*pt
= ti
->private;
3843 struct pool
*pool
= pt
->pool
;
3846 case STATUSTYPE_INFO
:
3847 if (get_pool_mode(pool
) == PM_FAIL
) {
3852 /* Commit to ensure statistics aren't out-of-date */
3853 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
3854 (void) commit(pool
);
3856 r
= dm_pool_get_metadata_transaction_id(pool
->pmd
, &transaction_id
);
3858 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3859 dm_device_name(pool
->pool_md
), r
);
3863 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free_blocks_metadata
);
3865 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3866 dm_device_name(pool
->pool_md
), r
);
3870 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &nr_blocks_metadata
);
3872 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3873 dm_device_name(pool
->pool_md
), r
);
3877 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free_blocks_data
);
3879 DMERR("%s: dm_pool_get_free_block_count returned %d",
3880 dm_device_name(pool
->pool_md
), r
);
3884 r
= dm_pool_get_data_dev_size(pool
->pmd
, &nr_blocks_data
);
3886 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3887 dm_device_name(pool
->pool_md
), r
);
3891 r
= dm_pool_get_metadata_snap(pool
->pmd
, &held_root
);
3893 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3894 dm_device_name(pool
->pool_md
), r
);
3898 DMEMIT("%llu %llu/%llu %llu/%llu ",
3899 (unsigned long long)transaction_id
,
3900 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
3901 (unsigned long long)nr_blocks_metadata
,
3902 (unsigned long long)(nr_blocks_data
- nr_free_blocks_data
),
3903 (unsigned long long)nr_blocks_data
);
3906 DMEMIT("%llu ", held_root
);
3910 mode
= get_pool_mode(pool
);
3911 if (mode
== PM_OUT_OF_DATA_SPACE
)
3912 DMEMIT("out_of_data_space ");
3913 else if (is_read_only_pool_mode(mode
))
3918 if (!pool
->pf
.discard_enabled
)
3919 DMEMIT("ignore_discard ");
3920 else if (pool
->pf
.discard_passdown
)
3921 DMEMIT("discard_passdown ");
3923 DMEMIT("no_discard_passdown ");
3925 if (pool
->pf
.error_if_no_space
)
3926 DMEMIT("error_if_no_space ");
3928 DMEMIT("queue_if_no_space ");
3930 if (dm_pool_metadata_needs_check(pool
->pmd
))
3931 DMEMIT("needs_check ");
3935 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt
));
3939 case STATUSTYPE_TABLE
:
3940 DMEMIT("%s %s %lu %llu ",
3941 format_dev_t(buf
, pt
->metadata_dev
->bdev
->bd_dev
),
3942 format_dev_t(buf2
, pt
->data_dev
->bdev
->bd_dev
),
3943 (unsigned long)pool
->sectors_per_block
,
3944 (unsigned long long)pt
->low_water_blocks
);
3945 emit_flags(&pt
->requested_pf
, result
, sz
, maxlen
);
3954 static int pool_iterate_devices(struct dm_target
*ti
,
3955 iterate_devices_callout_fn fn
, void *data
)
3957 struct pool_c
*pt
= ti
->private;
3959 return fn(ti
, pt
->data_dev
, 0, ti
->len
, data
);
3962 static void pool_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3964 struct pool_c
*pt
= ti
->private;
3965 struct pool
*pool
= pt
->pool
;
3966 sector_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
3969 * If max_sectors is smaller than pool->sectors_per_block adjust it
3970 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3971 * This is especially beneficial when the pool's data device is a RAID
3972 * device that has a full stripe width that matches pool->sectors_per_block
3973 * -- because even though partial RAID stripe-sized IOs will be issued to a
3974 * single RAID stripe; when aggregated they will end on a full RAID stripe
3975 * boundary.. which avoids additional partial RAID stripe writes cascading
3977 if (limits
->max_sectors
< pool
->sectors_per_block
) {
3978 while (!is_factor(pool
->sectors_per_block
, limits
->max_sectors
)) {
3979 if ((limits
->max_sectors
& (limits
->max_sectors
- 1)) == 0)
3980 limits
->max_sectors
--;
3981 limits
->max_sectors
= rounddown_pow_of_two(limits
->max_sectors
);
3986 * If the system-determined stacked limits are compatible with the
3987 * pool's blocksize (io_opt is a factor) do not override them.
3989 if (io_opt_sectors
< pool
->sectors_per_block
||
3990 !is_factor(io_opt_sectors
, pool
->sectors_per_block
)) {
3991 if (is_factor(pool
->sectors_per_block
, limits
->max_sectors
))
3992 blk_limits_io_min(limits
, limits
->max_sectors
<< SECTOR_SHIFT
);
3994 blk_limits_io_min(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
3995 blk_limits_io_opt(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
3999 * pt->adjusted_pf is a staging area for the actual features to use.
4000 * They get transferred to the live pool in bind_control_target()
4001 * called from pool_preresume().
4003 if (!pt
->adjusted_pf
.discard_enabled
) {
4005 * Must explicitly disallow stacking discard limits otherwise the
4006 * block layer will stack them if pool's data device has support.
4007 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4008 * user to see that, so make sure to set all discard limits to 0.
4010 limits
->discard_granularity
= 0;
4014 disable_passdown_if_not_supported(pt
);
4017 * The pool uses the same discard limits as the underlying data
4018 * device. DM core has already set this up.
4022 static struct target_type pool_target
= {
4023 .name
= "thin-pool",
4024 .features
= DM_TARGET_SINGLETON
| DM_TARGET_ALWAYS_WRITEABLE
|
4025 DM_TARGET_IMMUTABLE
,
4026 .version
= {1, 20, 0},
4027 .module
= THIS_MODULE
,
4031 .presuspend
= pool_presuspend
,
4032 .presuspend_undo
= pool_presuspend_undo
,
4033 .postsuspend
= pool_postsuspend
,
4034 .preresume
= pool_preresume
,
4035 .resume
= pool_resume
,
4036 .message
= pool_message
,
4037 .status
= pool_status
,
4038 .iterate_devices
= pool_iterate_devices
,
4039 .io_hints
= pool_io_hints
,
4042 /*----------------------------------------------------------------
4043 * Thin target methods
4044 *--------------------------------------------------------------*/
4045 static void thin_get(struct thin_c
*tc
)
4047 atomic_inc(&tc
->refcount
);
4050 static void thin_put(struct thin_c
*tc
)
4052 if (atomic_dec_and_test(&tc
->refcount
))
4053 complete(&tc
->can_destroy
);
4056 static void thin_dtr(struct dm_target
*ti
)
4058 struct thin_c
*tc
= ti
->private;
4059 unsigned long flags
;
4061 spin_lock_irqsave(&tc
->pool
->lock
, flags
);
4062 list_del_rcu(&tc
->list
);
4063 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
4067 wait_for_completion(&tc
->can_destroy
);
4069 mutex_lock(&dm_thin_pool_table
.mutex
);
4071 __pool_dec(tc
->pool
);
4072 dm_pool_close_thin_device(tc
->td
);
4073 dm_put_device(ti
, tc
->pool_dev
);
4075 dm_put_device(ti
, tc
->origin_dev
);
4078 mutex_unlock(&dm_thin_pool_table
.mutex
);
4082 * Thin target parameters:
4084 * <pool_dev> <dev_id> [origin_dev]
4086 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4087 * dev_id: the internal device identifier
4088 * origin_dev: a device external to the pool that should act as the origin
4090 * If the pool device has discards disabled, they get disabled for the thin
4093 static int thin_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
4097 struct dm_dev
*pool_dev
, *origin_dev
;
4098 struct mapped_device
*pool_md
;
4099 unsigned long flags
;
4101 mutex_lock(&dm_thin_pool_table
.mutex
);
4103 if (argc
!= 2 && argc
!= 3) {
4104 ti
->error
= "Invalid argument count";
4109 tc
= ti
->private = kzalloc(sizeof(*tc
), GFP_KERNEL
);
4111 ti
->error
= "Out of memory";
4115 tc
->thin_md
= dm_table_get_md(ti
->table
);
4116 spin_lock_init(&tc
->lock
);
4117 INIT_LIST_HEAD(&tc
->deferred_cells
);
4118 bio_list_init(&tc
->deferred_bio_list
);
4119 bio_list_init(&tc
->retry_on_resume_list
);
4120 tc
->sort_bio_list
= RB_ROOT
;
4123 r
= dm_get_device(ti
, argv
[2], FMODE_READ
, &origin_dev
);
4125 ti
->error
= "Error opening origin device";
4126 goto bad_origin_dev
;
4128 tc
->origin_dev
= origin_dev
;
4131 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &pool_dev
);
4133 ti
->error
= "Error opening pool device";
4136 tc
->pool_dev
= pool_dev
;
4138 if (read_dev_id(argv
[1], (unsigned long long *)&tc
->dev_id
, 0)) {
4139 ti
->error
= "Invalid device id";
4144 pool_md
= dm_get_md(tc
->pool_dev
->bdev
->bd_dev
);
4146 ti
->error
= "Couldn't get pool mapped device";
4151 tc
->pool
= __pool_table_lookup(pool_md
);
4153 ti
->error
= "Couldn't find pool object";
4155 goto bad_pool_lookup
;
4157 __pool_inc(tc
->pool
);
4159 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4160 ti
->error
= "Couldn't open thin device, Pool is in fail mode";
4165 r
= dm_pool_open_thin_device(tc
->pool
->pmd
, tc
->dev_id
, &tc
->td
);
4167 ti
->error
= "Couldn't open thin internal device";
4171 r
= dm_set_target_max_io_len(ti
, tc
->pool
->sectors_per_block
);
4175 ti
->num_flush_bios
= 1;
4176 ti
->flush_supported
= true;
4177 ti
->per_io_data_size
= sizeof(struct dm_thin_endio_hook
);
4179 /* In case the pool supports discards, pass them on. */
4180 if (tc
->pool
->pf
.discard_enabled
) {
4181 ti
->discards_supported
= true;
4182 ti
->num_discard_bios
= 1;
4183 ti
->split_discard_bios
= false;
4186 mutex_unlock(&dm_thin_pool_table
.mutex
);
4188 spin_lock_irqsave(&tc
->pool
->lock
, flags
);
4189 if (tc
->pool
->suspended
) {
4190 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
4191 mutex_lock(&dm_thin_pool_table
.mutex
); /* reacquire for __pool_dec */
4192 ti
->error
= "Unable to activate thin device while pool is suspended";
4196 atomic_set(&tc
->refcount
, 1);
4197 init_completion(&tc
->can_destroy
);
4198 list_add_tail_rcu(&tc
->list
, &tc
->pool
->active_thins
);
4199 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
4201 * This synchronize_rcu() call is needed here otherwise we risk a
4202 * wake_worker() call finding no bios to process (because the newly
4203 * added tc isn't yet visible). So this reduces latency since we
4204 * aren't then dependent on the periodic commit to wake_worker().
4213 dm_pool_close_thin_device(tc
->td
);
4215 __pool_dec(tc
->pool
);
4219 dm_put_device(ti
, tc
->pool_dev
);
4222 dm_put_device(ti
, tc
->origin_dev
);
4226 mutex_unlock(&dm_thin_pool_table
.mutex
);
4231 static int thin_map(struct dm_target
*ti
, struct bio
*bio
)
4233 bio
->bi_iter
.bi_sector
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
4235 return thin_bio_map(ti
, bio
);
4238 static int thin_endio(struct dm_target
*ti
, struct bio
*bio
,
4241 unsigned long flags
;
4242 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
4243 struct list_head work
;
4244 struct dm_thin_new_mapping
*m
, *tmp
;
4245 struct pool
*pool
= h
->tc
->pool
;
4247 if (h
->shared_read_entry
) {
4248 INIT_LIST_HEAD(&work
);
4249 dm_deferred_entry_dec(h
->shared_read_entry
, &work
);
4251 spin_lock_irqsave(&pool
->lock
, flags
);
4252 list_for_each_entry_safe(m
, tmp
, &work
, list
) {
4254 __complete_mapping_preparation(m
);
4256 spin_unlock_irqrestore(&pool
->lock
, flags
);
4259 if (h
->all_io_entry
) {
4260 INIT_LIST_HEAD(&work
);
4261 dm_deferred_entry_dec(h
->all_io_entry
, &work
);
4262 if (!list_empty(&work
)) {
4263 spin_lock_irqsave(&pool
->lock
, flags
);
4264 list_for_each_entry_safe(m
, tmp
, &work
, list
)
4265 list_add_tail(&m
->list
, &pool
->prepared_discards
);
4266 spin_unlock_irqrestore(&pool
->lock
, flags
);
4272 cell_defer_no_holder(h
->tc
, h
->cell
);
4274 return DM_ENDIO_DONE
;
4277 static void thin_presuspend(struct dm_target
*ti
)
4279 struct thin_c
*tc
= ti
->private;
4281 if (dm_noflush_suspending(ti
))
4282 noflush_work(tc
, do_noflush_start
);
4285 static void thin_postsuspend(struct dm_target
*ti
)
4287 struct thin_c
*tc
= ti
->private;
4290 * The dm_noflush_suspending flag has been cleared by now, so
4291 * unfortunately we must always run this.
4293 noflush_work(tc
, do_noflush_stop
);
4296 static int thin_preresume(struct dm_target
*ti
)
4298 struct thin_c
*tc
= ti
->private;
4301 tc
->origin_size
= get_dev_size(tc
->origin_dev
->bdev
);
4307 * <nr mapped sectors> <highest mapped sector>
4309 static void thin_status(struct dm_target
*ti
, status_type_t type
,
4310 unsigned status_flags
, char *result
, unsigned maxlen
)
4314 dm_block_t mapped
, highest
;
4315 char buf
[BDEVNAME_SIZE
];
4316 struct thin_c
*tc
= ti
->private;
4318 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4327 case STATUSTYPE_INFO
:
4328 r
= dm_thin_get_mapped_count(tc
->td
, &mapped
);
4330 DMERR("dm_thin_get_mapped_count returned %d", r
);
4334 r
= dm_thin_get_highest_mapped_block(tc
->td
, &highest
);
4336 DMERR("dm_thin_get_highest_mapped_block returned %d", r
);
4340 DMEMIT("%llu ", mapped
* tc
->pool
->sectors_per_block
);
4342 DMEMIT("%llu", ((highest
+ 1) *
4343 tc
->pool
->sectors_per_block
) - 1);
4348 case STATUSTYPE_TABLE
:
4350 format_dev_t(buf
, tc
->pool_dev
->bdev
->bd_dev
),
4351 (unsigned long) tc
->dev_id
);
4353 DMEMIT(" %s", format_dev_t(buf
, tc
->origin_dev
->bdev
->bd_dev
));
4364 static int thin_iterate_devices(struct dm_target
*ti
,
4365 iterate_devices_callout_fn fn
, void *data
)
4368 struct thin_c
*tc
= ti
->private;
4369 struct pool
*pool
= tc
->pool
;
4372 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4373 * we follow a more convoluted path through to the pool's target.
4376 return 0; /* nothing is bound */
4378 blocks
= pool
->ti
->len
;
4379 (void) sector_div(blocks
, pool
->sectors_per_block
);
4381 return fn(ti
, tc
->pool_dev
, 0, pool
->sectors_per_block
* blocks
, data
);
4386 static void thin_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
4388 struct thin_c
*tc
= ti
->private;
4389 struct pool
*pool
= tc
->pool
;
4391 if (!pool
->pf
.discard_enabled
)
4394 limits
->discard_granularity
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
4395 limits
->max_discard_sectors
= 2048 * 1024 * 16; /* 16G */
4398 static struct target_type thin_target
= {
4400 .version
= {1, 20, 0},
4401 .module
= THIS_MODULE
,
4405 .end_io
= thin_endio
,
4406 .preresume
= thin_preresume
,
4407 .presuspend
= thin_presuspend
,
4408 .postsuspend
= thin_postsuspend
,
4409 .status
= thin_status
,
4410 .iterate_devices
= thin_iterate_devices
,
4411 .io_hints
= thin_io_hints
,
4414 /*----------------------------------------------------------------*/
4416 static int __init
dm_thin_init(void)
4422 _new_mapping_cache
= KMEM_CACHE(dm_thin_new_mapping
, 0);
4423 if (!_new_mapping_cache
)
4426 r
= dm_register_target(&thin_target
);
4428 goto bad_new_mapping_cache
;
4430 r
= dm_register_target(&pool_target
);
4432 goto bad_thin_target
;
4437 dm_unregister_target(&thin_target
);
4438 bad_new_mapping_cache
:
4439 kmem_cache_destroy(_new_mapping_cache
);
4444 static void dm_thin_exit(void)
4446 dm_unregister_target(&thin_target
);
4447 dm_unregister_target(&pool_target
);
4449 kmem_cache_destroy(_new_mapping_cache
);
4454 module_init(dm_thin_init
);
4455 module_exit(dm_thin_exit
);
4457 module_param_named(no_space_timeout
, no_space_timeout_secs
, uint
, S_IRUGO
| S_IWUSR
);
4458 MODULE_PARM_DESC(no_space_timeout
, "Out of data space queue IO timeout in seconds");
4460 MODULE_DESCRIPTION(DM_NAME
" thin provisioning target");
4461 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4462 MODULE_LICENSE("GPL");