2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём)
23 * UBI input/output sub-system.
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
33 * Some words about how the eraseblock headers are stored.
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits use of another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69 * Thus, we prefer to use sub-pages only for EC and VID headers.
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
94 static int self_check_not_bad(const struct ubi_device
*ubi
, int pnum
);
95 static int self_check_peb_ec_hdr(const struct ubi_device
*ubi
, int pnum
);
96 static int self_check_ec_hdr(const struct ubi_device
*ubi
, int pnum
,
97 const struct ubi_ec_hdr
*ec_hdr
);
98 static int self_check_peb_vid_hdr(const struct ubi_device
*ubi
, int pnum
);
99 static int self_check_vid_hdr(const struct ubi_device
*ubi
, int pnum
,
100 const struct ubi_vid_hdr
*vid_hdr
);
101 static int self_check_write(struct ubi_device
*ubi
, const void *buf
, int pnum
,
102 int offset
, int len
);
105 * ubi_io_read - read data from a physical eraseblock.
106 * @ubi: UBI device description object
107 * @buf: buffer where to store the read data
108 * @pnum: physical eraseblock number to read from
109 * @offset: offset within the physical eraseblock from where to read
110 * @len: how many bytes to read
112 * This function reads data from offset @offset of physical eraseblock @pnum
113 * and stores the read data in the @buf buffer. The following return codes are
116 * o %0 if all the requested data were successfully read;
117 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
118 * correctable bit-flips were detected; this is harmless but may indicate
119 * that this eraseblock may become bad soon (but do not have to);
120 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
121 * example it can be an ECC error in case of NAND; this most probably means
122 * that the data is corrupted;
123 * o %-EIO if some I/O error occurred;
124 * o other negative error codes in case of other errors.
126 int ubi_io_read(const struct ubi_device
*ubi
, void *buf
, int pnum
, int offset
,
129 int err
, retries
= 0;
133 dbg_io("read %d bytes from PEB %d:%d", len
, pnum
, offset
);
135 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
136 ubi_assert(offset
>= 0 && offset
+ len
<= ubi
->peb_size
);
139 err
= self_check_not_bad(ubi
, pnum
);
144 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
145 * do not do this, the following may happen:
146 * 1. The buffer contains data from previous operation, e.g., read from
147 * another PEB previously. The data looks like expected, e.g., if we
148 * just do not read anything and return - the caller would not
149 * notice this. E.g., if we are reading a VID header, the buffer may
150 * contain a valid VID header from another PEB.
151 * 2. The driver is buggy and returns us success or -EBADMSG or
152 * -EUCLEAN, but it does not actually put any data to the buffer.
154 * This may confuse UBI or upper layers - they may think the buffer
155 * contains valid data while in fact it is just old data. This is
156 * especially possible because UBI (and UBIFS) relies on CRC, and
157 * treats data as correct even in case of ECC errors if the CRC is
160 * Try to prevent this situation by changing the first byte of the
163 *((uint8_t *)buf
) ^= 0xFF;
165 addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
167 err
= mtd_read(ubi
->mtd
, addr
, len
, &read
, buf
);
169 const char *errstr
= mtd_is_eccerr(err
) ? " (ECC error)" : "";
171 if (mtd_is_bitflip(err
)) {
173 * -EUCLEAN is reported if there was a bit-flip which
174 * was corrected, so this is harmless.
176 * We do not report about it here unless debugging is
177 * enabled. A corresponding message will be printed
178 * later, when it is has been scrubbed.
180 ubi_msg(ubi
, "fixable bit-flip detected at PEB %d",
182 ubi_assert(len
== read
);
183 return UBI_IO_BITFLIPS
;
186 if (retries
++ < UBI_IO_RETRIES
) {
187 ubi_warn(ubi
, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
188 err
, errstr
, len
, pnum
, offset
, read
);
193 ubi_err(ubi
, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
194 err
, errstr
, len
, pnum
, offset
, read
);
198 * The driver should never return -EBADMSG if it failed to read
199 * all the requested data. But some buggy drivers might do
200 * this, so we change it to -EIO.
202 if (read
!= len
&& mtd_is_eccerr(err
)) {
207 ubi_assert(len
== read
);
209 if (ubi_dbg_is_bitflip(ubi
)) {
210 dbg_gen("bit-flip (emulated)");
211 err
= UBI_IO_BITFLIPS
;
219 * ubi_io_write - write data to a physical eraseblock.
220 * @ubi: UBI device description object
221 * @buf: buffer with the data to write
222 * @pnum: physical eraseblock number to write to
223 * @offset: offset within the physical eraseblock where to write
224 * @len: how many bytes to write
226 * This function writes @len bytes of data from buffer @buf to offset @offset
227 * of physical eraseblock @pnum. If all the data were successfully written,
228 * zero is returned. If an error occurred, this function returns a negative
229 * error code. If %-EIO is returned, the physical eraseblock most probably went
232 * Note, in case of an error, it is possible that something was still written
233 * to the flash media, but may be some garbage.
235 int ubi_io_write(struct ubi_device
*ubi
, const void *buf
, int pnum
, int offset
,
242 dbg_io("write %d bytes to PEB %d:%d", len
, pnum
, offset
);
244 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
245 ubi_assert(offset
>= 0 && offset
+ len
<= ubi
->peb_size
);
246 ubi_assert(offset
% ubi
->hdrs_min_io_size
== 0);
247 ubi_assert(len
> 0 && len
% ubi
->hdrs_min_io_size
== 0);
250 ubi_err(ubi
, "read-only mode");
254 err
= self_check_not_bad(ubi
, pnum
);
258 /* The area we are writing to has to contain all 0xFF bytes */
259 err
= ubi_self_check_all_ff(ubi
, pnum
, offset
, len
);
263 if (offset
>= ubi
->leb_start
) {
265 * We write to the data area of the physical eraseblock. Make
266 * sure it has valid EC and VID headers.
268 err
= self_check_peb_ec_hdr(ubi
, pnum
);
271 err
= self_check_peb_vid_hdr(ubi
, pnum
);
276 if (ubi_dbg_is_write_failure(ubi
)) {
277 ubi_err(ubi
, "cannot write %d bytes to PEB %d:%d (emulated)",
283 addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
284 err
= mtd_write(ubi
->mtd
, addr
, len
, &written
, buf
);
286 ubi_err(ubi
, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
287 err
, len
, pnum
, offset
, written
);
289 ubi_dump_flash(ubi
, pnum
, offset
, len
);
291 ubi_assert(written
== len
);
294 err
= self_check_write(ubi
, buf
, pnum
, offset
, len
);
299 * Since we always write sequentially, the rest of the PEB has
300 * to contain only 0xFF bytes.
303 len
= ubi
->peb_size
- offset
;
305 err
= ubi_self_check_all_ff(ubi
, pnum
, offset
, len
);
312 * do_sync_erase - synchronously erase a physical eraseblock.
313 * @ubi: UBI device description object
314 * @pnum: the physical eraseblock number to erase
316 * This function synchronously erases physical eraseblock @pnum and returns
317 * zero in case of success and a negative error code in case of failure. If
318 * %-EIO is returned, the physical eraseblock most probably went bad.
320 static int do_sync_erase(struct ubi_device
*ubi
, int pnum
)
322 int err
, retries
= 0;
323 struct erase_info ei
;
325 dbg_io("erase PEB %d", pnum
);
326 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
329 ubi_err(ubi
, "read-only mode");
334 memset(&ei
, 0, sizeof(struct erase_info
));
336 ei
.addr
= (loff_t
)pnum
* ubi
->peb_size
;
337 ei
.len
= ubi
->peb_size
;
339 err
= mtd_erase(ubi
->mtd
, &ei
);
341 if (retries
++ < UBI_IO_RETRIES
) {
342 ubi_warn(ubi
, "error %d while erasing PEB %d, retry",
347 ubi_err(ubi
, "cannot erase PEB %d, error %d", pnum
, err
);
352 err
= ubi_self_check_all_ff(ubi
, pnum
, 0, ubi
->peb_size
);
356 if (ubi_dbg_is_erase_failure(ubi
)) {
357 ubi_err(ubi
, "cannot erase PEB %d (emulated)", pnum
);
364 /* Patterns to write to a physical eraseblock when torturing it */
365 static uint8_t patterns
[] = {0xa5, 0x5a, 0x0};
368 * torture_peb - test a supposedly bad physical eraseblock.
369 * @ubi: UBI device description object
370 * @pnum: the physical eraseblock number to test
372 * This function returns %-EIO if the physical eraseblock did not pass the
373 * test, a positive number of erase operations done if the test was
374 * successfully passed, and other negative error codes in case of other errors.
376 static int torture_peb(struct ubi_device
*ubi
, int pnum
)
378 int err
, i
, patt_count
;
380 ubi_msg(ubi
, "run torture test for PEB %d", pnum
);
381 patt_count
= ARRAY_SIZE(patterns
);
382 ubi_assert(patt_count
> 0);
384 mutex_lock(&ubi
->buf_mutex
);
385 for (i
= 0; i
< patt_count
; i
++) {
386 err
= do_sync_erase(ubi
, pnum
);
390 /* Make sure the PEB contains only 0xFF bytes */
391 err
= ubi_io_read(ubi
, ubi
->peb_buf
, pnum
, 0, ubi
->peb_size
);
395 err
= ubi_check_pattern(ubi
->peb_buf
, 0xFF, ubi
->peb_size
);
397 ubi_err(ubi
, "erased PEB %d, but a non-0xFF byte found",
403 /* Write a pattern and check it */
404 memset(ubi
->peb_buf
, patterns
[i
], ubi
->peb_size
);
405 err
= ubi_io_write(ubi
, ubi
->peb_buf
, pnum
, 0, ubi
->peb_size
);
409 memset(ubi
->peb_buf
, ~patterns
[i
], ubi
->peb_size
);
410 err
= ubi_io_read(ubi
, ubi
->peb_buf
, pnum
, 0, ubi
->peb_size
);
414 err
= ubi_check_pattern(ubi
->peb_buf
, patterns
[i
],
417 ubi_err(ubi
, "pattern %x checking failed for PEB %d",
425 ubi_msg(ubi
, "PEB %d passed torture test, do not mark it as bad", pnum
);
428 mutex_unlock(&ubi
->buf_mutex
);
429 if (err
== UBI_IO_BITFLIPS
|| mtd_is_eccerr(err
)) {
431 * If a bit-flip or data integrity error was detected, the test
432 * has not passed because it happened on a freshly erased
433 * physical eraseblock which means something is wrong with it.
435 ubi_err(ubi
, "read problems on freshly erased PEB %d, must be bad",
443 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
444 * @ubi: UBI device description object
445 * @pnum: physical eraseblock number to prepare
447 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
448 * algorithm: the PEB is first filled with zeroes, then it is erased. And
449 * filling with zeroes starts from the end of the PEB. This was observed with
450 * Spansion S29GL512N NOR flash.
452 * This means that in case of a power cut we may end up with intact data at the
453 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
454 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
455 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
456 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
458 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
459 * magic numbers in order to invalidate them and prevent the failures. Returns
460 * zero in case of success and a negative error code in case of failure.
462 static int nor_erase_prepare(struct ubi_device
*ubi
, int pnum
)
468 struct ubi_ec_hdr ec_hdr
;
469 struct ubi_vid_io_buf vidb
;
472 * Note, we cannot generally define VID header buffers on stack,
473 * because of the way we deal with these buffers (see the header
474 * comment in this file). But we know this is a NOR-specific piece of
475 * code, so we can do this. But yes, this is error-prone and we should
476 * (pre-)allocate VID header buffer instead.
478 struct ubi_vid_hdr vid_hdr
;
481 * If VID or EC is valid, we have to corrupt them before erasing.
482 * It is important to first invalidate the EC header, and then the VID
483 * header. Otherwise a power cut may lead to valid EC header and
484 * invalid VID header, in which case UBI will treat this PEB as
485 * corrupted and will try to preserve it, and print scary warnings.
487 addr
= (loff_t
)pnum
* ubi
->peb_size
;
488 err
= ubi_io_read_ec_hdr(ubi
, pnum
, &ec_hdr
, 0);
489 if (err
!= UBI_IO_BAD_HDR_EBADMSG
&& err
!= UBI_IO_BAD_HDR
&&
491 err
= mtd_write(ubi
->mtd
, addr
, 4, &written
, (void *)&data
);
496 ubi_init_vid_buf(ubi
, &vidb
, &vid_hdr
);
497 ubi_assert(&vid_hdr
== ubi_get_vid_hdr(&vidb
));
499 err
= ubi_io_read_vid_hdr(ubi
, pnum
, &vidb
, 0);
500 if (err
!= UBI_IO_BAD_HDR_EBADMSG
&& err
!= UBI_IO_BAD_HDR
&&
502 addr
+= ubi
->vid_hdr_aloffset
;
503 err
= mtd_write(ubi
->mtd
, addr
, 4, &written
, (void *)&data
);
511 * The PEB contains a valid VID or EC header, but we cannot invalidate
512 * it. Supposedly the flash media or the driver is screwed up, so
515 ubi_err(ubi
, "cannot invalidate PEB %d, write returned %d", pnum
, err
);
516 ubi_dump_flash(ubi
, pnum
, 0, ubi
->peb_size
);
521 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
522 * @ubi: UBI device description object
523 * @pnum: physical eraseblock number to erase
524 * @torture: if this physical eraseblock has to be tortured
526 * This function synchronously erases physical eraseblock @pnum. If @torture
527 * flag is not zero, the physical eraseblock is checked by means of writing
528 * different patterns to it and reading them back. If the torturing is enabled,
529 * the physical eraseblock is erased more than once.
531 * This function returns the number of erasures made in case of success, %-EIO
532 * if the erasure failed or the torturing test failed, and other negative error
533 * codes in case of other errors. Note, %-EIO means that the physical
536 int ubi_io_sync_erase(struct ubi_device
*ubi
, int pnum
, int torture
)
540 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
542 err
= self_check_not_bad(ubi
, pnum
);
547 ubi_err(ubi
, "read-only mode");
551 if (ubi
->nor_flash
) {
552 err
= nor_erase_prepare(ubi
, pnum
);
558 ret
= torture_peb(ubi
, pnum
);
563 err
= do_sync_erase(ubi
, pnum
);
571 * ubi_io_is_bad - check if a physical eraseblock is bad.
572 * @ubi: UBI device description object
573 * @pnum: the physical eraseblock number to check
575 * This function returns a positive number if the physical eraseblock is bad,
576 * zero if not, and a negative error code if an error occurred.
578 int ubi_io_is_bad(const struct ubi_device
*ubi
, int pnum
)
580 struct mtd_info
*mtd
= ubi
->mtd
;
582 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
584 if (ubi
->bad_allowed
) {
587 ret
= mtd_block_isbad(mtd
, (loff_t
)pnum
* ubi
->peb_size
);
589 ubi_err(ubi
, "error %d while checking if PEB %d is bad",
592 dbg_io("PEB %d is bad", pnum
);
600 * ubi_io_mark_bad - mark a physical eraseblock as bad.
601 * @ubi: UBI device description object
602 * @pnum: the physical eraseblock number to mark
604 * This function returns zero in case of success and a negative error code in
607 int ubi_io_mark_bad(const struct ubi_device
*ubi
, int pnum
)
610 struct mtd_info
*mtd
= ubi
->mtd
;
612 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
615 ubi_err(ubi
, "read-only mode");
619 if (!ubi
->bad_allowed
)
622 err
= mtd_block_markbad(mtd
, (loff_t
)pnum
* ubi
->peb_size
);
624 ubi_err(ubi
, "cannot mark PEB %d bad, error %d", pnum
, err
);
629 * validate_ec_hdr - validate an erase counter header.
630 * @ubi: UBI device description object
631 * @ec_hdr: the erase counter header to check
633 * This function returns zero if the erase counter header is OK, and %1 if
636 static int validate_ec_hdr(const struct ubi_device
*ubi
,
637 const struct ubi_ec_hdr
*ec_hdr
)
640 int vid_hdr_offset
, leb_start
;
642 ec
= be64_to_cpu(ec_hdr
->ec
);
643 vid_hdr_offset
= be32_to_cpu(ec_hdr
->vid_hdr_offset
);
644 leb_start
= be32_to_cpu(ec_hdr
->data_offset
);
646 if (ec_hdr
->version
!= UBI_VERSION
) {
647 ubi_err(ubi
, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
648 UBI_VERSION
, (int)ec_hdr
->version
);
652 if (vid_hdr_offset
!= ubi
->vid_hdr_offset
) {
653 ubi_err(ubi
, "bad VID header offset %d, expected %d",
654 vid_hdr_offset
, ubi
->vid_hdr_offset
);
658 if (leb_start
!= ubi
->leb_start
) {
659 ubi_err(ubi
, "bad data offset %d, expected %d",
660 leb_start
, ubi
->leb_start
);
664 if (ec
< 0 || ec
> UBI_MAX_ERASECOUNTER
) {
665 ubi_err(ubi
, "bad erase counter %lld", ec
);
672 ubi_err(ubi
, "bad EC header");
673 ubi_dump_ec_hdr(ec_hdr
);
679 * ubi_io_read_ec_hdr - read and check an erase counter header.
680 * @ubi: UBI device description object
681 * @pnum: physical eraseblock to read from
682 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
684 * @verbose: be verbose if the header is corrupted or was not found
686 * This function reads erase counter header from physical eraseblock @pnum and
687 * stores it in @ec_hdr. This function also checks CRC checksum of the read
688 * erase counter header. The following codes may be returned:
690 * o %0 if the CRC checksum is correct and the header was successfully read;
691 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
692 * and corrected by the flash driver; this is harmless but may indicate that
693 * this eraseblock may become bad soon (but may be not);
694 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
695 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
696 * a data integrity error (uncorrectable ECC error in case of NAND);
697 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
698 * o a negative error code in case of failure.
700 int ubi_io_read_ec_hdr(struct ubi_device
*ubi
, int pnum
,
701 struct ubi_ec_hdr
*ec_hdr
, int verbose
)
704 uint32_t crc
, magic
, hdr_crc
;
706 dbg_io("read EC header from PEB %d", pnum
);
707 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
709 read_err
= ubi_io_read(ubi
, ec_hdr
, pnum
, 0, UBI_EC_HDR_SIZE
);
711 if (read_err
!= UBI_IO_BITFLIPS
&& !mtd_is_eccerr(read_err
))
715 * We read all the data, but either a correctable bit-flip
716 * occurred, or MTD reported a data integrity error
717 * (uncorrectable ECC error in case of NAND). The former is
718 * harmless, the later may mean that the read data is
719 * corrupted. But we have a CRC check-sum and we will detect
720 * this. If the EC header is still OK, we just report this as
721 * there was a bit-flip, to force scrubbing.
725 magic
= be32_to_cpu(ec_hdr
->magic
);
726 if (magic
!= UBI_EC_HDR_MAGIC
) {
727 if (mtd_is_eccerr(read_err
))
728 return UBI_IO_BAD_HDR_EBADMSG
;
731 * The magic field is wrong. Let's check if we have read all
732 * 0xFF. If yes, this physical eraseblock is assumed to be
735 if (ubi_check_pattern(ec_hdr
, 0xFF, UBI_EC_HDR_SIZE
)) {
736 /* The physical eraseblock is supposedly empty */
738 ubi_warn(ubi
, "no EC header found at PEB %d, only 0xFF bytes",
740 dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
745 return UBI_IO_FF_BITFLIPS
;
749 * This is not a valid erase counter header, and these are not
750 * 0xFF bytes. Report that the header is corrupted.
753 ubi_warn(ubi
, "bad magic number at PEB %d: %08x instead of %08x",
754 pnum
, magic
, UBI_EC_HDR_MAGIC
);
755 ubi_dump_ec_hdr(ec_hdr
);
757 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
758 pnum
, magic
, UBI_EC_HDR_MAGIC
);
759 return UBI_IO_BAD_HDR
;
762 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
763 hdr_crc
= be32_to_cpu(ec_hdr
->hdr_crc
);
765 if (hdr_crc
!= crc
) {
767 ubi_warn(ubi
, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
769 ubi_dump_ec_hdr(ec_hdr
);
771 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
775 return UBI_IO_BAD_HDR
;
777 return UBI_IO_BAD_HDR_EBADMSG
;
780 /* And of course validate what has just been read from the media */
781 err
= validate_ec_hdr(ubi
, ec_hdr
);
783 ubi_err(ubi
, "validation failed for PEB %d", pnum
);
788 * If there was %-EBADMSG, but the header CRC is still OK, report about
789 * a bit-flip to force scrubbing on this PEB.
791 return read_err
? UBI_IO_BITFLIPS
: 0;
795 * ubi_io_write_ec_hdr - write an erase counter header.
796 * @ubi: UBI device description object
797 * @pnum: physical eraseblock to write to
798 * @ec_hdr: the erase counter header to write
800 * This function writes erase counter header described by @ec_hdr to physical
801 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
802 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
805 * This function returns zero in case of success and a negative error code in
806 * case of failure. If %-EIO is returned, the physical eraseblock most probably
809 int ubi_io_write_ec_hdr(struct ubi_device
*ubi
, int pnum
,
810 struct ubi_ec_hdr
*ec_hdr
)
815 dbg_io("write EC header to PEB %d", pnum
);
816 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
818 ec_hdr
->magic
= cpu_to_be32(UBI_EC_HDR_MAGIC
);
819 ec_hdr
->version
= UBI_VERSION
;
820 ec_hdr
->vid_hdr_offset
= cpu_to_be32(ubi
->vid_hdr_offset
);
821 ec_hdr
->data_offset
= cpu_to_be32(ubi
->leb_start
);
822 ec_hdr
->image_seq
= cpu_to_be32(ubi
->image_seq
);
823 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
824 ec_hdr
->hdr_crc
= cpu_to_be32(crc
);
826 err
= self_check_ec_hdr(ubi
, pnum
, ec_hdr
);
830 if (ubi_dbg_power_cut(ubi
, POWER_CUT_EC_WRITE
))
833 err
= ubi_io_write(ubi
, ec_hdr
, pnum
, 0, ubi
->ec_hdr_alsize
);
838 * validate_vid_hdr - validate a volume identifier header.
839 * @ubi: UBI device description object
840 * @vid_hdr: the volume identifier header to check
842 * This function checks that data stored in the volume identifier header
843 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
845 static int validate_vid_hdr(const struct ubi_device
*ubi
,
846 const struct ubi_vid_hdr
*vid_hdr
)
848 int vol_type
= vid_hdr
->vol_type
;
849 int copy_flag
= vid_hdr
->copy_flag
;
850 int vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
851 int lnum
= be32_to_cpu(vid_hdr
->lnum
);
852 int compat
= vid_hdr
->compat
;
853 int data_size
= be32_to_cpu(vid_hdr
->data_size
);
854 int used_ebs
= be32_to_cpu(vid_hdr
->used_ebs
);
855 int data_pad
= be32_to_cpu(vid_hdr
->data_pad
);
856 int data_crc
= be32_to_cpu(vid_hdr
->data_crc
);
857 int usable_leb_size
= ubi
->leb_size
- data_pad
;
859 if (copy_flag
!= 0 && copy_flag
!= 1) {
860 ubi_err(ubi
, "bad copy_flag");
864 if (vol_id
< 0 || lnum
< 0 || data_size
< 0 || used_ebs
< 0 ||
866 ubi_err(ubi
, "negative values");
870 if (vol_id
>= UBI_MAX_VOLUMES
&& vol_id
< UBI_INTERNAL_VOL_START
) {
871 ubi_err(ubi
, "bad vol_id");
875 if (vol_id
< UBI_INTERNAL_VOL_START
&& compat
!= 0) {
876 ubi_err(ubi
, "bad compat");
880 if (vol_id
>= UBI_INTERNAL_VOL_START
&& compat
!= UBI_COMPAT_DELETE
&&
881 compat
!= UBI_COMPAT_RO
&& compat
!= UBI_COMPAT_PRESERVE
&&
882 compat
!= UBI_COMPAT_REJECT
) {
883 ubi_err(ubi
, "bad compat");
887 if (vol_type
!= UBI_VID_DYNAMIC
&& vol_type
!= UBI_VID_STATIC
) {
888 ubi_err(ubi
, "bad vol_type");
892 if (data_pad
>= ubi
->leb_size
/ 2) {
893 ubi_err(ubi
, "bad data_pad");
897 if (data_size
> ubi
->leb_size
) {
898 ubi_err(ubi
, "bad data_size");
902 if (vol_type
== UBI_VID_STATIC
) {
904 * Although from high-level point of view static volumes may
905 * contain zero bytes of data, but no VID headers can contain
906 * zero at these fields, because they empty volumes do not have
907 * mapped logical eraseblocks.
910 ubi_err(ubi
, "zero used_ebs");
913 if (data_size
== 0) {
914 ubi_err(ubi
, "zero data_size");
917 if (lnum
< used_ebs
- 1) {
918 if (data_size
!= usable_leb_size
) {
919 ubi_err(ubi
, "bad data_size");
922 } else if (lnum
== used_ebs
- 1) {
923 if (data_size
== 0) {
924 ubi_err(ubi
, "bad data_size at last LEB");
928 ubi_err(ubi
, "too high lnum");
932 if (copy_flag
== 0) {
934 ubi_err(ubi
, "non-zero data CRC");
937 if (data_size
!= 0) {
938 ubi_err(ubi
, "non-zero data_size");
942 if (data_size
== 0) {
943 ubi_err(ubi
, "zero data_size of copy");
948 ubi_err(ubi
, "bad used_ebs");
956 ubi_err(ubi
, "bad VID header");
957 ubi_dump_vid_hdr(vid_hdr
);
963 * ubi_io_read_vid_hdr - read and check a volume identifier header.
964 * @ubi: UBI device description object
965 * @pnum: physical eraseblock number to read from
966 * @vidb: the volume identifier buffer to store data in
967 * @verbose: be verbose if the header is corrupted or wasn't found
969 * This function reads the volume identifier header from physical eraseblock
970 * @pnum and stores it in @vidb. It also checks CRC checksum of the read
971 * volume identifier header. The error codes are the same as in
972 * 'ubi_io_read_ec_hdr()'.
974 * Note, the implementation of this function is also very similar to
975 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
977 int ubi_io_read_vid_hdr(struct ubi_device
*ubi
, int pnum
,
978 struct ubi_vid_io_buf
*vidb
, int verbose
)
981 uint32_t crc
, magic
, hdr_crc
;
982 struct ubi_vid_hdr
*vid_hdr
= ubi_get_vid_hdr(vidb
);
983 void *p
= vidb
->buffer
;
985 dbg_io("read VID header from PEB %d", pnum
);
986 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
988 read_err
= ubi_io_read(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
989 ubi
->vid_hdr_shift
+ UBI_VID_HDR_SIZE
);
990 if (read_err
&& read_err
!= UBI_IO_BITFLIPS
&& !mtd_is_eccerr(read_err
))
993 magic
= be32_to_cpu(vid_hdr
->magic
);
994 if (magic
!= UBI_VID_HDR_MAGIC
) {
995 if (mtd_is_eccerr(read_err
))
996 return UBI_IO_BAD_HDR_EBADMSG
;
998 if (ubi_check_pattern(vid_hdr
, 0xFF, UBI_VID_HDR_SIZE
)) {
1000 ubi_warn(ubi
, "no VID header found at PEB %d, only 0xFF bytes",
1002 dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1007 return UBI_IO_FF_BITFLIPS
;
1011 ubi_warn(ubi
, "bad magic number at PEB %d: %08x instead of %08x",
1012 pnum
, magic
, UBI_VID_HDR_MAGIC
);
1013 ubi_dump_vid_hdr(vid_hdr
);
1015 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1016 pnum
, magic
, UBI_VID_HDR_MAGIC
);
1017 return UBI_IO_BAD_HDR
;
1020 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
1021 hdr_crc
= be32_to_cpu(vid_hdr
->hdr_crc
);
1023 if (hdr_crc
!= crc
) {
1025 ubi_warn(ubi
, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1026 pnum
, crc
, hdr_crc
);
1027 ubi_dump_vid_hdr(vid_hdr
);
1029 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1030 pnum
, crc
, hdr_crc
);
1032 return UBI_IO_BAD_HDR
;
1034 return UBI_IO_BAD_HDR_EBADMSG
;
1037 err
= validate_vid_hdr(ubi
, vid_hdr
);
1039 ubi_err(ubi
, "validation failed for PEB %d", pnum
);
1043 return read_err
? UBI_IO_BITFLIPS
: 0;
1047 * ubi_io_write_vid_hdr - write a volume identifier header.
1048 * @ubi: UBI device description object
1049 * @pnum: the physical eraseblock number to write to
1050 * @vidb: the volume identifier buffer to write
1052 * This function writes the volume identifier header described by @vid_hdr to
1053 * physical eraseblock @pnum. This function automatically fills the
1054 * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
1055 * header CRC checksum and stores it at vidb->hdr->hdr_crc.
1057 * This function returns zero in case of success and a negative error code in
1058 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1061 int ubi_io_write_vid_hdr(struct ubi_device
*ubi
, int pnum
,
1062 struct ubi_vid_io_buf
*vidb
)
1064 struct ubi_vid_hdr
*vid_hdr
= ubi_get_vid_hdr(vidb
);
1067 void *p
= vidb
->buffer
;
1069 dbg_io("write VID header to PEB %d", pnum
);
1070 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
1072 err
= self_check_peb_ec_hdr(ubi
, pnum
);
1076 vid_hdr
->magic
= cpu_to_be32(UBI_VID_HDR_MAGIC
);
1077 vid_hdr
->version
= UBI_VERSION
;
1078 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
1079 vid_hdr
->hdr_crc
= cpu_to_be32(crc
);
1081 err
= self_check_vid_hdr(ubi
, pnum
, vid_hdr
);
1085 if (ubi_dbg_power_cut(ubi
, POWER_CUT_VID_WRITE
))
1088 err
= ubi_io_write(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1089 ubi
->vid_hdr_alsize
);
1094 * self_check_not_bad - ensure that a physical eraseblock is not bad.
1095 * @ubi: UBI device description object
1096 * @pnum: physical eraseblock number to check
1098 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1099 * it is bad and a negative error code if an error occurred.
1101 static int self_check_not_bad(const struct ubi_device
*ubi
, int pnum
)
1105 if (!ubi_dbg_chk_io(ubi
))
1108 err
= ubi_io_is_bad(ubi
, pnum
);
1112 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1114 return err
> 0 ? -EINVAL
: err
;
1118 * self_check_ec_hdr - check if an erase counter header is all right.
1119 * @ubi: UBI device description object
1120 * @pnum: physical eraseblock number the erase counter header belongs to
1121 * @ec_hdr: the erase counter header to check
1123 * This function returns zero if the erase counter header contains valid
1124 * values, and %-EINVAL if not.
1126 static int self_check_ec_hdr(const struct ubi_device
*ubi
, int pnum
,
1127 const struct ubi_ec_hdr
*ec_hdr
)
1132 if (!ubi_dbg_chk_io(ubi
))
1135 magic
= be32_to_cpu(ec_hdr
->magic
);
1136 if (magic
!= UBI_EC_HDR_MAGIC
) {
1137 ubi_err(ubi
, "bad magic %#08x, must be %#08x",
1138 magic
, UBI_EC_HDR_MAGIC
);
1142 err
= validate_ec_hdr(ubi
, ec_hdr
);
1144 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1151 ubi_dump_ec_hdr(ec_hdr
);
1157 * self_check_peb_ec_hdr - check erase counter header.
1158 * @ubi: UBI device description object
1159 * @pnum: the physical eraseblock number to check
1161 * This function returns zero if the erase counter header is all right and and
1162 * a negative error code if not or if an error occurred.
1164 static int self_check_peb_ec_hdr(const struct ubi_device
*ubi
, int pnum
)
1167 uint32_t crc
, hdr_crc
;
1168 struct ubi_ec_hdr
*ec_hdr
;
1170 if (!ubi_dbg_chk_io(ubi
))
1173 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
1177 err
= ubi_io_read(ubi
, ec_hdr
, pnum
, 0, UBI_EC_HDR_SIZE
);
1178 if (err
&& err
!= UBI_IO_BITFLIPS
&& !mtd_is_eccerr(err
))
1181 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
1182 hdr_crc
= be32_to_cpu(ec_hdr
->hdr_crc
);
1183 if (hdr_crc
!= crc
) {
1184 ubi_err(ubi
, "bad CRC, calculated %#08x, read %#08x",
1186 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1187 ubi_dump_ec_hdr(ec_hdr
);
1193 err
= self_check_ec_hdr(ubi
, pnum
, ec_hdr
);
1201 * self_check_vid_hdr - check that a volume identifier header is all right.
1202 * @ubi: UBI device description object
1203 * @pnum: physical eraseblock number the volume identifier header belongs to
1204 * @vid_hdr: the volume identifier header to check
1206 * This function returns zero if the volume identifier header is all right, and
1209 static int self_check_vid_hdr(const struct ubi_device
*ubi
, int pnum
,
1210 const struct ubi_vid_hdr
*vid_hdr
)
1215 if (!ubi_dbg_chk_io(ubi
))
1218 magic
= be32_to_cpu(vid_hdr
->magic
);
1219 if (magic
!= UBI_VID_HDR_MAGIC
) {
1220 ubi_err(ubi
, "bad VID header magic %#08x at PEB %d, must be %#08x",
1221 magic
, pnum
, UBI_VID_HDR_MAGIC
);
1225 err
= validate_vid_hdr(ubi
, vid_hdr
);
1227 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1234 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1235 ubi_dump_vid_hdr(vid_hdr
);
1242 * self_check_peb_vid_hdr - check volume identifier header.
1243 * @ubi: UBI device description object
1244 * @pnum: the physical eraseblock number to check
1246 * This function returns zero if the volume identifier header is all right,
1247 * and a negative error code if not or if an error occurred.
1249 static int self_check_peb_vid_hdr(const struct ubi_device
*ubi
, int pnum
)
1252 uint32_t crc
, hdr_crc
;
1253 struct ubi_vid_io_buf
*vidb
;
1254 struct ubi_vid_hdr
*vid_hdr
;
1257 if (!ubi_dbg_chk_io(ubi
))
1260 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
1264 vid_hdr
= ubi_get_vid_hdr(vidb
);
1266 err
= ubi_io_read(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1267 ubi
->vid_hdr_alsize
);
1268 if (err
&& err
!= UBI_IO_BITFLIPS
&& !mtd_is_eccerr(err
))
1271 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
1272 hdr_crc
= be32_to_cpu(vid_hdr
->hdr_crc
);
1273 if (hdr_crc
!= crc
) {
1274 ubi_err(ubi
, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1275 pnum
, crc
, hdr_crc
);
1276 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1277 ubi_dump_vid_hdr(vid_hdr
);
1283 err
= self_check_vid_hdr(ubi
, pnum
, vid_hdr
);
1286 ubi_free_vid_buf(vidb
);
1291 * self_check_write - make sure write succeeded.
1292 * @ubi: UBI device description object
1293 * @buf: buffer with data which were written
1294 * @pnum: physical eraseblock number the data were written to
1295 * @offset: offset within the physical eraseblock the data were written to
1296 * @len: how many bytes were written
1298 * This functions reads data which were recently written and compares it with
1299 * the original data buffer - the data have to match. Returns zero if the data
1300 * match and a negative error code if not or in case of failure.
1302 static int self_check_write(struct ubi_device
*ubi
, const void *buf
, int pnum
,
1303 int offset
, int len
)
1308 loff_t addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
1310 if (!ubi_dbg_chk_io(ubi
))
1313 buf1
= __vmalloc(len
, GFP_NOFS
, PAGE_KERNEL
);
1315 ubi_err(ubi
, "cannot allocate memory to check writes");
1319 err
= mtd_read(ubi
->mtd
, addr
, len
, &read
, buf1
);
1320 if (err
&& !mtd_is_bitflip(err
))
1323 for (i
= 0; i
< len
; i
++) {
1324 uint8_t c
= ((uint8_t *)buf
)[i
];
1325 uint8_t c1
= ((uint8_t *)buf1
)[i
];
1331 ubi_err(ubi
, "self-check failed for PEB %d:%d, len %d",
1333 ubi_msg(ubi
, "data differ at position %d", i
);
1334 dump_len
= max_t(int, 128, len
- i
);
1335 ubi_msg(ubi
, "hex dump of the original buffer from %d to %d",
1337 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
1338 buf
+ i
, dump_len
, 1);
1339 ubi_msg(ubi
, "hex dump of the read buffer from %d to %d",
1341 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
1342 buf1
+ i
, dump_len
, 1);
1357 * ubi_self_check_all_ff - check that a region of flash is empty.
1358 * @ubi: UBI device description object
1359 * @pnum: the physical eraseblock number to check
1360 * @offset: the starting offset within the physical eraseblock to check
1361 * @len: the length of the region to check
1363 * This function returns zero if only 0xFF bytes are present at offset
1364 * @offset of the physical eraseblock @pnum, and a negative error code if not
1365 * or if an error occurred.
1367 int ubi_self_check_all_ff(struct ubi_device
*ubi
, int pnum
, int offset
, int len
)
1372 loff_t addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
1374 if (!ubi_dbg_chk_io(ubi
))
1377 buf
= __vmalloc(len
, GFP_NOFS
, PAGE_KERNEL
);
1379 ubi_err(ubi
, "cannot allocate memory to check for 0xFFs");
1383 err
= mtd_read(ubi
->mtd
, addr
, len
, &read
, buf
);
1384 if (err
&& !mtd_is_bitflip(err
)) {
1385 ubi_err(ubi
, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1386 err
, len
, pnum
, offset
, read
);
1390 err
= ubi_check_pattern(buf
, 0xFF, len
);
1392 ubi_err(ubi
, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1401 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1402 ubi_msg(ubi
, "hex dump of the %d-%d region", offset
, offset
+ len
);
1403 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1, buf
, len
, 1);