staging: rtl8188eu: rename HalSetBrateCfg() - style
[linux/fpc-iii.git] / drivers / mtd / ubi / vtbl.c
blob1bc82154bb18f6b3e03df72d725778d7dea12227
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём)
23 * This file includes volume table manipulation code. The volume table is an
24 * on-flash table containing volume meta-data like name, number of reserved
25 * physical eraseblocks, type, etc. The volume table is stored in the so-called
26 * "layout volume".
28 * The layout volume is an internal volume which is organized as follows. It
29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
31 * other. This redundancy guarantees robustness to unclean reboots. The volume
32 * table is basically an array of volume table records. Each record contains
33 * full information about the volume and protected by a CRC checksum. Note,
34 * nowadays we use the atomic LEB change operation when updating the volume
35 * table, so we do not really need 2 LEBs anymore, but we preserve the older
36 * design for the backward compatibility reasons.
38 * When the volume table is changed, it is first changed in RAM. Then LEB 0 is
39 * erased, and the updated volume table is written back to LEB 0. Then same for
40 * LEB 1. This scheme guarantees recoverability from unclean reboots.
42 * In this UBI implementation the on-flash volume table does not contain any
43 * information about how much data static volumes contain.
45 * But it would still be beneficial to store this information in the volume
46 * table. For example, suppose we have a static volume X, and all its physical
47 * eraseblocks became bad for some reasons. Suppose we are attaching the
48 * corresponding MTD device, for some reason we find no logical eraseblocks
49 * corresponding to the volume X. According to the volume table volume X does
50 * exist. So we don't know whether it is just empty or all its physical
51 * eraseblocks went bad. So we cannot alarm the user properly.
53 * The volume table also stores so-called "update marker", which is used for
54 * volume updates. Before updating the volume, the update marker is set, and
55 * after the update operation is finished, the update marker is cleared. So if
56 * the update operation was interrupted (e.g. by an unclean reboot) - the
57 * update marker is still there and we know that the volume's contents is
58 * damaged.
61 #include <linux/crc32.h>
62 #include <linux/err.h>
63 #include <linux/slab.h>
64 #include <asm/div64.h>
65 #include "ubi.h"
67 static void self_vtbl_check(const struct ubi_device *ubi);
69 /* Empty volume table record */
70 static struct ubi_vtbl_record empty_vtbl_record;
72 /**
73 * ubi_update_layout_vol - helper for updatting layout volumes on flash
74 * @ubi: UBI device description object
76 static int ubi_update_layout_vol(struct ubi_device *ubi)
78 struct ubi_volume *layout_vol;
79 int i, err;
81 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
82 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
83 err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl,
84 ubi->vtbl_size);
85 if (err)
86 return err;
89 return 0;
92 /**
93 * ubi_change_vtbl_record - change volume table record.
94 * @ubi: UBI device description object
95 * @idx: table index to change
96 * @vtbl_rec: new volume table record
98 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
99 * volume table record is written. The caller does not have to calculate CRC of
100 * the record as it is done by this function. Returns zero in case of success
101 * and a negative error code in case of failure.
103 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
104 struct ubi_vtbl_record *vtbl_rec)
106 int err;
107 uint32_t crc;
109 ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
111 if (!vtbl_rec)
112 vtbl_rec = &empty_vtbl_record;
113 else {
114 crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
115 vtbl_rec->crc = cpu_to_be32(crc);
118 memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
119 err = ubi_update_layout_vol(ubi);
121 self_vtbl_check(ubi);
122 return err ? err : 0;
126 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
127 * @ubi: UBI device description object
128 * @rename_list: list of &struct ubi_rename_entry objects
130 * This function re-names multiple volumes specified in @req in the volume
131 * table. Returns zero in case of success and a negative error code in case of
132 * failure.
134 int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
135 struct list_head *rename_list)
137 struct ubi_rename_entry *re;
139 list_for_each_entry(re, rename_list, list) {
140 uint32_t crc;
141 struct ubi_volume *vol = re->desc->vol;
142 struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
144 if (re->remove) {
145 memcpy(vtbl_rec, &empty_vtbl_record,
146 sizeof(struct ubi_vtbl_record));
147 continue;
150 vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
151 memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
152 memset(vtbl_rec->name + re->new_name_len, 0,
153 UBI_VOL_NAME_MAX + 1 - re->new_name_len);
154 crc = crc32(UBI_CRC32_INIT, vtbl_rec,
155 UBI_VTBL_RECORD_SIZE_CRC);
156 vtbl_rec->crc = cpu_to_be32(crc);
159 return ubi_update_layout_vol(ubi);
163 * vtbl_check - check if volume table is not corrupted and sensible.
164 * @ubi: UBI device description object
165 * @vtbl: volume table
167 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
168 * and %-EINVAL if it contains inconsistent data.
170 static int vtbl_check(const struct ubi_device *ubi,
171 const struct ubi_vtbl_record *vtbl)
173 int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
174 int upd_marker, err;
175 uint32_t crc;
176 const char *name;
178 for (i = 0; i < ubi->vtbl_slots; i++) {
179 cond_resched();
181 reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
182 alignment = be32_to_cpu(vtbl[i].alignment);
183 data_pad = be32_to_cpu(vtbl[i].data_pad);
184 upd_marker = vtbl[i].upd_marker;
185 vol_type = vtbl[i].vol_type;
186 name_len = be16_to_cpu(vtbl[i].name_len);
187 name = &vtbl[i].name[0];
189 crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
190 if (be32_to_cpu(vtbl[i].crc) != crc) {
191 ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x",
192 i, crc, be32_to_cpu(vtbl[i].crc));
193 ubi_dump_vtbl_record(&vtbl[i], i);
194 return 1;
197 if (reserved_pebs == 0) {
198 if (memcmp(&vtbl[i], &empty_vtbl_record,
199 UBI_VTBL_RECORD_SIZE)) {
200 err = 2;
201 goto bad;
203 continue;
206 if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
207 name_len < 0) {
208 err = 3;
209 goto bad;
212 if (alignment > ubi->leb_size || alignment == 0) {
213 err = 4;
214 goto bad;
217 n = alignment & (ubi->min_io_size - 1);
218 if (alignment != 1 && n) {
219 err = 5;
220 goto bad;
223 n = ubi->leb_size % alignment;
224 if (data_pad != n) {
225 ubi_err(ubi, "bad data_pad, has to be %d", n);
226 err = 6;
227 goto bad;
230 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
231 err = 7;
232 goto bad;
235 if (upd_marker != 0 && upd_marker != 1) {
236 err = 8;
237 goto bad;
240 if (reserved_pebs > ubi->good_peb_count) {
241 ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d",
242 reserved_pebs, ubi->good_peb_count);
243 err = 9;
244 goto bad;
247 if (name_len > UBI_VOL_NAME_MAX) {
248 err = 10;
249 goto bad;
252 if (name[0] == '\0') {
253 err = 11;
254 goto bad;
257 if (name_len != strnlen(name, name_len + 1)) {
258 err = 12;
259 goto bad;
263 /* Checks that all names are unique */
264 for (i = 0; i < ubi->vtbl_slots - 1; i++) {
265 for (n = i + 1; n < ubi->vtbl_slots; n++) {
266 int len1 = be16_to_cpu(vtbl[i].name_len);
267 int len2 = be16_to_cpu(vtbl[n].name_len);
269 if (len1 > 0 && len1 == len2 &&
270 !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
271 ubi_err(ubi, "volumes %d and %d have the same name \"%s\"",
272 i, n, vtbl[i].name);
273 ubi_dump_vtbl_record(&vtbl[i], i);
274 ubi_dump_vtbl_record(&vtbl[n], n);
275 return -EINVAL;
280 return 0;
282 bad:
283 ubi_err(ubi, "volume table check failed: record %d, error %d", i, err);
284 ubi_dump_vtbl_record(&vtbl[i], i);
285 return -EINVAL;
289 * create_vtbl - create a copy of volume table.
290 * @ubi: UBI device description object
291 * @ai: attaching information
292 * @copy: number of the volume table copy
293 * @vtbl: contents of the volume table
295 * This function returns zero in case of success and a negative error code in
296 * case of failure.
298 static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai,
299 int copy, void *vtbl)
301 int err, tries = 0;
302 struct ubi_vid_io_buf *vidb;
303 struct ubi_vid_hdr *vid_hdr;
304 struct ubi_ainf_peb *new_aeb;
306 dbg_gen("create volume table (copy #%d)", copy + 1);
308 vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
309 if (!vidb)
310 return -ENOMEM;
312 vid_hdr = ubi_get_vid_hdr(vidb);
314 retry:
315 new_aeb = ubi_early_get_peb(ubi, ai);
316 if (IS_ERR(new_aeb)) {
317 err = PTR_ERR(new_aeb);
318 goto out_free;
321 vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE;
322 vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
323 vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
324 vid_hdr->data_size = vid_hdr->used_ebs =
325 vid_hdr->data_pad = cpu_to_be32(0);
326 vid_hdr->lnum = cpu_to_be32(copy);
327 vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum);
329 /* The EC header is already there, write the VID header */
330 err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vidb);
331 if (err)
332 goto write_error;
334 /* Write the layout volume contents */
335 err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size);
336 if (err)
337 goto write_error;
340 * And add it to the attaching information. Don't delete the old version
341 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
343 err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0);
344 ubi_free_aeb(ai, new_aeb);
345 ubi_free_vid_buf(vidb);
346 return err;
348 write_error:
349 if (err == -EIO && ++tries <= 5) {
351 * Probably this physical eraseblock went bad, try to pick
352 * another one.
354 list_add(&new_aeb->u.list, &ai->erase);
355 goto retry;
357 ubi_free_aeb(ai, new_aeb);
358 out_free:
359 ubi_free_vid_buf(vidb);
360 return err;
365 * process_lvol - process the layout volume.
366 * @ubi: UBI device description object
367 * @ai: attaching information
368 * @av: layout volume attaching information
370 * This function is responsible for reading the layout volume, ensuring it is
371 * not corrupted, and recovering from corruptions if needed. Returns volume
372 * table in case of success and a negative error code in case of failure.
374 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
375 struct ubi_attach_info *ai,
376 struct ubi_ainf_volume *av)
378 int err;
379 struct rb_node *rb;
380 struct ubi_ainf_peb *aeb;
381 struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
382 int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
385 * UBI goes through the following steps when it changes the layout
386 * volume:
387 * a. erase LEB 0;
388 * b. write new data to LEB 0;
389 * c. erase LEB 1;
390 * d. write new data to LEB 1.
392 * Before the change, both LEBs contain the same data.
394 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
395 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
396 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
397 * finally, unclean reboots may result in a situation when neither LEB
398 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
399 * 0 contains more recent information.
401 * So the plan is to first check LEB 0. Then
402 * a. if LEB 0 is OK, it must be containing the most recent data; then
403 * we compare it with LEB 1, and if they are different, we copy LEB
404 * 0 to LEB 1;
405 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
406 * to LEB 0.
409 dbg_gen("check layout volume");
411 /* Read both LEB 0 and LEB 1 into memory */
412 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
413 leb[aeb->lnum] = vzalloc(ubi->vtbl_size);
414 if (!leb[aeb->lnum]) {
415 err = -ENOMEM;
416 goto out_free;
419 err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0,
420 ubi->vtbl_size);
421 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
423 * Scrub the PEB later. Note, -EBADMSG indicates an
424 * uncorrectable ECC error, but we have our own CRC and
425 * the data will be checked later. If the data is OK,
426 * the PEB will be scrubbed (because we set
427 * aeb->scrub). If the data is not OK, the contents of
428 * the PEB will be recovered from the second copy, and
429 * aeb->scrub will be cleared in
430 * 'ubi_add_to_av()'.
432 aeb->scrub = 1;
433 else if (err)
434 goto out_free;
437 err = -EINVAL;
438 if (leb[0]) {
439 leb_corrupted[0] = vtbl_check(ubi, leb[0]);
440 if (leb_corrupted[0] < 0)
441 goto out_free;
444 if (!leb_corrupted[0]) {
445 /* LEB 0 is OK */
446 if (leb[1])
447 leb_corrupted[1] = memcmp(leb[0], leb[1],
448 ubi->vtbl_size);
449 if (leb_corrupted[1]) {
450 ubi_warn(ubi, "volume table copy #2 is corrupted");
451 err = create_vtbl(ubi, ai, 1, leb[0]);
452 if (err)
453 goto out_free;
454 ubi_msg(ubi, "volume table was restored");
457 /* Both LEB 1 and LEB 2 are OK and consistent */
458 vfree(leb[1]);
459 return leb[0];
460 } else {
461 /* LEB 0 is corrupted or does not exist */
462 if (leb[1]) {
463 leb_corrupted[1] = vtbl_check(ubi, leb[1]);
464 if (leb_corrupted[1] < 0)
465 goto out_free;
467 if (leb_corrupted[1]) {
468 /* Both LEB 0 and LEB 1 are corrupted */
469 ubi_err(ubi, "both volume tables are corrupted");
470 goto out_free;
473 ubi_warn(ubi, "volume table copy #1 is corrupted");
474 err = create_vtbl(ubi, ai, 0, leb[1]);
475 if (err)
476 goto out_free;
477 ubi_msg(ubi, "volume table was restored");
479 vfree(leb[0]);
480 return leb[1];
483 out_free:
484 vfree(leb[0]);
485 vfree(leb[1]);
486 return ERR_PTR(err);
490 * create_empty_lvol - create empty layout volume.
491 * @ubi: UBI device description object
492 * @ai: attaching information
494 * This function returns volume table contents in case of success and a
495 * negative error code in case of failure.
497 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
498 struct ubi_attach_info *ai)
500 int i;
501 struct ubi_vtbl_record *vtbl;
503 vtbl = vzalloc(ubi->vtbl_size);
504 if (!vtbl)
505 return ERR_PTR(-ENOMEM);
507 for (i = 0; i < ubi->vtbl_slots; i++)
508 memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
510 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
511 int err;
513 err = create_vtbl(ubi, ai, i, vtbl);
514 if (err) {
515 vfree(vtbl);
516 return ERR_PTR(err);
520 return vtbl;
524 * init_volumes - initialize volume information for existing volumes.
525 * @ubi: UBI device description object
526 * @ai: scanning information
527 * @vtbl: volume table
529 * This function allocates volume description objects for existing volumes.
530 * Returns zero in case of success and a negative error code in case of
531 * failure.
533 static int init_volumes(struct ubi_device *ubi,
534 const struct ubi_attach_info *ai,
535 const struct ubi_vtbl_record *vtbl)
537 int i, err, reserved_pebs = 0;
538 struct ubi_ainf_volume *av;
539 struct ubi_volume *vol;
541 for (i = 0; i < ubi->vtbl_slots; i++) {
542 cond_resched();
544 if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
545 continue; /* Empty record */
547 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
548 if (!vol)
549 return -ENOMEM;
551 vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
552 vol->alignment = be32_to_cpu(vtbl[i].alignment);
553 vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
554 vol->upd_marker = vtbl[i].upd_marker;
555 vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
556 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
557 vol->name_len = be16_to_cpu(vtbl[i].name_len);
558 vol->usable_leb_size = ubi->leb_size - vol->data_pad;
559 memcpy(vol->name, vtbl[i].name, vol->name_len);
560 vol->name[vol->name_len] = '\0';
561 vol->vol_id = i;
563 if (vtbl[i].flags & UBI_VTBL_SKIP_CRC_CHECK_FLG)
564 vol->skip_check = 1;
566 if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
567 /* Auto re-size flag may be set only for one volume */
568 if (ubi->autoresize_vol_id != -1) {
569 ubi_err(ubi, "more than one auto-resize volume (%d and %d)",
570 ubi->autoresize_vol_id, i);
571 kfree(vol);
572 return -EINVAL;
575 ubi->autoresize_vol_id = i;
578 ubi_assert(!ubi->volumes[i]);
579 ubi->volumes[i] = vol;
580 ubi->vol_count += 1;
581 vol->ubi = ubi;
582 reserved_pebs += vol->reserved_pebs;
585 * We use ubi->peb_count and not vol->reserved_pebs because
586 * we want to keep the code simple. Otherwise we'd have to
587 * resize/check the bitmap upon volume resize too.
588 * Allocating a few bytes more does not hurt.
590 err = ubi_fastmap_init_checkmap(vol, ubi->peb_count);
591 if (err)
592 return err;
595 * In case of dynamic volume UBI knows nothing about how many
596 * data is stored there. So assume the whole volume is used.
598 if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
599 vol->used_ebs = vol->reserved_pebs;
600 vol->last_eb_bytes = vol->usable_leb_size;
601 vol->used_bytes =
602 (long long)vol->used_ebs * vol->usable_leb_size;
603 continue;
606 /* Static volumes only */
607 av = ubi_find_av(ai, i);
608 if (!av || !av->leb_count) {
610 * No eraseblocks belonging to this volume found. We
611 * don't actually know whether this static volume is
612 * completely corrupted or just contains no data. And
613 * we cannot know this as long as data size is not
614 * stored on flash. So we just assume the volume is
615 * empty. FIXME: this should be handled.
617 continue;
620 if (av->leb_count != av->used_ebs) {
622 * We found a static volume which misses several
623 * eraseblocks. Treat it as corrupted.
625 ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted",
626 av->vol_id, av->used_ebs - av->leb_count);
627 vol->corrupted = 1;
628 continue;
631 vol->used_ebs = av->used_ebs;
632 vol->used_bytes =
633 (long long)(vol->used_ebs - 1) * vol->usable_leb_size;
634 vol->used_bytes += av->last_data_size;
635 vol->last_eb_bytes = av->last_data_size;
638 /* And add the layout volume */
639 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
640 if (!vol)
641 return -ENOMEM;
643 vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
644 vol->alignment = UBI_LAYOUT_VOLUME_ALIGN;
645 vol->vol_type = UBI_DYNAMIC_VOLUME;
646 vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
647 memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
648 vol->usable_leb_size = ubi->leb_size;
649 vol->used_ebs = vol->reserved_pebs;
650 vol->last_eb_bytes = vol->reserved_pebs;
651 vol->used_bytes =
652 (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
653 vol->vol_id = UBI_LAYOUT_VOLUME_ID;
654 vol->ref_count = 1;
656 ubi_assert(!ubi->volumes[i]);
657 ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
658 reserved_pebs += vol->reserved_pebs;
659 ubi->vol_count += 1;
660 vol->ubi = ubi;
661 err = ubi_fastmap_init_checkmap(vol, UBI_LAYOUT_VOLUME_EBS);
662 if (err)
663 return err;
665 if (reserved_pebs > ubi->avail_pebs) {
666 ubi_err(ubi, "not enough PEBs, required %d, available %d",
667 reserved_pebs, ubi->avail_pebs);
668 if (ubi->corr_peb_count)
669 ubi_err(ubi, "%d PEBs are corrupted and not used",
670 ubi->corr_peb_count);
671 return -ENOSPC;
673 ubi->rsvd_pebs += reserved_pebs;
674 ubi->avail_pebs -= reserved_pebs;
676 return 0;
680 * check_av - check volume attaching information.
681 * @vol: UBI volume description object
682 * @av: volume attaching information
684 * This function returns zero if the volume attaching information is consistent
685 * to the data read from the volume tabla, and %-EINVAL if not.
687 static int check_av(const struct ubi_volume *vol,
688 const struct ubi_ainf_volume *av)
690 int err;
692 if (av->highest_lnum >= vol->reserved_pebs) {
693 err = 1;
694 goto bad;
696 if (av->leb_count > vol->reserved_pebs) {
697 err = 2;
698 goto bad;
700 if (av->vol_type != vol->vol_type) {
701 err = 3;
702 goto bad;
704 if (av->used_ebs > vol->reserved_pebs) {
705 err = 4;
706 goto bad;
708 if (av->data_pad != vol->data_pad) {
709 err = 5;
710 goto bad;
712 return 0;
714 bad:
715 ubi_err(vol->ubi, "bad attaching information, error %d", err);
716 ubi_dump_av(av);
717 ubi_dump_vol_info(vol);
718 return -EINVAL;
722 * check_attaching_info - check that attaching information.
723 * @ubi: UBI device description object
724 * @ai: attaching information
726 * Even though we protect on-flash data by CRC checksums, we still don't trust
727 * the media. This function ensures that attaching information is consistent to
728 * the information read from the volume table. Returns zero if the attaching
729 * information is OK and %-EINVAL if it is not.
731 static int check_attaching_info(const struct ubi_device *ubi,
732 struct ubi_attach_info *ai)
734 int err, i;
735 struct ubi_ainf_volume *av;
736 struct ubi_volume *vol;
738 if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
739 ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d",
740 ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
741 return -EINVAL;
744 if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
745 ai->highest_vol_id < UBI_INTERNAL_VOL_START) {
746 ubi_err(ubi, "too large volume ID %d found",
747 ai->highest_vol_id);
748 return -EINVAL;
751 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
752 cond_resched();
754 av = ubi_find_av(ai, i);
755 vol = ubi->volumes[i];
756 if (!vol) {
757 if (av)
758 ubi_remove_av(ai, av);
759 continue;
762 if (vol->reserved_pebs == 0) {
763 ubi_assert(i < ubi->vtbl_slots);
765 if (!av)
766 continue;
769 * During attaching we found a volume which does not
770 * exist according to the information in the volume
771 * table. This must have happened due to an unclean
772 * reboot while the volume was being removed. Discard
773 * these eraseblocks.
775 ubi_msg(ubi, "finish volume %d removal", av->vol_id);
776 ubi_remove_av(ai, av);
777 } else if (av) {
778 err = check_av(vol, av);
779 if (err)
780 return err;
784 return 0;
788 * ubi_read_volume_table - read the volume table.
789 * @ubi: UBI device description object
790 * @ai: attaching information
792 * This function reads volume table, checks it, recover from errors if needed,
793 * or creates it if needed. Returns zero in case of success and a negative
794 * error code in case of failure.
796 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai)
798 int i, err;
799 struct ubi_ainf_volume *av;
801 empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
804 * The number of supported volumes is limited by the eraseblock size
805 * and by the UBI_MAX_VOLUMES constant.
807 ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
808 if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
809 ubi->vtbl_slots = UBI_MAX_VOLUMES;
811 ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
812 ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
814 av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID);
815 if (!av) {
817 * No logical eraseblocks belonging to the layout volume were
818 * found. This could mean that the flash is just empty. In
819 * this case we create empty layout volume.
821 * But if flash is not empty this must be a corruption or the
822 * MTD device just contains garbage.
824 if (ai->is_empty) {
825 ubi->vtbl = create_empty_lvol(ubi, ai);
826 if (IS_ERR(ubi->vtbl))
827 return PTR_ERR(ubi->vtbl);
828 } else {
829 ubi_err(ubi, "the layout volume was not found");
830 return -EINVAL;
832 } else {
833 if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) {
834 /* This must not happen with proper UBI images */
835 ubi_err(ubi, "too many LEBs (%d) in layout volume",
836 av->leb_count);
837 return -EINVAL;
840 ubi->vtbl = process_lvol(ubi, ai, av);
841 if (IS_ERR(ubi->vtbl))
842 return PTR_ERR(ubi->vtbl);
845 ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
848 * The layout volume is OK, initialize the corresponding in-RAM data
849 * structures.
851 err = init_volumes(ubi, ai, ubi->vtbl);
852 if (err)
853 goto out_free;
856 * Make sure that the attaching information is consistent to the
857 * information stored in the volume table.
859 err = check_attaching_info(ubi, ai);
860 if (err)
861 goto out_free;
863 return 0;
865 out_free:
866 vfree(ubi->vtbl);
867 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
868 ubi_fastmap_destroy_checkmap(ubi->volumes[i]);
869 kfree(ubi->volumes[i]);
870 ubi->volumes[i] = NULL;
872 return err;
876 * self_vtbl_check - check volume table.
877 * @ubi: UBI device description object
879 static void self_vtbl_check(const struct ubi_device *ubi)
881 if (!ubi_dbg_chk_gen(ubi))
882 return;
884 if (vtbl_check(ubi, ubi->vtbl)) {
885 ubi_err(ubi, "self-check failed");
886 BUG();