2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
59 #include <trace/events/block.h>
60 #include <linux/list_sort.h>
65 #include "md-bitmap.h"
66 #include "raid5-log.h"
68 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
70 #define cpu_to_group(cpu) cpu_to_node(cpu)
71 #define ANY_GROUP NUMA_NO_NODE
73 static bool devices_handle_discard_safely
= false;
74 module_param(devices_handle_discard_safely
, bool, 0644);
75 MODULE_PARM_DESC(devices_handle_discard_safely
,
76 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
77 static struct workqueue_struct
*raid5_wq
;
79 static inline struct hlist_head
*stripe_hash(struct r5conf
*conf
, sector_t sect
)
81 int hash
= (sect
>> STRIPE_SHIFT
) & HASH_MASK
;
82 return &conf
->stripe_hashtbl
[hash
];
85 static inline int stripe_hash_locks_hash(sector_t sect
)
87 return (sect
>> STRIPE_SHIFT
) & STRIPE_HASH_LOCKS_MASK
;
90 static inline void lock_device_hash_lock(struct r5conf
*conf
, int hash
)
92 spin_lock_irq(conf
->hash_locks
+ hash
);
93 spin_lock(&conf
->device_lock
);
96 static inline void unlock_device_hash_lock(struct r5conf
*conf
, int hash
)
98 spin_unlock(&conf
->device_lock
);
99 spin_unlock_irq(conf
->hash_locks
+ hash
);
102 static inline void lock_all_device_hash_locks_irq(struct r5conf
*conf
)
105 spin_lock_irq(conf
->hash_locks
);
106 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
107 spin_lock_nest_lock(conf
->hash_locks
+ i
, conf
->hash_locks
);
108 spin_lock(&conf
->device_lock
);
111 static inline void unlock_all_device_hash_locks_irq(struct r5conf
*conf
)
114 spin_unlock(&conf
->device_lock
);
115 for (i
= NR_STRIPE_HASH_LOCKS
- 1; i
; i
--)
116 spin_unlock(conf
->hash_locks
+ i
);
117 spin_unlock_irq(conf
->hash_locks
);
120 /* Find first data disk in a raid6 stripe */
121 static inline int raid6_d0(struct stripe_head
*sh
)
124 /* ddf always start from first device */
126 /* md starts just after Q block */
127 if (sh
->qd_idx
== sh
->disks
- 1)
130 return sh
->qd_idx
+ 1;
132 static inline int raid6_next_disk(int disk
, int raid_disks
)
135 return (disk
< raid_disks
) ? disk
: 0;
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139 * We need to map each disk to a 'slot', where the data disks are slot
140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141 * is raid_disks-1. This help does that mapping.
143 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
144 int *count
, int syndrome_disks
)
150 if (idx
== sh
->pd_idx
)
151 return syndrome_disks
;
152 if (idx
== sh
->qd_idx
)
153 return syndrome_disks
+ 1;
159 static void print_raid5_conf (struct r5conf
*conf
);
161 static int stripe_operations_active(struct stripe_head
*sh
)
163 return sh
->check_state
|| sh
->reconstruct_state
||
164 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
165 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
168 static bool stripe_is_lowprio(struct stripe_head
*sh
)
170 return (test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
) ||
171 test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
)) &&
172 !test_bit(STRIPE_R5C_CACHING
, &sh
->state
);
175 static void raid5_wakeup_stripe_thread(struct stripe_head
*sh
)
177 struct r5conf
*conf
= sh
->raid_conf
;
178 struct r5worker_group
*group
;
180 int i
, cpu
= sh
->cpu
;
182 if (!cpu_online(cpu
)) {
183 cpu
= cpumask_any(cpu_online_mask
);
187 if (list_empty(&sh
->lru
)) {
188 struct r5worker_group
*group
;
189 group
= conf
->worker_groups
+ cpu_to_group(cpu
);
190 if (stripe_is_lowprio(sh
))
191 list_add_tail(&sh
->lru
, &group
->loprio_list
);
193 list_add_tail(&sh
->lru
, &group
->handle_list
);
194 group
->stripes_cnt
++;
198 if (conf
->worker_cnt_per_group
== 0) {
199 md_wakeup_thread(conf
->mddev
->thread
);
203 group
= conf
->worker_groups
+ cpu_to_group(sh
->cpu
);
205 group
->workers
[0].working
= true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh
->cpu
, raid5_wq
, &group
->workers
[0].work
);
209 thread_cnt
= group
->stripes_cnt
/ MAX_STRIPE_BATCH
- 1;
210 /* wakeup more workers */
211 for (i
= 1; i
< conf
->worker_cnt_per_group
&& thread_cnt
> 0; i
++) {
212 if (group
->workers
[i
].working
== false) {
213 group
->workers
[i
].working
= true;
214 queue_work_on(sh
->cpu
, raid5_wq
,
215 &group
->workers
[i
].work
);
221 static void do_release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
222 struct list_head
*temp_inactive_list
)
225 int injournal
= 0; /* number of date pages with R5_InJournal */
227 BUG_ON(!list_empty(&sh
->lru
));
228 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
230 if (r5c_is_writeback(conf
->log
))
231 for (i
= sh
->disks
; i
--; )
232 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
235 * In the following cases, the stripe cannot be released to cached
236 * lists. Therefore, we make the stripe write out and set
238 * 1. when quiesce in r5c write back;
239 * 2. when resync is requested fot the stripe.
241 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
) ||
242 (conf
->quiesce
&& r5c_is_writeback(conf
->log
) &&
243 !test_bit(STRIPE_HANDLE
, &sh
->state
) && injournal
!= 0)) {
244 if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
))
245 r5c_make_stripe_write_out(sh
);
246 set_bit(STRIPE_HANDLE
, &sh
->state
);
249 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
250 if (test_bit(STRIPE_DELAYED
, &sh
->state
) &&
251 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
252 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
253 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
254 sh
->bm_seq
- conf
->seq_write
> 0)
255 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
257 clear_bit(STRIPE_DELAYED
, &sh
->state
);
258 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
259 if (conf
->worker_cnt_per_group
== 0) {
260 if (stripe_is_lowprio(sh
))
261 list_add_tail(&sh
->lru
,
264 list_add_tail(&sh
->lru
,
267 raid5_wakeup_stripe_thread(sh
);
271 md_wakeup_thread(conf
->mddev
->thread
);
273 BUG_ON(stripe_operations_active(sh
));
274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
275 if (atomic_dec_return(&conf
->preread_active_stripes
)
277 md_wakeup_thread(conf
->mddev
->thread
);
278 atomic_dec(&conf
->active_stripes
);
279 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
280 if (!r5c_is_writeback(conf
->log
))
281 list_add_tail(&sh
->lru
, temp_inactive_list
);
283 WARN_ON(test_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
));
285 list_add_tail(&sh
->lru
, temp_inactive_list
);
286 else if (injournal
== conf
->raid_disks
- conf
->max_degraded
) {
288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
))
289 atomic_inc(&conf
->r5c_cached_full_stripes
);
290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
))
291 atomic_dec(&conf
->r5c_cached_partial_stripes
);
292 list_add_tail(&sh
->lru
, &conf
->r5c_full_stripe_list
);
293 r5c_check_cached_full_stripe(conf
);
296 * STRIPE_R5C_PARTIAL_STRIPE is set in
297 * r5c_try_caching_write(). No need to
300 list_add_tail(&sh
->lru
, &conf
->r5c_partial_stripe_list
);
306 static void __release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
307 struct list_head
*temp_inactive_list
)
309 if (atomic_dec_and_test(&sh
->count
))
310 do_release_stripe(conf
, sh
, temp_inactive_list
);
314 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
316 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
317 * given time. Adding stripes only takes device lock, while deleting stripes
318 * only takes hash lock.
320 static void release_inactive_stripe_list(struct r5conf
*conf
,
321 struct list_head
*temp_inactive_list
,
325 bool do_wakeup
= false;
328 if (hash
== NR_STRIPE_HASH_LOCKS
) {
329 size
= NR_STRIPE_HASH_LOCKS
;
330 hash
= NR_STRIPE_HASH_LOCKS
- 1;
334 struct list_head
*list
= &temp_inactive_list
[size
- 1];
337 * We don't hold any lock here yet, raid5_get_active_stripe() might
338 * remove stripes from the list
340 if (!list_empty_careful(list
)) {
341 spin_lock_irqsave(conf
->hash_locks
+ hash
, flags
);
342 if (list_empty(conf
->inactive_list
+ hash
) &&
344 atomic_dec(&conf
->empty_inactive_list_nr
);
345 list_splice_tail_init(list
, conf
->inactive_list
+ hash
);
347 spin_unlock_irqrestore(conf
->hash_locks
+ hash
, flags
);
354 wake_up(&conf
->wait_for_stripe
);
355 if (atomic_read(&conf
->active_stripes
) == 0)
356 wake_up(&conf
->wait_for_quiescent
);
357 if (conf
->retry_read_aligned
)
358 md_wakeup_thread(conf
->mddev
->thread
);
362 /* should hold conf->device_lock already */
363 static int release_stripe_list(struct r5conf
*conf
,
364 struct list_head
*temp_inactive_list
)
366 struct stripe_head
*sh
, *t
;
368 struct llist_node
*head
;
370 head
= llist_del_all(&conf
->released_stripes
);
371 head
= llist_reverse_order(head
);
372 llist_for_each_entry_safe(sh
, t
, head
, release_list
) {
375 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
377 clear_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
);
379 * Don't worry the bit is set here, because if the bit is set
380 * again, the count is always > 1. This is true for
381 * STRIPE_ON_UNPLUG_LIST bit too.
383 hash
= sh
->hash_lock_index
;
384 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
391 void raid5_release_stripe(struct stripe_head
*sh
)
393 struct r5conf
*conf
= sh
->raid_conf
;
395 struct list_head list
;
399 /* Avoid release_list until the last reference.
401 if (atomic_add_unless(&sh
->count
, -1, 1))
404 if (unlikely(!conf
->mddev
->thread
) ||
405 test_and_set_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
))
407 wakeup
= llist_add(&sh
->release_list
, &conf
->released_stripes
);
409 md_wakeup_thread(conf
->mddev
->thread
);
412 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
413 if (atomic_dec_and_lock_irqsave(&sh
->count
, &conf
->device_lock
, flags
)) {
414 INIT_LIST_HEAD(&list
);
415 hash
= sh
->hash_lock_index
;
416 do_release_stripe(conf
, sh
, &list
);
417 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
418 release_inactive_stripe_list(conf
, &list
, hash
);
422 static inline void remove_hash(struct stripe_head
*sh
)
424 pr_debug("remove_hash(), stripe %llu\n",
425 (unsigned long long)sh
->sector
);
427 hlist_del_init(&sh
->hash
);
430 static inline void insert_hash(struct r5conf
*conf
, struct stripe_head
*sh
)
432 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
434 pr_debug("insert_hash(), stripe %llu\n",
435 (unsigned long long)sh
->sector
);
437 hlist_add_head(&sh
->hash
, hp
);
440 /* find an idle stripe, make sure it is unhashed, and return it. */
441 static struct stripe_head
*get_free_stripe(struct r5conf
*conf
, int hash
)
443 struct stripe_head
*sh
= NULL
;
444 struct list_head
*first
;
446 if (list_empty(conf
->inactive_list
+ hash
))
448 first
= (conf
->inactive_list
+ hash
)->next
;
449 sh
= list_entry(first
, struct stripe_head
, lru
);
450 list_del_init(first
);
452 atomic_inc(&conf
->active_stripes
);
453 BUG_ON(hash
!= sh
->hash_lock_index
);
454 if (list_empty(conf
->inactive_list
+ hash
))
455 atomic_inc(&conf
->empty_inactive_list_nr
);
460 static void shrink_buffers(struct stripe_head
*sh
)
464 int num
= sh
->raid_conf
->pool_size
;
466 for (i
= 0; i
< num
; i
++) {
467 WARN_ON(sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
);
471 sh
->dev
[i
].page
= NULL
;
476 static int grow_buffers(struct stripe_head
*sh
, gfp_t gfp
)
479 int num
= sh
->raid_conf
->pool_size
;
481 for (i
= 0; i
< num
; i
++) {
484 if (!(page
= alloc_page(gfp
))) {
487 sh
->dev
[i
].page
= page
;
488 sh
->dev
[i
].orig_page
= page
;
494 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
495 struct stripe_head
*sh
);
497 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
499 struct r5conf
*conf
= sh
->raid_conf
;
502 BUG_ON(atomic_read(&sh
->count
) != 0);
503 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
504 BUG_ON(stripe_operations_active(sh
));
505 BUG_ON(sh
->batch_head
);
507 pr_debug("init_stripe called, stripe %llu\n",
508 (unsigned long long)sector
);
510 seq
= read_seqcount_begin(&conf
->gen_lock
);
511 sh
->generation
= conf
->generation
- previous
;
512 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
514 stripe_set_idx(sector
, conf
, previous
, sh
);
517 for (i
= sh
->disks
; i
--; ) {
518 struct r5dev
*dev
= &sh
->dev
[i
];
520 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
521 test_bit(R5_LOCKED
, &dev
->flags
)) {
522 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
523 (unsigned long long)sh
->sector
, i
, dev
->toread
,
524 dev
->read
, dev
->towrite
, dev
->written
,
525 test_bit(R5_LOCKED
, &dev
->flags
));
529 dev
->sector
= raid5_compute_blocknr(sh
, i
, previous
);
531 if (read_seqcount_retry(&conf
->gen_lock
, seq
))
533 sh
->overwrite_disks
= 0;
534 insert_hash(conf
, sh
);
535 sh
->cpu
= smp_processor_id();
536 set_bit(STRIPE_BATCH_READY
, &sh
->state
);
539 static struct stripe_head
*__find_stripe(struct r5conf
*conf
, sector_t sector
,
542 struct stripe_head
*sh
;
544 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
545 hlist_for_each_entry(sh
, stripe_hash(conf
, sector
), hash
)
546 if (sh
->sector
== sector
&& sh
->generation
== generation
)
548 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
553 * Need to check if array has failed when deciding whether to:
555 * - remove non-faulty devices
558 * This determination is simple when no reshape is happening.
559 * However if there is a reshape, we need to carefully check
560 * both the before and after sections.
561 * This is because some failed devices may only affect one
562 * of the two sections, and some non-in_sync devices may
563 * be insync in the section most affected by failed devices.
565 int raid5_calc_degraded(struct r5conf
*conf
)
567 int degraded
, degraded2
;
572 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
573 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
574 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
575 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
576 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
578 else if (test_bit(In_sync
, &rdev
->flags
))
581 /* not in-sync or faulty.
582 * If the reshape increases the number of devices,
583 * this is being recovered by the reshape, so
584 * this 'previous' section is not in_sync.
585 * If the number of devices is being reduced however,
586 * the device can only be part of the array if
587 * we are reverting a reshape, so this section will
590 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
594 if (conf
->raid_disks
== conf
->previous_raid_disks
)
598 for (i
= 0; i
< conf
->raid_disks
; i
++) {
599 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
600 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
601 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
602 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
604 else if (test_bit(In_sync
, &rdev
->flags
))
607 /* not in-sync or faulty.
608 * If reshape increases the number of devices, this
609 * section has already been recovered, else it
610 * almost certainly hasn't.
612 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
616 if (degraded2
> degraded
)
621 static int has_failed(struct r5conf
*conf
)
625 if (conf
->mddev
->reshape_position
== MaxSector
)
626 return conf
->mddev
->degraded
> conf
->max_degraded
;
628 degraded
= raid5_calc_degraded(conf
);
629 if (degraded
> conf
->max_degraded
)
635 raid5_get_active_stripe(struct r5conf
*conf
, sector_t sector
,
636 int previous
, int noblock
, int noquiesce
)
638 struct stripe_head
*sh
;
639 int hash
= stripe_hash_locks_hash(sector
);
640 int inc_empty_inactive_list_flag
;
642 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
644 spin_lock_irq(conf
->hash_locks
+ hash
);
647 wait_event_lock_irq(conf
->wait_for_quiescent
,
648 conf
->quiesce
== 0 || noquiesce
,
649 *(conf
->hash_locks
+ hash
));
650 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
652 if (!test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
)) {
653 sh
= get_free_stripe(conf
, hash
);
654 if (!sh
&& !test_bit(R5_DID_ALLOC
,
656 set_bit(R5_ALLOC_MORE
,
659 if (noblock
&& sh
== NULL
)
662 r5c_check_stripe_cache_usage(conf
);
664 set_bit(R5_INACTIVE_BLOCKED
,
666 r5l_wake_reclaim(conf
->log
, 0);
668 conf
->wait_for_stripe
,
669 !list_empty(conf
->inactive_list
+ hash
) &&
670 (atomic_read(&conf
->active_stripes
)
671 < (conf
->max_nr_stripes
* 3 / 4)
672 || !test_bit(R5_INACTIVE_BLOCKED
,
673 &conf
->cache_state
)),
674 *(conf
->hash_locks
+ hash
));
675 clear_bit(R5_INACTIVE_BLOCKED
,
678 init_stripe(sh
, sector
, previous
);
679 atomic_inc(&sh
->count
);
681 } else if (!atomic_inc_not_zero(&sh
->count
)) {
682 spin_lock(&conf
->device_lock
);
683 if (!atomic_read(&sh
->count
)) {
684 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
685 atomic_inc(&conf
->active_stripes
);
686 BUG_ON(list_empty(&sh
->lru
) &&
687 !test_bit(STRIPE_EXPANDING
, &sh
->state
));
688 inc_empty_inactive_list_flag
= 0;
689 if (!list_empty(conf
->inactive_list
+ hash
))
690 inc_empty_inactive_list_flag
= 1;
691 list_del_init(&sh
->lru
);
692 if (list_empty(conf
->inactive_list
+ hash
) && inc_empty_inactive_list_flag
)
693 atomic_inc(&conf
->empty_inactive_list_nr
);
695 sh
->group
->stripes_cnt
--;
699 atomic_inc(&sh
->count
);
700 spin_unlock(&conf
->device_lock
);
702 } while (sh
== NULL
);
704 spin_unlock_irq(conf
->hash_locks
+ hash
);
708 static bool is_full_stripe_write(struct stripe_head
*sh
)
710 BUG_ON(sh
->overwrite_disks
> (sh
->disks
- sh
->raid_conf
->max_degraded
));
711 return sh
->overwrite_disks
== (sh
->disks
- sh
->raid_conf
->max_degraded
);
714 static void lock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
717 spin_lock_irq(&sh2
->stripe_lock
);
718 spin_lock_nested(&sh1
->stripe_lock
, 1);
720 spin_lock_irq(&sh1
->stripe_lock
);
721 spin_lock_nested(&sh2
->stripe_lock
, 1);
725 static void unlock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
727 spin_unlock(&sh1
->stripe_lock
);
728 spin_unlock_irq(&sh2
->stripe_lock
);
731 /* Only freshly new full stripe normal write stripe can be added to a batch list */
732 static bool stripe_can_batch(struct stripe_head
*sh
)
734 struct r5conf
*conf
= sh
->raid_conf
;
736 if (raid5_has_log(conf
) || raid5_has_ppl(conf
))
738 return test_bit(STRIPE_BATCH_READY
, &sh
->state
) &&
739 !test_bit(STRIPE_BITMAP_PENDING
, &sh
->state
) &&
740 is_full_stripe_write(sh
);
743 /* we only do back search */
744 static void stripe_add_to_batch_list(struct r5conf
*conf
, struct stripe_head
*sh
)
746 struct stripe_head
*head
;
747 sector_t head_sector
, tmp_sec
;
750 int inc_empty_inactive_list_flag
;
752 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
753 tmp_sec
= sh
->sector
;
754 if (!sector_div(tmp_sec
, conf
->chunk_sectors
))
756 head_sector
= sh
->sector
- STRIPE_SECTORS
;
758 hash
= stripe_hash_locks_hash(head_sector
);
759 spin_lock_irq(conf
->hash_locks
+ hash
);
760 head
= __find_stripe(conf
, head_sector
, conf
->generation
);
761 if (head
&& !atomic_inc_not_zero(&head
->count
)) {
762 spin_lock(&conf
->device_lock
);
763 if (!atomic_read(&head
->count
)) {
764 if (!test_bit(STRIPE_HANDLE
, &head
->state
))
765 atomic_inc(&conf
->active_stripes
);
766 BUG_ON(list_empty(&head
->lru
) &&
767 !test_bit(STRIPE_EXPANDING
, &head
->state
));
768 inc_empty_inactive_list_flag
= 0;
769 if (!list_empty(conf
->inactive_list
+ hash
))
770 inc_empty_inactive_list_flag
= 1;
771 list_del_init(&head
->lru
);
772 if (list_empty(conf
->inactive_list
+ hash
) && inc_empty_inactive_list_flag
)
773 atomic_inc(&conf
->empty_inactive_list_nr
);
775 head
->group
->stripes_cnt
--;
779 atomic_inc(&head
->count
);
780 spin_unlock(&conf
->device_lock
);
782 spin_unlock_irq(conf
->hash_locks
+ hash
);
786 if (!stripe_can_batch(head
))
789 lock_two_stripes(head
, sh
);
790 /* clear_batch_ready clear the flag */
791 if (!stripe_can_batch(head
) || !stripe_can_batch(sh
))
798 while (dd_idx
== sh
->pd_idx
|| dd_idx
== sh
->qd_idx
)
800 if (head
->dev
[dd_idx
].towrite
->bi_opf
!= sh
->dev
[dd_idx
].towrite
->bi_opf
||
801 bio_op(head
->dev
[dd_idx
].towrite
) != bio_op(sh
->dev
[dd_idx
].towrite
))
804 if (head
->batch_head
) {
805 spin_lock(&head
->batch_head
->batch_lock
);
806 /* This batch list is already running */
807 if (!stripe_can_batch(head
)) {
808 spin_unlock(&head
->batch_head
->batch_lock
);
812 * We must assign batch_head of this stripe within the
813 * batch_lock, otherwise clear_batch_ready of batch head
814 * stripe could clear BATCH_READY bit of this stripe and
815 * this stripe->batch_head doesn't get assigned, which
816 * could confuse clear_batch_ready for this stripe
818 sh
->batch_head
= head
->batch_head
;
821 * at this point, head's BATCH_READY could be cleared, but we
822 * can still add the stripe to batch list
824 list_add(&sh
->batch_list
, &head
->batch_list
);
825 spin_unlock(&head
->batch_head
->batch_lock
);
827 head
->batch_head
= head
;
828 sh
->batch_head
= head
->batch_head
;
829 spin_lock(&head
->batch_lock
);
830 list_add_tail(&sh
->batch_list
, &head
->batch_list
);
831 spin_unlock(&head
->batch_lock
);
834 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
835 if (atomic_dec_return(&conf
->preread_active_stripes
)
837 md_wakeup_thread(conf
->mddev
->thread
);
839 if (test_and_clear_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
840 int seq
= sh
->bm_seq
;
841 if (test_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
) &&
842 sh
->batch_head
->bm_seq
> seq
)
843 seq
= sh
->batch_head
->bm_seq
;
844 set_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
);
845 sh
->batch_head
->bm_seq
= seq
;
848 atomic_inc(&sh
->count
);
850 unlock_two_stripes(head
, sh
);
852 raid5_release_stripe(head
);
855 /* Determine if 'data_offset' or 'new_data_offset' should be used
856 * in this stripe_head.
858 static int use_new_offset(struct r5conf
*conf
, struct stripe_head
*sh
)
860 sector_t progress
= conf
->reshape_progress
;
861 /* Need a memory barrier to make sure we see the value
862 * of conf->generation, or ->data_offset that was set before
863 * reshape_progress was updated.
866 if (progress
== MaxSector
)
868 if (sh
->generation
== conf
->generation
- 1)
870 /* We are in a reshape, and this is a new-generation stripe,
871 * so use new_data_offset.
876 static void dispatch_bio_list(struct bio_list
*tmp
)
880 while ((bio
= bio_list_pop(tmp
)))
881 generic_make_request(bio
);
884 static int cmp_stripe(void *priv
, struct list_head
*a
, struct list_head
*b
)
886 const struct r5pending_data
*da
= list_entry(a
,
887 struct r5pending_data
, sibling
);
888 const struct r5pending_data
*db
= list_entry(b
,
889 struct r5pending_data
, sibling
);
890 if (da
->sector
> db
->sector
)
892 if (da
->sector
< db
->sector
)
897 static void dispatch_defer_bios(struct r5conf
*conf
, int target
,
898 struct bio_list
*list
)
900 struct r5pending_data
*data
;
901 struct list_head
*first
, *next
= NULL
;
904 if (conf
->pending_data_cnt
== 0)
907 list_sort(NULL
, &conf
->pending_list
, cmp_stripe
);
909 first
= conf
->pending_list
.next
;
911 /* temporarily move the head */
912 if (conf
->next_pending_data
)
913 list_move_tail(&conf
->pending_list
,
914 &conf
->next_pending_data
->sibling
);
916 while (!list_empty(&conf
->pending_list
)) {
917 data
= list_first_entry(&conf
->pending_list
,
918 struct r5pending_data
, sibling
);
919 if (&data
->sibling
== first
)
920 first
= data
->sibling
.next
;
921 next
= data
->sibling
.next
;
923 bio_list_merge(list
, &data
->bios
);
924 list_move(&data
->sibling
, &conf
->free_list
);
929 conf
->pending_data_cnt
-= cnt
;
930 BUG_ON(conf
->pending_data_cnt
< 0 || cnt
< target
);
932 if (next
!= &conf
->pending_list
)
933 conf
->next_pending_data
= list_entry(next
,
934 struct r5pending_data
, sibling
);
936 conf
->next_pending_data
= NULL
;
937 /* list isn't empty */
938 if (first
!= &conf
->pending_list
)
939 list_move_tail(&conf
->pending_list
, first
);
942 static void flush_deferred_bios(struct r5conf
*conf
)
944 struct bio_list tmp
= BIO_EMPTY_LIST
;
946 if (conf
->pending_data_cnt
== 0)
949 spin_lock(&conf
->pending_bios_lock
);
950 dispatch_defer_bios(conf
, conf
->pending_data_cnt
, &tmp
);
951 BUG_ON(conf
->pending_data_cnt
!= 0);
952 spin_unlock(&conf
->pending_bios_lock
);
954 dispatch_bio_list(&tmp
);
957 static void defer_issue_bios(struct r5conf
*conf
, sector_t sector
,
958 struct bio_list
*bios
)
960 struct bio_list tmp
= BIO_EMPTY_LIST
;
961 struct r5pending_data
*ent
;
963 spin_lock(&conf
->pending_bios_lock
);
964 ent
= list_first_entry(&conf
->free_list
, struct r5pending_data
,
966 list_move_tail(&ent
->sibling
, &conf
->pending_list
);
967 ent
->sector
= sector
;
968 bio_list_init(&ent
->bios
);
969 bio_list_merge(&ent
->bios
, bios
);
970 conf
->pending_data_cnt
++;
971 if (conf
->pending_data_cnt
>= PENDING_IO_MAX
)
972 dispatch_defer_bios(conf
, PENDING_IO_ONE_FLUSH
, &tmp
);
974 spin_unlock(&conf
->pending_bios_lock
);
976 dispatch_bio_list(&tmp
);
980 raid5_end_read_request(struct bio
*bi
);
982 raid5_end_write_request(struct bio
*bi
);
984 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
986 struct r5conf
*conf
= sh
->raid_conf
;
987 int i
, disks
= sh
->disks
;
988 struct stripe_head
*head_sh
= sh
;
989 struct bio_list pending_bios
= BIO_EMPTY_LIST
;
994 if (log_stripe(sh
, s
) == 0)
997 should_defer
= conf
->batch_bio_dispatch
&& conf
->group_cnt
;
999 for (i
= disks
; i
--; ) {
1000 int op
, op_flags
= 0;
1001 int replace_only
= 0;
1002 struct bio
*bi
, *rbi
;
1003 struct md_rdev
*rdev
, *rrdev
= NULL
;
1006 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
1008 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
1010 if (test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1011 op
= REQ_OP_DISCARD
;
1012 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
1014 else if (test_and_clear_bit(R5_WantReplace
,
1015 &sh
->dev
[i
].flags
)) {
1020 if (test_and_clear_bit(R5_SyncIO
, &sh
->dev
[i
].flags
))
1021 op_flags
|= REQ_SYNC
;
1024 bi
= &sh
->dev
[i
].req
;
1025 rbi
= &sh
->dev
[i
].rreq
; /* For writing to replacement */
1028 rrdev
= rcu_dereference(conf
->disks
[i
].replacement
);
1029 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1030 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1035 if (op_is_write(op
)) {
1039 /* We raced and saw duplicates */
1042 if (test_bit(R5_ReadRepl
, &head_sh
->dev
[i
].flags
) && rrdev
)
1047 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
1050 atomic_inc(&rdev
->nr_pending
);
1051 if (rrdev
&& test_bit(Faulty
, &rrdev
->flags
))
1054 atomic_inc(&rrdev
->nr_pending
);
1057 /* We have already checked bad blocks for reads. Now
1058 * need to check for writes. We never accept write errors
1059 * on the replacement, so we don't to check rrdev.
1061 while (op_is_write(op
) && rdev
&&
1062 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1065 int bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
1066 &first_bad
, &bad_sectors
);
1071 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1072 if (!conf
->mddev
->external
&&
1073 conf
->mddev
->sb_flags
) {
1074 /* It is very unlikely, but we might
1075 * still need to write out the
1076 * bad block log - better give it
1078 md_check_recovery(conf
->mddev
);
1081 * Because md_wait_for_blocked_rdev
1082 * will dec nr_pending, we must
1083 * increment it first.
1085 atomic_inc(&rdev
->nr_pending
);
1086 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
1088 /* Acknowledged bad block - skip the write */
1089 rdev_dec_pending(rdev
, conf
->mddev
);
1095 if (s
->syncing
|| s
->expanding
|| s
->expanded
1097 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
1099 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1101 bio_set_dev(bi
, rdev
->bdev
);
1102 bio_set_op_attrs(bi
, op
, op_flags
);
1103 bi
->bi_end_io
= op_is_write(op
)
1104 ? raid5_end_write_request
1105 : raid5_end_read_request
;
1106 bi
->bi_private
= sh
;
1108 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1109 __func__
, (unsigned long long)sh
->sector
,
1111 atomic_inc(&sh
->count
);
1113 atomic_inc(&head_sh
->count
);
1114 if (use_new_offset(conf
, sh
))
1115 bi
->bi_iter
.bi_sector
= (sh
->sector
1116 + rdev
->new_data_offset
);
1118 bi
->bi_iter
.bi_sector
= (sh
->sector
1119 + rdev
->data_offset
);
1120 if (test_bit(R5_ReadNoMerge
, &head_sh
->dev
[i
].flags
))
1121 bi
->bi_opf
|= REQ_NOMERGE
;
1123 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1124 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1126 if (!op_is_write(op
) &&
1127 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
1129 * issuing read for a page in journal, this
1130 * must be preparing for prexor in rmw; read
1131 * the data into orig_page
1133 sh
->dev
[i
].vec
.bv_page
= sh
->dev
[i
].orig_page
;
1135 sh
->dev
[i
].vec
.bv_page
= sh
->dev
[i
].page
;
1137 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1138 bi
->bi_io_vec
[0].bv_offset
= 0;
1139 bi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1140 bi
->bi_write_hint
= sh
->dev
[i
].write_hint
;
1142 sh
->dev
[i
].write_hint
= RWF_WRITE_LIFE_NOT_SET
;
1144 * If this is discard request, set bi_vcnt 0. We don't
1145 * want to confuse SCSI because SCSI will replace payload
1147 if (op
== REQ_OP_DISCARD
)
1150 set_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
);
1152 if (conf
->mddev
->gendisk
)
1153 trace_block_bio_remap(bi
->bi_disk
->queue
,
1154 bi
, disk_devt(conf
->mddev
->gendisk
),
1156 if (should_defer
&& op_is_write(op
))
1157 bio_list_add(&pending_bios
, bi
);
1159 generic_make_request(bi
);
1162 if (s
->syncing
|| s
->expanding
|| s
->expanded
1164 md_sync_acct(rrdev
->bdev
, STRIPE_SECTORS
);
1166 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1168 bio_set_dev(rbi
, rrdev
->bdev
);
1169 bio_set_op_attrs(rbi
, op
, op_flags
);
1170 BUG_ON(!op_is_write(op
));
1171 rbi
->bi_end_io
= raid5_end_write_request
;
1172 rbi
->bi_private
= sh
;
1174 pr_debug("%s: for %llu schedule op %d on "
1175 "replacement disc %d\n",
1176 __func__
, (unsigned long long)sh
->sector
,
1178 atomic_inc(&sh
->count
);
1180 atomic_inc(&head_sh
->count
);
1181 if (use_new_offset(conf
, sh
))
1182 rbi
->bi_iter
.bi_sector
= (sh
->sector
1183 + rrdev
->new_data_offset
);
1185 rbi
->bi_iter
.bi_sector
= (sh
->sector
1186 + rrdev
->data_offset
);
1187 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1188 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1189 sh
->dev
[i
].rvec
.bv_page
= sh
->dev
[i
].page
;
1191 rbi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1192 rbi
->bi_io_vec
[0].bv_offset
= 0;
1193 rbi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1194 rbi
->bi_write_hint
= sh
->dev
[i
].write_hint
;
1195 sh
->dev
[i
].write_hint
= RWF_WRITE_LIFE_NOT_SET
;
1197 * If this is discard request, set bi_vcnt 0. We don't
1198 * want to confuse SCSI because SCSI will replace payload
1200 if (op
== REQ_OP_DISCARD
)
1202 if (conf
->mddev
->gendisk
)
1203 trace_block_bio_remap(rbi
->bi_disk
->queue
,
1204 rbi
, disk_devt(conf
->mddev
->gendisk
),
1206 if (should_defer
&& op_is_write(op
))
1207 bio_list_add(&pending_bios
, rbi
);
1209 generic_make_request(rbi
);
1211 if (!rdev
&& !rrdev
) {
1212 if (op_is_write(op
))
1213 set_bit(STRIPE_DEGRADED
, &sh
->state
);
1214 pr_debug("skip op %d on disc %d for sector %llu\n",
1215 bi
->bi_opf
, i
, (unsigned long long)sh
->sector
);
1216 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1217 set_bit(STRIPE_HANDLE
, &sh
->state
);
1220 if (!head_sh
->batch_head
)
1222 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1228 if (should_defer
&& !bio_list_empty(&pending_bios
))
1229 defer_issue_bios(conf
, head_sh
->sector
, &pending_bios
);
1232 static struct dma_async_tx_descriptor
*
1233 async_copy_data(int frombio
, struct bio
*bio
, struct page
**page
,
1234 sector_t sector
, struct dma_async_tx_descriptor
*tx
,
1235 struct stripe_head
*sh
, int no_skipcopy
)
1238 struct bvec_iter iter
;
1239 struct page
*bio_page
;
1241 struct async_submit_ctl submit
;
1242 enum async_tx_flags flags
= 0;
1244 if (bio
->bi_iter
.bi_sector
>= sector
)
1245 page_offset
= (signed)(bio
->bi_iter
.bi_sector
- sector
) * 512;
1247 page_offset
= (signed)(sector
- bio
->bi_iter
.bi_sector
) * -512;
1250 flags
|= ASYNC_TX_FENCE
;
1251 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
1253 bio_for_each_segment(bvl
, bio
, iter
) {
1254 int len
= bvl
.bv_len
;
1258 if (page_offset
< 0) {
1259 b_offset
= -page_offset
;
1260 page_offset
+= b_offset
;
1264 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1265 clen
= STRIPE_SIZE
- page_offset
;
1270 b_offset
+= bvl
.bv_offset
;
1271 bio_page
= bvl
.bv_page
;
1273 if (sh
->raid_conf
->skip_copy
&&
1274 b_offset
== 0 && page_offset
== 0 &&
1275 clen
== STRIPE_SIZE
&&
1279 tx
= async_memcpy(*page
, bio_page
, page_offset
,
1280 b_offset
, clen
, &submit
);
1282 tx
= async_memcpy(bio_page
, *page
, b_offset
,
1283 page_offset
, clen
, &submit
);
1285 /* chain the operations */
1286 submit
.depend_tx
= tx
;
1288 if (clen
< len
) /* hit end of page */
1296 static void ops_complete_biofill(void *stripe_head_ref
)
1298 struct stripe_head
*sh
= stripe_head_ref
;
1301 pr_debug("%s: stripe %llu\n", __func__
,
1302 (unsigned long long)sh
->sector
);
1304 /* clear completed biofills */
1305 for (i
= sh
->disks
; i
--; ) {
1306 struct r5dev
*dev
= &sh
->dev
[i
];
1308 /* acknowledge completion of a biofill operation */
1309 /* and check if we need to reply to a read request,
1310 * new R5_Wantfill requests are held off until
1311 * !STRIPE_BIOFILL_RUN
1313 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
1314 struct bio
*rbi
, *rbi2
;
1319 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1320 dev
->sector
+ STRIPE_SECTORS
) {
1321 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1327 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
1329 set_bit(STRIPE_HANDLE
, &sh
->state
);
1330 raid5_release_stripe(sh
);
1333 static void ops_run_biofill(struct stripe_head
*sh
)
1335 struct dma_async_tx_descriptor
*tx
= NULL
;
1336 struct async_submit_ctl submit
;
1339 BUG_ON(sh
->batch_head
);
1340 pr_debug("%s: stripe %llu\n", __func__
,
1341 (unsigned long long)sh
->sector
);
1343 for (i
= sh
->disks
; i
--; ) {
1344 struct r5dev
*dev
= &sh
->dev
[i
];
1345 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
1347 spin_lock_irq(&sh
->stripe_lock
);
1348 dev
->read
= rbi
= dev
->toread
;
1350 spin_unlock_irq(&sh
->stripe_lock
);
1351 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1352 dev
->sector
+ STRIPE_SECTORS
) {
1353 tx
= async_copy_data(0, rbi
, &dev
->page
,
1354 dev
->sector
, tx
, sh
, 0);
1355 rbi
= r5_next_bio(rbi
, dev
->sector
);
1360 atomic_inc(&sh
->count
);
1361 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
1362 async_trigger_callback(&submit
);
1365 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
1372 tgt
= &sh
->dev
[target
];
1373 set_bit(R5_UPTODATE
, &tgt
->flags
);
1374 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1375 clear_bit(R5_Wantcompute
, &tgt
->flags
);
1378 static void ops_complete_compute(void *stripe_head_ref
)
1380 struct stripe_head
*sh
= stripe_head_ref
;
1382 pr_debug("%s: stripe %llu\n", __func__
,
1383 (unsigned long long)sh
->sector
);
1385 /* mark the computed target(s) as uptodate */
1386 mark_target_uptodate(sh
, sh
->ops
.target
);
1387 mark_target_uptodate(sh
, sh
->ops
.target2
);
1389 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
1390 if (sh
->check_state
== check_state_compute_run
)
1391 sh
->check_state
= check_state_compute_result
;
1392 set_bit(STRIPE_HANDLE
, &sh
->state
);
1393 raid5_release_stripe(sh
);
1396 /* return a pointer to the address conversion region of the scribble buffer */
1397 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
1398 struct raid5_percpu
*percpu
, int i
)
1402 addr
= flex_array_get(percpu
->scribble
, i
);
1403 return addr
+ sizeof(struct page
*) * (sh
->disks
+ 2);
1406 /* return a pointer to the address conversion region of the scribble buffer */
1407 static struct page
**to_addr_page(struct raid5_percpu
*percpu
, int i
)
1411 addr
= flex_array_get(percpu
->scribble
, i
);
1415 static struct dma_async_tx_descriptor
*
1416 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1418 int disks
= sh
->disks
;
1419 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1420 int target
= sh
->ops
.target
;
1421 struct r5dev
*tgt
= &sh
->dev
[target
];
1422 struct page
*xor_dest
= tgt
->page
;
1424 struct dma_async_tx_descriptor
*tx
;
1425 struct async_submit_ctl submit
;
1428 BUG_ON(sh
->batch_head
);
1430 pr_debug("%s: stripe %llu block: %d\n",
1431 __func__
, (unsigned long long)sh
->sector
, target
);
1432 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1434 for (i
= disks
; i
--; )
1436 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1438 atomic_inc(&sh
->count
);
1440 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
1441 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
, 0));
1442 if (unlikely(count
== 1))
1443 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1445 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1450 /* set_syndrome_sources - populate source buffers for gen_syndrome
1451 * @srcs - (struct page *) array of size sh->disks
1452 * @sh - stripe_head to parse
1454 * Populates srcs in proper layout order for the stripe and returns the
1455 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1456 * destination buffer is recorded in srcs[count] and the Q destination
1457 * is recorded in srcs[count+1]].
1459 static int set_syndrome_sources(struct page
**srcs
,
1460 struct stripe_head
*sh
,
1463 int disks
= sh
->disks
;
1464 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
1465 int d0_idx
= raid6_d0(sh
);
1469 for (i
= 0; i
< disks
; i
++)
1475 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1476 struct r5dev
*dev
= &sh
->dev
[i
];
1478 if (i
== sh
->qd_idx
|| i
== sh
->pd_idx
||
1479 (srctype
== SYNDROME_SRC_ALL
) ||
1480 (srctype
== SYNDROME_SRC_WANT_DRAIN
&&
1481 (test_bit(R5_Wantdrain
, &dev
->flags
) ||
1482 test_bit(R5_InJournal
, &dev
->flags
))) ||
1483 (srctype
== SYNDROME_SRC_WRITTEN
&&
1485 test_bit(R5_InJournal
, &dev
->flags
)))) {
1486 if (test_bit(R5_InJournal
, &dev
->flags
))
1487 srcs
[slot
] = sh
->dev
[i
].orig_page
;
1489 srcs
[slot
] = sh
->dev
[i
].page
;
1491 i
= raid6_next_disk(i
, disks
);
1492 } while (i
!= d0_idx
);
1494 return syndrome_disks
;
1497 static struct dma_async_tx_descriptor
*
1498 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1500 int disks
= sh
->disks
;
1501 struct page
**blocks
= to_addr_page(percpu
, 0);
1503 int qd_idx
= sh
->qd_idx
;
1504 struct dma_async_tx_descriptor
*tx
;
1505 struct async_submit_ctl submit
;
1511 BUG_ON(sh
->batch_head
);
1512 if (sh
->ops
.target
< 0)
1513 target
= sh
->ops
.target2
;
1514 else if (sh
->ops
.target2
< 0)
1515 target
= sh
->ops
.target
;
1517 /* we should only have one valid target */
1520 pr_debug("%s: stripe %llu block: %d\n",
1521 __func__
, (unsigned long long)sh
->sector
, target
);
1523 tgt
= &sh
->dev
[target
];
1524 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1527 atomic_inc(&sh
->count
);
1529 if (target
== qd_idx
) {
1530 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1531 blocks
[count
] = NULL
; /* regenerating p is not necessary */
1532 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
1533 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1534 ops_complete_compute
, sh
,
1535 to_addr_conv(sh
, percpu
, 0));
1536 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1538 /* Compute any data- or p-drive using XOR */
1540 for (i
= disks
; i
-- ; ) {
1541 if (i
== target
|| i
== qd_idx
)
1543 blocks
[count
++] = sh
->dev
[i
].page
;
1546 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1547 NULL
, ops_complete_compute
, sh
,
1548 to_addr_conv(sh
, percpu
, 0));
1549 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
1555 static struct dma_async_tx_descriptor
*
1556 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1558 int i
, count
, disks
= sh
->disks
;
1559 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
1560 int d0_idx
= raid6_d0(sh
);
1561 int faila
= -1, failb
= -1;
1562 int target
= sh
->ops
.target
;
1563 int target2
= sh
->ops
.target2
;
1564 struct r5dev
*tgt
= &sh
->dev
[target
];
1565 struct r5dev
*tgt2
= &sh
->dev
[target2
];
1566 struct dma_async_tx_descriptor
*tx
;
1567 struct page
**blocks
= to_addr_page(percpu
, 0);
1568 struct async_submit_ctl submit
;
1570 BUG_ON(sh
->batch_head
);
1571 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1572 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
1573 BUG_ON(target
< 0 || target2
< 0);
1574 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1575 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
1577 /* we need to open-code set_syndrome_sources to handle the
1578 * slot number conversion for 'faila' and 'failb'
1580 for (i
= 0; i
< disks
; i
++)
1585 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1587 blocks
[slot
] = sh
->dev
[i
].page
;
1593 i
= raid6_next_disk(i
, disks
);
1594 } while (i
!= d0_idx
);
1596 BUG_ON(faila
== failb
);
1599 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1600 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
1602 atomic_inc(&sh
->count
);
1604 if (failb
== syndrome_disks
+1) {
1605 /* Q disk is one of the missing disks */
1606 if (faila
== syndrome_disks
) {
1607 /* Missing P+Q, just recompute */
1608 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1609 ops_complete_compute
, sh
,
1610 to_addr_conv(sh
, percpu
, 0));
1611 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
1612 STRIPE_SIZE
, &submit
);
1616 int qd_idx
= sh
->qd_idx
;
1618 /* Missing D+Q: recompute D from P, then recompute Q */
1619 if (target
== qd_idx
)
1620 data_target
= target2
;
1622 data_target
= target
;
1625 for (i
= disks
; i
-- ; ) {
1626 if (i
== data_target
|| i
== qd_idx
)
1628 blocks
[count
++] = sh
->dev
[i
].page
;
1630 dest
= sh
->dev
[data_target
].page
;
1631 init_async_submit(&submit
,
1632 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1634 to_addr_conv(sh
, percpu
, 0));
1635 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
1638 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1639 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
1640 ops_complete_compute
, sh
,
1641 to_addr_conv(sh
, percpu
, 0));
1642 return async_gen_syndrome(blocks
, 0, count
+2,
1643 STRIPE_SIZE
, &submit
);
1646 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1647 ops_complete_compute
, sh
,
1648 to_addr_conv(sh
, percpu
, 0));
1649 if (failb
== syndrome_disks
) {
1650 /* We're missing D+P. */
1651 return async_raid6_datap_recov(syndrome_disks
+2,
1655 /* We're missing D+D. */
1656 return async_raid6_2data_recov(syndrome_disks
+2,
1657 STRIPE_SIZE
, faila
, failb
,
1663 static void ops_complete_prexor(void *stripe_head_ref
)
1665 struct stripe_head
*sh
= stripe_head_ref
;
1667 pr_debug("%s: stripe %llu\n", __func__
,
1668 (unsigned long long)sh
->sector
);
1670 if (r5c_is_writeback(sh
->raid_conf
->log
))
1672 * raid5-cache write back uses orig_page during prexor.
1673 * After prexor, it is time to free orig_page
1675 r5c_release_extra_page(sh
);
1678 static struct dma_async_tx_descriptor
*
1679 ops_run_prexor5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1680 struct dma_async_tx_descriptor
*tx
)
1682 int disks
= sh
->disks
;
1683 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1684 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1685 struct async_submit_ctl submit
;
1687 /* existing parity data subtracted */
1688 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1690 BUG_ON(sh
->batch_head
);
1691 pr_debug("%s: stripe %llu\n", __func__
,
1692 (unsigned long long)sh
->sector
);
1694 for (i
= disks
; i
--; ) {
1695 struct r5dev
*dev
= &sh
->dev
[i
];
1696 /* Only process blocks that are known to be uptodate */
1697 if (test_bit(R5_InJournal
, &dev
->flags
))
1698 xor_srcs
[count
++] = dev
->orig_page
;
1699 else if (test_bit(R5_Wantdrain
, &dev
->flags
))
1700 xor_srcs
[count
++] = dev
->page
;
1703 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1704 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1705 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1710 static struct dma_async_tx_descriptor
*
1711 ops_run_prexor6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1712 struct dma_async_tx_descriptor
*tx
)
1714 struct page
**blocks
= to_addr_page(percpu
, 0);
1716 struct async_submit_ctl submit
;
1718 pr_debug("%s: stripe %llu\n", __func__
,
1719 (unsigned long long)sh
->sector
);
1721 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_WANT_DRAIN
);
1723 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_PQ_XOR_DST
, tx
,
1724 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1725 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1730 static struct dma_async_tx_descriptor
*
1731 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1733 struct r5conf
*conf
= sh
->raid_conf
;
1734 int disks
= sh
->disks
;
1736 struct stripe_head
*head_sh
= sh
;
1738 pr_debug("%s: stripe %llu\n", __func__
,
1739 (unsigned long long)sh
->sector
);
1741 for (i
= disks
; i
--; ) {
1746 if (test_and_clear_bit(R5_Wantdrain
, &head_sh
->dev
[i
].flags
)) {
1752 * clear R5_InJournal, so when rewriting a page in
1753 * journal, it is not skipped by r5l_log_stripe()
1755 clear_bit(R5_InJournal
, &dev
->flags
);
1756 spin_lock_irq(&sh
->stripe_lock
);
1757 chosen
= dev
->towrite
;
1758 dev
->towrite
= NULL
;
1759 sh
->overwrite_disks
= 0;
1760 BUG_ON(dev
->written
);
1761 wbi
= dev
->written
= chosen
;
1762 spin_unlock_irq(&sh
->stripe_lock
);
1763 WARN_ON(dev
->page
!= dev
->orig_page
);
1765 while (wbi
&& wbi
->bi_iter
.bi_sector
<
1766 dev
->sector
+ STRIPE_SECTORS
) {
1767 if (wbi
->bi_opf
& REQ_FUA
)
1768 set_bit(R5_WantFUA
, &dev
->flags
);
1769 if (wbi
->bi_opf
& REQ_SYNC
)
1770 set_bit(R5_SyncIO
, &dev
->flags
);
1771 if (bio_op(wbi
) == REQ_OP_DISCARD
)
1772 set_bit(R5_Discard
, &dev
->flags
);
1774 tx
= async_copy_data(1, wbi
, &dev
->page
,
1775 dev
->sector
, tx
, sh
,
1776 r5c_is_writeback(conf
->log
));
1777 if (dev
->page
!= dev
->orig_page
&&
1778 !r5c_is_writeback(conf
->log
)) {
1779 set_bit(R5_SkipCopy
, &dev
->flags
);
1780 clear_bit(R5_UPTODATE
, &dev
->flags
);
1781 clear_bit(R5_OVERWRITE
, &dev
->flags
);
1784 wbi
= r5_next_bio(wbi
, dev
->sector
);
1787 if (head_sh
->batch_head
) {
1788 sh
= list_first_entry(&sh
->batch_list
,
1801 static void ops_complete_reconstruct(void *stripe_head_ref
)
1803 struct stripe_head
*sh
= stripe_head_ref
;
1804 int disks
= sh
->disks
;
1805 int pd_idx
= sh
->pd_idx
;
1806 int qd_idx
= sh
->qd_idx
;
1808 bool fua
= false, sync
= false, discard
= false;
1810 pr_debug("%s: stripe %llu\n", __func__
,
1811 (unsigned long long)sh
->sector
);
1813 for (i
= disks
; i
--; ) {
1814 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1815 sync
|= test_bit(R5_SyncIO
, &sh
->dev
[i
].flags
);
1816 discard
|= test_bit(R5_Discard
, &sh
->dev
[i
].flags
);
1819 for (i
= disks
; i
--; ) {
1820 struct r5dev
*dev
= &sh
->dev
[i
];
1822 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1823 if (!discard
&& !test_bit(R5_SkipCopy
, &dev
->flags
)) {
1824 set_bit(R5_UPTODATE
, &dev
->flags
);
1825 if (test_bit(STRIPE_EXPAND_READY
, &sh
->state
))
1826 set_bit(R5_Expanded
, &dev
->flags
);
1829 set_bit(R5_WantFUA
, &dev
->flags
);
1831 set_bit(R5_SyncIO
, &dev
->flags
);
1835 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1836 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1837 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1838 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1840 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1841 sh
->reconstruct_state
= reconstruct_state_result
;
1844 set_bit(STRIPE_HANDLE
, &sh
->state
);
1845 raid5_release_stripe(sh
);
1849 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1850 struct dma_async_tx_descriptor
*tx
)
1852 int disks
= sh
->disks
;
1853 struct page
**xor_srcs
;
1854 struct async_submit_ctl submit
;
1855 int count
, pd_idx
= sh
->pd_idx
, i
;
1856 struct page
*xor_dest
;
1858 unsigned long flags
;
1860 struct stripe_head
*head_sh
= sh
;
1863 pr_debug("%s: stripe %llu\n", __func__
,
1864 (unsigned long long)sh
->sector
);
1866 for (i
= 0; i
< sh
->disks
; i
++) {
1869 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1872 if (i
>= sh
->disks
) {
1873 atomic_inc(&sh
->count
);
1874 set_bit(R5_Discard
, &sh
->dev
[pd_idx
].flags
);
1875 ops_complete_reconstruct(sh
);
1880 xor_srcs
= to_addr_page(percpu
, j
);
1881 /* check if prexor is active which means only process blocks
1882 * that are part of a read-modify-write (written)
1884 if (head_sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1886 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1887 for (i
= disks
; i
--; ) {
1888 struct r5dev
*dev
= &sh
->dev
[i
];
1889 if (head_sh
->dev
[i
].written
||
1890 test_bit(R5_InJournal
, &head_sh
->dev
[i
].flags
))
1891 xor_srcs
[count
++] = dev
->page
;
1894 xor_dest
= sh
->dev
[pd_idx
].page
;
1895 for (i
= disks
; i
--; ) {
1896 struct r5dev
*dev
= &sh
->dev
[i
];
1898 xor_srcs
[count
++] = dev
->page
;
1902 /* 1/ if we prexor'd then the dest is reused as a source
1903 * 2/ if we did not prexor then we are redoing the parity
1904 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1905 * for the synchronous xor case
1907 last_stripe
= !head_sh
->batch_head
||
1908 list_first_entry(&sh
->batch_list
,
1909 struct stripe_head
, batch_list
) == head_sh
;
1911 flags
= ASYNC_TX_ACK
|
1912 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1914 atomic_inc(&head_sh
->count
);
1915 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, head_sh
,
1916 to_addr_conv(sh
, percpu
, j
));
1918 flags
= prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
;
1919 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
,
1920 to_addr_conv(sh
, percpu
, j
));
1923 if (unlikely(count
== 1))
1924 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1926 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1929 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1936 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1937 struct dma_async_tx_descriptor
*tx
)
1939 struct async_submit_ctl submit
;
1940 struct page
**blocks
;
1941 int count
, i
, j
= 0;
1942 struct stripe_head
*head_sh
= sh
;
1945 unsigned long txflags
;
1947 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1949 for (i
= 0; i
< sh
->disks
; i
++) {
1950 if (sh
->pd_idx
== i
|| sh
->qd_idx
== i
)
1952 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1955 if (i
>= sh
->disks
) {
1956 atomic_inc(&sh
->count
);
1957 set_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
1958 set_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
1959 ops_complete_reconstruct(sh
);
1964 blocks
= to_addr_page(percpu
, j
);
1966 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1967 synflags
= SYNDROME_SRC_WRITTEN
;
1968 txflags
= ASYNC_TX_ACK
| ASYNC_TX_PQ_XOR_DST
;
1970 synflags
= SYNDROME_SRC_ALL
;
1971 txflags
= ASYNC_TX_ACK
;
1974 count
= set_syndrome_sources(blocks
, sh
, synflags
);
1975 last_stripe
= !head_sh
->batch_head
||
1976 list_first_entry(&sh
->batch_list
,
1977 struct stripe_head
, batch_list
) == head_sh
;
1980 atomic_inc(&head_sh
->count
);
1981 init_async_submit(&submit
, txflags
, tx
, ops_complete_reconstruct
,
1982 head_sh
, to_addr_conv(sh
, percpu
, j
));
1984 init_async_submit(&submit
, 0, tx
, NULL
, NULL
,
1985 to_addr_conv(sh
, percpu
, j
));
1986 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1989 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1995 static void ops_complete_check(void *stripe_head_ref
)
1997 struct stripe_head
*sh
= stripe_head_ref
;
1999 pr_debug("%s: stripe %llu\n", __func__
,
2000 (unsigned long long)sh
->sector
);
2002 sh
->check_state
= check_state_check_result
;
2003 set_bit(STRIPE_HANDLE
, &sh
->state
);
2004 raid5_release_stripe(sh
);
2007 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
2009 int disks
= sh
->disks
;
2010 int pd_idx
= sh
->pd_idx
;
2011 int qd_idx
= sh
->qd_idx
;
2012 struct page
*xor_dest
;
2013 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
2014 struct dma_async_tx_descriptor
*tx
;
2015 struct async_submit_ctl submit
;
2019 pr_debug("%s: stripe %llu\n", __func__
,
2020 (unsigned long long)sh
->sector
);
2022 BUG_ON(sh
->batch_head
);
2024 xor_dest
= sh
->dev
[pd_idx
].page
;
2025 xor_srcs
[count
++] = xor_dest
;
2026 for (i
= disks
; i
--; ) {
2027 if (i
== pd_idx
|| i
== qd_idx
)
2029 xor_srcs
[count
++] = sh
->dev
[i
].page
;
2032 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
2033 to_addr_conv(sh
, percpu
, 0));
2034 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
2035 &sh
->ops
.zero_sum_result
, &submit
);
2037 atomic_inc(&sh
->count
);
2038 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
2039 tx
= async_trigger_callback(&submit
);
2042 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
2044 struct page
**srcs
= to_addr_page(percpu
, 0);
2045 struct async_submit_ctl submit
;
2048 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
2049 (unsigned long long)sh
->sector
, checkp
);
2051 BUG_ON(sh
->batch_head
);
2052 count
= set_syndrome_sources(srcs
, sh
, SYNDROME_SRC_ALL
);
2056 atomic_inc(&sh
->count
);
2057 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
2058 sh
, to_addr_conv(sh
, percpu
, 0));
2059 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
2060 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
2063 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
2065 int overlap_clear
= 0, i
, disks
= sh
->disks
;
2066 struct dma_async_tx_descriptor
*tx
= NULL
;
2067 struct r5conf
*conf
= sh
->raid_conf
;
2068 int level
= conf
->level
;
2069 struct raid5_percpu
*percpu
;
2073 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
2074 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
2075 ops_run_biofill(sh
);
2079 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
2081 tx
= ops_run_compute5(sh
, percpu
);
2083 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
2084 tx
= ops_run_compute6_1(sh
, percpu
);
2086 tx
= ops_run_compute6_2(sh
, percpu
);
2088 /* terminate the chain if reconstruct is not set to be run */
2089 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
2093 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
)) {
2095 tx
= ops_run_prexor5(sh
, percpu
, tx
);
2097 tx
= ops_run_prexor6(sh
, percpu
, tx
);
2100 if (test_bit(STRIPE_OP_PARTIAL_PARITY
, &ops_request
))
2101 tx
= ops_run_partial_parity(sh
, percpu
, tx
);
2103 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
2104 tx
= ops_run_biodrain(sh
, tx
);
2108 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
2110 ops_run_reconstruct5(sh
, percpu
, tx
);
2112 ops_run_reconstruct6(sh
, percpu
, tx
);
2115 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
2116 if (sh
->check_state
== check_state_run
)
2117 ops_run_check_p(sh
, percpu
);
2118 else if (sh
->check_state
== check_state_run_q
)
2119 ops_run_check_pq(sh
, percpu
, 0);
2120 else if (sh
->check_state
== check_state_run_pq
)
2121 ops_run_check_pq(sh
, percpu
, 1);
2126 if (overlap_clear
&& !sh
->batch_head
)
2127 for (i
= disks
; i
--; ) {
2128 struct r5dev
*dev
= &sh
->dev
[i
];
2129 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
2130 wake_up(&sh
->raid_conf
->wait_for_overlap
);
2135 static void free_stripe(struct kmem_cache
*sc
, struct stripe_head
*sh
)
2138 __free_page(sh
->ppl_page
);
2139 kmem_cache_free(sc
, sh
);
2142 static struct stripe_head
*alloc_stripe(struct kmem_cache
*sc
, gfp_t gfp
,
2143 int disks
, struct r5conf
*conf
)
2145 struct stripe_head
*sh
;
2148 sh
= kmem_cache_zalloc(sc
, gfp
);
2150 spin_lock_init(&sh
->stripe_lock
);
2151 spin_lock_init(&sh
->batch_lock
);
2152 INIT_LIST_HEAD(&sh
->batch_list
);
2153 INIT_LIST_HEAD(&sh
->lru
);
2154 INIT_LIST_HEAD(&sh
->r5c
);
2155 INIT_LIST_HEAD(&sh
->log_list
);
2156 atomic_set(&sh
->count
, 1);
2157 sh
->raid_conf
= conf
;
2158 sh
->log_start
= MaxSector
;
2159 for (i
= 0; i
< disks
; i
++) {
2160 struct r5dev
*dev
= &sh
->dev
[i
];
2162 bio_init(&dev
->req
, &dev
->vec
, 1);
2163 bio_init(&dev
->rreq
, &dev
->rvec
, 1);
2166 if (raid5_has_ppl(conf
)) {
2167 sh
->ppl_page
= alloc_page(gfp
);
2168 if (!sh
->ppl_page
) {
2169 free_stripe(sc
, sh
);
2176 static int grow_one_stripe(struct r5conf
*conf
, gfp_t gfp
)
2178 struct stripe_head
*sh
;
2180 sh
= alloc_stripe(conf
->slab_cache
, gfp
, conf
->pool_size
, conf
);
2184 if (grow_buffers(sh
, gfp
)) {
2186 free_stripe(conf
->slab_cache
, sh
);
2189 sh
->hash_lock_index
=
2190 conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
;
2191 /* we just created an active stripe so... */
2192 atomic_inc(&conf
->active_stripes
);
2194 raid5_release_stripe(sh
);
2195 conf
->max_nr_stripes
++;
2199 static int grow_stripes(struct r5conf
*conf
, int num
)
2201 struct kmem_cache
*sc
;
2202 size_t namelen
= sizeof(conf
->cache_name
[0]);
2203 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
2205 if (conf
->mddev
->gendisk
)
2206 snprintf(conf
->cache_name
[0], namelen
,
2207 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
2209 snprintf(conf
->cache_name
[0], namelen
,
2210 "raid%d-%p", conf
->level
, conf
->mddev
);
2211 snprintf(conf
->cache_name
[1], namelen
, "%.27s-alt", conf
->cache_name
[0]);
2213 conf
->active_name
= 0;
2214 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
2215 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
2219 conf
->slab_cache
= sc
;
2220 conf
->pool_size
= devs
;
2222 if (!grow_one_stripe(conf
, GFP_KERNEL
))
2229 * scribble_len - return the required size of the scribble region
2230 * @num - total number of disks in the array
2232 * The size must be enough to contain:
2233 * 1/ a struct page pointer for each device in the array +2
2234 * 2/ room to convert each entry in (1) to its corresponding dma
2235 * (dma_map_page()) or page (page_address()) address.
2237 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2238 * calculate over all devices (not just the data blocks), using zeros in place
2239 * of the P and Q blocks.
2241 static struct flex_array
*scribble_alloc(int num
, int cnt
, gfp_t flags
)
2243 struct flex_array
*ret
;
2246 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
2247 ret
= flex_array_alloc(len
, cnt
, flags
);
2250 /* always prealloc all elements, so no locking is required */
2251 if (flex_array_prealloc(ret
, 0, cnt
, flags
)) {
2252 flex_array_free(ret
);
2258 static int resize_chunks(struct r5conf
*conf
, int new_disks
, int new_sectors
)
2264 * Never shrink. And mddev_suspend() could deadlock if this is called
2265 * from raid5d. In that case, scribble_disks and scribble_sectors
2266 * should equal to new_disks and new_sectors
2268 if (conf
->scribble_disks
>= new_disks
&&
2269 conf
->scribble_sectors
>= new_sectors
)
2271 mddev_suspend(conf
->mddev
);
2273 for_each_present_cpu(cpu
) {
2274 struct raid5_percpu
*percpu
;
2275 struct flex_array
*scribble
;
2277 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
2278 scribble
= scribble_alloc(new_disks
,
2279 new_sectors
/ STRIPE_SECTORS
,
2283 flex_array_free(percpu
->scribble
);
2284 percpu
->scribble
= scribble
;
2291 mddev_resume(conf
->mddev
);
2293 conf
->scribble_disks
= new_disks
;
2294 conf
->scribble_sectors
= new_sectors
;
2299 static int resize_stripes(struct r5conf
*conf
, int newsize
)
2301 /* Make all the stripes able to hold 'newsize' devices.
2302 * New slots in each stripe get 'page' set to a new page.
2304 * This happens in stages:
2305 * 1/ create a new kmem_cache and allocate the required number of
2307 * 2/ gather all the old stripe_heads and transfer the pages across
2308 * to the new stripe_heads. This will have the side effect of
2309 * freezing the array as once all stripe_heads have been collected,
2310 * no IO will be possible. Old stripe heads are freed once their
2311 * pages have been transferred over, and the old kmem_cache is
2312 * freed when all stripes are done.
2313 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2314 * we simple return a failure status - no need to clean anything up.
2315 * 4/ allocate new pages for the new slots in the new stripe_heads.
2316 * If this fails, we don't bother trying the shrink the
2317 * stripe_heads down again, we just leave them as they are.
2318 * As each stripe_head is processed the new one is released into
2321 * Once step2 is started, we cannot afford to wait for a write,
2322 * so we use GFP_NOIO allocations.
2324 struct stripe_head
*osh
, *nsh
;
2325 LIST_HEAD(newstripes
);
2326 struct disk_info
*ndisks
;
2328 struct kmem_cache
*sc
;
2332 md_allow_write(conf
->mddev
);
2335 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
2336 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
2341 /* Need to ensure auto-resizing doesn't interfere */
2342 mutex_lock(&conf
->cache_size_mutex
);
2344 for (i
= conf
->max_nr_stripes
; i
; i
--) {
2345 nsh
= alloc_stripe(sc
, GFP_KERNEL
, newsize
, conf
);
2349 list_add(&nsh
->lru
, &newstripes
);
2352 /* didn't get enough, give up */
2353 while (!list_empty(&newstripes
)) {
2354 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2355 list_del(&nsh
->lru
);
2356 free_stripe(sc
, nsh
);
2358 kmem_cache_destroy(sc
);
2359 mutex_unlock(&conf
->cache_size_mutex
);
2362 /* Step 2 - Must use GFP_NOIO now.
2363 * OK, we have enough stripes, start collecting inactive
2364 * stripes and copying them over
2368 list_for_each_entry(nsh
, &newstripes
, lru
) {
2369 lock_device_hash_lock(conf
, hash
);
2370 wait_event_cmd(conf
->wait_for_stripe
,
2371 !list_empty(conf
->inactive_list
+ hash
),
2372 unlock_device_hash_lock(conf
, hash
),
2373 lock_device_hash_lock(conf
, hash
));
2374 osh
= get_free_stripe(conf
, hash
);
2375 unlock_device_hash_lock(conf
, hash
);
2377 for(i
=0; i
<conf
->pool_size
; i
++) {
2378 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
2379 nsh
->dev
[i
].orig_page
= osh
->dev
[i
].page
;
2381 nsh
->hash_lock_index
= hash
;
2382 free_stripe(conf
->slab_cache
, osh
);
2384 if (cnt
>= conf
->max_nr_stripes
/ NR_STRIPE_HASH_LOCKS
+
2385 !!((conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
) > hash
)) {
2390 kmem_cache_destroy(conf
->slab_cache
);
2393 * At this point, we are holding all the stripes so the array
2394 * is completely stalled, so now is a good time to resize
2395 * conf->disks and the scribble region
2397 ndisks
= kcalloc(newsize
, sizeof(struct disk_info
), GFP_NOIO
);
2399 for (i
= 0; i
< conf
->pool_size
; i
++)
2400 ndisks
[i
] = conf
->disks
[i
];
2402 for (i
= conf
->pool_size
; i
< newsize
; i
++) {
2403 ndisks
[i
].extra_page
= alloc_page(GFP_NOIO
);
2404 if (!ndisks
[i
].extra_page
)
2409 for (i
= conf
->pool_size
; i
< newsize
; i
++)
2410 if (ndisks
[i
].extra_page
)
2411 put_page(ndisks
[i
].extra_page
);
2415 conf
->disks
= ndisks
;
2420 mutex_unlock(&conf
->cache_size_mutex
);
2422 conf
->slab_cache
= sc
;
2423 conf
->active_name
= 1-conf
->active_name
;
2425 /* Step 4, return new stripes to service */
2426 while(!list_empty(&newstripes
)) {
2427 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2428 list_del_init(&nsh
->lru
);
2430 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
2431 if (nsh
->dev
[i
].page
== NULL
) {
2432 struct page
*p
= alloc_page(GFP_NOIO
);
2433 nsh
->dev
[i
].page
= p
;
2434 nsh
->dev
[i
].orig_page
= p
;
2438 raid5_release_stripe(nsh
);
2440 /* critical section pass, GFP_NOIO no longer needed */
2443 conf
->pool_size
= newsize
;
2447 static int drop_one_stripe(struct r5conf
*conf
)
2449 struct stripe_head
*sh
;
2450 int hash
= (conf
->max_nr_stripes
- 1) & STRIPE_HASH_LOCKS_MASK
;
2452 spin_lock_irq(conf
->hash_locks
+ hash
);
2453 sh
= get_free_stripe(conf
, hash
);
2454 spin_unlock_irq(conf
->hash_locks
+ hash
);
2457 BUG_ON(atomic_read(&sh
->count
));
2459 free_stripe(conf
->slab_cache
, sh
);
2460 atomic_dec(&conf
->active_stripes
);
2461 conf
->max_nr_stripes
--;
2465 static void shrink_stripes(struct r5conf
*conf
)
2467 while (conf
->max_nr_stripes
&&
2468 drop_one_stripe(conf
))
2471 kmem_cache_destroy(conf
->slab_cache
);
2472 conf
->slab_cache
= NULL
;
2475 static void raid5_end_read_request(struct bio
* bi
)
2477 struct stripe_head
*sh
= bi
->bi_private
;
2478 struct r5conf
*conf
= sh
->raid_conf
;
2479 int disks
= sh
->disks
, i
;
2480 char b
[BDEVNAME_SIZE
];
2481 struct md_rdev
*rdev
= NULL
;
2484 for (i
=0 ; i
<disks
; i
++)
2485 if (bi
== &sh
->dev
[i
].req
)
2488 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2489 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2496 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2497 /* If replacement finished while this request was outstanding,
2498 * 'replacement' might be NULL already.
2499 * In that case it moved down to 'rdev'.
2500 * rdev is not removed until all requests are finished.
2502 rdev
= conf
->disks
[i
].replacement
;
2504 rdev
= conf
->disks
[i
].rdev
;
2506 if (use_new_offset(conf
, sh
))
2507 s
= sh
->sector
+ rdev
->new_data_offset
;
2509 s
= sh
->sector
+ rdev
->data_offset
;
2510 if (!bi
->bi_status
) {
2511 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2512 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2513 /* Note that this cannot happen on a
2514 * replacement device. We just fail those on
2517 pr_info_ratelimited(
2518 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2519 mdname(conf
->mddev
), STRIPE_SECTORS
,
2520 (unsigned long long)s
,
2521 bdevname(rdev
->bdev
, b
));
2522 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
2523 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2524 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2525 } else if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2526 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2528 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
2530 * end read for a page in journal, this
2531 * must be preparing for prexor in rmw
2533 set_bit(R5_OrigPageUPTDODATE
, &sh
->dev
[i
].flags
);
2535 if (atomic_read(&rdev
->read_errors
))
2536 atomic_set(&rdev
->read_errors
, 0);
2538 const char *bdn
= bdevname(rdev
->bdev
, b
);
2542 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2543 atomic_inc(&rdev
->read_errors
);
2544 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2545 pr_warn_ratelimited(
2546 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2547 mdname(conf
->mddev
),
2548 (unsigned long long)s
,
2550 else if (conf
->mddev
->degraded
>= conf
->max_degraded
) {
2552 pr_warn_ratelimited(
2553 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2554 mdname(conf
->mddev
),
2555 (unsigned long long)s
,
2557 } else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
)) {
2560 pr_warn_ratelimited(
2561 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2562 mdname(conf
->mddev
),
2563 (unsigned long long)s
,
2565 } else if (atomic_read(&rdev
->read_errors
)
2566 > conf
->max_nr_stripes
)
2567 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2568 mdname(conf
->mddev
), bdn
);
2571 if (set_bad
&& test_bit(In_sync
, &rdev
->flags
)
2572 && !test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2575 if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
)) {
2576 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2577 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2579 set_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2581 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2582 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2584 && test_bit(In_sync
, &rdev
->flags
)
2585 && rdev_set_badblocks(
2586 rdev
, sh
->sector
, STRIPE_SECTORS
, 0)))
2587 md_error(conf
->mddev
, rdev
);
2590 rdev_dec_pending(rdev
, conf
->mddev
);
2592 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2593 set_bit(STRIPE_HANDLE
, &sh
->state
);
2594 raid5_release_stripe(sh
);
2597 static void raid5_end_write_request(struct bio
*bi
)
2599 struct stripe_head
*sh
= bi
->bi_private
;
2600 struct r5conf
*conf
= sh
->raid_conf
;
2601 int disks
= sh
->disks
, i
;
2602 struct md_rdev
*uninitialized_var(rdev
);
2605 int replacement
= 0;
2607 for (i
= 0 ; i
< disks
; i
++) {
2608 if (bi
== &sh
->dev
[i
].req
) {
2609 rdev
= conf
->disks
[i
].rdev
;
2612 if (bi
== &sh
->dev
[i
].rreq
) {
2613 rdev
= conf
->disks
[i
].replacement
;
2617 /* rdev was removed and 'replacement'
2618 * replaced it. rdev is not removed
2619 * until all requests are finished.
2621 rdev
= conf
->disks
[i
].rdev
;
2625 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2626 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2636 md_error(conf
->mddev
, rdev
);
2637 else if (is_badblock(rdev
, sh
->sector
,
2639 &first_bad
, &bad_sectors
))
2640 set_bit(R5_MadeGoodRepl
, &sh
->dev
[i
].flags
);
2642 if (bi
->bi_status
) {
2643 set_bit(STRIPE_DEGRADED
, &sh
->state
);
2644 set_bit(WriteErrorSeen
, &rdev
->flags
);
2645 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
2646 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2647 set_bit(MD_RECOVERY_NEEDED
,
2648 &rdev
->mddev
->recovery
);
2649 } else if (is_badblock(rdev
, sh
->sector
,
2651 &first_bad
, &bad_sectors
)) {
2652 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
2653 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))
2654 /* That was a successful write so make
2655 * sure it looks like we already did
2658 set_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2661 rdev_dec_pending(rdev
, conf
->mddev
);
2663 if (sh
->batch_head
&& bi
->bi_status
&& !replacement
)
2664 set_bit(STRIPE_BATCH_ERR
, &sh
->batch_head
->state
);
2667 if (!test_and_clear_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
))
2668 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2669 set_bit(STRIPE_HANDLE
, &sh
->state
);
2670 raid5_release_stripe(sh
);
2672 if (sh
->batch_head
&& sh
!= sh
->batch_head
)
2673 raid5_release_stripe(sh
->batch_head
);
2676 static void raid5_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
2678 char b
[BDEVNAME_SIZE
];
2679 struct r5conf
*conf
= mddev
->private;
2680 unsigned long flags
;
2681 pr_debug("raid456: error called\n");
2683 spin_lock_irqsave(&conf
->device_lock
, flags
);
2684 set_bit(Faulty
, &rdev
->flags
);
2685 clear_bit(In_sync
, &rdev
->flags
);
2686 mddev
->degraded
= raid5_calc_degraded(conf
);
2687 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2688 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2690 set_bit(Blocked
, &rdev
->flags
);
2691 set_mask_bits(&mddev
->sb_flags
, 0,
2692 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
2693 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2694 "md/raid:%s: Operation continuing on %d devices.\n",
2696 bdevname(rdev
->bdev
, b
),
2698 conf
->raid_disks
- mddev
->degraded
);
2699 r5c_update_on_rdev_error(mddev
, rdev
);
2703 * Input: a 'big' sector number,
2704 * Output: index of the data and parity disk, and the sector # in them.
2706 sector_t
raid5_compute_sector(struct r5conf
*conf
, sector_t r_sector
,
2707 int previous
, int *dd_idx
,
2708 struct stripe_head
*sh
)
2710 sector_t stripe
, stripe2
;
2711 sector_t chunk_number
;
2712 unsigned int chunk_offset
;
2715 sector_t new_sector
;
2716 int algorithm
= previous
? conf
->prev_algo
2718 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2719 : conf
->chunk_sectors
;
2720 int raid_disks
= previous
? conf
->previous_raid_disks
2722 int data_disks
= raid_disks
- conf
->max_degraded
;
2724 /* First compute the information on this sector */
2727 * Compute the chunk number and the sector offset inside the chunk
2729 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
2730 chunk_number
= r_sector
;
2733 * Compute the stripe number
2735 stripe
= chunk_number
;
2736 *dd_idx
= sector_div(stripe
, data_disks
);
2739 * Select the parity disk based on the user selected algorithm.
2741 pd_idx
= qd_idx
= -1;
2742 switch(conf
->level
) {
2744 pd_idx
= data_disks
;
2747 switch (algorithm
) {
2748 case ALGORITHM_LEFT_ASYMMETRIC
:
2749 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2750 if (*dd_idx
>= pd_idx
)
2753 case ALGORITHM_RIGHT_ASYMMETRIC
:
2754 pd_idx
= sector_div(stripe2
, raid_disks
);
2755 if (*dd_idx
>= pd_idx
)
2758 case ALGORITHM_LEFT_SYMMETRIC
:
2759 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2760 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2762 case ALGORITHM_RIGHT_SYMMETRIC
:
2763 pd_idx
= sector_div(stripe2
, raid_disks
);
2764 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2766 case ALGORITHM_PARITY_0
:
2770 case ALGORITHM_PARITY_N
:
2771 pd_idx
= data_disks
;
2779 switch (algorithm
) {
2780 case ALGORITHM_LEFT_ASYMMETRIC
:
2781 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2782 qd_idx
= pd_idx
+ 1;
2783 if (pd_idx
== raid_disks
-1) {
2784 (*dd_idx
)++; /* Q D D D P */
2786 } else if (*dd_idx
>= pd_idx
)
2787 (*dd_idx
) += 2; /* D D P Q D */
2789 case ALGORITHM_RIGHT_ASYMMETRIC
:
2790 pd_idx
= sector_div(stripe2
, raid_disks
);
2791 qd_idx
= pd_idx
+ 1;
2792 if (pd_idx
== raid_disks
-1) {
2793 (*dd_idx
)++; /* Q D D D P */
2795 } else if (*dd_idx
>= pd_idx
)
2796 (*dd_idx
) += 2; /* D D P Q D */
2798 case ALGORITHM_LEFT_SYMMETRIC
:
2799 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2800 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2801 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2803 case ALGORITHM_RIGHT_SYMMETRIC
:
2804 pd_idx
= sector_div(stripe2
, raid_disks
);
2805 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2806 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2809 case ALGORITHM_PARITY_0
:
2814 case ALGORITHM_PARITY_N
:
2815 pd_idx
= data_disks
;
2816 qd_idx
= data_disks
+ 1;
2819 case ALGORITHM_ROTATING_ZERO_RESTART
:
2820 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2821 * of blocks for computing Q is different.
2823 pd_idx
= sector_div(stripe2
, raid_disks
);
2824 qd_idx
= pd_idx
+ 1;
2825 if (pd_idx
== raid_disks
-1) {
2826 (*dd_idx
)++; /* Q D D D P */
2828 } else if (*dd_idx
>= pd_idx
)
2829 (*dd_idx
) += 2; /* D D P Q D */
2833 case ALGORITHM_ROTATING_N_RESTART
:
2834 /* Same a left_asymmetric, by first stripe is
2835 * D D D P Q rather than
2839 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2840 qd_idx
= pd_idx
+ 1;
2841 if (pd_idx
== raid_disks
-1) {
2842 (*dd_idx
)++; /* Q D D D P */
2844 } else if (*dd_idx
>= pd_idx
)
2845 (*dd_idx
) += 2; /* D D P Q D */
2849 case ALGORITHM_ROTATING_N_CONTINUE
:
2850 /* Same as left_symmetric but Q is before P */
2851 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2852 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
2853 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2857 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2858 /* RAID5 left_asymmetric, with Q on last device */
2859 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2860 if (*dd_idx
>= pd_idx
)
2862 qd_idx
= raid_disks
- 1;
2865 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2866 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2867 if (*dd_idx
>= pd_idx
)
2869 qd_idx
= raid_disks
- 1;
2872 case ALGORITHM_LEFT_SYMMETRIC_6
:
2873 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2874 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2875 qd_idx
= raid_disks
- 1;
2878 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2879 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2880 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2881 qd_idx
= raid_disks
- 1;
2884 case ALGORITHM_PARITY_0_6
:
2887 qd_idx
= raid_disks
- 1;
2897 sh
->pd_idx
= pd_idx
;
2898 sh
->qd_idx
= qd_idx
;
2899 sh
->ddf_layout
= ddf_layout
;
2902 * Finally, compute the new sector number
2904 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
2908 sector_t
raid5_compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
2910 struct r5conf
*conf
= sh
->raid_conf
;
2911 int raid_disks
= sh
->disks
;
2912 int data_disks
= raid_disks
- conf
->max_degraded
;
2913 sector_t new_sector
= sh
->sector
, check
;
2914 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2915 : conf
->chunk_sectors
;
2916 int algorithm
= previous
? conf
->prev_algo
2920 sector_t chunk_number
;
2921 int dummy1
, dd_idx
= i
;
2923 struct stripe_head sh2
;
2925 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
2926 stripe
= new_sector
;
2928 if (i
== sh
->pd_idx
)
2930 switch(conf
->level
) {
2933 switch (algorithm
) {
2934 case ALGORITHM_LEFT_ASYMMETRIC
:
2935 case ALGORITHM_RIGHT_ASYMMETRIC
:
2939 case ALGORITHM_LEFT_SYMMETRIC
:
2940 case ALGORITHM_RIGHT_SYMMETRIC
:
2943 i
-= (sh
->pd_idx
+ 1);
2945 case ALGORITHM_PARITY_0
:
2948 case ALGORITHM_PARITY_N
:
2955 if (i
== sh
->qd_idx
)
2956 return 0; /* It is the Q disk */
2957 switch (algorithm
) {
2958 case ALGORITHM_LEFT_ASYMMETRIC
:
2959 case ALGORITHM_RIGHT_ASYMMETRIC
:
2960 case ALGORITHM_ROTATING_ZERO_RESTART
:
2961 case ALGORITHM_ROTATING_N_RESTART
:
2962 if (sh
->pd_idx
== raid_disks
-1)
2963 i
--; /* Q D D D P */
2964 else if (i
> sh
->pd_idx
)
2965 i
-= 2; /* D D P Q D */
2967 case ALGORITHM_LEFT_SYMMETRIC
:
2968 case ALGORITHM_RIGHT_SYMMETRIC
:
2969 if (sh
->pd_idx
== raid_disks
-1)
2970 i
--; /* Q D D D P */
2975 i
-= (sh
->pd_idx
+ 2);
2978 case ALGORITHM_PARITY_0
:
2981 case ALGORITHM_PARITY_N
:
2983 case ALGORITHM_ROTATING_N_CONTINUE
:
2984 /* Like left_symmetric, but P is before Q */
2985 if (sh
->pd_idx
== 0)
2986 i
--; /* P D D D Q */
2991 i
-= (sh
->pd_idx
+ 1);
2994 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2995 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2999 case ALGORITHM_LEFT_SYMMETRIC_6
:
3000 case ALGORITHM_RIGHT_SYMMETRIC_6
:
3002 i
+= data_disks
+ 1;
3003 i
-= (sh
->pd_idx
+ 1);
3005 case ALGORITHM_PARITY_0_6
:
3014 chunk_number
= stripe
* data_disks
+ i
;
3015 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
3017 check
= raid5_compute_sector(conf
, r_sector
,
3018 previous
, &dummy1
, &sh2
);
3019 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
3020 || sh2
.qd_idx
!= sh
->qd_idx
) {
3021 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3022 mdname(conf
->mddev
));
3029 * There are cases where we want handle_stripe_dirtying() and
3030 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3032 * This function checks whether we want to delay the towrite. Specifically,
3033 * we delay the towrite when:
3035 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3036 * stripe has data in journal (for other devices).
3038 * In this case, when reading data for the non-overwrite dev, it is
3039 * necessary to handle complex rmw of write back cache (prexor with
3040 * orig_page, and xor with page). To keep read path simple, we would
3041 * like to flush data in journal to RAID disks first, so complex rmw
3042 * is handled in the write patch (handle_stripe_dirtying).
3044 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3046 * It is important to be able to flush all stripes in raid5-cache.
3047 * Therefore, we need reserve some space on the journal device for
3048 * these flushes. If flush operation includes pending writes to the
3049 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3050 * for the flush out. If we exclude these pending writes from flush
3051 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3052 * Therefore, excluding pending writes in these cases enables more
3053 * efficient use of the journal device.
3055 * Note: To make sure the stripe makes progress, we only delay
3056 * towrite for stripes with data already in journal (injournal > 0).
3057 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3058 * no_space_stripes list.
3060 * 3. during journal failure
3061 * In journal failure, we try to flush all cached data to raid disks
3062 * based on data in stripe cache. The array is read-only to upper
3063 * layers, so we would skip all pending writes.
3066 static inline bool delay_towrite(struct r5conf
*conf
,
3068 struct stripe_head_state
*s
)
3071 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3072 !test_bit(R5_Insync
, &dev
->flags
) && s
->injournal
)
3075 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
3079 if (s
->log_failed
&& s
->injournal
)
3085 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3086 int rcw
, int expand
)
3088 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
, disks
= sh
->disks
;
3089 struct r5conf
*conf
= sh
->raid_conf
;
3090 int level
= conf
->level
;
3094 * In some cases, handle_stripe_dirtying initially decided to
3095 * run rmw and allocates extra page for prexor. However, rcw is
3096 * cheaper later on. We need to free the extra page now,
3097 * because we won't be able to do that in ops_complete_prexor().
3099 r5c_release_extra_page(sh
);
3101 for (i
= disks
; i
--; ) {
3102 struct r5dev
*dev
= &sh
->dev
[i
];
3104 if (dev
->towrite
&& !delay_towrite(conf
, dev
, s
)) {
3105 set_bit(R5_LOCKED
, &dev
->flags
);
3106 set_bit(R5_Wantdrain
, &dev
->flags
);
3108 clear_bit(R5_UPTODATE
, &dev
->flags
);
3110 } else if (test_bit(R5_InJournal
, &dev
->flags
)) {
3111 set_bit(R5_LOCKED
, &dev
->flags
);
3115 /* if we are not expanding this is a proper write request, and
3116 * there will be bios with new data to be drained into the
3121 /* False alarm, nothing to do */
3123 sh
->reconstruct_state
= reconstruct_state_drain_run
;
3124 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
3126 sh
->reconstruct_state
= reconstruct_state_run
;
3128 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
3130 if (s
->locked
+ conf
->max_degraded
== disks
)
3131 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3132 atomic_inc(&conf
->pending_full_writes
);
3134 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
3135 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
3136 BUG_ON(level
== 6 &&
3137 (!(test_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
) ||
3138 test_bit(R5_Wantcompute
, &sh
->dev
[qd_idx
].flags
))));
3140 for (i
= disks
; i
--; ) {
3141 struct r5dev
*dev
= &sh
->dev
[i
];
3142 if (i
== pd_idx
|| i
== qd_idx
)
3146 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
3147 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3148 set_bit(R5_Wantdrain
, &dev
->flags
);
3149 set_bit(R5_LOCKED
, &dev
->flags
);
3150 clear_bit(R5_UPTODATE
, &dev
->flags
);
3152 } else if (test_bit(R5_InJournal
, &dev
->flags
)) {
3153 set_bit(R5_LOCKED
, &dev
->flags
);
3158 /* False alarm - nothing to do */
3160 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
3161 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
3162 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
3163 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
3166 /* keep the parity disk(s) locked while asynchronous operations
3169 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
3170 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
3174 int qd_idx
= sh
->qd_idx
;
3175 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
3177 set_bit(R5_LOCKED
, &dev
->flags
);
3178 clear_bit(R5_UPTODATE
, &dev
->flags
);
3182 if (raid5_has_ppl(sh
->raid_conf
) && sh
->ppl_page
&&
3183 test_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
) &&
3184 !test_bit(STRIPE_FULL_WRITE
, &sh
->state
) &&
3185 test_bit(R5_Insync
, &sh
->dev
[pd_idx
].flags
))
3186 set_bit(STRIPE_OP_PARTIAL_PARITY
, &s
->ops_request
);
3188 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3189 __func__
, (unsigned long long)sh
->sector
,
3190 s
->locked
, s
->ops_request
);
3194 * Each stripe/dev can have one or more bion attached.
3195 * toread/towrite point to the first in a chain.
3196 * The bi_next chain must be in order.
3198 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
,
3199 int forwrite
, int previous
)
3202 struct r5conf
*conf
= sh
->raid_conf
;
3205 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3206 (unsigned long long)bi
->bi_iter
.bi_sector
,
3207 (unsigned long long)sh
->sector
);
3209 spin_lock_irq(&sh
->stripe_lock
);
3210 sh
->dev
[dd_idx
].write_hint
= bi
->bi_write_hint
;
3211 /* Don't allow new IO added to stripes in batch list */
3215 bip
= &sh
->dev
[dd_idx
].towrite
;
3219 bip
= &sh
->dev
[dd_idx
].toread
;
3220 while (*bip
&& (*bip
)->bi_iter
.bi_sector
< bi
->bi_iter
.bi_sector
) {
3221 if (bio_end_sector(*bip
) > bi
->bi_iter
.bi_sector
)
3223 bip
= & (*bip
)->bi_next
;
3225 if (*bip
&& (*bip
)->bi_iter
.bi_sector
< bio_end_sector(bi
))
3228 if (forwrite
&& raid5_has_ppl(conf
)) {
3230 * With PPL only writes to consecutive data chunks within a
3231 * stripe are allowed because for a single stripe_head we can
3232 * only have one PPL entry at a time, which describes one data
3233 * range. Not really an overlap, but wait_for_overlap can be
3234 * used to handle this.
3242 for (i
= 0; i
< sh
->disks
; i
++) {
3243 if (i
!= sh
->pd_idx
&&
3244 (i
== dd_idx
|| sh
->dev
[i
].towrite
)) {
3245 sector
= sh
->dev
[i
].sector
;
3246 if (count
== 0 || sector
< first
)
3254 if (first
+ conf
->chunk_sectors
* (count
- 1) != last
)
3258 if (!forwrite
|| previous
)
3259 clear_bit(STRIPE_BATCH_READY
, &sh
->state
);
3261 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
3265 bio_inc_remaining(bi
);
3266 md_write_inc(conf
->mddev
, bi
);
3269 /* check if page is covered */
3270 sector_t sector
= sh
->dev
[dd_idx
].sector
;
3271 for (bi
=sh
->dev
[dd_idx
].towrite
;
3272 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
3273 bi
&& bi
->bi_iter
.bi_sector
<= sector
;
3274 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
3275 if (bio_end_sector(bi
) >= sector
)
3276 sector
= bio_end_sector(bi
);
3278 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
3279 if (!test_and_set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
))
3280 sh
->overwrite_disks
++;
3283 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3284 (unsigned long long)(*bip
)->bi_iter
.bi_sector
,
3285 (unsigned long long)sh
->sector
, dd_idx
);
3287 if (conf
->mddev
->bitmap
&& firstwrite
) {
3288 /* Cannot hold spinlock over bitmap_startwrite,
3289 * but must ensure this isn't added to a batch until
3290 * we have added to the bitmap and set bm_seq.
3291 * So set STRIPE_BITMAP_PENDING to prevent
3293 * If multiple add_stripe_bio() calls race here they
3294 * much all set STRIPE_BITMAP_PENDING. So only the first one
3295 * to complete "bitmap_startwrite" gets to set
3296 * STRIPE_BIT_DELAY. This is important as once a stripe
3297 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3300 set_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3301 spin_unlock_irq(&sh
->stripe_lock
);
3302 md_bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
3304 spin_lock_irq(&sh
->stripe_lock
);
3305 clear_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3306 if (!sh
->batch_head
) {
3307 sh
->bm_seq
= conf
->seq_flush
+1;
3308 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
3311 spin_unlock_irq(&sh
->stripe_lock
);
3313 if (stripe_can_batch(sh
))
3314 stripe_add_to_batch_list(conf
, sh
);
3318 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
3319 spin_unlock_irq(&sh
->stripe_lock
);
3323 static void end_reshape(struct r5conf
*conf
);
3325 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
3326 struct stripe_head
*sh
)
3328 int sectors_per_chunk
=
3329 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
3331 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
3332 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
3334 raid5_compute_sector(conf
,
3335 stripe
* (disks
- conf
->max_degraded
)
3336 *sectors_per_chunk
+ chunk_offset
,
3342 handle_failed_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
3343 struct stripe_head_state
*s
, int disks
)
3346 BUG_ON(sh
->batch_head
);
3347 for (i
= disks
; i
--; ) {
3351 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
3352 struct md_rdev
*rdev
;
3354 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3355 if (rdev
&& test_bit(In_sync
, &rdev
->flags
) &&
3356 !test_bit(Faulty
, &rdev
->flags
))
3357 atomic_inc(&rdev
->nr_pending
);
3362 if (!rdev_set_badblocks(
3366 md_error(conf
->mddev
, rdev
);
3367 rdev_dec_pending(rdev
, conf
->mddev
);
3370 spin_lock_irq(&sh
->stripe_lock
);
3371 /* fail all writes first */
3372 bi
= sh
->dev
[i
].towrite
;
3373 sh
->dev
[i
].towrite
= NULL
;
3374 sh
->overwrite_disks
= 0;
3375 spin_unlock_irq(&sh
->stripe_lock
);
3379 log_stripe_write_finished(sh
);
3381 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3382 wake_up(&conf
->wait_for_overlap
);
3384 while (bi
&& bi
->bi_iter
.bi_sector
<
3385 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3386 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3388 md_write_end(conf
->mddev
);
3393 md_bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3394 STRIPE_SECTORS
, 0, 0);
3396 /* and fail all 'written' */
3397 bi
= sh
->dev
[i
].written
;
3398 sh
->dev
[i
].written
= NULL
;
3399 if (test_and_clear_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
)) {
3400 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
3401 sh
->dev
[i
].page
= sh
->dev
[i
].orig_page
;
3404 if (bi
) bitmap_end
= 1;
3405 while (bi
&& bi
->bi_iter
.bi_sector
<
3406 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3407 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3409 md_write_end(conf
->mddev
);
3414 /* fail any reads if this device is non-operational and
3415 * the data has not reached the cache yet.
3417 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
3418 s
->failed
> conf
->max_degraded
&&
3419 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
3420 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
3421 spin_lock_irq(&sh
->stripe_lock
);
3422 bi
= sh
->dev
[i
].toread
;
3423 sh
->dev
[i
].toread
= NULL
;
3424 spin_unlock_irq(&sh
->stripe_lock
);
3425 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3426 wake_up(&conf
->wait_for_overlap
);
3429 while (bi
&& bi
->bi_iter
.bi_sector
<
3430 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3431 struct bio
*nextbi
=
3432 r5_next_bio(bi
, sh
->dev
[i
].sector
);
3439 md_bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3440 STRIPE_SECTORS
, 0, 0);
3441 /* If we were in the middle of a write the parity block might
3442 * still be locked - so just clear all R5_LOCKED flags
3444 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3449 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3450 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3451 md_wakeup_thread(conf
->mddev
->thread
);
3455 handle_failed_sync(struct r5conf
*conf
, struct stripe_head
*sh
,
3456 struct stripe_head_state
*s
)
3461 BUG_ON(sh
->batch_head
);
3462 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3463 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
3464 wake_up(&conf
->wait_for_overlap
);
3467 /* There is nothing more to do for sync/check/repair.
3468 * Don't even need to abort as that is handled elsewhere
3469 * if needed, and not always wanted e.g. if there is a known
3471 * For recover/replace we need to record a bad block on all
3472 * non-sync devices, or abort the recovery
3474 if (test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
)) {
3475 /* During recovery devices cannot be removed, so
3476 * locking and refcounting of rdevs is not needed
3479 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3480 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3482 && !test_bit(Faulty
, &rdev
->flags
)
3483 && !test_bit(In_sync
, &rdev
->flags
)
3484 && !rdev_set_badblocks(rdev
, sh
->sector
,
3487 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
3489 && !test_bit(Faulty
, &rdev
->flags
)
3490 && !test_bit(In_sync
, &rdev
->flags
)
3491 && !rdev_set_badblocks(rdev
, sh
->sector
,
3497 conf
->recovery_disabled
=
3498 conf
->mddev
->recovery_disabled
;
3500 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, !abort
);
3503 static int want_replace(struct stripe_head
*sh
, int disk_idx
)
3505 struct md_rdev
*rdev
;
3509 rdev
= rcu_dereference(sh
->raid_conf
->disks
[disk_idx
].replacement
);
3511 && !test_bit(Faulty
, &rdev
->flags
)
3512 && !test_bit(In_sync
, &rdev
->flags
)
3513 && (rdev
->recovery_offset
<= sh
->sector
3514 || rdev
->mddev
->recovery_cp
<= sh
->sector
))
3520 static int need_this_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3521 int disk_idx
, int disks
)
3523 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3524 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
3525 &sh
->dev
[s
->failed_num
[1]] };
3529 if (test_bit(R5_LOCKED
, &dev
->flags
) ||
3530 test_bit(R5_UPTODATE
, &dev
->flags
))
3531 /* No point reading this as we already have it or have
3532 * decided to get it.
3537 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)))
3538 /* We need this block to directly satisfy a request */
3541 if (s
->syncing
|| s
->expanding
||
3542 (s
->replacing
&& want_replace(sh
, disk_idx
)))
3543 /* When syncing, or expanding we read everything.
3544 * When replacing, we need the replaced block.
3548 if ((s
->failed
>= 1 && fdev
[0]->toread
) ||
3549 (s
->failed
>= 2 && fdev
[1]->toread
))
3550 /* If we want to read from a failed device, then
3551 * we need to actually read every other device.
3555 /* Sometimes neither read-modify-write nor reconstruct-write
3556 * cycles can work. In those cases we read every block we
3557 * can. Then the parity-update is certain to have enough to
3559 * This can only be a problem when we need to write something,
3560 * and some device has failed. If either of those tests
3561 * fail we need look no further.
3563 if (!s
->failed
|| !s
->to_write
)
3566 if (test_bit(R5_Insync
, &dev
->flags
) &&
3567 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3568 /* Pre-reads at not permitted until after short delay
3569 * to gather multiple requests. However if this
3570 * device is no Insync, the block could only be computed
3571 * and there is no need to delay that.
3575 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3576 if (fdev
[i
]->towrite
&&
3577 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3578 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3579 /* If we have a partial write to a failed
3580 * device, then we will need to reconstruct
3581 * the content of that device, so all other
3582 * devices must be read.
3587 /* If we are forced to do a reconstruct-write, either because
3588 * the current RAID6 implementation only supports that, or
3589 * because parity cannot be trusted and we are currently
3590 * recovering it, there is extra need to be careful.
3591 * If one of the devices that we would need to read, because
3592 * it is not being overwritten (and maybe not written at all)
3593 * is missing/faulty, then we need to read everything we can.
3595 if (sh
->raid_conf
->level
!= 6 &&
3596 sh
->sector
< sh
->raid_conf
->mddev
->recovery_cp
)
3597 /* reconstruct-write isn't being forced */
3599 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3600 if (s
->failed_num
[i
] != sh
->pd_idx
&&
3601 s
->failed_num
[i
] != sh
->qd_idx
&&
3602 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3603 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3610 /* fetch_block - checks the given member device to see if its data needs
3611 * to be read or computed to satisfy a request.
3613 * Returns 1 when no more member devices need to be checked, otherwise returns
3614 * 0 to tell the loop in handle_stripe_fill to continue
3616 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3617 int disk_idx
, int disks
)
3619 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3621 /* is the data in this block needed, and can we get it? */
3622 if (need_this_block(sh
, s
, disk_idx
, disks
)) {
3623 /* we would like to get this block, possibly by computing it,
3624 * otherwise read it if the backing disk is insync
3626 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
3627 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
3628 BUG_ON(sh
->batch_head
);
3631 * In the raid6 case if the only non-uptodate disk is P
3632 * then we already trusted P to compute the other failed
3633 * drives. It is safe to compute rather than re-read P.
3634 * In other cases we only compute blocks from failed
3635 * devices, otherwise check/repair might fail to detect
3636 * a real inconsistency.
3639 if ((s
->uptodate
== disks
- 1) &&
3640 ((sh
->qd_idx
>= 0 && sh
->pd_idx
== disk_idx
) ||
3641 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
3642 disk_idx
== s
->failed_num
[1])))) {
3643 /* have disk failed, and we're requested to fetch it;
3646 pr_debug("Computing stripe %llu block %d\n",
3647 (unsigned long long)sh
->sector
, disk_idx
);
3648 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3649 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3650 set_bit(R5_Wantcompute
, &dev
->flags
);
3651 sh
->ops
.target
= disk_idx
;
3652 sh
->ops
.target2
= -1; /* no 2nd target */
3654 /* Careful: from this point on 'uptodate' is in the eye
3655 * of raid_run_ops which services 'compute' operations
3656 * before writes. R5_Wantcompute flags a block that will
3657 * be R5_UPTODATE by the time it is needed for a
3658 * subsequent operation.
3662 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
3663 /* Computing 2-failure is *very* expensive; only
3664 * do it if failed >= 2
3667 for (other
= disks
; other
--; ) {
3668 if (other
== disk_idx
)
3670 if (!test_bit(R5_UPTODATE
,
3671 &sh
->dev
[other
].flags
))
3675 pr_debug("Computing stripe %llu blocks %d,%d\n",
3676 (unsigned long long)sh
->sector
,
3678 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3679 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3680 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
3681 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
3682 sh
->ops
.target
= disk_idx
;
3683 sh
->ops
.target2
= other
;
3687 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
3688 set_bit(R5_LOCKED
, &dev
->flags
);
3689 set_bit(R5_Wantread
, &dev
->flags
);
3691 pr_debug("Reading block %d (sync=%d)\n",
3692 disk_idx
, s
->syncing
);
3700 * handle_stripe_fill - read or compute data to satisfy pending requests.
3702 static void handle_stripe_fill(struct stripe_head
*sh
,
3703 struct stripe_head_state
*s
,
3708 /* look for blocks to read/compute, skip this if a compute
3709 * is already in flight, or if the stripe contents are in the
3710 * midst of changing due to a write
3712 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
3713 !sh
->reconstruct_state
) {
3716 * For degraded stripe with data in journal, do not handle
3717 * read requests yet, instead, flush the stripe to raid
3718 * disks first, this avoids handling complex rmw of write
3719 * back cache (prexor with orig_page, and then xor with
3720 * page) in the read path
3722 if (s
->injournal
&& s
->failed
) {
3723 if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
))
3724 r5c_make_stripe_write_out(sh
);
3728 for (i
= disks
; i
--; )
3729 if (fetch_block(sh
, s
, i
, disks
))
3733 set_bit(STRIPE_HANDLE
, &sh
->state
);
3736 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
3737 unsigned long handle_flags
);
3738 /* handle_stripe_clean_event
3739 * any written block on an uptodate or failed drive can be returned.
3740 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3741 * never LOCKED, so we don't need to test 'failed' directly.
3743 static void handle_stripe_clean_event(struct r5conf
*conf
,
3744 struct stripe_head
*sh
, int disks
)
3748 int discard_pending
= 0;
3749 struct stripe_head
*head_sh
= sh
;
3750 bool do_endio
= false;
3752 for (i
= disks
; i
--; )
3753 if (sh
->dev
[i
].written
) {
3755 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
3756 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
3757 test_bit(R5_Discard
, &dev
->flags
) ||
3758 test_bit(R5_SkipCopy
, &dev
->flags
))) {
3759 /* We can return any write requests */
3760 struct bio
*wbi
, *wbi2
;
3761 pr_debug("Return write for disc %d\n", i
);
3762 if (test_and_clear_bit(R5_Discard
, &dev
->flags
))
3763 clear_bit(R5_UPTODATE
, &dev
->flags
);
3764 if (test_and_clear_bit(R5_SkipCopy
, &dev
->flags
)) {
3765 WARN_ON(test_bit(R5_UPTODATE
, &dev
->flags
));
3770 dev
->page
= dev
->orig_page
;
3772 dev
->written
= NULL
;
3773 while (wbi
&& wbi
->bi_iter
.bi_sector
<
3774 dev
->sector
+ STRIPE_SECTORS
) {
3775 wbi2
= r5_next_bio(wbi
, dev
->sector
);
3776 md_write_end(conf
->mddev
);
3780 md_bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3782 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
3784 if (head_sh
->batch_head
) {
3785 sh
= list_first_entry(&sh
->batch_list
,
3788 if (sh
!= head_sh
) {
3795 } else if (test_bit(R5_Discard
, &dev
->flags
))
3796 discard_pending
= 1;
3799 log_stripe_write_finished(sh
);
3801 if (!discard_pending
&&
3802 test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
)) {
3804 clear_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
3805 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3806 if (sh
->qd_idx
>= 0) {
3807 clear_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
3808 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
);
3810 /* now that discard is done we can proceed with any sync */
3811 clear_bit(STRIPE_DISCARD
, &sh
->state
);
3813 * SCSI discard will change some bio fields and the stripe has
3814 * no updated data, so remove it from hash list and the stripe
3815 * will be reinitialized
3818 hash
= sh
->hash_lock_index
;
3819 spin_lock_irq(conf
->hash_locks
+ hash
);
3821 spin_unlock_irq(conf
->hash_locks
+ hash
);
3822 if (head_sh
->batch_head
) {
3823 sh
= list_first_entry(&sh
->batch_list
,
3824 struct stripe_head
, batch_list
);
3830 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
3831 set_bit(STRIPE_HANDLE
, &sh
->state
);
3835 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3836 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3837 md_wakeup_thread(conf
->mddev
->thread
);
3839 if (head_sh
->batch_head
&& do_endio
)
3840 break_stripe_batch_list(head_sh
, STRIPE_EXPAND_SYNC_FLAGS
);
3844 * For RMW in write back cache, we need extra page in prexor to store the
3845 * old data. This page is stored in dev->orig_page.
3847 * This function checks whether we have data for prexor. The exact logic
3849 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3851 static inline bool uptodate_for_rmw(struct r5dev
*dev
)
3853 return (test_bit(R5_UPTODATE
, &dev
->flags
)) &&
3854 (!test_bit(R5_InJournal
, &dev
->flags
) ||
3855 test_bit(R5_OrigPageUPTDODATE
, &dev
->flags
));
3858 static int handle_stripe_dirtying(struct r5conf
*conf
,
3859 struct stripe_head
*sh
,
3860 struct stripe_head_state
*s
,
3863 int rmw
= 0, rcw
= 0, i
;
3864 sector_t recovery_cp
= conf
->mddev
->recovery_cp
;
3866 /* Check whether resync is now happening or should start.
3867 * If yes, then the array is dirty (after unclean shutdown or
3868 * initial creation), so parity in some stripes might be inconsistent.
3869 * In this case, we need to always do reconstruct-write, to ensure
3870 * that in case of drive failure or read-error correction, we
3871 * generate correct data from the parity.
3873 if (conf
->rmw_level
== PARITY_DISABLE_RMW
||
3874 (recovery_cp
< MaxSector
&& sh
->sector
>= recovery_cp
&&
3876 /* Calculate the real rcw later - for now make it
3877 * look like rcw is cheaper
3880 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3881 conf
->rmw_level
, (unsigned long long)recovery_cp
,
3882 (unsigned long long)sh
->sector
);
3883 } else for (i
= disks
; i
--; ) {
3884 /* would I have to read this buffer for read_modify_write */
3885 struct r5dev
*dev
= &sh
->dev
[i
];
3886 if (((dev
->towrite
&& !delay_towrite(conf
, dev
, s
)) ||
3887 i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3888 test_bit(R5_InJournal
, &dev
->flags
)) &&
3889 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3890 !(uptodate_for_rmw(dev
) ||
3891 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3892 if (test_bit(R5_Insync
, &dev
->flags
))
3895 rmw
+= 2*disks
; /* cannot read it */
3897 /* Would I have to read this buffer for reconstruct_write */
3898 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3899 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3900 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3901 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3902 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3903 if (test_bit(R5_Insync
, &dev
->flags
))
3910 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3911 (unsigned long long)sh
->sector
, sh
->state
, rmw
, rcw
);
3912 set_bit(STRIPE_HANDLE
, &sh
->state
);
3913 if ((rmw
< rcw
|| (rmw
== rcw
&& conf
->rmw_level
== PARITY_PREFER_RMW
)) && rmw
> 0) {
3914 /* prefer read-modify-write, but need to get some data */
3915 if (conf
->mddev
->queue
)
3916 blk_add_trace_msg(conf
->mddev
->queue
,
3917 "raid5 rmw %llu %d",
3918 (unsigned long long)sh
->sector
, rmw
);
3919 for (i
= disks
; i
--; ) {
3920 struct r5dev
*dev
= &sh
->dev
[i
];
3921 if (test_bit(R5_InJournal
, &dev
->flags
) &&
3922 dev
->page
== dev
->orig_page
&&
3923 !test_bit(R5_LOCKED
, &sh
->dev
[sh
->pd_idx
].flags
)) {
3924 /* alloc page for prexor */
3925 struct page
*p
= alloc_page(GFP_NOIO
);
3933 * alloc_page() failed, try use
3934 * disk_info->extra_page
3936 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE
,
3937 &conf
->cache_state
)) {
3938 r5c_use_extra_page(sh
);
3942 /* extra_page in use, add to delayed_list */
3943 set_bit(STRIPE_DELAYED
, &sh
->state
);
3944 s
->waiting_extra_page
= 1;
3949 for (i
= disks
; i
--; ) {
3950 struct r5dev
*dev
= &sh
->dev
[i
];
3951 if (((dev
->towrite
&& !delay_towrite(conf
, dev
, s
)) ||
3952 i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3953 test_bit(R5_InJournal
, &dev
->flags
)) &&
3954 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3955 !(uptodate_for_rmw(dev
) ||
3956 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
3957 test_bit(R5_Insync
, &dev
->flags
)) {
3958 if (test_bit(STRIPE_PREREAD_ACTIVE
,
3960 pr_debug("Read_old block %d for r-m-w\n",
3962 set_bit(R5_LOCKED
, &dev
->flags
);
3963 set_bit(R5_Wantread
, &dev
->flags
);
3966 set_bit(STRIPE_DELAYED
, &sh
->state
);
3967 set_bit(STRIPE_HANDLE
, &sh
->state
);
3972 if ((rcw
< rmw
|| (rcw
== rmw
&& conf
->rmw_level
!= PARITY_PREFER_RMW
)) && rcw
> 0) {
3973 /* want reconstruct write, but need to get some data */
3976 for (i
= disks
; i
--; ) {
3977 struct r5dev
*dev
= &sh
->dev
[i
];
3978 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3979 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3980 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3981 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3982 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3984 if (test_bit(R5_Insync
, &dev
->flags
) &&
3985 test_bit(STRIPE_PREREAD_ACTIVE
,
3987 pr_debug("Read_old block "
3988 "%d for Reconstruct\n", i
);
3989 set_bit(R5_LOCKED
, &dev
->flags
);
3990 set_bit(R5_Wantread
, &dev
->flags
);
3994 set_bit(STRIPE_DELAYED
, &sh
->state
);
3995 set_bit(STRIPE_HANDLE
, &sh
->state
);
3999 if (rcw
&& conf
->mddev
->queue
)
4000 blk_add_trace_msg(conf
->mddev
->queue
, "raid5 rcw %llu %d %d %d",
4001 (unsigned long long)sh
->sector
,
4002 rcw
, qread
, test_bit(STRIPE_DELAYED
, &sh
->state
));
4005 if (rcw
> disks
&& rmw
> disks
&&
4006 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4007 set_bit(STRIPE_DELAYED
, &sh
->state
);
4009 /* now if nothing is locked, and if we have enough data,
4010 * we can start a write request
4012 /* since handle_stripe can be called at any time we need to handle the
4013 * case where a compute block operation has been submitted and then a
4014 * subsequent call wants to start a write request. raid_run_ops only
4015 * handles the case where compute block and reconstruct are requested
4016 * simultaneously. If this is not the case then new writes need to be
4017 * held off until the compute completes.
4019 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
4020 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
4021 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
4022 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
4026 static void handle_parity_checks5(struct r5conf
*conf
, struct stripe_head
*sh
,
4027 struct stripe_head_state
*s
, int disks
)
4029 struct r5dev
*dev
= NULL
;
4031 BUG_ON(sh
->batch_head
);
4032 set_bit(STRIPE_HANDLE
, &sh
->state
);
4034 switch (sh
->check_state
) {
4035 case check_state_idle
:
4036 /* start a new check operation if there are no failures */
4037 if (s
->failed
== 0) {
4038 BUG_ON(s
->uptodate
!= disks
);
4039 sh
->check_state
= check_state_run
;
4040 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
4041 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
4045 dev
= &sh
->dev
[s
->failed_num
[0]];
4047 case check_state_compute_result
:
4048 sh
->check_state
= check_state_idle
;
4050 dev
= &sh
->dev
[sh
->pd_idx
];
4052 /* check that a write has not made the stripe insync */
4053 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
4056 /* either failed parity check, or recovery is happening */
4057 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
4058 BUG_ON(s
->uptodate
!= disks
);
4060 set_bit(R5_LOCKED
, &dev
->flags
);
4062 set_bit(R5_Wantwrite
, &dev
->flags
);
4064 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
4065 set_bit(STRIPE_INSYNC
, &sh
->state
);
4067 case check_state_run
:
4068 break; /* we will be called again upon completion */
4069 case check_state_check_result
:
4070 sh
->check_state
= check_state_idle
;
4072 /* if a failure occurred during the check operation, leave
4073 * STRIPE_INSYNC not set and let the stripe be handled again
4078 /* handle a successful check operation, if parity is correct
4079 * we are done. Otherwise update the mismatch count and repair
4080 * parity if !MD_RECOVERY_CHECK
4082 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
4083 /* parity is correct (on disc,
4084 * not in buffer any more)
4086 set_bit(STRIPE_INSYNC
, &sh
->state
);
4088 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
4089 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
)) {
4090 /* don't try to repair!! */
4091 set_bit(STRIPE_INSYNC
, &sh
->state
);
4092 pr_warn_ratelimited("%s: mismatch sector in range "
4093 "%llu-%llu\n", mdname(conf
->mddev
),
4094 (unsigned long long) sh
->sector
,
4095 (unsigned long long) sh
->sector
+
4098 sh
->check_state
= check_state_compute_run
;
4099 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
4100 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
4101 set_bit(R5_Wantcompute
,
4102 &sh
->dev
[sh
->pd_idx
].flags
);
4103 sh
->ops
.target
= sh
->pd_idx
;
4104 sh
->ops
.target2
= -1;
4109 case check_state_compute_run
:
4112 pr_err("%s: unknown check_state: %d sector: %llu\n",
4113 __func__
, sh
->check_state
,
4114 (unsigned long long) sh
->sector
);
4119 static void handle_parity_checks6(struct r5conf
*conf
, struct stripe_head
*sh
,
4120 struct stripe_head_state
*s
,
4123 int pd_idx
= sh
->pd_idx
;
4124 int qd_idx
= sh
->qd_idx
;
4127 BUG_ON(sh
->batch_head
);
4128 set_bit(STRIPE_HANDLE
, &sh
->state
);
4130 BUG_ON(s
->failed
> 2);
4132 /* Want to check and possibly repair P and Q.
4133 * However there could be one 'failed' device, in which
4134 * case we can only check one of them, possibly using the
4135 * other to generate missing data
4138 switch (sh
->check_state
) {
4139 case check_state_idle
:
4140 /* start a new check operation if there are < 2 failures */
4141 if (s
->failed
== s
->q_failed
) {
4142 /* The only possible failed device holds Q, so it
4143 * makes sense to check P (If anything else were failed,
4144 * we would have used P to recreate it).
4146 sh
->check_state
= check_state_run
;
4148 if (!s
->q_failed
&& s
->failed
< 2) {
4149 /* Q is not failed, and we didn't use it to generate
4150 * anything, so it makes sense to check it
4152 if (sh
->check_state
== check_state_run
)
4153 sh
->check_state
= check_state_run_pq
;
4155 sh
->check_state
= check_state_run_q
;
4158 /* discard potentially stale zero_sum_result */
4159 sh
->ops
.zero_sum_result
= 0;
4161 if (sh
->check_state
== check_state_run
) {
4162 /* async_xor_zero_sum destroys the contents of P */
4163 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
4166 if (sh
->check_state
>= check_state_run
&&
4167 sh
->check_state
<= check_state_run_pq
) {
4168 /* async_syndrome_zero_sum preserves P and Q, so
4169 * no need to mark them !uptodate here
4171 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
4175 /* we have 2-disk failure */
4176 BUG_ON(s
->failed
!= 2);
4178 case check_state_compute_result
:
4179 sh
->check_state
= check_state_idle
;
4181 /* check that a write has not made the stripe insync */
4182 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
4185 /* now write out any block on a failed drive,
4186 * or P or Q if they were recomputed
4188 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
4189 if (s
->failed
== 2) {
4190 dev
= &sh
->dev
[s
->failed_num
[1]];
4192 set_bit(R5_LOCKED
, &dev
->flags
);
4193 set_bit(R5_Wantwrite
, &dev
->flags
);
4195 if (s
->failed
>= 1) {
4196 dev
= &sh
->dev
[s
->failed_num
[0]];
4198 set_bit(R5_LOCKED
, &dev
->flags
);
4199 set_bit(R5_Wantwrite
, &dev
->flags
);
4201 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
4202 dev
= &sh
->dev
[pd_idx
];
4204 set_bit(R5_LOCKED
, &dev
->flags
);
4205 set_bit(R5_Wantwrite
, &dev
->flags
);
4207 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
4208 dev
= &sh
->dev
[qd_idx
];
4210 set_bit(R5_LOCKED
, &dev
->flags
);
4211 set_bit(R5_Wantwrite
, &dev
->flags
);
4213 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
4215 set_bit(STRIPE_INSYNC
, &sh
->state
);
4217 case check_state_run
:
4218 case check_state_run_q
:
4219 case check_state_run_pq
:
4220 break; /* we will be called again upon completion */
4221 case check_state_check_result
:
4222 sh
->check_state
= check_state_idle
;
4224 /* handle a successful check operation, if parity is correct
4225 * we are done. Otherwise update the mismatch count and repair
4226 * parity if !MD_RECOVERY_CHECK
4228 if (sh
->ops
.zero_sum_result
== 0) {
4229 /* both parities are correct */
4231 set_bit(STRIPE_INSYNC
, &sh
->state
);
4233 /* in contrast to the raid5 case we can validate
4234 * parity, but still have a failure to write
4237 sh
->check_state
= check_state_compute_result
;
4238 /* Returning at this point means that we may go
4239 * off and bring p and/or q uptodate again so
4240 * we make sure to check zero_sum_result again
4241 * to verify if p or q need writeback
4245 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
4246 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
)) {
4247 /* don't try to repair!! */
4248 set_bit(STRIPE_INSYNC
, &sh
->state
);
4249 pr_warn_ratelimited("%s: mismatch sector in range "
4250 "%llu-%llu\n", mdname(conf
->mddev
),
4251 (unsigned long long) sh
->sector
,
4252 (unsigned long long) sh
->sector
+
4255 int *target
= &sh
->ops
.target
;
4257 sh
->ops
.target
= -1;
4258 sh
->ops
.target2
= -1;
4259 sh
->check_state
= check_state_compute_run
;
4260 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
4261 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
4262 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
4263 set_bit(R5_Wantcompute
,
4264 &sh
->dev
[pd_idx
].flags
);
4266 target
= &sh
->ops
.target2
;
4269 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
4270 set_bit(R5_Wantcompute
,
4271 &sh
->dev
[qd_idx
].flags
);
4278 case check_state_compute_run
:
4281 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4282 __func__
, sh
->check_state
,
4283 (unsigned long long) sh
->sector
);
4288 static void handle_stripe_expansion(struct r5conf
*conf
, struct stripe_head
*sh
)
4292 /* We have read all the blocks in this stripe and now we need to
4293 * copy some of them into a target stripe for expand.
4295 struct dma_async_tx_descriptor
*tx
= NULL
;
4296 BUG_ON(sh
->batch_head
);
4297 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4298 for (i
= 0; i
< sh
->disks
; i
++)
4299 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
4301 struct stripe_head
*sh2
;
4302 struct async_submit_ctl submit
;
4304 sector_t bn
= raid5_compute_blocknr(sh
, i
, 1);
4305 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
4307 sh2
= raid5_get_active_stripe(conf
, s
, 0, 1, 1);
4309 /* so far only the early blocks of this stripe
4310 * have been requested. When later blocks
4311 * get requested, we will try again
4314 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
4315 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
4316 /* must have already done this block */
4317 raid5_release_stripe(sh2
);
4321 /* place all the copies on one channel */
4322 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
4323 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
4324 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
4327 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
4328 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
4329 for (j
= 0; j
< conf
->raid_disks
; j
++)
4330 if (j
!= sh2
->pd_idx
&&
4332 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
4334 if (j
== conf
->raid_disks
) {
4335 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
4336 set_bit(STRIPE_HANDLE
, &sh2
->state
);
4338 raid5_release_stripe(sh2
);
4341 /* done submitting copies, wait for them to complete */
4342 async_tx_quiesce(&tx
);
4346 * handle_stripe - do things to a stripe.
4348 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4349 * state of various bits to see what needs to be done.
4351 * return some read requests which now have data
4352 * return some write requests which are safely on storage
4353 * schedule a read on some buffers
4354 * schedule a write of some buffers
4355 * return confirmation of parity correctness
4359 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
4361 struct r5conf
*conf
= sh
->raid_conf
;
4362 int disks
= sh
->disks
;
4365 int do_recovery
= 0;
4367 memset(s
, 0, sizeof(*s
));
4369 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
) && !sh
->batch_head
;
4370 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
) && !sh
->batch_head
;
4371 s
->failed_num
[0] = -1;
4372 s
->failed_num
[1] = -1;
4373 s
->log_failed
= r5l_log_disk_error(conf
);
4375 /* Now to look around and see what can be done */
4377 for (i
=disks
; i
--; ) {
4378 struct md_rdev
*rdev
;
4385 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4387 dev
->toread
, dev
->towrite
, dev
->written
);
4388 /* maybe we can reply to a read
4390 * new wantfill requests are only permitted while
4391 * ops_complete_biofill is guaranteed to be inactive
4393 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
4394 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
4395 set_bit(R5_Wantfill
, &dev
->flags
);
4397 /* now count some things */
4398 if (test_bit(R5_LOCKED
, &dev
->flags
))
4400 if (test_bit(R5_UPTODATE
, &dev
->flags
))
4402 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
4404 BUG_ON(s
->compute
> 2);
4407 if (test_bit(R5_Wantfill
, &dev
->flags
))
4409 else if (dev
->toread
)
4413 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
4418 /* Prefer to use the replacement for reads, but only
4419 * if it is recovered enough and has no bad blocks.
4421 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
4422 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) &&
4423 rdev
->recovery_offset
>= sh
->sector
+ STRIPE_SECTORS
&&
4424 !is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4425 &first_bad
, &bad_sectors
))
4426 set_bit(R5_ReadRepl
, &dev
->flags
);
4428 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4429 set_bit(R5_NeedReplace
, &dev
->flags
);
4431 clear_bit(R5_NeedReplace
, &dev
->flags
);
4432 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
4433 clear_bit(R5_ReadRepl
, &dev
->flags
);
4435 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
4438 is_bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4439 &first_bad
, &bad_sectors
);
4440 if (s
->blocked_rdev
== NULL
4441 && (test_bit(Blocked
, &rdev
->flags
)
4444 set_bit(BlockedBadBlocks
,
4446 s
->blocked_rdev
= rdev
;
4447 atomic_inc(&rdev
->nr_pending
);
4450 clear_bit(R5_Insync
, &dev
->flags
);
4454 /* also not in-sync */
4455 if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
4456 test_bit(R5_UPTODATE
, &dev
->flags
)) {
4457 /* treat as in-sync, but with a read error
4458 * which we can now try to correct
4460 set_bit(R5_Insync
, &dev
->flags
);
4461 set_bit(R5_ReadError
, &dev
->flags
);
4463 } else if (test_bit(In_sync
, &rdev
->flags
))
4464 set_bit(R5_Insync
, &dev
->flags
);
4465 else if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
4466 /* in sync if before recovery_offset */
4467 set_bit(R5_Insync
, &dev
->flags
);
4468 else if (test_bit(R5_UPTODATE
, &dev
->flags
) &&
4469 test_bit(R5_Expanded
, &dev
->flags
))
4470 /* If we've reshaped into here, we assume it is Insync.
4471 * We will shortly update recovery_offset to make
4474 set_bit(R5_Insync
, &dev
->flags
);
4476 if (test_bit(R5_WriteError
, &dev
->flags
)) {
4477 /* This flag does not apply to '.replacement'
4478 * only to .rdev, so make sure to check that*/
4479 struct md_rdev
*rdev2
= rcu_dereference(
4480 conf
->disks
[i
].rdev
);
4482 clear_bit(R5_Insync
, &dev
->flags
);
4483 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4484 s
->handle_bad_blocks
= 1;
4485 atomic_inc(&rdev2
->nr_pending
);
4487 clear_bit(R5_WriteError
, &dev
->flags
);
4489 if (test_bit(R5_MadeGood
, &dev
->flags
)) {
4490 /* This flag does not apply to '.replacement'
4491 * only to .rdev, so make sure to check that*/
4492 struct md_rdev
*rdev2
= rcu_dereference(
4493 conf
->disks
[i
].rdev
);
4494 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4495 s
->handle_bad_blocks
= 1;
4496 atomic_inc(&rdev2
->nr_pending
);
4498 clear_bit(R5_MadeGood
, &dev
->flags
);
4500 if (test_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4501 struct md_rdev
*rdev2
= rcu_dereference(
4502 conf
->disks
[i
].replacement
);
4503 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4504 s
->handle_bad_blocks
= 1;
4505 atomic_inc(&rdev2
->nr_pending
);
4507 clear_bit(R5_MadeGoodRepl
, &dev
->flags
);
4509 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4510 /* The ReadError flag will just be confusing now */
4511 clear_bit(R5_ReadError
, &dev
->flags
);
4512 clear_bit(R5_ReWrite
, &dev
->flags
);
4514 if (test_bit(R5_ReadError
, &dev
->flags
))
4515 clear_bit(R5_Insync
, &dev
->flags
);
4516 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4518 s
->failed_num
[s
->failed
] = i
;
4520 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4523 rdev
= rcu_dereference(
4524 conf
->disks
[i
].replacement
);
4525 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4530 if (test_bit(R5_InJournal
, &dev
->flags
))
4532 if (test_bit(R5_InJournal
, &dev
->flags
) && dev
->written
)
4535 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
4536 /* If there is a failed device being replaced,
4537 * we must be recovering.
4538 * else if we are after recovery_cp, we must be syncing
4539 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4540 * else we can only be replacing
4541 * sync and recovery both need to read all devices, and so
4542 * use the same flag.
4545 sh
->sector
>= conf
->mddev
->recovery_cp
||
4546 test_bit(MD_RECOVERY_REQUESTED
, &(conf
->mddev
->recovery
)))
4554 static int clear_batch_ready(struct stripe_head
*sh
)
4556 /* Return '1' if this is a member of batch, or
4557 * '0' if it is a lone stripe or a head which can now be
4560 struct stripe_head
*tmp
;
4561 if (!test_and_clear_bit(STRIPE_BATCH_READY
, &sh
->state
))
4562 return (sh
->batch_head
&& sh
->batch_head
!= sh
);
4563 spin_lock(&sh
->stripe_lock
);
4564 if (!sh
->batch_head
) {
4565 spin_unlock(&sh
->stripe_lock
);
4570 * this stripe could be added to a batch list before we check
4571 * BATCH_READY, skips it
4573 if (sh
->batch_head
!= sh
) {
4574 spin_unlock(&sh
->stripe_lock
);
4577 spin_lock(&sh
->batch_lock
);
4578 list_for_each_entry(tmp
, &sh
->batch_list
, batch_list
)
4579 clear_bit(STRIPE_BATCH_READY
, &tmp
->state
);
4580 spin_unlock(&sh
->batch_lock
);
4581 spin_unlock(&sh
->stripe_lock
);
4584 * BATCH_READY is cleared, no new stripes can be added.
4585 * batch_list can be accessed without lock
4590 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
4591 unsigned long handle_flags
)
4593 struct stripe_head
*sh
, *next
;
4597 list_for_each_entry_safe(sh
, next
, &head_sh
->batch_list
, batch_list
) {
4599 list_del_init(&sh
->batch_list
);
4601 WARN_ONCE(sh
->state
& ((1 << STRIPE_ACTIVE
) |
4602 (1 << STRIPE_SYNCING
) |
4603 (1 << STRIPE_REPLACED
) |
4604 (1 << STRIPE_DELAYED
) |
4605 (1 << STRIPE_BIT_DELAY
) |
4606 (1 << STRIPE_FULL_WRITE
) |
4607 (1 << STRIPE_BIOFILL_RUN
) |
4608 (1 << STRIPE_COMPUTE_RUN
) |
4609 (1 << STRIPE_OPS_REQ_PENDING
) |
4610 (1 << STRIPE_DISCARD
) |
4611 (1 << STRIPE_BATCH_READY
) |
4612 (1 << STRIPE_BATCH_ERR
) |
4613 (1 << STRIPE_BITMAP_PENDING
)),
4614 "stripe state: %lx\n", sh
->state
);
4615 WARN_ONCE(head_sh
->state
& ((1 << STRIPE_DISCARD
) |
4616 (1 << STRIPE_REPLACED
)),
4617 "head stripe state: %lx\n", head_sh
->state
);
4619 set_mask_bits(&sh
->state
, ~(STRIPE_EXPAND_SYNC_FLAGS
|
4620 (1 << STRIPE_PREREAD_ACTIVE
) |
4621 (1 << STRIPE_DEGRADED
) |
4622 (1 << STRIPE_ON_UNPLUG_LIST
)),
4623 head_sh
->state
& (1 << STRIPE_INSYNC
));
4625 sh
->check_state
= head_sh
->check_state
;
4626 sh
->reconstruct_state
= head_sh
->reconstruct_state
;
4627 spin_lock_irq(&sh
->stripe_lock
);
4628 sh
->batch_head
= NULL
;
4629 spin_unlock_irq(&sh
->stripe_lock
);
4630 for (i
= 0; i
< sh
->disks
; i
++) {
4631 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
4633 sh
->dev
[i
].flags
= head_sh
->dev
[i
].flags
&
4634 (~((1 << R5_WriteError
) | (1 << R5_Overlap
)));
4636 if (handle_flags
== 0 ||
4637 sh
->state
& handle_flags
)
4638 set_bit(STRIPE_HANDLE
, &sh
->state
);
4639 raid5_release_stripe(sh
);
4641 spin_lock_irq(&head_sh
->stripe_lock
);
4642 head_sh
->batch_head
= NULL
;
4643 spin_unlock_irq(&head_sh
->stripe_lock
);
4644 for (i
= 0; i
< head_sh
->disks
; i
++)
4645 if (test_and_clear_bit(R5_Overlap
, &head_sh
->dev
[i
].flags
))
4647 if (head_sh
->state
& handle_flags
)
4648 set_bit(STRIPE_HANDLE
, &head_sh
->state
);
4651 wake_up(&head_sh
->raid_conf
->wait_for_overlap
);
4654 static void handle_stripe(struct stripe_head
*sh
)
4656 struct stripe_head_state s
;
4657 struct r5conf
*conf
= sh
->raid_conf
;
4660 int disks
= sh
->disks
;
4661 struct r5dev
*pdev
, *qdev
;
4663 clear_bit(STRIPE_HANDLE
, &sh
->state
);
4664 if (test_and_set_bit_lock(STRIPE_ACTIVE
, &sh
->state
)) {
4665 /* already being handled, ensure it gets handled
4666 * again when current action finishes */
4667 set_bit(STRIPE_HANDLE
, &sh
->state
);
4671 if (clear_batch_ready(sh
) ) {
4672 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4676 if (test_and_clear_bit(STRIPE_BATCH_ERR
, &sh
->state
))
4677 break_stripe_batch_list(sh
, 0);
4679 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
) && !sh
->batch_head
) {
4680 spin_lock(&sh
->stripe_lock
);
4682 * Cannot process 'sync' concurrently with 'discard'.
4683 * Flush data in r5cache before 'sync'.
4685 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
) &&
4686 !test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
) &&
4687 !test_bit(STRIPE_DISCARD
, &sh
->state
) &&
4688 test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
4689 set_bit(STRIPE_SYNCING
, &sh
->state
);
4690 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4691 clear_bit(STRIPE_REPLACED
, &sh
->state
);
4693 spin_unlock(&sh
->stripe_lock
);
4695 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4697 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4698 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4699 (unsigned long long)sh
->sector
, sh
->state
,
4700 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
4701 sh
->check_state
, sh
->reconstruct_state
);
4703 analyse_stripe(sh
, &s
);
4705 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
4708 if (s
.handle_bad_blocks
||
4709 test_bit(MD_SB_CHANGE_PENDING
, &conf
->mddev
->sb_flags
)) {
4710 set_bit(STRIPE_HANDLE
, &sh
->state
);
4714 if (unlikely(s
.blocked_rdev
)) {
4715 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
4716 s
.replacing
|| s
.to_write
|| s
.written
) {
4717 set_bit(STRIPE_HANDLE
, &sh
->state
);
4720 /* There is nothing for the blocked_rdev to block */
4721 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
4722 s
.blocked_rdev
= NULL
;
4725 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
4726 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
4727 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
4730 pr_debug("locked=%d uptodate=%d to_read=%d"
4731 " to_write=%d failed=%d failed_num=%d,%d\n",
4732 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
4733 s
.failed_num
[0], s
.failed_num
[1]);
4735 * check if the array has lost more than max_degraded devices and,
4736 * if so, some requests might need to be failed.
4738 * When journal device failed (log_failed), we will only process
4739 * the stripe if there is data need write to raid disks
4741 if (s
.failed
> conf
->max_degraded
||
4742 (s
.log_failed
&& s
.injournal
== 0)) {
4743 sh
->check_state
= 0;
4744 sh
->reconstruct_state
= 0;
4745 break_stripe_batch_list(sh
, 0);
4746 if (s
.to_read
+s
.to_write
+s
.written
)
4747 handle_failed_stripe(conf
, sh
, &s
, disks
);
4748 if (s
.syncing
+ s
.replacing
)
4749 handle_failed_sync(conf
, sh
, &s
);
4752 /* Now we check to see if any write operations have recently
4756 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
4758 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
4759 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
4760 sh
->reconstruct_state
= reconstruct_state_idle
;
4762 /* All the 'written' buffers and the parity block are ready to
4763 * be written back to disk
4765 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
) &&
4766 !test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
));
4767 BUG_ON(sh
->qd_idx
>= 0 &&
4768 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
) &&
4769 !test_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
));
4770 for (i
= disks
; i
--; ) {
4771 struct r5dev
*dev
= &sh
->dev
[i
];
4772 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
4773 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
4774 dev
->written
|| test_bit(R5_InJournal
,
4776 pr_debug("Writing block %d\n", i
);
4777 set_bit(R5_Wantwrite
, &dev
->flags
);
4782 if (!test_bit(R5_Insync
, &dev
->flags
) ||
4783 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
4785 set_bit(STRIPE_INSYNC
, &sh
->state
);
4788 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4789 s
.dec_preread_active
= 1;
4793 * might be able to return some write requests if the parity blocks
4794 * are safe, or on a failed drive
4796 pdev
= &sh
->dev
[sh
->pd_idx
];
4797 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
4798 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
4799 qdev
= &sh
->dev
[sh
->qd_idx
];
4800 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
4801 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
4805 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
4806 && !test_bit(R5_LOCKED
, &pdev
->flags
)
4807 && (test_bit(R5_UPTODATE
, &pdev
->flags
) ||
4808 test_bit(R5_Discard
, &pdev
->flags
))))) &&
4809 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
4810 && !test_bit(R5_LOCKED
, &qdev
->flags
)
4811 && (test_bit(R5_UPTODATE
, &qdev
->flags
) ||
4812 test_bit(R5_Discard
, &qdev
->flags
))))))
4813 handle_stripe_clean_event(conf
, sh
, disks
);
4816 r5c_handle_cached_data_endio(conf
, sh
, disks
);
4817 log_stripe_write_finished(sh
);
4819 /* Now we might consider reading some blocks, either to check/generate
4820 * parity, or to satisfy requests
4821 * or to load a block that is being partially written.
4823 if (s
.to_read
|| s
.non_overwrite
4824 || (conf
->level
== 6 && s
.to_write
&& s
.failed
)
4825 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
))
4828 handle_stripe_fill(sh
, &s
, disks
);
4831 * When the stripe finishes full journal write cycle (write to journal
4832 * and raid disk), this is the clean up procedure so it is ready for
4835 r5c_finish_stripe_write_out(conf
, sh
, &s
);
4838 * Now to consider new write requests, cache write back and what else,
4839 * if anything should be read. We do not handle new writes when:
4840 * 1/ A 'write' operation (copy+xor) is already in flight.
4841 * 2/ A 'check' operation is in flight, as it may clobber the parity
4843 * 3/ A r5c cache log write is in flight.
4846 if (!sh
->reconstruct_state
&& !sh
->check_state
&& !sh
->log_io
) {
4847 if (!r5c_is_writeback(conf
->log
)) {
4849 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
4850 } else { /* write back cache */
4853 /* First, try handle writes in caching phase */
4855 ret
= r5c_try_caching_write(conf
, sh
, &s
,
4858 * If caching phase failed: ret == -EAGAIN
4860 * stripe under reclaim: !caching && injournal
4862 * fall back to handle_stripe_dirtying()
4864 if (ret
== -EAGAIN
||
4865 /* stripe under reclaim: !caching && injournal */
4866 (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
) &&
4868 ret
= handle_stripe_dirtying(conf
, sh
, &s
,
4876 /* maybe we need to check and possibly fix the parity for this stripe
4877 * Any reads will already have been scheduled, so we just see if enough
4878 * data is available. The parity check is held off while parity
4879 * dependent operations are in flight.
4881 if (sh
->check_state
||
4882 (s
.syncing
&& s
.locked
== 0 &&
4883 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4884 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
4885 if (conf
->level
== 6)
4886 handle_parity_checks6(conf
, sh
, &s
, disks
);
4888 handle_parity_checks5(conf
, sh
, &s
, disks
);
4891 if ((s
.replacing
|| s
.syncing
) && s
.locked
== 0
4892 && !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)
4893 && !test_bit(STRIPE_REPLACED
, &sh
->state
)) {
4894 /* Write out to replacement devices where possible */
4895 for (i
= 0; i
< conf
->raid_disks
; i
++)
4896 if (test_bit(R5_NeedReplace
, &sh
->dev
[i
].flags
)) {
4897 WARN_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
4898 set_bit(R5_WantReplace
, &sh
->dev
[i
].flags
);
4899 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4903 set_bit(STRIPE_INSYNC
, &sh
->state
);
4904 set_bit(STRIPE_REPLACED
, &sh
->state
);
4906 if ((s
.syncing
|| s
.replacing
) && s
.locked
== 0 &&
4907 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4908 test_bit(STRIPE_INSYNC
, &sh
->state
)) {
4909 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4910 clear_bit(STRIPE_SYNCING
, &sh
->state
);
4911 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
4912 wake_up(&conf
->wait_for_overlap
);
4915 /* If the failed drives are just a ReadError, then we might need
4916 * to progress the repair/check process
4918 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
4919 for (i
= 0; i
< s
.failed
; i
++) {
4920 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
4921 if (test_bit(R5_ReadError
, &dev
->flags
)
4922 && !test_bit(R5_LOCKED
, &dev
->flags
)
4923 && test_bit(R5_UPTODATE
, &dev
->flags
)
4925 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
4926 set_bit(R5_Wantwrite
, &dev
->flags
);
4927 set_bit(R5_ReWrite
, &dev
->flags
);
4928 set_bit(R5_LOCKED
, &dev
->flags
);
4931 /* let's read it back */
4932 set_bit(R5_Wantread
, &dev
->flags
);
4933 set_bit(R5_LOCKED
, &dev
->flags
);
4939 /* Finish reconstruct operations initiated by the expansion process */
4940 if (sh
->reconstruct_state
== reconstruct_state_result
) {
4941 struct stripe_head
*sh_src
4942 = raid5_get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
4943 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
4944 /* sh cannot be written until sh_src has been read.
4945 * so arrange for sh to be delayed a little
4947 set_bit(STRIPE_DELAYED
, &sh
->state
);
4948 set_bit(STRIPE_HANDLE
, &sh
->state
);
4949 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
4951 atomic_inc(&conf
->preread_active_stripes
);
4952 raid5_release_stripe(sh_src
);
4956 raid5_release_stripe(sh_src
);
4958 sh
->reconstruct_state
= reconstruct_state_idle
;
4959 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
4960 for (i
= conf
->raid_disks
; i
--; ) {
4961 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
4962 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4967 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
4968 !sh
->reconstruct_state
) {
4969 /* Need to write out all blocks after computing parity */
4970 sh
->disks
= conf
->raid_disks
;
4971 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
4972 schedule_reconstruction(sh
, &s
, 1, 1);
4973 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
4974 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4975 atomic_dec(&conf
->reshape_stripes
);
4976 wake_up(&conf
->wait_for_overlap
);
4977 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4980 if (s
.expanding
&& s
.locked
== 0 &&
4981 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
4982 handle_stripe_expansion(conf
, sh
);
4985 /* wait for this device to become unblocked */
4986 if (unlikely(s
.blocked_rdev
)) {
4987 if (conf
->mddev
->external
)
4988 md_wait_for_blocked_rdev(s
.blocked_rdev
,
4991 /* Internal metadata will immediately
4992 * be written by raid5d, so we don't
4993 * need to wait here.
4995 rdev_dec_pending(s
.blocked_rdev
,
4999 if (s
.handle_bad_blocks
)
5000 for (i
= disks
; i
--; ) {
5001 struct md_rdev
*rdev
;
5002 struct r5dev
*dev
= &sh
->dev
[i
];
5003 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
5004 /* We own a safe reference to the rdev */
5005 rdev
= conf
->disks
[i
].rdev
;
5006 if (!rdev_set_badblocks(rdev
, sh
->sector
,
5008 md_error(conf
->mddev
, rdev
);
5009 rdev_dec_pending(rdev
, conf
->mddev
);
5011 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
5012 rdev
= conf
->disks
[i
].rdev
;
5013 rdev_clear_badblocks(rdev
, sh
->sector
,
5015 rdev_dec_pending(rdev
, conf
->mddev
);
5017 if (test_and_clear_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
5018 rdev
= conf
->disks
[i
].replacement
;
5020 /* rdev have been moved down */
5021 rdev
= conf
->disks
[i
].rdev
;
5022 rdev_clear_badblocks(rdev
, sh
->sector
,
5024 rdev_dec_pending(rdev
, conf
->mddev
);
5029 raid_run_ops(sh
, s
.ops_request
);
5033 if (s
.dec_preread_active
) {
5034 /* We delay this until after ops_run_io so that if make_request
5035 * is waiting on a flush, it won't continue until the writes
5036 * have actually been submitted.
5038 atomic_dec(&conf
->preread_active_stripes
);
5039 if (atomic_read(&conf
->preread_active_stripes
) <
5041 md_wakeup_thread(conf
->mddev
->thread
);
5044 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
5047 static void raid5_activate_delayed(struct r5conf
*conf
)
5049 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
5050 while (!list_empty(&conf
->delayed_list
)) {
5051 struct list_head
*l
= conf
->delayed_list
.next
;
5052 struct stripe_head
*sh
;
5053 sh
= list_entry(l
, struct stripe_head
, lru
);
5055 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5056 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5057 atomic_inc(&conf
->preread_active_stripes
);
5058 list_add_tail(&sh
->lru
, &conf
->hold_list
);
5059 raid5_wakeup_stripe_thread(sh
);
5064 static void activate_bit_delay(struct r5conf
*conf
,
5065 struct list_head
*temp_inactive_list
)
5067 /* device_lock is held */
5068 struct list_head head
;
5069 list_add(&head
, &conf
->bitmap_list
);
5070 list_del_init(&conf
->bitmap_list
);
5071 while (!list_empty(&head
)) {
5072 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
5074 list_del_init(&sh
->lru
);
5075 atomic_inc(&sh
->count
);
5076 hash
= sh
->hash_lock_index
;
5077 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
5081 static int raid5_congested(struct mddev
*mddev
, int bits
)
5083 struct r5conf
*conf
= mddev
->private;
5085 /* No difference between reads and writes. Just check
5086 * how busy the stripe_cache is
5089 if (test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
))
5092 /* Also checks whether there is pressure on r5cache log space */
5093 if (test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
))
5097 if (atomic_read(&conf
->empty_inactive_list_nr
))
5103 static int in_chunk_boundary(struct mddev
*mddev
, struct bio
*bio
)
5105 struct r5conf
*conf
= mddev
->private;
5106 sector_t sector
= bio
->bi_iter
.bi_sector
;
5107 unsigned int chunk_sectors
;
5108 unsigned int bio_sectors
= bio_sectors(bio
);
5110 WARN_ON_ONCE(bio
->bi_partno
);
5112 chunk_sectors
= min(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
5113 return chunk_sectors
>=
5114 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
5118 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5119 * later sampled by raid5d.
5121 static void add_bio_to_retry(struct bio
*bi
,struct r5conf
*conf
)
5123 unsigned long flags
;
5125 spin_lock_irqsave(&conf
->device_lock
, flags
);
5127 bi
->bi_next
= conf
->retry_read_aligned_list
;
5128 conf
->retry_read_aligned_list
= bi
;
5130 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5131 md_wakeup_thread(conf
->mddev
->thread
);
5134 static struct bio
*remove_bio_from_retry(struct r5conf
*conf
,
5135 unsigned int *offset
)
5139 bi
= conf
->retry_read_aligned
;
5141 *offset
= conf
->retry_read_offset
;
5142 conf
->retry_read_aligned
= NULL
;
5145 bi
= conf
->retry_read_aligned_list
;
5147 conf
->retry_read_aligned_list
= bi
->bi_next
;
5156 * The "raid5_align_endio" should check if the read succeeded and if it
5157 * did, call bio_endio on the original bio (having bio_put the new bio
5159 * If the read failed..
5161 static void raid5_align_endio(struct bio
*bi
)
5163 struct bio
* raid_bi
= bi
->bi_private
;
5164 struct mddev
*mddev
;
5165 struct r5conf
*conf
;
5166 struct md_rdev
*rdev
;
5167 blk_status_t error
= bi
->bi_status
;
5171 rdev
= (void*)raid_bi
->bi_next
;
5172 raid_bi
->bi_next
= NULL
;
5173 mddev
= rdev
->mddev
;
5174 conf
= mddev
->private;
5176 rdev_dec_pending(rdev
, conf
->mddev
);
5180 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
5181 wake_up(&conf
->wait_for_quiescent
);
5185 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5187 add_bio_to_retry(raid_bi
, conf
);
5190 static int raid5_read_one_chunk(struct mddev
*mddev
, struct bio
*raid_bio
)
5192 struct r5conf
*conf
= mddev
->private;
5194 struct bio
* align_bi
;
5195 struct md_rdev
*rdev
;
5196 sector_t end_sector
;
5198 if (!in_chunk_boundary(mddev
, raid_bio
)) {
5199 pr_debug("%s: non aligned\n", __func__
);
5203 * use bio_clone_fast to make a copy of the bio
5205 align_bi
= bio_clone_fast(raid_bio
, GFP_NOIO
, &mddev
->bio_set
);
5209 * set bi_end_io to a new function, and set bi_private to the
5212 align_bi
->bi_end_io
= raid5_align_endio
;
5213 align_bi
->bi_private
= raid_bio
;
5217 align_bi
->bi_iter
.bi_sector
=
5218 raid5_compute_sector(conf
, raid_bio
->bi_iter
.bi_sector
,
5221 end_sector
= bio_end_sector(align_bi
);
5223 rdev
= rcu_dereference(conf
->disks
[dd_idx
].replacement
);
5224 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
5225 rdev
->recovery_offset
< end_sector
) {
5226 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
5228 (test_bit(Faulty
, &rdev
->flags
) ||
5229 !(test_bit(In_sync
, &rdev
->flags
) ||
5230 rdev
->recovery_offset
>= end_sector
)))
5234 if (r5c_big_stripe_cached(conf
, align_bi
->bi_iter
.bi_sector
)) {
5244 atomic_inc(&rdev
->nr_pending
);
5246 raid_bio
->bi_next
= (void*)rdev
;
5247 bio_set_dev(align_bi
, rdev
->bdev
);
5248 bio_clear_flag(align_bi
, BIO_SEG_VALID
);
5250 if (is_badblock(rdev
, align_bi
->bi_iter
.bi_sector
,
5251 bio_sectors(align_bi
),
5252 &first_bad
, &bad_sectors
)) {
5254 rdev_dec_pending(rdev
, mddev
);
5258 /* No reshape active, so we can trust rdev->data_offset */
5259 align_bi
->bi_iter
.bi_sector
+= rdev
->data_offset
;
5261 spin_lock_irq(&conf
->device_lock
);
5262 wait_event_lock_irq(conf
->wait_for_quiescent
,
5265 atomic_inc(&conf
->active_aligned_reads
);
5266 spin_unlock_irq(&conf
->device_lock
);
5269 trace_block_bio_remap(align_bi
->bi_disk
->queue
,
5270 align_bi
, disk_devt(mddev
->gendisk
),
5271 raid_bio
->bi_iter
.bi_sector
);
5272 generic_make_request(align_bi
);
5281 static struct bio
*chunk_aligned_read(struct mddev
*mddev
, struct bio
*raid_bio
)
5284 sector_t sector
= raid_bio
->bi_iter
.bi_sector
;
5285 unsigned chunk_sects
= mddev
->chunk_sectors
;
5286 unsigned sectors
= chunk_sects
- (sector
& (chunk_sects
-1));
5288 if (sectors
< bio_sectors(raid_bio
)) {
5289 struct r5conf
*conf
= mddev
->private;
5290 split
= bio_split(raid_bio
, sectors
, GFP_NOIO
, &conf
->bio_split
);
5291 bio_chain(split
, raid_bio
);
5292 generic_make_request(raid_bio
);
5296 if (!raid5_read_one_chunk(mddev
, raid_bio
))
5302 /* __get_priority_stripe - get the next stripe to process
5304 * Full stripe writes are allowed to pass preread active stripes up until
5305 * the bypass_threshold is exceeded. In general the bypass_count
5306 * increments when the handle_list is handled before the hold_list; however, it
5307 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5308 * stripe with in flight i/o. The bypass_count will be reset when the
5309 * head of the hold_list has changed, i.e. the head was promoted to the
5312 static struct stripe_head
*__get_priority_stripe(struct r5conf
*conf
, int group
)
5314 struct stripe_head
*sh
, *tmp
;
5315 struct list_head
*handle_list
= NULL
;
5316 struct r5worker_group
*wg
;
5317 bool second_try
= !r5c_is_writeback(conf
->log
) &&
5318 !r5l_log_disk_error(conf
);
5319 bool try_loprio
= test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
) ||
5320 r5l_log_disk_error(conf
);
5325 if (conf
->worker_cnt_per_group
== 0) {
5326 handle_list
= try_loprio
? &conf
->loprio_list
:
5328 } else if (group
!= ANY_GROUP
) {
5329 handle_list
= try_loprio
? &conf
->worker_groups
[group
].loprio_list
:
5330 &conf
->worker_groups
[group
].handle_list
;
5331 wg
= &conf
->worker_groups
[group
];
5334 for (i
= 0; i
< conf
->group_cnt
; i
++) {
5335 handle_list
= try_loprio
? &conf
->worker_groups
[i
].loprio_list
:
5336 &conf
->worker_groups
[i
].handle_list
;
5337 wg
= &conf
->worker_groups
[i
];
5338 if (!list_empty(handle_list
))
5343 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5345 list_empty(handle_list
) ? "empty" : "busy",
5346 list_empty(&conf
->hold_list
) ? "empty" : "busy",
5347 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
5349 if (!list_empty(handle_list
)) {
5350 sh
= list_entry(handle_list
->next
, typeof(*sh
), lru
);
5352 if (list_empty(&conf
->hold_list
))
5353 conf
->bypass_count
= 0;
5354 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
5355 if (conf
->hold_list
.next
== conf
->last_hold
)
5356 conf
->bypass_count
++;
5358 conf
->last_hold
= conf
->hold_list
.next
;
5359 conf
->bypass_count
-= conf
->bypass_threshold
;
5360 if (conf
->bypass_count
< 0)
5361 conf
->bypass_count
= 0;
5364 } else if (!list_empty(&conf
->hold_list
) &&
5365 ((conf
->bypass_threshold
&&
5366 conf
->bypass_count
> conf
->bypass_threshold
) ||
5367 atomic_read(&conf
->pending_full_writes
) == 0)) {
5369 list_for_each_entry(tmp
, &conf
->hold_list
, lru
) {
5370 if (conf
->worker_cnt_per_group
== 0 ||
5371 group
== ANY_GROUP
||
5372 !cpu_online(tmp
->cpu
) ||
5373 cpu_to_group(tmp
->cpu
) == group
) {
5380 conf
->bypass_count
-= conf
->bypass_threshold
;
5381 if (conf
->bypass_count
< 0)
5382 conf
->bypass_count
= 0;
5391 try_loprio
= !try_loprio
;
5399 list_del_init(&sh
->lru
);
5400 BUG_ON(atomic_inc_return(&sh
->count
) != 1);
5404 struct raid5_plug_cb
{
5405 struct blk_plug_cb cb
;
5406 struct list_head list
;
5407 struct list_head temp_inactive_list
[NR_STRIPE_HASH_LOCKS
];
5410 static void raid5_unplug(struct blk_plug_cb
*blk_cb
, bool from_schedule
)
5412 struct raid5_plug_cb
*cb
= container_of(
5413 blk_cb
, struct raid5_plug_cb
, cb
);
5414 struct stripe_head
*sh
;
5415 struct mddev
*mddev
= cb
->cb
.data
;
5416 struct r5conf
*conf
= mddev
->private;
5420 if (cb
->list
.next
&& !list_empty(&cb
->list
)) {
5421 spin_lock_irq(&conf
->device_lock
);
5422 while (!list_empty(&cb
->list
)) {
5423 sh
= list_first_entry(&cb
->list
, struct stripe_head
, lru
);
5424 list_del_init(&sh
->lru
);
5426 * avoid race release_stripe_plug() sees
5427 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5428 * is still in our list
5430 smp_mb__before_atomic();
5431 clear_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
);
5433 * STRIPE_ON_RELEASE_LIST could be set here. In that
5434 * case, the count is always > 1 here
5436 hash
= sh
->hash_lock_index
;
5437 __release_stripe(conf
, sh
, &cb
->temp_inactive_list
[hash
]);
5440 spin_unlock_irq(&conf
->device_lock
);
5442 release_inactive_stripe_list(conf
, cb
->temp_inactive_list
,
5443 NR_STRIPE_HASH_LOCKS
);
5445 trace_block_unplug(mddev
->queue
, cnt
, !from_schedule
);
5449 static void release_stripe_plug(struct mddev
*mddev
,
5450 struct stripe_head
*sh
)
5452 struct blk_plug_cb
*blk_cb
= blk_check_plugged(
5453 raid5_unplug
, mddev
,
5454 sizeof(struct raid5_plug_cb
));
5455 struct raid5_plug_cb
*cb
;
5458 raid5_release_stripe(sh
);
5462 cb
= container_of(blk_cb
, struct raid5_plug_cb
, cb
);
5464 if (cb
->list
.next
== NULL
) {
5466 INIT_LIST_HEAD(&cb
->list
);
5467 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5468 INIT_LIST_HEAD(cb
->temp_inactive_list
+ i
);
5471 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
))
5472 list_add_tail(&sh
->lru
, &cb
->list
);
5474 raid5_release_stripe(sh
);
5477 static void make_discard_request(struct mddev
*mddev
, struct bio
*bi
)
5479 struct r5conf
*conf
= mddev
->private;
5480 sector_t logical_sector
, last_sector
;
5481 struct stripe_head
*sh
;
5484 if (mddev
->reshape_position
!= MaxSector
)
5485 /* Skip discard while reshape is happening */
5488 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5489 last_sector
= bi
->bi_iter
.bi_sector
+ (bi
->bi_iter
.bi_size
>>9);
5493 stripe_sectors
= conf
->chunk_sectors
*
5494 (conf
->raid_disks
- conf
->max_degraded
);
5495 logical_sector
= DIV_ROUND_UP_SECTOR_T(logical_sector
,
5497 sector_div(last_sector
, stripe_sectors
);
5499 logical_sector
*= conf
->chunk_sectors
;
5500 last_sector
*= conf
->chunk_sectors
;
5502 for (; logical_sector
< last_sector
;
5503 logical_sector
+= STRIPE_SECTORS
) {
5507 sh
= raid5_get_active_stripe(conf
, logical_sector
, 0, 0, 0);
5508 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5509 TASK_UNINTERRUPTIBLE
);
5510 set_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5511 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
5512 raid5_release_stripe(sh
);
5516 clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5517 spin_lock_irq(&sh
->stripe_lock
);
5518 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5519 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5521 if (sh
->dev
[d
].towrite
|| sh
->dev
[d
].toread
) {
5522 set_bit(R5_Overlap
, &sh
->dev
[d
].flags
);
5523 spin_unlock_irq(&sh
->stripe_lock
);
5524 raid5_release_stripe(sh
);
5529 set_bit(STRIPE_DISCARD
, &sh
->state
);
5530 finish_wait(&conf
->wait_for_overlap
, &w
);
5531 sh
->overwrite_disks
= 0;
5532 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5533 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5535 sh
->dev
[d
].towrite
= bi
;
5536 set_bit(R5_OVERWRITE
, &sh
->dev
[d
].flags
);
5537 bio_inc_remaining(bi
);
5538 md_write_inc(mddev
, bi
);
5539 sh
->overwrite_disks
++;
5541 spin_unlock_irq(&sh
->stripe_lock
);
5542 if (conf
->mddev
->bitmap
) {
5544 d
< conf
->raid_disks
- conf
->max_degraded
;
5546 md_bitmap_startwrite(mddev
->bitmap
,
5550 sh
->bm_seq
= conf
->seq_flush
+ 1;
5551 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
5554 set_bit(STRIPE_HANDLE
, &sh
->state
);
5555 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5556 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5557 atomic_inc(&conf
->preread_active_stripes
);
5558 release_stripe_plug(mddev
, sh
);
5564 static bool raid5_make_request(struct mddev
*mddev
, struct bio
* bi
)
5566 struct r5conf
*conf
= mddev
->private;
5568 sector_t new_sector
;
5569 sector_t logical_sector
, last_sector
;
5570 struct stripe_head
*sh
;
5571 const int rw
= bio_data_dir(bi
);
5574 bool do_flush
= false;
5576 if (unlikely(bi
->bi_opf
& REQ_PREFLUSH
)) {
5577 int ret
= log_handle_flush_request(conf
, bi
);
5581 if (ret
== -ENODEV
) {
5582 md_flush_request(mddev
, bi
);
5585 /* ret == -EAGAIN, fallback */
5587 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5588 * we need to flush journal device
5590 do_flush
= bi
->bi_opf
& REQ_PREFLUSH
;
5593 if (!md_write_start(mddev
, bi
))
5596 * If array is degraded, better not do chunk aligned read because
5597 * later we might have to read it again in order to reconstruct
5598 * data on failed drives.
5600 if (rw
== READ
&& mddev
->degraded
== 0 &&
5601 mddev
->reshape_position
== MaxSector
) {
5602 bi
= chunk_aligned_read(mddev
, bi
);
5607 if (unlikely(bio_op(bi
) == REQ_OP_DISCARD
)) {
5608 make_discard_request(mddev
, bi
);
5609 md_write_end(mddev
);
5613 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5614 last_sector
= bio_end_sector(bi
);
5617 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
5618 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
5624 seq
= read_seqcount_begin(&conf
->gen_lock
);
5627 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5628 TASK_UNINTERRUPTIBLE
);
5629 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
5630 /* spinlock is needed as reshape_progress may be
5631 * 64bit on a 32bit platform, and so it might be
5632 * possible to see a half-updated value
5633 * Of course reshape_progress could change after
5634 * the lock is dropped, so once we get a reference
5635 * to the stripe that we think it is, we will have
5638 spin_lock_irq(&conf
->device_lock
);
5639 if (mddev
->reshape_backwards
5640 ? logical_sector
< conf
->reshape_progress
5641 : logical_sector
>= conf
->reshape_progress
) {
5644 if (mddev
->reshape_backwards
5645 ? logical_sector
< conf
->reshape_safe
5646 : logical_sector
>= conf
->reshape_safe
) {
5647 spin_unlock_irq(&conf
->device_lock
);
5653 spin_unlock_irq(&conf
->device_lock
);
5656 new_sector
= raid5_compute_sector(conf
, logical_sector
,
5659 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5660 (unsigned long long)new_sector
,
5661 (unsigned long long)logical_sector
);
5663 sh
= raid5_get_active_stripe(conf
, new_sector
, previous
,
5664 (bi
->bi_opf
& REQ_RAHEAD
), 0);
5666 if (unlikely(previous
)) {
5667 /* expansion might have moved on while waiting for a
5668 * stripe, so we must do the range check again.
5669 * Expansion could still move past after this
5670 * test, but as we are holding a reference to
5671 * 'sh', we know that if that happens,
5672 * STRIPE_EXPANDING will get set and the expansion
5673 * won't proceed until we finish with the stripe.
5676 spin_lock_irq(&conf
->device_lock
);
5677 if (mddev
->reshape_backwards
5678 ? logical_sector
>= conf
->reshape_progress
5679 : logical_sector
< conf
->reshape_progress
)
5680 /* mismatch, need to try again */
5682 spin_unlock_irq(&conf
->device_lock
);
5684 raid5_release_stripe(sh
);
5690 if (read_seqcount_retry(&conf
->gen_lock
, seq
)) {
5691 /* Might have got the wrong stripe_head
5694 raid5_release_stripe(sh
);
5698 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
5699 !add_stripe_bio(sh
, bi
, dd_idx
, rw
, previous
)) {
5700 /* Stripe is busy expanding or
5701 * add failed due to overlap. Flush everything
5704 md_wakeup_thread(mddev
->thread
);
5705 raid5_release_stripe(sh
);
5711 set_bit(STRIPE_R5C_PREFLUSH
, &sh
->state
);
5712 /* we only need flush for one stripe */
5716 set_bit(STRIPE_HANDLE
, &sh
->state
);
5717 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5718 if ((!sh
->batch_head
|| sh
== sh
->batch_head
) &&
5719 (bi
->bi_opf
& REQ_SYNC
) &&
5720 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5721 atomic_inc(&conf
->preread_active_stripes
);
5722 release_stripe_plug(mddev
, sh
);
5724 /* cannot get stripe for read-ahead, just give-up */
5725 bi
->bi_status
= BLK_STS_IOERR
;
5729 finish_wait(&conf
->wait_for_overlap
, &w
);
5732 md_write_end(mddev
);
5737 static sector_t
raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
);
5739 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
5741 /* reshaping is quite different to recovery/resync so it is
5742 * handled quite separately ... here.
5744 * On each call to sync_request, we gather one chunk worth of
5745 * destination stripes and flag them as expanding.
5746 * Then we find all the source stripes and request reads.
5747 * As the reads complete, handle_stripe will copy the data
5748 * into the destination stripe and release that stripe.
5750 struct r5conf
*conf
= mddev
->private;
5751 struct stripe_head
*sh
;
5752 struct md_rdev
*rdev
;
5753 sector_t first_sector
, last_sector
;
5754 int raid_disks
= conf
->previous_raid_disks
;
5755 int data_disks
= raid_disks
- conf
->max_degraded
;
5756 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5759 sector_t writepos
, readpos
, safepos
;
5760 sector_t stripe_addr
;
5761 int reshape_sectors
;
5762 struct list_head stripes
;
5765 if (sector_nr
== 0) {
5766 /* If restarting in the middle, skip the initial sectors */
5767 if (mddev
->reshape_backwards
&&
5768 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
5769 sector_nr
= raid5_size(mddev
, 0, 0)
5770 - conf
->reshape_progress
;
5771 } else if (mddev
->reshape_backwards
&&
5772 conf
->reshape_progress
== MaxSector
) {
5773 /* shouldn't happen, but just in case, finish up.*/
5774 sector_nr
= MaxSector
;
5775 } else if (!mddev
->reshape_backwards
&&
5776 conf
->reshape_progress
> 0)
5777 sector_nr
= conf
->reshape_progress
;
5778 sector_div(sector_nr
, new_data_disks
);
5780 mddev
->curr_resync_completed
= sector_nr
;
5781 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5788 /* We need to process a full chunk at a time.
5789 * If old and new chunk sizes differ, we need to process the
5793 reshape_sectors
= max(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
5795 /* We update the metadata at least every 10 seconds, or when
5796 * the data about to be copied would over-write the source of
5797 * the data at the front of the range. i.e. one new_stripe
5798 * along from reshape_progress new_maps to after where
5799 * reshape_safe old_maps to
5801 writepos
= conf
->reshape_progress
;
5802 sector_div(writepos
, new_data_disks
);
5803 readpos
= conf
->reshape_progress
;
5804 sector_div(readpos
, data_disks
);
5805 safepos
= conf
->reshape_safe
;
5806 sector_div(safepos
, data_disks
);
5807 if (mddev
->reshape_backwards
) {
5808 BUG_ON(writepos
< reshape_sectors
);
5809 writepos
-= reshape_sectors
;
5810 readpos
+= reshape_sectors
;
5811 safepos
+= reshape_sectors
;
5813 writepos
+= reshape_sectors
;
5814 /* readpos and safepos are worst-case calculations.
5815 * A negative number is overly pessimistic, and causes
5816 * obvious problems for unsigned storage. So clip to 0.
5818 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
5819 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
5822 /* Having calculated the 'writepos' possibly use it
5823 * to set 'stripe_addr' which is where we will write to.
5825 if (mddev
->reshape_backwards
) {
5826 BUG_ON(conf
->reshape_progress
== 0);
5827 stripe_addr
= writepos
;
5828 BUG_ON((mddev
->dev_sectors
&
5829 ~((sector_t
)reshape_sectors
- 1))
5830 - reshape_sectors
- stripe_addr
5833 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
5834 stripe_addr
= sector_nr
;
5837 /* 'writepos' is the most advanced device address we might write.
5838 * 'readpos' is the least advanced device address we might read.
5839 * 'safepos' is the least address recorded in the metadata as having
5841 * If there is a min_offset_diff, these are adjusted either by
5842 * increasing the safepos/readpos if diff is negative, or
5843 * increasing writepos if diff is positive.
5844 * If 'readpos' is then behind 'writepos', there is no way that we can
5845 * ensure safety in the face of a crash - that must be done by userspace
5846 * making a backup of the data. So in that case there is no particular
5847 * rush to update metadata.
5848 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5849 * update the metadata to advance 'safepos' to match 'readpos' so that
5850 * we can be safe in the event of a crash.
5851 * So we insist on updating metadata if safepos is behind writepos and
5852 * readpos is beyond writepos.
5853 * In any case, update the metadata every 10 seconds.
5854 * Maybe that number should be configurable, but I'm not sure it is
5855 * worth it.... maybe it could be a multiple of safemode_delay???
5857 if (conf
->min_offset_diff
< 0) {
5858 safepos
+= -conf
->min_offset_diff
;
5859 readpos
+= -conf
->min_offset_diff
;
5861 writepos
+= conf
->min_offset_diff
;
5863 if ((mddev
->reshape_backwards
5864 ? (safepos
> writepos
&& readpos
< writepos
)
5865 : (safepos
< writepos
&& readpos
> writepos
)) ||
5866 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
5867 /* Cannot proceed until we've updated the superblock... */
5868 wait_event(conf
->wait_for_overlap
,
5869 atomic_read(&conf
->reshape_stripes
)==0
5870 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5871 if (atomic_read(&conf
->reshape_stripes
) != 0)
5873 mddev
->reshape_position
= conf
->reshape_progress
;
5874 mddev
->curr_resync_completed
= sector_nr
;
5875 if (!mddev
->reshape_backwards
)
5876 /* Can update recovery_offset */
5877 rdev_for_each(rdev
, mddev
)
5878 if (rdev
->raid_disk
>= 0 &&
5879 !test_bit(Journal
, &rdev
->flags
) &&
5880 !test_bit(In_sync
, &rdev
->flags
) &&
5881 rdev
->recovery_offset
< sector_nr
)
5882 rdev
->recovery_offset
= sector_nr
;
5884 conf
->reshape_checkpoint
= jiffies
;
5885 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
5886 md_wakeup_thread(mddev
->thread
);
5887 wait_event(mddev
->sb_wait
, mddev
->sb_flags
== 0 ||
5888 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5889 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5891 spin_lock_irq(&conf
->device_lock
);
5892 conf
->reshape_safe
= mddev
->reshape_position
;
5893 spin_unlock_irq(&conf
->device_lock
);
5894 wake_up(&conf
->wait_for_overlap
);
5895 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5898 INIT_LIST_HEAD(&stripes
);
5899 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
5901 int skipped_disk
= 0;
5902 sh
= raid5_get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
5903 set_bit(STRIPE_EXPANDING
, &sh
->state
);
5904 atomic_inc(&conf
->reshape_stripes
);
5905 /* If any of this stripe is beyond the end of the old
5906 * array, then we need to zero those blocks
5908 for (j
=sh
->disks
; j
--;) {
5910 if (j
== sh
->pd_idx
)
5912 if (conf
->level
== 6 &&
5915 s
= raid5_compute_blocknr(sh
, j
, 0);
5916 if (s
< raid5_size(mddev
, 0, 0)) {
5920 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
5921 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
5922 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
5924 if (!skipped_disk
) {
5925 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
5926 set_bit(STRIPE_HANDLE
, &sh
->state
);
5928 list_add(&sh
->lru
, &stripes
);
5930 spin_lock_irq(&conf
->device_lock
);
5931 if (mddev
->reshape_backwards
)
5932 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
5934 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
5935 spin_unlock_irq(&conf
->device_lock
);
5936 /* Ok, those stripe are ready. We can start scheduling
5937 * reads on the source stripes.
5938 * The source stripes are determined by mapping the first and last
5939 * block on the destination stripes.
5942 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
5945 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
5946 * new_data_disks
- 1),
5948 if (last_sector
>= mddev
->dev_sectors
)
5949 last_sector
= mddev
->dev_sectors
- 1;
5950 while (first_sector
<= last_sector
) {
5951 sh
= raid5_get_active_stripe(conf
, first_sector
, 1, 0, 1);
5952 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
5953 set_bit(STRIPE_HANDLE
, &sh
->state
);
5954 raid5_release_stripe(sh
);
5955 first_sector
+= STRIPE_SECTORS
;
5957 /* Now that the sources are clearly marked, we can release
5958 * the destination stripes
5960 while (!list_empty(&stripes
)) {
5961 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
5962 list_del_init(&sh
->lru
);
5963 raid5_release_stripe(sh
);
5965 /* If this takes us to the resync_max point where we have to pause,
5966 * then we need to write out the superblock.
5968 sector_nr
+= reshape_sectors
;
5969 retn
= reshape_sectors
;
5971 if (mddev
->curr_resync_completed
> mddev
->resync_max
||
5972 (sector_nr
- mddev
->curr_resync_completed
) * 2
5973 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
5974 /* Cannot proceed until we've updated the superblock... */
5975 wait_event(conf
->wait_for_overlap
,
5976 atomic_read(&conf
->reshape_stripes
) == 0
5977 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5978 if (atomic_read(&conf
->reshape_stripes
) != 0)
5980 mddev
->reshape_position
= conf
->reshape_progress
;
5981 mddev
->curr_resync_completed
= sector_nr
;
5982 if (!mddev
->reshape_backwards
)
5983 /* Can update recovery_offset */
5984 rdev_for_each(rdev
, mddev
)
5985 if (rdev
->raid_disk
>= 0 &&
5986 !test_bit(Journal
, &rdev
->flags
) &&
5987 !test_bit(In_sync
, &rdev
->flags
) &&
5988 rdev
->recovery_offset
< sector_nr
)
5989 rdev
->recovery_offset
= sector_nr
;
5990 conf
->reshape_checkpoint
= jiffies
;
5991 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
5992 md_wakeup_thread(mddev
->thread
);
5993 wait_event(mddev
->sb_wait
,
5994 !test_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
)
5995 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5996 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5998 spin_lock_irq(&conf
->device_lock
);
5999 conf
->reshape_safe
= mddev
->reshape_position
;
6000 spin_unlock_irq(&conf
->device_lock
);
6001 wake_up(&conf
->wait_for_overlap
);
6002 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
6008 static inline sector_t
raid5_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
6011 struct r5conf
*conf
= mddev
->private;
6012 struct stripe_head
*sh
;
6013 sector_t max_sector
= mddev
->dev_sectors
;
6014 sector_t sync_blocks
;
6015 int still_degraded
= 0;
6018 if (sector_nr
>= max_sector
) {
6019 /* just being told to finish up .. nothing much to do */
6021 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
6026 if (mddev
->curr_resync
< max_sector
) /* aborted */
6027 md_bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
6029 else /* completed sync */
6031 md_bitmap_close_sync(mddev
->bitmap
);
6036 /* Allow raid5_quiesce to complete */
6037 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
6039 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
6040 return reshape_request(mddev
, sector_nr
, skipped
);
6042 /* No need to check resync_max as we never do more than one
6043 * stripe, and as resync_max will always be on a chunk boundary,
6044 * if the check in md_do_sync didn't fire, there is no chance
6045 * of overstepping resync_max here
6048 /* if there is too many failed drives and we are trying
6049 * to resync, then assert that we are finished, because there is
6050 * nothing we can do.
6052 if (mddev
->degraded
>= conf
->max_degraded
&&
6053 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
6054 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
6058 if (!test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
6060 !md_bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
6061 sync_blocks
>= STRIPE_SECTORS
) {
6062 /* we can skip this block, and probably more */
6063 sync_blocks
/= STRIPE_SECTORS
;
6065 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
6068 md_bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
, false);
6070 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 1, 0);
6072 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 0, 0);
6073 /* make sure we don't swamp the stripe cache if someone else
6074 * is trying to get access
6076 schedule_timeout_uninterruptible(1);
6078 /* Need to check if array will still be degraded after recovery/resync
6079 * Note in case of > 1 drive failures it's possible we're rebuilding
6080 * one drive while leaving another faulty drive in array.
6083 for (i
= 0; i
< conf
->raid_disks
; i
++) {
6084 struct md_rdev
*rdev
= READ_ONCE(conf
->disks
[i
].rdev
);
6086 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
))
6091 md_bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
6093 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
6094 set_bit(STRIPE_HANDLE
, &sh
->state
);
6096 raid5_release_stripe(sh
);
6098 return STRIPE_SECTORS
;
6101 static int retry_aligned_read(struct r5conf
*conf
, struct bio
*raid_bio
,
6102 unsigned int offset
)
6104 /* We may not be able to submit a whole bio at once as there
6105 * may not be enough stripe_heads available.
6106 * We cannot pre-allocate enough stripe_heads as we may need
6107 * more than exist in the cache (if we allow ever large chunks).
6108 * So we do one stripe head at a time and record in
6109 * ->bi_hw_segments how many have been done.
6111 * We *know* that this entire raid_bio is in one chunk, so
6112 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6114 struct stripe_head
*sh
;
6116 sector_t sector
, logical_sector
, last_sector
;
6120 logical_sector
= raid_bio
->bi_iter
.bi_sector
&
6121 ~((sector_t
)STRIPE_SECTORS
-1);
6122 sector
= raid5_compute_sector(conf
, logical_sector
,
6124 last_sector
= bio_end_sector(raid_bio
);
6126 for (; logical_sector
< last_sector
;
6127 logical_sector
+= STRIPE_SECTORS
,
6128 sector
+= STRIPE_SECTORS
,
6132 /* already done this stripe */
6135 sh
= raid5_get_active_stripe(conf
, sector
, 0, 1, 1);
6138 /* failed to get a stripe - must wait */
6139 conf
->retry_read_aligned
= raid_bio
;
6140 conf
->retry_read_offset
= scnt
;
6144 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0, 0)) {
6145 raid5_release_stripe(sh
);
6146 conf
->retry_read_aligned
= raid_bio
;
6147 conf
->retry_read_offset
= scnt
;
6151 set_bit(R5_ReadNoMerge
, &sh
->dev
[dd_idx
].flags
);
6153 raid5_release_stripe(sh
);
6157 bio_endio(raid_bio
);
6159 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
6160 wake_up(&conf
->wait_for_quiescent
);
6164 static int handle_active_stripes(struct r5conf
*conf
, int group
,
6165 struct r5worker
*worker
,
6166 struct list_head
*temp_inactive_list
)
6168 struct stripe_head
*batch
[MAX_STRIPE_BATCH
], *sh
;
6169 int i
, batch_size
= 0, hash
;
6170 bool release_inactive
= false;
6172 while (batch_size
< MAX_STRIPE_BATCH
&&
6173 (sh
= __get_priority_stripe(conf
, group
)) != NULL
)
6174 batch
[batch_size
++] = sh
;
6176 if (batch_size
== 0) {
6177 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6178 if (!list_empty(temp_inactive_list
+ i
))
6180 if (i
== NR_STRIPE_HASH_LOCKS
) {
6181 spin_unlock_irq(&conf
->device_lock
);
6182 log_flush_stripe_to_raid(conf
);
6183 spin_lock_irq(&conf
->device_lock
);
6186 release_inactive
= true;
6188 spin_unlock_irq(&conf
->device_lock
);
6190 release_inactive_stripe_list(conf
, temp_inactive_list
,
6191 NR_STRIPE_HASH_LOCKS
);
6193 r5l_flush_stripe_to_raid(conf
->log
);
6194 if (release_inactive
) {
6195 spin_lock_irq(&conf
->device_lock
);
6199 for (i
= 0; i
< batch_size
; i
++)
6200 handle_stripe(batch
[i
]);
6201 log_write_stripe_run(conf
);
6205 spin_lock_irq(&conf
->device_lock
);
6206 for (i
= 0; i
< batch_size
; i
++) {
6207 hash
= batch
[i
]->hash_lock_index
;
6208 __release_stripe(conf
, batch
[i
], &temp_inactive_list
[hash
]);
6213 static void raid5_do_work(struct work_struct
*work
)
6215 struct r5worker
*worker
= container_of(work
, struct r5worker
, work
);
6216 struct r5worker_group
*group
= worker
->group
;
6217 struct r5conf
*conf
= group
->conf
;
6218 struct mddev
*mddev
= conf
->mddev
;
6219 int group_id
= group
- conf
->worker_groups
;
6221 struct blk_plug plug
;
6223 pr_debug("+++ raid5worker active\n");
6225 blk_start_plug(&plug
);
6227 spin_lock_irq(&conf
->device_lock
);
6229 int batch_size
, released
;
6231 released
= release_stripe_list(conf
, worker
->temp_inactive_list
);
6233 batch_size
= handle_active_stripes(conf
, group_id
, worker
,
6234 worker
->temp_inactive_list
);
6235 worker
->working
= false;
6236 if (!batch_size
&& !released
)
6238 handled
+= batch_size
;
6239 wait_event_lock_irq(mddev
->sb_wait
,
6240 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
),
6243 pr_debug("%d stripes handled\n", handled
);
6245 spin_unlock_irq(&conf
->device_lock
);
6247 flush_deferred_bios(conf
);
6249 r5l_flush_stripe_to_raid(conf
->log
);
6251 async_tx_issue_pending_all();
6252 blk_finish_plug(&plug
);
6254 pr_debug("--- raid5worker inactive\n");
6258 * This is our raid5 kernel thread.
6260 * We scan the hash table for stripes which can be handled now.
6261 * During the scan, completed stripes are saved for us by the interrupt
6262 * handler, so that they will not have to wait for our next wakeup.
6264 static void raid5d(struct md_thread
*thread
)
6266 struct mddev
*mddev
= thread
->mddev
;
6267 struct r5conf
*conf
= mddev
->private;
6269 struct blk_plug plug
;
6271 pr_debug("+++ raid5d active\n");
6273 md_check_recovery(mddev
);
6275 blk_start_plug(&plug
);
6277 spin_lock_irq(&conf
->device_lock
);
6280 int batch_size
, released
;
6281 unsigned int offset
;
6283 released
= release_stripe_list(conf
, conf
->temp_inactive_list
);
6285 clear_bit(R5_DID_ALLOC
, &conf
->cache_state
);
6288 !list_empty(&conf
->bitmap_list
)) {
6289 /* Now is a good time to flush some bitmap updates */
6291 spin_unlock_irq(&conf
->device_lock
);
6292 md_bitmap_unplug(mddev
->bitmap
);
6293 spin_lock_irq(&conf
->device_lock
);
6294 conf
->seq_write
= conf
->seq_flush
;
6295 activate_bit_delay(conf
, conf
->temp_inactive_list
);
6297 raid5_activate_delayed(conf
);
6299 while ((bio
= remove_bio_from_retry(conf
, &offset
))) {
6301 spin_unlock_irq(&conf
->device_lock
);
6302 ok
= retry_aligned_read(conf
, bio
, offset
);
6303 spin_lock_irq(&conf
->device_lock
);
6309 batch_size
= handle_active_stripes(conf
, ANY_GROUP
, NULL
,
6310 conf
->temp_inactive_list
);
6311 if (!batch_size
&& !released
)
6313 handled
+= batch_size
;
6315 if (mddev
->sb_flags
& ~(1 << MD_SB_CHANGE_PENDING
)) {
6316 spin_unlock_irq(&conf
->device_lock
);
6317 md_check_recovery(mddev
);
6318 spin_lock_irq(&conf
->device_lock
);
6321 pr_debug("%d stripes handled\n", handled
);
6323 spin_unlock_irq(&conf
->device_lock
);
6324 if (test_and_clear_bit(R5_ALLOC_MORE
, &conf
->cache_state
) &&
6325 mutex_trylock(&conf
->cache_size_mutex
)) {
6326 grow_one_stripe(conf
, __GFP_NOWARN
);
6327 /* Set flag even if allocation failed. This helps
6328 * slow down allocation requests when mem is short
6330 set_bit(R5_DID_ALLOC
, &conf
->cache_state
);
6331 mutex_unlock(&conf
->cache_size_mutex
);
6334 flush_deferred_bios(conf
);
6336 r5l_flush_stripe_to_raid(conf
->log
);
6338 async_tx_issue_pending_all();
6339 blk_finish_plug(&plug
);
6341 pr_debug("--- raid5d inactive\n");
6345 raid5_show_stripe_cache_size(struct mddev
*mddev
, char *page
)
6347 struct r5conf
*conf
;
6349 spin_lock(&mddev
->lock
);
6350 conf
= mddev
->private;
6352 ret
= sprintf(page
, "%d\n", conf
->min_nr_stripes
);
6353 spin_unlock(&mddev
->lock
);
6358 raid5_set_cache_size(struct mddev
*mddev
, int size
)
6360 struct r5conf
*conf
= mddev
->private;
6362 if (size
<= 16 || size
> 32768)
6365 conf
->min_nr_stripes
= size
;
6366 mutex_lock(&conf
->cache_size_mutex
);
6367 while (size
< conf
->max_nr_stripes
&&
6368 drop_one_stripe(conf
))
6370 mutex_unlock(&conf
->cache_size_mutex
);
6372 md_allow_write(mddev
);
6374 mutex_lock(&conf
->cache_size_mutex
);
6375 while (size
> conf
->max_nr_stripes
)
6376 if (!grow_one_stripe(conf
, GFP_KERNEL
))
6378 mutex_unlock(&conf
->cache_size_mutex
);
6382 EXPORT_SYMBOL(raid5_set_cache_size
);
6385 raid5_store_stripe_cache_size(struct mddev
*mddev
, const char *page
, size_t len
)
6387 struct r5conf
*conf
;
6391 if (len
>= PAGE_SIZE
)
6393 if (kstrtoul(page
, 10, &new))
6395 err
= mddev_lock(mddev
);
6398 conf
= mddev
->private;
6402 err
= raid5_set_cache_size(mddev
, new);
6403 mddev_unlock(mddev
);
6408 static struct md_sysfs_entry
6409 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
6410 raid5_show_stripe_cache_size
,
6411 raid5_store_stripe_cache_size
);
6414 raid5_show_rmw_level(struct mddev
*mddev
, char *page
)
6416 struct r5conf
*conf
= mddev
->private;
6418 return sprintf(page
, "%d\n", conf
->rmw_level
);
6424 raid5_store_rmw_level(struct mddev
*mddev
, const char *page
, size_t len
)
6426 struct r5conf
*conf
= mddev
->private;
6432 if (len
>= PAGE_SIZE
)
6435 if (kstrtoul(page
, 10, &new))
6438 if (new != PARITY_DISABLE_RMW
&& !raid6_call
.xor_syndrome
)
6441 if (new != PARITY_DISABLE_RMW
&&
6442 new != PARITY_ENABLE_RMW
&&
6443 new != PARITY_PREFER_RMW
)
6446 conf
->rmw_level
= new;
6450 static struct md_sysfs_entry
6451 raid5_rmw_level
= __ATTR(rmw_level
, S_IRUGO
| S_IWUSR
,
6452 raid5_show_rmw_level
,
6453 raid5_store_rmw_level
);
6457 raid5_show_preread_threshold(struct mddev
*mddev
, char *page
)
6459 struct r5conf
*conf
;
6461 spin_lock(&mddev
->lock
);
6462 conf
= mddev
->private;
6464 ret
= sprintf(page
, "%d\n", conf
->bypass_threshold
);
6465 spin_unlock(&mddev
->lock
);
6470 raid5_store_preread_threshold(struct mddev
*mddev
, const char *page
, size_t len
)
6472 struct r5conf
*conf
;
6476 if (len
>= PAGE_SIZE
)
6478 if (kstrtoul(page
, 10, &new))
6481 err
= mddev_lock(mddev
);
6484 conf
= mddev
->private;
6487 else if (new > conf
->min_nr_stripes
)
6490 conf
->bypass_threshold
= new;
6491 mddev_unlock(mddev
);
6495 static struct md_sysfs_entry
6496 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
6498 raid5_show_preread_threshold
,
6499 raid5_store_preread_threshold
);
6502 raid5_show_skip_copy(struct mddev
*mddev
, char *page
)
6504 struct r5conf
*conf
;
6506 spin_lock(&mddev
->lock
);
6507 conf
= mddev
->private;
6509 ret
= sprintf(page
, "%d\n", conf
->skip_copy
);
6510 spin_unlock(&mddev
->lock
);
6515 raid5_store_skip_copy(struct mddev
*mddev
, const char *page
, size_t len
)
6517 struct r5conf
*conf
;
6521 if (len
>= PAGE_SIZE
)
6523 if (kstrtoul(page
, 10, &new))
6527 err
= mddev_lock(mddev
);
6530 conf
= mddev
->private;
6533 else if (new != conf
->skip_copy
) {
6534 mddev_suspend(mddev
);
6535 conf
->skip_copy
= new;
6537 mddev
->queue
->backing_dev_info
->capabilities
|=
6538 BDI_CAP_STABLE_WRITES
;
6540 mddev
->queue
->backing_dev_info
->capabilities
&=
6541 ~BDI_CAP_STABLE_WRITES
;
6542 mddev_resume(mddev
);
6544 mddev_unlock(mddev
);
6548 static struct md_sysfs_entry
6549 raid5_skip_copy
= __ATTR(skip_copy
, S_IRUGO
| S_IWUSR
,
6550 raid5_show_skip_copy
,
6551 raid5_store_skip_copy
);
6554 stripe_cache_active_show(struct mddev
*mddev
, char *page
)
6556 struct r5conf
*conf
= mddev
->private;
6558 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
6563 static struct md_sysfs_entry
6564 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
6567 raid5_show_group_thread_cnt(struct mddev
*mddev
, char *page
)
6569 struct r5conf
*conf
;
6571 spin_lock(&mddev
->lock
);
6572 conf
= mddev
->private;
6574 ret
= sprintf(page
, "%d\n", conf
->worker_cnt_per_group
);
6575 spin_unlock(&mddev
->lock
);
6579 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6581 int *worker_cnt_per_group
,
6582 struct r5worker_group
**worker_groups
);
6584 raid5_store_group_thread_cnt(struct mddev
*mddev
, const char *page
, size_t len
)
6586 struct r5conf
*conf
;
6589 struct r5worker_group
*new_groups
, *old_groups
;
6590 int group_cnt
, worker_cnt_per_group
;
6592 if (len
>= PAGE_SIZE
)
6594 if (kstrtouint(page
, 10, &new))
6596 /* 8192 should be big enough */
6600 err
= mddev_lock(mddev
);
6603 conf
= mddev
->private;
6606 else if (new != conf
->worker_cnt_per_group
) {
6607 mddev_suspend(mddev
);
6609 old_groups
= conf
->worker_groups
;
6611 flush_workqueue(raid5_wq
);
6613 err
= alloc_thread_groups(conf
, new,
6614 &group_cnt
, &worker_cnt_per_group
,
6617 spin_lock_irq(&conf
->device_lock
);
6618 conf
->group_cnt
= group_cnt
;
6619 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6620 conf
->worker_groups
= new_groups
;
6621 spin_unlock_irq(&conf
->device_lock
);
6624 kfree(old_groups
[0].workers
);
6627 mddev_resume(mddev
);
6629 mddev_unlock(mddev
);
6634 static struct md_sysfs_entry
6635 raid5_group_thread_cnt
= __ATTR(group_thread_cnt
, S_IRUGO
| S_IWUSR
,
6636 raid5_show_group_thread_cnt
,
6637 raid5_store_group_thread_cnt
);
6639 static struct attribute
*raid5_attrs
[] = {
6640 &raid5_stripecache_size
.attr
,
6641 &raid5_stripecache_active
.attr
,
6642 &raid5_preread_bypass_threshold
.attr
,
6643 &raid5_group_thread_cnt
.attr
,
6644 &raid5_skip_copy
.attr
,
6645 &raid5_rmw_level
.attr
,
6646 &r5c_journal_mode
.attr
,
6649 static struct attribute_group raid5_attrs_group
= {
6651 .attrs
= raid5_attrs
,
6654 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6656 int *worker_cnt_per_group
,
6657 struct r5worker_group
**worker_groups
)
6661 struct r5worker
*workers
;
6663 *worker_cnt_per_group
= cnt
;
6666 *worker_groups
= NULL
;
6669 *group_cnt
= num_possible_nodes();
6670 size
= sizeof(struct r5worker
) * cnt
;
6671 workers
= kcalloc(size
, *group_cnt
, GFP_NOIO
);
6672 *worker_groups
= kcalloc(*group_cnt
, sizeof(struct r5worker_group
),
6674 if (!*worker_groups
|| !workers
) {
6676 kfree(*worker_groups
);
6680 for (i
= 0; i
< *group_cnt
; i
++) {
6681 struct r5worker_group
*group
;
6683 group
= &(*worker_groups
)[i
];
6684 INIT_LIST_HEAD(&group
->handle_list
);
6685 INIT_LIST_HEAD(&group
->loprio_list
);
6687 group
->workers
= workers
+ i
* cnt
;
6689 for (j
= 0; j
< cnt
; j
++) {
6690 struct r5worker
*worker
= group
->workers
+ j
;
6691 worker
->group
= group
;
6692 INIT_WORK(&worker
->work
, raid5_do_work
);
6694 for (k
= 0; k
< NR_STRIPE_HASH_LOCKS
; k
++)
6695 INIT_LIST_HEAD(worker
->temp_inactive_list
+ k
);
6702 static void free_thread_groups(struct r5conf
*conf
)
6704 if (conf
->worker_groups
)
6705 kfree(conf
->worker_groups
[0].workers
);
6706 kfree(conf
->worker_groups
);
6707 conf
->worker_groups
= NULL
;
6711 raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
6713 struct r5conf
*conf
= mddev
->private;
6716 sectors
= mddev
->dev_sectors
;
6718 /* size is defined by the smallest of previous and new size */
6719 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
6721 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
6722 sectors
&= ~((sector_t
)conf
->prev_chunk_sectors
- 1);
6723 return sectors
* (raid_disks
- conf
->max_degraded
);
6726 static void free_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6728 safe_put_page(percpu
->spare_page
);
6729 if (percpu
->scribble
)
6730 flex_array_free(percpu
->scribble
);
6731 percpu
->spare_page
= NULL
;
6732 percpu
->scribble
= NULL
;
6735 static int alloc_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6737 if (conf
->level
== 6 && !percpu
->spare_page
)
6738 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
6739 if (!percpu
->scribble
)
6740 percpu
->scribble
= scribble_alloc(max(conf
->raid_disks
,
6741 conf
->previous_raid_disks
),
6742 max(conf
->chunk_sectors
,
6743 conf
->prev_chunk_sectors
)
6747 if (!percpu
->scribble
|| (conf
->level
== 6 && !percpu
->spare_page
)) {
6748 free_scratch_buffer(conf
, percpu
);
6755 static int raid456_cpu_dead(unsigned int cpu
, struct hlist_node
*node
)
6757 struct r5conf
*conf
= hlist_entry_safe(node
, struct r5conf
, node
);
6759 free_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6763 static void raid5_free_percpu(struct r5conf
*conf
)
6768 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE
, &conf
->node
);
6769 free_percpu(conf
->percpu
);
6772 static void free_conf(struct r5conf
*conf
)
6778 unregister_shrinker(&conf
->shrinker
);
6779 free_thread_groups(conf
);
6780 shrink_stripes(conf
);
6781 raid5_free_percpu(conf
);
6782 for (i
= 0; i
< conf
->pool_size
; i
++)
6783 if (conf
->disks
[i
].extra_page
)
6784 put_page(conf
->disks
[i
].extra_page
);
6786 bioset_exit(&conf
->bio_split
);
6787 kfree(conf
->stripe_hashtbl
);
6788 kfree(conf
->pending_data
);
6792 static int raid456_cpu_up_prepare(unsigned int cpu
, struct hlist_node
*node
)
6794 struct r5conf
*conf
= hlist_entry_safe(node
, struct r5conf
, node
);
6795 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
6797 if (alloc_scratch_buffer(conf
, percpu
)) {
6798 pr_warn("%s: failed memory allocation for cpu%u\n",
6805 static int raid5_alloc_percpu(struct r5conf
*conf
)
6809 conf
->percpu
= alloc_percpu(struct raid5_percpu
);
6813 err
= cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE
, &conf
->node
);
6815 conf
->scribble_disks
= max(conf
->raid_disks
,
6816 conf
->previous_raid_disks
);
6817 conf
->scribble_sectors
= max(conf
->chunk_sectors
,
6818 conf
->prev_chunk_sectors
);
6823 static unsigned long raid5_cache_scan(struct shrinker
*shrink
,
6824 struct shrink_control
*sc
)
6826 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6827 unsigned long ret
= SHRINK_STOP
;
6829 if (mutex_trylock(&conf
->cache_size_mutex
)) {
6831 while (ret
< sc
->nr_to_scan
&&
6832 conf
->max_nr_stripes
> conf
->min_nr_stripes
) {
6833 if (drop_one_stripe(conf
) == 0) {
6839 mutex_unlock(&conf
->cache_size_mutex
);
6844 static unsigned long raid5_cache_count(struct shrinker
*shrink
,
6845 struct shrink_control
*sc
)
6847 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6849 if (conf
->max_nr_stripes
< conf
->min_nr_stripes
)
6850 /* unlikely, but not impossible */
6852 return conf
->max_nr_stripes
- conf
->min_nr_stripes
;
6855 static struct r5conf
*setup_conf(struct mddev
*mddev
)
6857 struct r5conf
*conf
;
6858 int raid_disk
, memory
, max_disks
;
6859 struct md_rdev
*rdev
;
6860 struct disk_info
*disk
;
6863 int group_cnt
, worker_cnt_per_group
;
6864 struct r5worker_group
*new_group
;
6867 if (mddev
->new_level
!= 5
6868 && mddev
->new_level
!= 4
6869 && mddev
->new_level
!= 6) {
6870 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6871 mdname(mddev
), mddev
->new_level
);
6872 return ERR_PTR(-EIO
);
6874 if ((mddev
->new_level
== 5
6875 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
6876 (mddev
->new_level
== 6
6877 && !algorithm_valid_raid6(mddev
->new_layout
))) {
6878 pr_warn("md/raid:%s: layout %d not supported\n",
6879 mdname(mddev
), mddev
->new_layout
);
6880 return ERR_PTR(-EIO
);
6882 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
6883 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6884 mdname(mddev
), mddev
->raid_disks
);
6885 return ERR_PTR(-EINVAL
);
6888 if (!mddev
->new_chunk_sectors
||
6889 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
6890 !is_power_of_2(mddev
->new_chunk_sectors
)) {
6891 pr_warn("md/raid:%s: invalid chunk size %d\n",
6892 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
6893 return ERR_PTR(-EINVAL
);
6896 conf
= kzalloc(sizeof(struct r5conf
), GFP_KERNEL
);
6899 INIT_LIST_HEAD(&conf
->free_list
);
6900 INIT_LIST_HEAD(&conf
->pending_list
);
6901 conf
->pending_data
= kcalloc(PENDING_IO_MAX
,
6902 sizeof(struct r5pending_data
),
6904 if (!conf
->pending_data
)
6906 for (i
= 0; i
< PENDING_IO_MAX
; i
++)
6907 list_add(&conf
->pending_data
[i
].sibling
, &conf
->free_list
);
6908 /* Don't enable multi-threading by default*/
6909 if (!alloc_thread_groups(conf
, 0, &group_cnt
, &worker_cnt_per_group
,
6911 conf
->group_cnt
= group_cnt
;
6912 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6913 conf
->worker_groups
= new_group
;
6916 spin_lock_init(&conf
->device_lock
);
6917 seqcount_init(&conf
->gen_lock
);
6918 mutex_init(&conf
->cache_size_mutex
);
6919 init_waitqueue_head(&conf
->wait_for_quiescent
);
6920 init_waitqueue_head(&conf
->wait_for_stripe
);
6921 init_waitqueue_head(&conf
->wait_for_overlap
);
6922 INIT_LIST_HEAD(&conf
->handle_list
);
6923 INIT_LIST_HEAD(&conf
->loprio_list
);
6924 INIT_LIST_HEAD(&conf
->hold_list
);
6925 INIT_LIST_HEAD(&conf
->delayed_list
);
6926 INIT_LIST_HEAD(&conf
->bitmap_list
);
6927 init_llist_head(&conf
->released_stripes
);
6928 atomic_set(&conf
->active_stripes
, 0);
6929 atomic_set(&conf
->preread_active_stripes
, 0);
6930 atomic_set(&conf
->active_aligned_reads
, 0);
6931 spin_lock_init(&conf
->pending_bios_lock
);
6932 conf
->batch_bio_dispatch
= true;
6933 rdev_for_each(rdev
, mddev
) {
6934 if (test_bit(Journal
, &rdev
->flags
))
6936 if (blk_queue_nonrot(bdev_get_queue(rdev
->bdev
))) {
6937 conf
->batch_bio_dispatch
= false;
6942 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
6943 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
6945 conf
->raid_disks
= mddev
->raid_disks
;
6946 if (mddev
->reshape_position
== MaxSector
)
6947 conf
->previous_raid_disks
= mddev
->raid_disks
;
6949 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
6950 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
6952 conf
->disks
= kcalloc(max_disks
, sizeof(struct disk_info
),
6958 for (i
= 0; i
< max_disks
; i
++) {
6959 conf
->disks
[i
].extra_page
= alloc_page(GFP_KERNEL
);
6960 if (!conf
->disks
[i
].extra_page
)
6964 ret
= bioset_init(&conf
->bio_split
, BIO_POOL_SIZE
, 0, 0);
6967 conf
->mddev
= mddev
;
6969 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
6972 /* We init hash_locks[0] separately to that it can be used
6973 * as the reference lock in the spin_lock_nest_lock() call
6974 * in lock_all_device_hash_locks_irq in order to convince
6975 * lockdep that we know what we are doing.
6977 spin_lock_init(conf
->hash_locks
);
6978 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6979 spin_lock_init(conf
->hash_locks
+ i
);
6981 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6982 INIT_LIST_HEAD(conf
->inactive_list
+ i
);
6984 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6985 INIT_LIST_HEAD(conf
->temp_inactive_list
+ i
);
6987 atomic_set(&conf
->r5c_cached_full_stripes
, 0);
6988 INIT_LIST_HEAD(&conf
->r5c_full_stripe_list
);
6989 atomic_set(&conf
->r5c_cached_partial_stripes
, 0);
6990 INIT_LIST_HEAD(&conf
->r5c_partial_stripe_list
);
6991 atomic_set(&conf
->r5c_flushing_full_stripes
, 0);
6992 atomic_set(&conf
->r5c_flushing_partial_stripes
, 0);
6994 conf
->level
= mddev
->new_level
;
6995 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
6996 if (raid5_alloc_percpu(conf
) != 0)
6999 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
7001 rdev_for_each(rdev
, mddev
) {
7002 raid_disk
= rdev
->raid_disk
;
7003 if (raid_disk
>= max_disks
7004 || raid_disk
< 0 || test_bit(Journal
, &rdev
->flags
))
7006 disk
= conf
->disks
+ raid_disk
;
7008 if (test_bit(Replacement
, &rdev
->flags
)) {
7009 if (disk
->replacement
)
7011 disk
->replacement
= rdev
;
7018 if (test_bit(In_sync
, &rdev
->flags
)) {
7019 char b
[BDEVNAME_SIZE
];
7020 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7021 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
7022 } else if (rdev
->saved_raid_disk
!= raid_disk
)
7023 /* Cannot rely on bitmap to complete recovery */
7027 conf
->level
= mddev
->new_level
;
7028 if (conf
->level
== 6) {
7029 conf
->max_degraded
= 2;
7030 if (raid6_call
.xor_syndrome
)
7031 conf
->rmw_level
= PARITY_ENABLE_RMW
;
7033 conf
->rmw_level
= PARITY_DISABLE_RMW
;
7035 conf
->max_degraded
= 1;
7036 conf
->rmw_level
= PARITY_ENABLE_RMW
;
7038 conf
->algorithm
= mddev
->new_layout
;
7039 conf
->reshape_progress
= mddev
->reshape_position
;
7040 if (conf
->reshape_progress
!= MaxSector
) {
7041 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
7042 conf
->prev_algo
= mddev
->layout
;
7044 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
7045 conf
->prev_algo
= conf
->algorithm
;
7048 conf
->min_nr_stripes
= NR_STRIPES
;
7049 if (mddev
->reshape_position
!= MaxSector
) {
7050 int stripes
= max_t(int,
7051 ((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4,
7052 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4);
7053 conf
->min_nr_stripes
= max(NR_STRIPES
, stripes
);
7054 if (conf
->min_nr_stripes
!= NR_STRIPES
)
7055 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7056 mdname(mddev
), conf
->min_nr_stripes
);
7058 memory
= conf
->min_nr_stripes
* (sizeof(struct stripe_head
) +
7059 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
7060 atomic_set(&conf
->empty_inactive_list_nr
, NR_STRIPE_HASH_LOCKS
);
7061 if (grow_stripes(conf
, conf
->min_nr_stripes
)) {
7062 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7063 mdname(mddev
), memory
);
7066 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev
), memory
);
7068 * Losing a stripe head costs more than the time to refill it,
7069 * it reduces the queue depth and so can hurt throughput.
7070 * So set it rather large, scaled by number of devices.
7072 conf
->shrinker
.seeks
= DEFAULT_SEEKS
* conf
->raid_disks
* 4;
7073 conf
->shrinker
.scan_objects
= raid5_cache_scan
;
7074 conf
->shrinker
.count_objects
= raid5_cache_count
;
7075 conf
->shrinker
.batch
= 128;
7076 conf
->shrinker
.flags
= 0;
7077 if (register_shrinker(&conf
->shrinker
)) {
7078 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7083 sprintf(pers_name
, "raid%d", mddev
->new_level
);
7084 conf
->thread
= md_register_thread(raid5d
, mddev
, pers_name
);
7085 if (!conf
->thread
) {
7086 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7096 return ERR_PTR(-EIO
);
7098 return ERR_PTR(-ENOMEM
);
7101 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
7104 case ALGORITHM_PARITY_0
:
7105 if (raid_disk
< max_degraded
)
7108 case ALGORITHM_PARITY_N
:
7109 if (raid_disk
>= raid_disks
- max_degraded
)
7112 case ALGORITHM_PARITY_0_6
:
7113 if (raid_disk
== 0 ||
7114 raid_disk
== raid_disks
- 1)
7117 case ALGORITHM_LEFT_ASYMMETRIC_6
:
7118 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
7119 case ALGORITHM_LEFT_SYMMETRIC_6
:
7120 case ALGORITHM_RIGHT_SYMMETRIC_6
:
7121 if (raid_disk
== raid_disks
- 1)
7127 static int raid5_run(struct mddev
*mddev
)
7129 struct r5conf
*conf
;
7130 int working_disks
= 0;
7131 int dirty_parity_disks
= 0;
7132 struct md_rdev
*rdev
;
7133 struct md_rdev
*journal_dev
= NULL
;
7134 sector_t reshape_offset
= 0;
7136 long long min_offset_diff
= 0;
7139 if (mddev_init_writes_pending(mddev
) < 0)
7142 if (mddev
->recovery_cp
!= MaxSector
)
7143 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7146 rdev_for_each(rdev
, mddev
) {
7149 if (test_bit(Journal
, &rdev
->flags
)) {
7153 if (rdev
->raid_disk
< 0)
7155 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
7157 min_offset_diff
= diff
;
7159 } else if (mddev
->reshape_backwards
&&
7160 diff
< min_offset_diff
)
7161 min_offset_diff
= diff
;
7162 else if (!mddev
->reshape_backwards
&&
7163 diff
> min_offset_diff
)
7164 min_offset_diff
= diff
;
7167 if ((test_bit(MD_HAS_JOURNAL
, &mddev
->flags
) || journal_dev
) &&
7168 (mddev
->bitmap_info
.offset
|| mddev
->bitmap_info
.file
)) {
7169 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7174 if (mddev
->reshape_position
!= MaxSector
) {
7175 /* Check that we can continue the reshape.
7176 * Difficulties arise if the stripe we would write to
7177 * next is at or after the stripe we would read from next.
7178 * For a reshape that changes the number of devices, this
7179 * is only possible for a very short time, and mdadm makes
7180 * sure that time appears to have past before assembling
7181 * the array. So we fail if that time hasn't passed.
7182 * For a reshape that keeps the number of devices the same
7183 * mdadm must be monitoring the reshape can keeping the
7184 * critical areas read-only and backed up. It will start
7185 * the array in read-only mode, so we check for that.
7187 sector_t here_new
, here_old
;
7189 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
7194 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7199 if (mddev
->new_level
!= mddev
->level
) {
7200 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7204 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
7205 /* reshape_position must be on a new-stripe boundary, and one
7206 * further up in new geometry must map after here in old
7208 * If the chunk sizes are different, then as we perform reshape
7209 * in units of the largest of the two, reshape_position needs
7210 * be a multiple of the largest chunk size times new data disks.
7212 here_new
= mddev
->reshape_position
;
7213 chunk_sectors
= max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
);
7214 new_data_disks
= mddev
->raid_disks
- max_degraded
;
7215 if (sector_div(here_new
, chunk_sectors
* new_data_disks
)) {
7216 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7220 reshape_offset
= here_new
* chunk_sectors
;
7221 /* here_new is the stripe we will write to */
7222 here_old
= mddev
->reshape_position
;
7223 sector_div(here_old
, chunk_sectors
* (old_disks
-max_degraded
));
7224 /* here_old is the first stripe that we might need to read
7226 if (mddev
->delta_disks
== 0) {
7227 /* We cannot be sure it is safe to start an in-place
7228 * reshape. It is only safe if user-space is monitoring
7229 * and taking constant backups.
7230 * mdadm always starts a situation like this in
7231 * readonly mode so it can take control before
7232 * allowing any writes. So just check for that.
7234 if (abs(min_offset_diff
) >= mddev
->chunk_sectors
&&
7235 abs(min_offset_diff
) >= mddev
->new_chunk_sectors
)
7236 /* not really in-place - so OK */;
7237 else if (mddev
->ro
== 0) {
7238 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7242 } else if (mddev
->reshape_backwards
7243 ? (here_new
* chunk_sectors
+ min_offset_diff
<=
7244 here_old
* chunk_sectors
)
7245 : (here_new
* chunk_sectors
>=
7246 here_old
* chunk_sectors
+ (-min_offset_diff
))) {
7247 /* Reading from the same stripe as writing to - bad */
7248 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7252 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev
));
7253 /* OK, we should be able to continue; */
7255 BUG_ON(mddev
->level
!= mddev
->new_level
);
7256 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
7257 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
7258 BUG_ON(mddev
->delta_disks
!= 0);
7261 if (test_bit(MD_HAS_JOURNAL
, &mddev
->flags
) &&
7262 test_bit(MD_HAS_PPL
, &mddev
->flags
)) {
7263 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7265 clear_bit(MD_HAS_PPL
, &mddev
->flags
);
7266 clear_bit(MD_HAS_MULTIPLE_PPLS
, &mddev
->flags
);
7269 if (mddev
->private == NULL
)
7270 conf
= setup_conf(mddev
);
7272 conf
= mddev
->private;
7275 return PTR_ERR(conf
);
7277 if (test_bit(MD_HAS_JOURNAL
, &mddev
->flags
)) {
7279 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7282 set_disk_ro(mddev
->gendisk
, 1);
7283 } else if (mddev
->recovery_cp
== MaxSector
)
7284 set_bit(MD_JOURNAL_CLEAN
, &mddev
->flags
);
7287 conf
->min_offset_diff
= min_offset_diff
;
7288 mddev
->thread
= conf
->thread
;
7289 conf
->thread
= NULL
;
7290 mddev
->private = conf
;
7292 for (i
= 0; i
< conf
->raid_disks
&& conf
->previous_raid_disks
;
7294 rdev
= conf
->disks
[i
].rdev
;
7295 if (!rdev
&& conf
->disks
[i
].replacement
) {
7296 /* The replacement is all we have yet */
7297 rdev
= conf
->disks
[i
].replacement
;
7298 conf
->disks
[i
].replacement
= NULL
;
7299 clear_bit(Replacement
, &rdev
->flags
);
7300 conf
->disks
[i
].rdev
= rdev
;
7304 if (conf
->disks
[i
].replacement
&&
7305 conf
->reshape_progress
!= MaxSector
) {
7306 /* replacements and reshape simply do not mix. */
7307 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7310 if (test_bit(In_sync
, &rdev
->flags
)) {
7314 /* This disc is not fully in-sync. However if it
7315 * just stored parity (beyond the recovery_offset),
7316 * when we don't need to be concerned about the
7317 * array being dirty.
7318 * When reshape goes 'backwards', we never have
7319 * partially completed devices, so we only need
7320 * to worry about reshape going forwards.
7322 /* Hack because v0.91 doesn't store recovery_offset properly. */
7323 if (mddev
->major_version
== 0 &&
7324 mddev
->minor_version
> 90)
7325 rdev
->recovery_offset
= reshape_offset
;
7327 if (rdev
->recovery_offset
< reshape_offset
) {
7328 /* We need to check old and new layout */
7329 if (!only_parity(rdev
->raid_disk
,
7332 conf
->max_degraded
))
7335 if (!only_parity(rdev
->raid_disk
,
7337 conf
->previous_raid_disks
,
7338 conf
->max_degraded
))
7340 dirty_parity_disks
++;
7344 * 0 for a fully functional array, 1 or 2 for a degraded array.
7346 mddev
->degraded
= raid5_calc_degraded(conf
);
7348 if (has_failed(conf
)) {
7349 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7350 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
7354 /* device size must be a multiple of chunk size */
7355 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
7356 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
7358 if (mddev
->degraded
> dirty_parity_disks
&&
7359 mddev
->recovery_cp
!= MaxSector
) {
7360 if (test_bit(MD_HAS_PPL
, &mddev
->flags
))
7361 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7363 else if (mddev
->ok_start_degraded
)
7364 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7367 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7373 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7374 mdname(mddev
), conf
->level
,
7375 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
7378 print_raid5_conf(conf
);
7380 if (conf
->reshape_progress
!= MaxSector
) {
7381 conf
->reshape_safe
= conf
->reshape_progress
;
7382 atomic_set(&conf
->reshape_stripes
, 0);
7383 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7384 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7385 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7386 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7387 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
7391 /* Ok, everything is just fine now */
7392 if (mddev
->to_remove
== &raid5_attrs_group
)
7393 mddev
->to_remove
= NULL
;
7394 else if (mddev
->kobj
.sd
&&
7395 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
7396 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7398 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
7402 /* read-ahead size must cover two whole stripes, which
7403 * is 2 * (datadisks) * chunksize where 'n' is the
7404 * number of raid devices
7406 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
7407 int stripe
= data_disks
*
7408 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
7409 if (mddev
->queue
->backing_dev_info
->ra_pages
< 2 * stripe
)
7410 mddev
->queue
->backing_dev_info
->ra_pages
= 2 * stripe
;
7412 chunk_size
= mddev
->chunk_sectors
<< 9;
7413 blk_queue_io_min(mddev
->queue
, chunk_size
);
7414 blk_queue_io_opt(mddev
->queue
, chunk_size
*
7415 (conf
->raid_disks
- conf
->max_degraded
));
7416 mddev
->queue
->limits
.raid_partial_stripes_expensive
= 1;
7418 * We can only discard a whole stripe. It doesn't make sense to
7419 * discard data disk but write parity disk
7421 stripe
= stripe
* PAGE_SIZE
;
7422 /* Round up to power of 2, as discard handling
7423 * currently assumes that */
7424 while ((stripe
-1) & stripe
)
7425 stripe
= (stripe
| (stripe
-1)) + 1;
7426 mddev
->queue
->limits
.discard_alignment
= stripe
;
7427 mddev
->queue
->limits
.discard_granularity
= stripe
;
7429 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
7430 blk_queue_max_write_zeroes_sectors(mddev
->queue
, 0);
7432 rdev_for_each(rdev
, mddev
) {
7433 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
7434 rdev
->data_offset
<< 9);
7435 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
7436 rdev
->new_data_offset
<< 9);
7440 * zeroing is required, otherwise data
7441 * could be lost. Consider a scenario: discard a stripe
7442 * (the stripe could be inconsistent if
7443 * discard_zeroes_data is 0); write one disk of the
7444 * stripe (the stripe could be inconsistent again
7445 * depending on which disks are used to calculate
7446 * parity); the disk is broken; The stripe data of this
7449 * We only allow DISCARD if the sysadmin has confirmed that
7450 * only safe devices are in use by setting a module parameter.
7451 * A better idea might be to turn DISCARD into WRITE_ZEROES
7452 * requests, as that is required to be safe.
7454 if (devices_handle_discard_safely
&&
7455 mddev
->queue
->limits
.max_discard_sectors
>= (stripe
>> 9) &&
7456 mddev
->queue
->limits
.discard_granularity
>= stripe
)
7457 blk_queue_flag_set(QUEUE_FLAG_DISCARD
,
7460 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
,
7463 blk_queue_max_hw_sectors(mddev
->queue
, UINT_MAX
);
7466 if (log_init(conf
, journal_dev
, raid5_has_ppl(conf
)))
7471 md_unregister_thread(&mddev
->thread
);
7472 print_raid5_conf(conf
);
7474 mddev
->private = NULL
;
7475 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev
));
7479 static void raid5_free(struct mddev
*mddev
, void *priv
)
7481 struct r5conf
*conf
= priv
;
7484 mddev
->to_remove
= &raid5_attrs_group
;
7487 static void raid5_status(struct seq_file
*seq
, struct mddev
*mddev
)
7489 struct r5conf
*conf
= mddev
->private;
7492 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
7493 conf
->chunk_sectors
/ 2, mddev
->layout
);
7494 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
7496 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7497 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
7498 seq_printf (seq
, "%s", rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
7501 seq_printf (seq
, "]");
7504 static void print_raid5_conf (struct r5conf
*conf
)
7507 struct disk_info
*tmp
;
7509 pr_debug("RAID conf printout:\n");
7511 pr_debug("(conf==NULL)\n");
7514 pr_debug(" --- level:%d rd:%d wd:%d\n", conf
->level
,
7516 conf
->raid_disks
- conf
->mddev
->degraded
);
7518 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7519 char b
[BDEVNAME_SIZE
];
7520 tmp
= conf
->disks
+ i
;
7522 pr_debug(" disk %d, o:%d, dev:%s\n",
7523 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
7524 bdevname(tmp
->rdev
->bdev
, b
));
7528 static int raid5_spare_active(struct mddev
*mddev
)
7531 struct r5conf
*conf
= mddev
->private;
7532 struct disk_info
*tmp
;
7534 unsigned long flags
;
7536 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7537 tmp
= conf
->disks
+ i
;
7538 if (tmp
->replacement
7539 && tmp
->replacement
->recovery_offset
== MaxSector
7540 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
7541 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
7542 /* Replacement has just become active. */
7544 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
7547 /* Replaced device not technically faulty,
7548 * but we need to be sure it gets removed
7549 * and never re-added.
7551 set_bit(Faulty
, &tmp
->rdev
->flags
);
7552 sysfs_notify_dirent_safe(
7553 tmp
->rdev
->sysfs_state
);
7555 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
7556 } else if (tmp
->rdev
7557 && tmp
->rdev
->recovery_offset
== MaxSector
7558 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
7559 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
7561 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
7564 spin_lock_irqsave(&conf
->device_lock
, flags
);
7565 mddev
->degraded
= raid5_calc_degraded(conf
);
7566 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7567 print_raid5_conf(conf
);
7571 static int raid5_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7573 struct r5conf
*conf
= mddev
->private;
7575 int number
= rdev
->raid_disk
;
7576 struct md_rdev
**rdevp
;
7577 struct disk_info
*p
= conf
->disks
+ number
;
7579 print_raid5_conf(conf
);
7580 if (test_bit(Journal
, &rdev
->flags
) && conf
->log
) {
7582 * we can't wait pending write here, as this is called in
7583 * raid5d, wait will deadlock.
7584 * neilb: there is no locking about new writes here,
7585 * so this cannot be safe.
7587 if (atomic_read(&conf
->active_stripes
) ||
7588 atomic_read(&conf
->r5c_cached_full_stripes
) ||
7589 atomic_read(&conf
->r5c_cached_partial_stripes
)) {
7595 if (rdev
== p
->rdev
)
7597 else if (rdev
== p
->replacement
)
7598 rdevp
= &p
->replacement
;
7602 if (number
>= conf
->raid_disks
&&
7603 conf
->reshape_progress
== MaxSector
)
7604 clear_bit(In_sync
, &rdev
->flags
);
7606 if (test_bit(In_sync
, &rdev
->flags
) ||
7607 atomic_read(&rdev
->nr_pending
)) {
7611 /* Only remove non-faulty devices if recovery
7614 if (!test_bit(Faulty
, &rdev
->flags
) &&
7615 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
7616 !has_failed(conf
) &&
7617 (!p
->replacement
|| p
->replacement
== rdev
) &&
7618 number
< conf
->raid_disks
) {
7623 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
7625 if (atomic_read(&rdev
->nr_pending
)) {
7626 /* lost the race, try later */
7632 err
= log_modify(conf
, rdev
, false);
7636 if (p
->replacement
) {
7637 /* We must have just cleared 'rdev' */
7638 p
->rdev
= p
->replacement
;
7639 clear_bit(Replacement
, &p
->replacement
->flags
);
7640 smp_mb(); /* Make sure other CPUs may see both as identical
7641 * but will never see neither - if they are careful
7643 p
->replacement
= NULL
;
7646 err
= log_modify(conf
, p
->rdev
, true);
7649 clear_bit(WantReplacement
, &rdev
->flags
);
7652 print_raid5_conf(conf
);
7656 static int raid5_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7658 struct r5conf
*conf
= mddev
->private;
7661 struct disk_info
*p
;
7663 int last
= conf
->raid_disks
- 1;
7665 if (test_bit(Journal
, &rdev
->flags
)) {
7669 rdev
->raid_disk
= 0;
7671 * The array is in readonly mode if journal is missing, so no
7672 * write requests running. We should be safe
7674 log_init(conf
, rdev
, false);
7677 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
7680 if (rdev
->saved_raid_disk
< 0 && has_failed(conf
))
7681 /* no point adding a device */
7684 if (rdev
->raid_disk
>= 0)
7685 first
= last
= rdev
->raid_disk
;
7688 * find the disk ... but prefer rdev->saved_raid_disk
7691 if (rdev
->saved_raid_disk
>= 0 &&
7692 rdev
->saved_raid_disk
>= first
&&
7693 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
7694 first
= rdev
->saved_raid_disk
;
7696 for (disk
= first
; disk
<= last
; disk
++) {
7697 p
= conf
->disks
+ disk
;
7698 if (p
->rdev
== NULL
) {
7699 clear_bit(In_sync
, &rdev
->flags
);
7700 rdev
->raid_disk
= disk
;
7701 if (rdev
->saved_raid_disk
!= disk
)
7703 rcu_assign_pointer(p
->rdev
, rdev
);
7705 err
= log_modify(conf
, rdev
, true);
7710 for (disk
= first
; disk
<= last
; disk
++) {
7711 p
= conf
->disks
+ disk
;
7712 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
7713 p
->replacement
== NULL
) {
7714 clear_bit(In_sync
, &rdev
->flags
);
7715 set_bit(Replacement
, &rdev
->flags
);
7716 rdev
->raid_disk
= disk
;
7719 rcu_assign_pointer(p
->replacement
, rdev
);
7724 print_raid5_conf(conf
);
7728 static int raid5_resize(struct mddev
*mddev
, sector_t sectors
)
7730 /* no resync is happening, and there is enough space
7731 * on all devices, so we can resize.
7732 * We need to make sure resync covers any new space.
7733 * If the array is shrinking we should possibly wait until
7734 * any io in the removed space completes, but it hardly seems
7738 struct r5conf
*conf
= mddev
->private;
7740 if (raid5_has_log(conf
) || raid5_has_ppl(conf
))
7742 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
7743 newsize
= raid5_size(mddev
, sectors
, mddev
->raid_disks
);
7744 if (mddev
->external_size
&&
7745 mddev
->array_sectors
> newsize
)
7747 if (mddev
->bitmap
) {
7748 int ret
= md_bitmap_resize(mddev
->bitmap
, sectors
, 0, 0);
7752 md_set_array_sectors(mddev
, newsize
);
7753 if (sectors
> mddev
->dev_sectors
&&
7754 mddev
->recovery_cp
> mddev
->dev_sectors
) {
7755 mddev
->recovery_cp
= mddev
->dev_sectors
;
7756 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7758 mddev
->dev_sectors
= sectors
;
7759 mddev
->resync_max_sectors
= sectors
;
7763 static int check_stripe_cache(struct mddev
*mddev
)
7765 /* Can only proceed if there are plenty of stripe_heads.
7766 * We need a minimum of one full stripe,, and for sensible progress
7767 * it is best to have about 4 times that.
7768 * If we require 4 times, then the default 256 4K stripe_heads will
7769 * allow for chunk sizes up to 256K, which is probably OK.
7770 * If the chunk size is greater, user-space should request more
7771 * stripe_heads first.
7773 struct r5conf
*conf
= mddev
->private;
7774 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7775 > conf
->min_nr_stripes
||
7776 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7777 > conf
->min_nr_stripes
) {
7778 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7780 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
7787 static int check_reshape(struct mddev
*mddev
)
7789 struct r5conf
*conf
= mddev
->private;
7791 if (raid5_has_log(conf
) || raid5_has_ppl(conf
))
7793 if (mddev
->delta_disks
== 0 &&
7794 mddev
->new_layout
== mddev
->layout
&&
7795 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
7796 return 0; /* nothing to do */
7797 if (has_failed(conf
))
7799 if (mddev
->delta_disks
< 0 && mddev
->reshape_position
== MaxSector
) {
7800 /* We might be able to shrink, but the devices must
7801 * be made bigger first.
7802 * For raid6, 4 is the minimum size.
7803 * Otherwise 2 is the minimum
7806 if (mddev
->level
== 6)
7808 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
7812 if (!check_stripe_cache(mddev
))
7815 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
||
7816 mddev
->delta_disks
> 0)
7817 if (resize_chunks(conf
,
7818 conf
->previous_raid_disks
7819 + max(0, mddev
->delta_disks
),
7820 max(mddev
->new_chunk_sectors
,
7821 mddev
->chunk_sectors
)
7825 if (conf
->previous_raid_disks
+ mddev
->delta_disks
<= conf
->pool_size
)
7826 return 0; /* never bother to shrink */
7827 return resize_stripes(conf
, (conf
->previous_raid_disks
7828 + mddev
->delta_disks
));
7831 static int raid5_start_reshape(struct mddev
*mddev
)
7833 struct r5conf
*conf
= mddev
->private;
7834 struct md_rdev
*rdev
;
7836 unsigned long flags
;
7838 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
7841 if (!check_stripe_cache(mddev
))
7844 if (has_failed(conf
))
7847 rdev_for_each(rdev
, mddev
) {
7848 if (!test_bit(In_sync
, &rdev
->flags
)
7849 && !test_bit(Faulty
, &rdev
->flags
))
7853 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
7854 /* Not enough devices even to make a degraded array
7859 /* Refuse to reduce size of the array. Any reductions in
7860 * array size must be through explicit setting of array_size
7863 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
7864 < mddev
->array_sectors
) {
7865 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7870 atomic_set(&conf
->reshape_stripes
, 0);
7871 spin_lock_irq(&conf
->device_lock
);
7872 write_seqcount_begin(&conf
->gen_lock
);
7873 conf
->previous_raid_disks
= conf
->raid_disks
;
7874 conf
->raid_disks
+= mddev
->delta_disks
;
7875 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
7876 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
7877 conf
->prev_algo
= conf
->algorithm
;
7878 conf
->algorithm
= mddev
->new_layout
;
7880 /* Code that selects data_offset needs to see the generation update
7881 * if reshape_progress has been set - so a memory barrier needed.
7884 if (mddev
->reshape_backwards
)
7885 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
7887 conf
->reshape_progress
= 0;
7888 conf
->reshape_safe
= conf
->reshape_progress
;
7889 write_seqcount_end(&conf
->gen_lock
);
7890 spin_unlock_irq(&conf
->device_lock
);
7892 /* Now make sure any requests that proceeded on the assumption
7893 * the reshape wasn't running - like Discard or Read - have
7896 mddev_suspend(mddev
);
7897 mddev_resume(mddev
);
7899 /* Add some new drives, as many as will fit.
7900 * We know there are enough to make the newly sized array work.
7901 * Don't add devices if we are reducing the number of
7902 * devices in the array. This is because it is not possible
7903 * to correctly record the "partially reconstructed" state of
7904 * such devices during the reshape and confusion could result.
7906 if (mddev
->delta_disks
>= 0) {
7907 rdev_for_each(rdev
, mddev
)
7908 if (rdev
->raid_disk
< 0 &&
7909 !test_bit(Faulty
, &rdev
->flags
)) {
7910 if (raid5_add_disk(mddev
, rdev
) == 0) {
7912 >= conf
->previous_raid_disks
)
7913 set_bit(In_sync
, &rdev
->flags
);
7915 rdev
->recovery_offset
= 0;
7917 if (sysfs_link_rdev(mddev
, rdev
))
7918 /* Failure here is OK */;
7920 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
7921 && !test_bit(Faulty
, &rdev
->flags
)) {
7922 /* This is a spare that was manually added */
7923 set_bit(In_sync
, &rdev
->flags
);
7926 /* When a reshape changes the number of devices,
7927 * ->degraded is measured against the larger of the
7928 * pre and post number of devices.
7930 spin_lock_irqsave(&conf
->device_lock
, flags
);
7931 mddev
->degraded
= raid5_calc_degraded(conf
);
7932 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7934 mddev
->raid_disks
= conf
->raid_disks
;
7935 mddev
->reshape_position
= conf
->reshape_progress
;
7936 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
7938 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7939 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7940 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
7941 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7942 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7943 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
7945 if (!mddev
->sync_thread
) {
7946 mddev
->recovery
= 0;
7947 spin_lock_irq(&conf
->device_lock
);
7948 write_seqcount_begin(&conf
->gen_lock
);
7949 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
7950 mddev
->new_chunk_sectors
=
7951 conf
->chunk_sectors
= conf
->prev_chunk_sectors
;
7952 mddev
->new_layout
= conf
->algorithm
= conf
->prev_algo
;
7953 rdev_for_each(rdev
, mddev
)
7954 rdev
->new_data_offset
= rdev
->data_offset
;
7956 conf
->generation
--;
7957 conf
->reshape_progress
= MaxSector
;
7958 mddev
->reshape_position
= MaxSector
;
7959 write_seqcount_end(&conf
->gen_lock
);
7960 spin_unlock_irq(&conf
->device_lock
);
7963 conf
->reshape_checkpoint
= jiffies
;
7964 md_wakeup_thread(mddev
->sync_thread
);
7965 md_new_event(mddev
);
7969 /* This is called from the reshape thread and should make any
7970 * changes needed in 'conf'
7972 static void end_reshape(struct r5conf
*conf
)
7975 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
7976 struct md_rdev
*rdev
;
7978 spin_lock_irq(&conf
->device_lock
);
7979 conf
->previous_raid_disks
= conf
->raid_disks
;
7980 md_finish_reshape(conf
->mddev
);
7982 conf
->reshape_progress
= MaxSector
;
7983 conf
->mddev
->reshape_position
= MaxSector
;
7984 rdev_for_each(rdev
, conf
->mddev
)
7985 if (rdev
->raid_disk
>= 0 &&
7986 !test_bit(Journal
, &rdev
->flags
) &&
7987 !test_bit(In_sync
, &rdev
->flags
))
7988 rdev
->recovery_offset
= MaxSector
;
7989 spin_unlock_irq(&conf
->device_lock
);
7990 wake_up(&conf
->wait_for_overlap
);
7992 /* read-ahead size must cover two whole stripes, which is
7993 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7995 if (conf
->mddev
->queue
) {
7996 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
7997 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
7999 if (conf
->mddev
->queue
->backing_dev_info
->ra_pages
< 2 * stripe
)
8000 conf
->mddev
->queue
->backing_dev_info
->ra_pages
= 2 * stripe
;
8005 /* This is called from the raid5d thread with mddev_lock held.
8006 * It makes config changes to the device.
8008 static void raid5_finish_reshape(struct mddev
*mddev
)
8010 struct r5conf
*conf
= mddev
->private;
8012 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
8014 if (mddev
->delta_disks
<= 0) {
8016 spin_lock_irq(&conf
->device_lock
);
8017 mddev
->degraded
= raid5_calc_degraded(conf
);
8018 spin_unlock_irq(&conf
->device_lock
);
8019 for (d
= conf
->raid_disks
;
8020 d
< conf
->raid_disks
- mddev
->delta_disks
;
8022 struct md_rdev
*rdev
= conf
->disks
[d
].rdev
;
8024 clear_bit(In_sync
, &rdev
->flags
);
8025 rdev
= conf
->disks
[d
].replacement
;
8027 clear_bit(In_sync
, &rdev
->flags
);
8030 mddev
->layout
= conf
->algorithm
;
8031 mddev
->chunk_sectors
= conf
->chunk_sectors
;
8032 mddev
->reshape_position
= MaxSector
;
8033 mddev
->delta_disks
= 0;
8034 mddev
->reshape_backwards
= 0;
8038 static void raid5_quiesce(struct mddev
*mddev
, int quiesce
)
8040 struct r5conf
*conf
= mddev
->private;
8043 /* stop all writes */
8044 lock_all_device_hash_locks_irq(conf
);
8045 /* '2' tells resync/reshape to pause so that all
8046 * active stripes can drain
8048 r5c_flush_cache(conf
, INT_MAX
);
8050 wait_event_cmd(conf
->wait_for_quiescent
,
8051 atomic_read(&conf
->active_stripes
) == 0 &&
8052 atomic_read(&conf
->active_aligned_reads
) == 0,
8053 unlock_all_device_hash_locks_irq(conf
),
8054 lock_all_device_hash_locks_irq(conf
));
8056 unlock_all_device_hash_locks_irq(conf
);
8057 /* allow reshape to continue */
8058 wake_up(&conf
->wait_for_overlap
);
8060 /* re-enable writes */
8061 lock_all_device_hash_locks_irq(conf
);
8063 wake_up(&conf
->wait_for_quiescent
);
8064 wake_up(&conf
->wait_for_overlap
);
8065 unlock_all_device_hash_locks_irq(conf
);
8067 log_quiesce(conf
, quiesce
);
8070 static void *raid45_takeover_raid0(struct mddev
*mddev
, int level
)
8072 struct r0conf
*raid0_conf
= mddev
->private;
8075 /* for raid0 takeover only one zone is supported */
8076 if (raid0_conf
->nr_strip_zones
> 1) {
8077 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8079 return ERR_PTR(-EINVAL
);
8082 sectors
= raid0_conf
->strip_zone
[0].zone_end
;
8083 sector_div(sectors
, raid0_conf
->strip_zone
[0].nb_dev
);
8084 mddev
->dev_sectors
= sectors
;
8085 mddev
->new_level
= level
;
8086 mddev
->new_layout
= ALGORITHM_PARITY_N
;
8087 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
8088 mddev
->raid_disks
+= 1;
8089 mddev
->delta_disks
= 1;
8090 /* make sure it will be not marked as dirty */
8091 mddev
->recovery_cp
= MaxSector
;
8093 return setup_conf(mddev
);
8096 static void *raid5_takeover_raid1(struct mddev
*mddev
)
8101 if (mddev
->raid_disks
!= 2 ||
8102 mddev
->degraded
> 1)
8103 return ERR_PTR(-EINVAL
);
8105 /* Should check if there are write-behind devices? */
8107 chunksect
= 64*2; /* 64K by default */
8109 /* The array must be an exact multiple of chunksize */
8110 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
8113 if ((chunksect
<<9) < STRIPE_SIZE
)
8114 /* array size does not allow a suitable chunk size */
8115 return ERR_PTR(-EINVAL
);
8117 mddev
->new_level
= 5;
8118 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
8119 mddev
->new_chunk_sectors
= chunksect
;
8121 ret
= setup_conf(mddev
);
8123 mddev_clear_unsupported_flags(mddev
,
8124 UNSUPPORTED_MDDEV_FLAGS
);
8128 static void *raid5_takeover_raid6(struct mddev
*mddev
)
8132 switch (mddev
->layout
) {
8133 case ALGORITHM_LEFT_ASYMMETRIC_6
:
8134 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
8136 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
8137 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
8139 case ALGORITHM_LEFT_SYMMETRIC_6
:
8140 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
8142 case ALGORITHM_RIGHT_SYMMETRIC_6
:
8143 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
8145 case ALGORITHM_PARITY_0_6
:
8146 new_layout
= ALGORITHM_PARITY_0
;
8148 case ALGORITHM_PARITY_N
:
8149 new_layout
= ALGORITHM_PARITY_N
;
8152 return ERR_PTR(-EINVAL
);
8154 mddev
->new_level
= 5;
8155 mddev
->new_layout
= new_layout
;
8156 mddev
->delta_disks
= -1;
8157 mddev
->raid_disks
-= 1;
8158 return setup_conf(mddev
);
8161 static int raid5_check_reshape(struct mddev
*mddev
)
8163 /* For a 2-drive array, the layout and chunk size can be changed
8164 * immediately as not restriping is needed.
8165 * For larger arrays we record the new value - after validation
8166 * to be used by a reshape pass.
8168 struct r5conf
*conf
= mddev
->private;
8169 int new_chunk
= mddev
->new_chunk_sectors
;
8171 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
8173 if (new_chunk
> 0) {
8174 if (!is_power_of_2(new_chunk
))
8176 if (new_chunk
< (PAGE_SIZE
>>9))
8178 if (mddev
->array_sectors
& (new_chunk
-1))
8179 /* not factor of array size */
8183 /* They look valid */
8185 if (mddev
->raid_disks
== 2) {
8186 /* can make the change immediately */
8187 if (mddev
->new_layout
>= 0) {
8188 conf
->algorithm
= mddev
->new_layout
;
8189 mddev
->layout
= mddev
->new_layout
;
8191 if (new_chunk
> 0) {
8192 conf
->chunk_sectors
= new_chunk
;
8193 mddev
->chunk_sectors
= new_chunk
;
8195 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
8196 md_wakeup_thread(mddev
->thread
);
8198 return check_reshape(mddev
);
8201 static int raid6_check_reshape(struct mddev
*mddev
)
8203 int new_chunk
= mddev
->new_chunk_sectors
;
8205 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
8207 if (new_chunk
> 0) {
8208 if (!is_power_of_2(new_chunk
))
8210 if (new_chunk
< (PAGE_SIZE
>> 9))
8212 if (mddev
->array_sectors
& (new_chunk
-1))
8213 /* not factor of array size */
8217 /* They look valid */
8218 return check_reshape(mddev
);
8221 static void *raid5_takeover(struct mddev
*mddev
)
8223 /* raid5 can take over:
8224 * raid0 - if there is only one strip zone - make it a raid4 layout
8225 * raid1 - if there are two drives. We need to know the chunk size
8226 * raid4 - trivial - just use a raid4 layout.
8227 * raid6 - Providing it is a *_6 layout
8229 if (mddev
->level
== 0)
8230 return raid45_takeover_raid0(mddev
, 5);
8231 if (mddev
->level
== 1)
8232 return raid5_takeover_raid1(mddev
);
8233 if (mddev
->level
== 4) {
8234 mddev
->new_layout
= ALGORITHM_PARITY_N
;
8235 mddev
->new_level
= 5;
8236 return setup_conf(mddev
);
8238 if (mddev
->level
== 6)
8239 return raid5_takeover_raid6(mddev
);
8241 return ERR_PTR(-EINVAL
);
8244 static void *raid4_takeover(struct mddev
*mddev
)
8246 /* raid4 can take over:
8247 * raid0 - if there is only one strip zone
8248 * raid5 - if layout is right
8250 if (mddev
->level
== 0)
8251 return raid45_takeover_raid0(mddev
, 4);
8252 if (mddev
->level
== 5 &&
8253 mddev
->layout
== ALGORITHM_PARITY_N
) {
8254 mddev
->new_layout
= 0;
8255 mddev
->new_level
= 4;
8256 return setup_conf(mddev
);
8258 return ERR_PTR(-EINVAL
);
8261 static struct md_personality raid5_personality
;
8263 static void *raid6_takeover(struct mddev
*mddev
)
8265 /* Currently can only take over a raid5. We map the
8266 * personality to an equivalent raid6 personality
8267 * with the Q block at the end.
8271 if (mddev
->pers
!= &raid5_personality
)
8272 return ERR_PTR(-EINVAL
);
8273 if (mddev
->degraded
> 1)
8274 return ERR_PTR(-EINVAL
);
8275 if (mddev
->raid_disks
> 253)
8276 return ERR_PTR(-EINVAL
);
8277 if (mddev
->raid_disks
< 3)
8278 return ERR_PTR(-EINVAL
);
8280 switch (mddev
->layout
) {
8281 case ALGORITHM_LEFT_ASYMMETRIC
:
8282 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
8284 case ALGORITHM_RIGHT_ASYMMETRIC
:
8285 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
8287 case ALGORITHM_LEFT_SYMMETRIC
:
8288 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
8290 case ALGORITHM_RIGHT_SYMMETRIC
:
8291 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
8293 case ALGORITHM_PARITY_0
:
8294 new_layout
= ALGORITHM_PARITY_0_6
;
8296 case ALGORITHM_PARITY_N
:
8297 new_layout
= ALGORITHM_PARITY_N
;
8300 return ERR_PTR(-EINVAL
);
8302 mddev
->new_level
= 6;
8303 mddev
->new_layout
= new_layout
;
8304 mddev
->delta_disks
= 1;
8305 mddev
->raid_disks
+= 1;
8306 return setup_conf(mddev
);
8309 static int raid5_change_consistency_policy(struct mddev
*mddev
, const char *buf
)
8311 struct r5conf
*conf
;
8314 err
= mddev_lock(mddev
);
8317 conf
= mddev
->private;
8319 mddev_unlock(mddev
);
8323 if (strncmp(buf
, "ppl", 3) == 0) {
8324 /* ppl only works with RAID 5 */
8325 if (!raid5_has_ppl(conf
) && conf
->level
== 5) {
8326 err
= log_init(conf
, NULL
, true);
8328 err
= resize_stripes(conf
, conf
->pool_size
);
8334 } else if (strncmp(buf
, "resync", 6) == 0) {
8335 if (raid5_has_ppl(conf
)) {
8336 mddev_suspend(mddev
);
8338 mddev_resume(mddev
);
8339 err
= resize_stripes(conf
, conf
->pool_size
);
8340 } else if (test_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
) &&
8341 r5l_log_disk_error(conf
)) {
8342 bool journal_dev_exists
= false;
8343 struct md_rdev
*rdev
;
8345 rdev_for_each(rdev
, mddev
)
8346 if (test_bit(Journal
, &rdev
->flags
)) {
8347 journal_dev_exists
= true;
8351 if (!journal_dev_exists
) {
8352 mddev_suspend(mddev
);
8353 clear_bit(MD_HAS_JOURNAL
, &mddev
->flags
);
8354 mddev_resume(mddev
);
8355 } else /* need remove journal device first */
8364 md_update_sb(mddev
, 1);
8366 mddev_unlock(mddev
);
8371 static int raid5_start(struct mddev
*mddev
)
8373 struct r5conf
*conf
= mddev
->private;
8375 return r5l_start(conf
->log
);
8378 static struct md_personality raid6_personality
=
8382 .owner
= THIS_MODULE
,
8383 .make_request
= raid5_make_request
,
8385 .start
= raid5_start
,
8387 .status
= raid5_status
,
8388 .error_handler
= raid5_error
,
8389 .hot_add_disk
= raid5_add_disk
,
8390 .hot_remove_disk
= raid5_remove_disk
,
8391 .spare_active
= raid5_spare_active
,
8392 .sync_request
= raid5_sync_request
,
8393 .resize
= raid5_resize
,
8395 .check_reshape
= raid6_check_reshape
,
8396 .start_reshape
= raid5_start_reshape
,
8397 .finish_reshape
= raid5_finish_reshape
,
8398 .quiesce
= raid5_quiesce
,
8399 .takeover
= raid6_takeover
,
8400 .congested
= raid5_congested
,
8401 .change_consistency_policy
= raid5_change_consistency_policy
,
8403 static struct md_personality raid5_personality
=
8407 .owner
= THIS_MODULE
,
8408 .make_request
= raid5_make_request
,
8410 .start
= raid5_start
,
8412 .status
= raid5_status
,
8413 .error_handler
= raid5_error
,
8414 .hot_add_disk
= raid5_add_disk
,
8415 .hot_remove_disk
= raid5_remove_disk
,
8416 .spare_active
= raid5_spare_active
,
8417 .sync_request
= raid5_sync_request
,
8418 .resize
= raid5_resize
,
8420 .check_reshape
= raid5_check_reshape
,
8421 .start_reshape
= raid5_start_reshape
,
8422 .finish_reshape
= raid5_finish_reshape
,
8423 .quiesce
= raid5_quiesce
,
8424 .takeover
= raid5_takeover
,
8425 .congested
= raid5_congested
,
8426 .change_consistency_policy
= raid5_change_consistency_policy
,
8429 static struct md_personality raid4_personality
=
8433 .owner
= THIS_MODULE
,
8434 .make_request
= raid5_make_request
,
8436 .start
= raid5_start
,
8438 .status
= raid5_status
,
8439 .error_handler
= raid5_error
,
8440 .hot_add_disk
= raid5_add_disk
,
8441 .hot_remove_disk
= raid5_remove_disk
,
8442 .spare_active
= raid5_spare_active
,
8443 .sync_request
= raid5_sync_request
,
8444 .resize
= raid5_resize
,
8446 .check_reshape
= raid5_check_reshape
,
8447 .start_reshape
= raid5_start_reshape
,
8448 .finish_reshape
= raid5_finish_reshape
,
8449 .quiesce
= raid5_quiesce
,
8450 .takeover
= raid4_takeover
,
8451 .congested
= raid5_congested
,
8452 .change_consistency_policy
= raid5_change_consistency_policy
,
8455 static int __init
raid5_init(void)
8459 raid5_wq
= alloc_workqueue("raid5wq",
8460 WQ_UNBOUND
|WQ_MEM_RECLAIM
|WQ_CPU_INTENSIVE
|WQ_SYSFS
, 0);
8464 ret
= cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE
,
8466 raid456_cpu_up_prepare
,
8469 destroy_workqueue(raid5_wq
);
8472 register_md_personality(&raid6_personality
);
8473 register_md_personality(&raid5_personality
);
8474 register_md_personality(&raid4_personality
);
8478 static void raid5_exit(void)
8480 unregister_md_personality(&raid6_personality
);
8481 unregister_md_personality(&raid5_personality
);
8482 unregister_md_personality(&raid4_personality
);
8483 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE
);
8484 destroy_workqueue(raid5_wq
);
8487 module_init(raid5_init
);
8488 module_exit(raid5_exit
);
8489 MODULE_LICENSE("GPL");
8490 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8491 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8492 MODULE_ALIAS("md-raid5");
8493 MODULE_ALIAS("md-raid4");
8494 MODULE_ALIAS("md-level-5");
8495 MODULE_ALIAS("md-level-4");
8496 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8497 MODULE_ALIAS("md-raid6");
8498 MODULE_ALIAS("md-level-6");
8500 /* This used to be two separate modules, they were: */
8501 MODULE_ALIAS("raid5");
8502 MODULE_ALIAS("raid6");