staging: rtl8188eu: rename HalSetBrateCfg() - style
[linux/fpc-iii.git] / drivers / net / ethernet / intel / e100.c
blob27d5f27163d2cd04f8583f9defd888c3ee1ee8bc
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
4 /*
5 * e100.c: Intel(R) PRO/100 ethernet driver
7 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
8 * original e100 driver, but better described as a munging of
9 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
11 * References:
12 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
13 * Open Source Software Developers Manual,
14 * http://sourceforge.net/projects/e1000
17 * Theory of Operation
19 * I. General
21 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
22 * controller family, which includes the 82557, 82558, 82559, 82550,
23 * 82551, and 82562 devices. 82558 and greater controllers
24 * integrate the Intel 82555 PHY. The controllers are used in
25 * server and client network interface cards, as well as in
26 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
27 * configurations. 8255x supports a 32-bit linear addressing
28 * mode and operates at 33Mhz PCI clock rate.
30 * II. Driver Operation
32 * Memory-mapped mode is used exclusively to access the device's
33 * shared-memory structure, the Control/Status Registers (CSR). All
34 * setup, configuration, and control of the device, including queuing
35 * of Tx, Rx, and configuration commands is through the CSR.
36 * cmd_lock serializes accesses to the CSR command register. cb_lock
37 * protects the shared Command Block List (CBL).
39 * 8255x is highly MII-compliant and all access to the PHY go
40 * through the Management Data Interface (MDI). Consequently, the
41 * driver leverages the mii.c library shared with other MII-compliant
42 * devices.
44 * Big- and Little-Endian byte order as well as 32- and 64-bit
45 * archs are supported. Weak-ordered memory and non-cache-coherent
46 * archs are supported.
48 * III. Transmit
50 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
51 * together in a fixed-size ring (CBL) thus forming the flexible mode
52 * memory structure. A TCB marked with the suspend-bit indicates
53 * the end of the ring. The last TCB processed suspends the
54 * controller, and the controller can be restarted by issue a CU
55 * resume command to continue from the suspend point, or a CU start
56 * command to start at a given position in the ring.
58 * Non-Tx commands (config, multicast setup, etc) are linked
59 * into the CBL ring along with Tx commands. The common structure
60 * used for both Tx and non-Tx commands is the Command Block (CB).
62 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
63 * is the next CB to check for completion; cb_to_send is the first
64 * CB to start on in case of a previous failure to resume. CB clean
65 * up happens in interrupt context in response to a CU interrupt.
66 * cbs_avail keeps track of number of free CB resources available.
68 * Hardware padding of short packets to minimum packet size is
69 * enabled. 82557 pads with 7Eh, while the later controllers pad
70 * with 00h.
72 * IV. Receive
74 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
75 * Descriptors (RFD) + data buffer, thus forming the simplified mode
76 * memory structure. Rx skbs are allocated to contain both the RFD
77 * and the data buffer, but the RFD is pulled off before the skb is
78 * indicated. The data buffer is aligned such that encapsulated
79 * protocol headers are u32-aligned. Since the RFD is part of the
80 * mapped shared memory, and completion status is contained within
81 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
82 * view from software and hardware.
84 * In order to keep updates to the RFD link field from colliding with
85 * hardware writes to mark packets complete, we use the feature that
86 * hardware will not write to a size 0 descriptor and mark the previous
87 * packet as end-of-list (EL). After updating the link, we remove EL
88 * and only then restore the size such that hardware may use the
89 * previous-to-end RFD.
91 * Under typical operation, the receive unit (RU) is start once,
92 * and the controller happily fills RFDs as frames arrive. If
93 * replacement RFDs cannot be allocated, or the RU goes non-active,
94 * the RU must be restarted. Frame arrival generates an interrupt,
95 * and Rx indication and re-allocation happen in the same context,
96 * therefore no locking is required. A software-generated interrupt
97 * is generated from the watchdog to recover from a failed allocation
98 * scenario where all Rx resources have been indicated and none re-
99 * placed.
101 * V. Miscellaneous
103 * VLAN offloading of tagging, stripping and filtering is not
104 * supported, but driver will accommodate the extra 4-byte VLAN tag
105 * for processing by upper layers. Tx/Rx Checksum offloading is not
106 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
107 * not supported (hardware limitation).
109 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
111 * Thanks to JC (jchapman@katalix.com) for helping with
112 * testing/troubleshooting the development driver.
114 * TODO:
115 * o several entry points race with dev->close
116 * o check for tx-no-resources/stop Q races with tx clean/wake Q
118 * FIXES:
119 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
120 * - Stratus87247: protect MDI control register manipulations
121 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
122 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
125 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
127 #include <linux/hardirq.h>
128 #include <linux/interrupt.h>
129 #include <linux/module.h>
130 #include <linux/moduleparam.h>
131 #include <linux/kernel.h>
132 #include <linux/types.h>
133 #include <linux/sched.h>
134 #include <linux/slab.h>
135 #include <linux/delay.h>
136 #include <linux/init.h>
137 #include <linux/pci.h>
138 #include <linux/dma-mapping.h>
139 #include <linux/dmapool.h>
140 #include <linux/netdevice.h>
141 #include <linux/etherdevice.h>
142 #include <linux/mii.h>
143 #include <linux/if_vlan.h>
144 #include <linux/skbuff.h>
145 #include <linux/ethtool.h>
146 #include <linux/string.h>
147 #include <linux/firmware.h>
148 #include <linux/rtnetlink.h>
149 #include <asm/unaligned.h>
152 #define DRV_NAME "e100"
153 #define DRV_EXT "-NAPI"
154 #define DRV_VERSION "3.5.24-k2"DRV_EXT
155 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
156 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
158 #define E100_WATCHDOG_PERIOD (2 * HZ)
159 #define E100_NAPI_WEIGHT 16
161 #define FIRMWARE_D101M "e100/d101m_ucode.bin"
162 #define FIRMWARE_D101S "e100/d101s_ucode.bin"
163 #define FIRMWARE_D102E "e100/d102e_ucode.bin"
165 MODULE_DESCRIPTION(DRV_DESCRIPTION);
166 MODULE_AUTHOR(DRV_COPYRIGHT);
167 MODULE_LICENSE("GPL");
168 MODULE_VERSION(DRV_VERSION);
169 MODULE_FIRMWARE(FIRMWARE_D101M);
170 MODULE_FIRMWARE(FIRMWARE_D101S);
171 MODULE_FIRMWARE(FIRMWARE_D102E);
173 static int debug = 3;
174 static int eeprom_bad_csum_allow = 0;
175 static int use_io = 0;
176 module_param(debug, int, 0);
177 module_param(eeprom_bad_csum_allow, int, 0);
178 module_param(use_io, int, 0);
179 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
180 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
181 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
183 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
184 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
185 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
186 static const struct pci_device_id e100_id_table[] = {
187 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
188 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
189 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
190 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
191 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
192 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
193 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
194 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
195 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
196 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
197 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
198 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
199 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
200 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
201 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
202 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
203 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
204 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
205 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
206 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
207 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
208 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
209 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
210 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
211 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
212 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
213 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
214 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
215 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
216 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
217 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
218 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
219 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
220 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
221 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
222 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
223 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
224 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
225 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
226 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
227 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
228 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
229 { 0, }
231 MODULE_DEVICE_TABLE(pci, e100_id_table);
233 enum mac {
234 mac_82557_D100_A = 0,
235 mac_82557_D100_B = 1,
236 mac_82557_D100_C = 2,
237 mac_82558_D101_A4 = 4,
238 mac_82558_D101_B0 = 5,
239 mac_82559_D101M = 8,
240 mac_82559_D101S = 9,
241 mac_82550_D102 = 12,
242 mac_82550_D102_C = 13,
243 mac_82551_E = 14,
244 mac_82551_F = 15,
245 mac_82551_10 = 16,
246 mac_unknown = 0xFF,
249 enum phy {
250 phy_100a = 0x000003E0,
251 phy_100c = 0x035002A8,
252 phy_82555_tx = 0x015002A8,
253 phy_nsc_tx = 0x5C002000,
254 phy_82562_et = 0x033002A8,
255 phy_82562_em = 0x032002A8,
256 phy_82562_ek = 0x031002A8,
257 phy_82562_eh = 0x017002A8,
258 phy_82552_v = 0xd061004d,
259 phy_unknown = 0xFFFFFFFF,
262 /* CSR (Control/Status Registers) */
263 struct csr {
264 struct {
265 u8 status;
266 u8 stat_ack;
267 u8 cmd_lo;
268 u8 cmd_hi;
269 u32 gen_ptr;
270 } scb;
271 u32 port;
272 u16 flash_ctrl;
273 u8 eeprom_ctrl_lo;
274 u8 eeprom_ctrl_hi;
275 u32 mdi_ctrl;
276 u32 rx_dma_count;
279 enum scb_status {
280 rus_no_res = 0x08,
281 rus_ready = 0x10,
282 rus_mask = 0x3C,
285 enum ru_state {
286 RU_SUSPENDED = 0,
287 RU_RUNNING = 1,
288 RU_UNINITIALIZED = -1,
291 enum scb_stat_ack {
292 stat_ack_not_ours = 0x00,
293 stat_ack_sw_gen = 0x04,
294 stat_ack_rnr = 0x10,
295 stat_ack_cu_idle = 0x20,
296 stat_ack_frame_rx = 0x40,
297 stat_ack_cu_cmd_done = 0x80,
298 stat_ack_not_present = 0xFF,
299 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
300 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
303 enum scb_cmd_hi {
304 irq_mask_none = 0x00,
305 irq_mask_all = 0x01,
306 irq_sw_gen = 0x02,
309 enum scb_cmd_lo {
310 cuc_nop = 0x00,
311 ruc_start = 0x01,
312 ruc_load_base = 0x06,
313 cuc_start = 0x10,
314 cuc_resume = 0x20,
315 cuc_dump_addr = 0x40,
316 cuc_dump_stats = 0x50,
317 cuc_load_base = 0x60,
318 cuc_dump_reset = 0x70,
321 enum cuc_dump {
322 cuc_dump_complete = 0x0000A005,
323 cuc_dump_reset_complete = 0x0000A007,
326 enum port {
327 software_reset = 0x0000,
328 selftest = 0x0001,
329 selective_reset = 0x0002,
332 enum eeprom_ctrl_lo {
333 eesk = 0x01,
334 eecs = 0x02,
335 eedi = 0x04,
336 eedo = 0x08,
339 enum mdi_ctrl {
340 mdi_write = 0x04000000,
341 mdi_read = 0x08000000,
342 mdi_ready = 0x10000000,
345 enum eeprom_op {
346 op_write = 0x05,
347 op_read = 0x06,
348 op_ewds = 0x10,
349 op_ewen = 0x13,
352 enum eeprom_offsets {
353 eeprom_cnfg_mdix = 0x03,
354 eeprom_phy_iface = 0x06,
355 eeprom_id = 0x0A,
356 eeprom_config_asf = 0x0D,
357 eeprom_smbus_addr = 0x90,
360 enum eeprom_cnfg_mdix {
361 eeprom_mdix_enabled = 0x0080,
364 enum eeprom_phy_iface {
365 NoSuchPhy = 0,
366 I82553AB,
367 I82553C,
368 I82503,
369 DP83840,
370 S80C240,
371 S80C24,
372 I82555,
373 DP83840A = 10,
376 enum eeprom_id {
377 eeprom_id_wol = 0x0020,
380 enum eeprom_config_asf {
381 eeprom_asf = 0x8000,
382 eeprom_gcl = 0x4000,
385 enum cb_status {
386 cb_complete = 0x8000,
387 cb_ok = 0x2000,
391 * cb_command - Command Block flags
392 * @cb_tx_nc: 0: controller does CRC (normal), 1: CRC from skb memory
394 enum cb_command {
395 cb_nop = 0x0000,
396 cb_iaaddr = 0x0001,
397 cb_config = 0x0002,
398 cb_multi = 0x0003,
399 cb_tx = 0x0004,
400 cb_ucode = 0x0005,
401 cb_dump = 0x0006,
402 cb_tx_sf = 0x0008,
403 cb_tx_nc = 0x0010,
404 cb_cid = 0x1f00,
405 cb_i = 0x2000,
406 cb_s = 0x4000,
407 cb_el = 0x8000,
410 struct rfd {
411 __le16 status;
412 __le16 command;
413 __le32 link;
414 __le32 rbd;
415 __le16 actual_size;
416 __le16 size;
419 struct rx {
420 struct rx *next, *prev;
421 struct sk_buff *skb;
422 dma_addr_t dma_addr;
425 #if defined(__BIG_ENDIAN_BITFIELD)
426 #define X(a,b) b,a
427 #else
428 #define X(a,b) a,b
429 #endif
430 struct config {
431 /*0*/ u8 X(byte_count:6, pad0:2);
432 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
433 /*2*/ u8 adaptive_ifs;
434 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
435 term_write_cache_line:1), pad3:4);
436 /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
437 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
438 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
439 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
440 rx_save_overruns : 1), rx_save_bad_frames : 1);
441 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
442 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
443 tx_dynamic_tbd:1);
444 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
445 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
446 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
447 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
448 loopback:2);
449 /*11*/ u8 X(linear_priority:3, pad11:5);
450 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
451 /*13*/ u8 ip_addr_lo;
452 /*14*/ u8 ip_addr_hi;
453 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
454 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
455 pad15_2:1), crs_or_cdt:1);
456 /*16*/ u8 fc_delay_lo;
457 /*17*/ u8 fc_delay_hi;
458 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
459 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
460 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
461 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
462 full_duplex_force:1), full_duplex_pin:1);
463 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
464 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
465 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
466 u8 pad_d102[9];
469 #define E100_MAX_MULTICAST_ADDRS 64
470 struct multi {
471 __le16 count;
472 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
475 /* Important: keep total struct u32-aligned */
476 #define UCODE_SIZE 134
477 struct cb {
478 __le16 status;
479 __le16 command;
480 __le32 link;
481 union {
482 u8 iaaddr[ETH_ALEN];
483 __le32 ucode[UCODE_SIZE];
484 struct config config;
485 struct multi multi;
486 struct {
487 u32 tbd_array;
488 u16 tcb_byte_count;
489 u8 threshold;
490 u8 tbd_count;
491 struct {
492 __le32 buf_addr;
493 __le16 size;
494 u16 eol;
495 } tbd;
496 } tcb;
497 __le32 dump_buffer_addr;
498 } u;
499 struct cb *next, *prev;
500 dma_addr_t dma_addr;
501 struct sk_buff *skb;
504 enum loopback {
505 lb_none = 0, lb_mac = 1, lb_phy = 3,
508 struct stats {
509 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
510 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
511 tx_multiple_collisions, tx_total_collisions;
512 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
513 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
514 rx_short_frame_errors;
515 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
516 __le16 xmt_tco_frames, rcv_tco_frames;
517 __le32 complete;
520 struct mem {
521 struct {
522 u32 signature;
523 u32 result;
524 } selftest;
525 struct stats stats;
526 u8 dump_buf[596];
529 struct param_range {
530 u32 min;
531 u32 max;
532 u32 count;
535 struct params {
536 struct param_range rfds;
537 struct param_range cbs;
540 struct nic {
541 /* Begin: frequently used values: keep adjacent for cache effect */
542 u32 msg_enable ____cacheline_aligned;
543 struct net_device *netdev;
544 struct pci_dev *pdev;
545 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
547 struct rx *rxs ____cacheline_aligned;
548 struct rx *rx_to_use;
549 struct rx *rx_to_clean;
550 struct rfd blank_rfd;
551 enum ru_state ru_running;
553 spinlock_t cb_lock ____cacheline_aligned;
554 spinlock_t cmd_lock;
555 struct csr __iomem *csr;
556 enum scb_cmd_lo cuc_cmd;
557 unsigned int cbs_avail;
558 struct napi_struct napi;
559 struct cb *cbs;
560 struct cb *cb_to_use;
561 struct cb *cb_to_send;
562 struct cb *cb_to_clean;
563 __le16 tx_command;
564 /* End: frequently used values: keep adjacent for cache effect */
566 enum {
567 ich = (1 << 0),
568 promiscuous = (1 << 1),
569 multicast_all = (1 << 2),
570 wol_magic = (1 << 3),
571 ich_10h_workaround = (1 << 4),
572 } flags ____cacheline_aligned;
574 enum mac mac;
575 enum phy phy;
576 struct params params;
577 struct timer_list watchdog;
578 struct mii_if_info mii;
579 struct work_struct tx_timeout_task;
580 enum loopback loopback;
582 struct mem *mem;
583 dma_addr_t dma_addr;
585 struct dma_pool *cbs_pool;
586 dma_addr_t cbs_dma_addr;
587 u8 adaptive_ifs;
588 u8 tx_threshold;
589 u32 tx_frames;
590 u32 tx_collisions;
591 u32 tx_deferred;
592 u32 tx_single_collisions;
593 u32 tx_multiple_collisions;
594 u32 tx_fc_pause;
595 u32 tx_tco_frames;
597 u32 rx_fc_pause;
598 u32 rx_fc_unsupported;
599 u32 rx_tco_frames;
600 u32 rx_short_frame_errors;
601 u32 rx_over_length_errors;
603 u16 eeprom_wc;
604 __le16 eeprom[256];
605 spinlock_t mdio_lock;
606 const struct firmware *fw;
609 static inline void e100_write_flush(struct nic *nic)
611 /* Flush previous PCI writes through intermediate bridges
612 * by doing a benign read */
613 (void)ioread8(&nic->csr->scb.status);
616 static void e100_enable_irq(struct nic *nic)
618 unsigned long flags;
620 spin_lock_irqsave(&nic->cmd_lock, flags);
621 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
622 e100_write_flush(nic);
623 spin_unlock_irqrestore(&nic->cmd_lock, flags);
626 static void e100_disable_irq(struct nic *nic)
628 unsigned long flags;
630 spin_lock_irqsave(&nic->cmd_lock, flags);
631 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
632 e100_write_flush(nic);
633 spin_unlock_irqrestore(&nic->cmd_lock, flags);
636 static void e100_hw_reset(struct nic *nic)
638 /* Put CU and RU into idle with a selective reset to get
639 * device off of PCI bus */
640 iowrite32(selective_reset, &nic->csr->port);
641 e100_write_flush(nic); udelay(20);
643 /* Now fully reset device */
644 iowrite32(software_reset, &nic->csr->port);
645 e100_write_flush(nic); udelay(20);
647 /* Mask off our interrupt line - it's unmasked after reset */
648 e100_disable_irq(nic);
651 static int e100_self_test(struct nic *nic)
653 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
655 /* Passing the self-test is a pretty good indication
656 * that the device can DMA to/from host memory */
658 nic->mem->selftest.signature = 0;
659 nic->mem->selftest.result = 0xFFFFFFFF;
661 iowrite32(selftest | dma_addr, &nic->csr->port);
662 e100_write_flush(nic);
663 /* Wait 10 msec for self-test to complete */
664 msleep(10);
666 /* Interrupts are enabled after self-test */
667 e100_disable_irq(nic);
669 /* Check results of self-test */
670 if (nic->mem->selftest.result != 0) {
671 netif_err(nic, hw, nic->netdev,
672 "Self-test failed: result=0x%08X\n",
673 nic->mem->selftest.result);
674 return -ETIMEDOUT;
676 if (nic->mem->selftest.signature == 0) {
677 netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
678 return -ETIMEDOUT;
681 return 0;
684 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
686 u32 cmd_addr_data[3];
687 u8 ctrl;
688 int i, j;
690 /* Three cmds: write/erase enable, write data, write/erase disable */
691 cmd_addr_data[0] = op_ewen << (addr_len - 2);
692 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
693 le16_to_cpu(data);
694 cmd_addr_data[2] = op_ewds << (addr_len - 2);
696 /* Bit-bang cmds to write word to eeprom */
697 for (j = 0; j < 3; j++) {
699 /* Chip select */
700 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
701 e100_write_flush(nic); udelay(4);
703 for (i = 31; i >= 0; i--) {
704 ctrl = (cmd_addr_data[j] & (1 << i)) ?
705 eecs | eedi : eecs;
706 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
707 e100_write_flush(nic); udelay(4);
709 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
710 e100_write_flush(nic); udelay(4);
712 /* Wait 10 msec for cmd to complete */
713 msleep(10);
715 /* Chip deselect */
716 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
717 e100_write_flush(nic); udelay(4);
721 /* General technique stolen from the eepro100 driver - very clever */
722 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
724 u32 cmd_addr_data;
725 u16 data = 0;
726 u8 ctrl;
727 int i;
729 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
731 /* Chip select */
732 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
733 e100_write_flush(nic); udelay(4);
735 /* Bit-bang to read word from eeprom */
736 for (i = 31; i >= 0; i--) {
737 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
738 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
739 e100_write_flush(nic); udelay(4);
741 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
742 e100_write_flush(nic); udelay(4);
744 /* Eeprom drives a dummy zero to EEDO after receiving
745 * complete address. Use this to adjust addr_len. */
746 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
747 if (!(ctrl & eedo) && i > 16) {
748 *addr_len -= (i - 16);
749 i = 17;
752 data = (data << 1) | (ctrl & eedo ? 1 : 0);
755 /* Chip deselect */
756 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
757 e100_write_flush(nic); udelay(4);
759 return cpu_to_le16(data);
762 /* Load entire EEPROM image into driver cache and validate checksum */
763 static int e100_eeprom_load(struct nic *nic)
765 u16 addr, addr_len = 8, checksum = 0;
767 /* Try reading with an 8-bit addr len to discover actual addr len */
768 e100_eeprom_read(nic, &addr_len, 0);
769 nic->eeprom_wc = 1 << addr_len;
771 for (addr = 0; addr < nic->eeprom_wc; addr++) {
772 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
773 if (addr < nic->eeprom_wc - 1)
774 checksum += le16_to_cpu(nic->eeprom[addr]);
777 /* The checksum, stored in the last word, is calculated such that
778 * the sum of words should be 0xBABA */
779 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
780 netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
781 if (!eeprom_bad_csum_allow)
782 return -EAGAIN;
785 return 0;
788 /* Save (portion of) driver EEPROM cache to device and update checksum */
789 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
791 u16 addr, addr_len = 8, checksum = 0;
793 /* Try reading with an 8-bit addr len to discover actual addr len */
794 e100_eeprom_read(nic, &addr_len, 0);
795 nic->eeprom_wc = 1 << addr_len;
797 if (start + count >= nic->eeprom_wc)
798 return -EINVAL;
800 for (addr = start; addr < start + count; addr++)
801 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
803 /* The checksum, stored in the last word, is calculated such that
804 * the sum of words should be 0xBABA */
805 for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
806 checksum += le16_to_cpu(nic->eeprom[addr]);
807 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
808 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
809 nic->eeprom[nic->eeprom_wc - 1]);
811 return 0;
814 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
815 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
816 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
818 unsigned long flags;
819 unsigned int i;
820 int err = 0;
822 spin_lock_irqsave(&nic->cmd_lock, flags);
824 /* Previous command is accepted when SCB clears */
825 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
826 if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
827 break;
828 cpu_relax();
829 if (unlikely(i > E100_WAIT_SCB_FAST))
830 udelay(5);
832 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
833 err = -EAGAIN;
834 goto err_unlock;
837 if (unlikely(cmd != cuc_resume))
838 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
839 iowrite8(cmd, &nic->csr->scb.cmd_lo);
841 err_unlock:
842 spin_unlock_irqrestore(&nic->cmd_lock, flags);
844 return err;
847 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
848 int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
850 struct cb *cb;
851 unsigned long flags;
852 int err;
854 spin_lock_irqsave(&nic->cb_lock, flags);
856 if (unlikely(!nic->cbs_avail)) {
857 err = -ENOMEM;
858 goto err_unlock;
861 cb = nic->cb_to_use;
862 nic->cb_to_use = cb->next;
863 nic->cbs_avail--;
864 cb->skb = skb;
866 err = cb_prepare(nic, cb, skb);
867 if (err)
868 goto err_unlock;
870 if (unlikely(!nic->cbs_avail))
871 err = -ENOSPC;
874 /* Order is important otherwise we'll be in a race with h/w:
875 * set S-bit in current first, then clear S-bit in previous. */
876 cb->command |= cpu_to_le16(cb_s);
877 dma_wmb();
878 cb->prev->command &= cpu_to_le16(~cb_s);
880 while (nic->cb_to_send != nic->cb_to_use) {
881 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
882 nic->cb_to_send->dma_addr))) {
883 /* Ok, here's where things get sticky. It's
884 * possible that we can't schedule the command
885 * because the controller is too busy, so
886 * let's just queue the command and try again
887 * when another command is scheduled. */
888 if (err == -ENOSPC) {
889 //request a reset
890 schedule_work(&nic->tx_timeout_task);
892 break;
893 } else {
894 nic->cuc_cmd = cuc_resume;
895 nic->cb_to_send = nic->cb_to_send->next;
899 err_unlock:
900 spin_unlock_irqrestore(&nic->cb_lock, flags);
902 return err;
905 static int mdio_read(struct net_device *netdev, int addr, int reg)
907 struct nic *nic = netdev_priv(netdev);
908 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
911 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
913 struct nic *nic = netdev_priv(netdev);
915 nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
918 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
919 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
921 u32 data_out = 0;
922 unsigned int i;
923 unsigned long flags;
927 * Stratus87247: we shouldn't be writing the MDI control
928 * register until the Ready bit shows True. Also, since
929 * manipulation of the MDI control registers is a multi-step
930 * procedure it should be done under lock.
932 spin_lock_irqsave(&nic->mdio_lock, flags);
933 for (i = 100; i; --i) {
934 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
935 break;
936 udelay(20);
938 if (unlikely(!i)) {
939 netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
940 spin_unlock_irqrestore(&nic->mdio_lock, flags);
941 return 0; /* No way to indicate timeout error */
943 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
945 for (i = 0; i < 100; i++) {
946 udelay(20);
947 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
948 break;
950 spin_unlock_irqrestore(&nic->mdio_lock, flags);
951 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
952 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
953 dir == mdi_read ? "READ" : "WRITE",
954 addr, reg, data, data_out);
955 return (u16)data_out;
958 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
959 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
960 u32 addr,
961 u32 dir,
962 u32 reg,
963 u16 data)
965 if ((reg == MII_BMCR) && (dir == mdi_write)) {
966 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
967 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
968 MII_ADVERTISE);
971 * Workaround Si issue where sometimes the part will not
972 * autoneg to 100Mbps even when advertised.
974 if (advert & ADVERTISE_100FULL)
975 data |= BMCR_SPEED100 | BMCR_FULLDPLX;
976 else if (advert & ADVERTISE_100HALF)
977 data |= BMCR_SPEED100;
980 return mdio_ctrl_hw(nic, addr, dir, reg, data);
983 /* Fully software-emulated mdio_ctrl() function for cards without
984 * MII-compliant PHYs.
985 * For now, this is mainly geared towards 80c24 support; in case of further
986 * requirements for other types (i82503, ...?) either extend this mechanism
987 * or split it, whichever is cleaner.
989 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
990 u32 addr,
991 u32 dir,
992 u32 reg,
993 u16 data)
995 /* might need to allocate a netdev_priv'ed register array eventually
996 * to be able to record state changes, but for now
997 * some fully hardcoded register handling ought to be ok I guess. */
999 if (dir == mdi_read) {
1000 switch (reg) {
1001 case MII_BMCR:
1002 /* Auto-negotiation, right? */
1003 return BMCR_ANENABLE |
1004 BMCR_FULLDPLX;
1005 case MII_BMSR:
1006 return BMSR_LSTATUS /* for mii_link_ok() */ |
1007 BMSR_ANEGCAPABLE |
1008 BMSR_10FULL;
1009 case MII_ADVERTISE:
1010 /* 80c24 is a "combo card" PHY, right? */
1011 return ADVERTISE_10HALF |
1012 ADVERTISE_10FULL;
1013 default:
1014 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1015 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1016 dir == mdi_read ? "READ" : "WRITE",
1017 addr, reg, data);
1018 return 0xFFFF;
1020 } else {
1021 switch (reg) {
1022 default:
1023 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1024 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1025 dir == mdi_read ? "READ" : "WRITE",
1026 addr, reg, data);
1027 return 0xFFFF;
1031 static inline int e100_phy_supports_mii(struct nic *nic)
1033 /* for now, just check it by comparing whether we
1034 are using MII software emulation.
1036 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1039 static void e100_get_defaults(struct nic *nic)
1041 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1042 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
1044 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1045 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1046 if (nic->mac == mac_unknown)
1047 nic->mac = mac_82557_D100_A;
1049 nic->params.rfds = rfds;
1050 nic->params.cbs = cbs;
1052 /* Quadwords to DMA into FIFO before starting frame transmit */
1053 nic->tx_threshold = 0xE0;
1055 /* no interrupt for every tx completion, delay = 256us if not 557 */
1056 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1057 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1059 /* Template for a freshly allocated RFD */
1060 nic->blank_rfd.command = 0;
1061 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1062 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1064 /* MII setup */
1065 nic->mii.phy_id_mask = 0x1F;
1066 nic->mii.reg_num_mask = 0x1F;
1067 nic->mii.dev = nic->netdev;
1068 nic->mii.mdio_read = mdio_read;
1069 nic->mii.mdio_write = mdio_write;
1072 static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1074 struct config *config = &cb->u.config;
1075 u8 *c = (u8 *)config;
1076 struct net_device *netdev = nic->netdev;
1078 cb->command = cpu_to_le16(cb_config);
1080 memset(config, 0, sizeof(struct config));
1082 config->byte_count = 0x16; /* bytes in this struct */
1083 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
1084 config->direct_rx_dma = 0x1; /* reserved */
1085 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
1086 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
1087 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
1088 config->tx_underrun_retry = 0x3; /* # of underrun retries */
1089 if (e100_phy_supports_mii(nic))
1090 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */
1091 config->pad10 = 0x6;
1092 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1093 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1094 config->ifs = 0x6; /* x16 = inter frame spacing */
1095 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
1096 config->pad15_1 = 0x1;
1097 config->pad15_2 = 0x1;
1098 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
1099 config->fc_delay_hi = 0x40; /* time delay for fc frame */
1100 config->tx_padding = 0x1; /* 1=pad short frames */
1101 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
1102 config->pad18 = 0x1;
1103 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
1104 config->pad20_1 = 0x1F;
1105 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
1106 config->pad21_1 = 0x5;
1108 config->adaptive_ifs = nic->adaptive_ifs;
1109 config->loopback = nic->loopback;
1111 if (nic->mii.force_media && nic->mii.full_duplex)
1112 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1114 if (nic->flags & promiscuous || nic->loopback) {
1115 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1116 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1117 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1120 if (unlikely(netdev->features & NETIF_F_RXFCS))
1121 config->rx_crc_transfer = 0x1; /* 1=save, 0=discard */
1123 if (nic->flags & multicast_all)
1124 config->multicast_all = 0x1; /* 1=accept, 0=no */
1126 /* disable WoL when up */
1127 if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1128 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1130 if (nic->mac >= mac_82558_D101_A4) {
1131 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1132 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1133 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1134 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
1135 if (nic->mac >= mac_82559_D101M) {
1136 config->tno_intr = 0x1; /* TCO stats enable */
1137 /* Enable TCO in extended config */
1138 if (nic->mac >= mac_82551_10) {
1139 config->byte_count = 0x20; /* extended bytes */
1140 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1142 } else {
1143 config->standard_stat_counter = 0x0;
1147 if (netdev->features & NETIF_F_RXALL) {
1148 config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1149 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1150 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1153 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1154 c + 0);
1155 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1156 c + 8);
1157 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1158 c + 16);
1159 return 0;
1162 /*************************************************************************
1163 * CPUSaver parameters
1165 * All CPUSaver parameters are 16-bit literals that are part of a
1166 * "move immediate value" instruction. By changing the value of
1167 * the literal in the instruction before the code is loaded, the
1168 * driver can change the algorithm.
1170 * INTDELAY - This loads the dead-man timer with its initial value.
1171 * When this timer expires the interrupt is asserted, and the
1172 * timer is reset each time a new packet is received. (see
1173 * BUNDLEMAX below to set the limit on number of chained packets)
1174 * The current default is 0x600 or 1536. Experiments show that
1175 * the value should probably stay within the 0x200 - 0x1000.
1177 * BUNDLEMAX -
1178 * This sets the maximum number of frames that will be bundled. In
1179 * some situations, such as the TCP windowing algorithm, it may be
1180 * better to limit the growth of the bundle size than let it go as
1181 * high as it can, because that could cause too much added latency.
1182 * The default is six, because this is the number of packets in the
1183 * default TCP window size. A value of 1 would make CPUSaver indicate
1184 * an interrupt for every frame received. If you do not want to put
1185 * a limit on the bundle size, set this value to xFFFF.
1187 * BUNDLESMALL -
1188 * This contains a bit-mask describing the minimum size frame that
1189 * will be bundled. The default masks the lower 7 bits, which means
1190 * that any frame less than 128 bytes in length will not be bundled,
1191 * but will instead immediately generate an interrupt. This does
1192 * not affect the current bundle in any way. Any frame that is 128
1193 * bytes or large will be bundled normally. This feature is meant
1194 * to provide immediate indication of ACK frames in a TCP environment.
1195 * Customers were seeing poor performance when a machine with CPUSaver
1196 * enabled was sending but not receiving. The delay introduced when
1197 * the ACKs were received was enough to reduce total throughput, because
1198 * the sender would sit idle until the ACK was finally seen.
1200 * The current default is 0xFF80, which masks out the lower 7 bits.
1201 * This means that any frame which is x7F (127) bytes or smaller
1202 * will cause an immediate interrupt. Because this value must be a
1203 * bit mask, there are only a few valid values that can be used. To
1204 * turn this feature off, the driver can write the value xFFFF to the
1205 * lower word of this instruction (in the same way that the other
1206 * parameters are used). Likewise, a value of 0xF800 (2047) would
1207 * cause an interrupt to be generated for every frame, because all
1208 * standard Ethernet frames are <= 2047 bytes in length.
1209 *************************************************************************/
1211 /* if you wish to disable the ucode functionality, while maintaining the
1212 * workarounds it provides, set the following defines to:
1213 * BUNDLESMALL 0
1214 * BUNDLEMAX 1
1215 * INTDELAY 1
1217 #define BUNDLESMALL 1
1218 #define BUNDLEMAX (u16)6
1219 #define INTDELAY (u16)1536 /* 0x600 */
1221 /* Initialize firmware */
1222 static const struct firmware *e100_request_firmware(struct nic *nic)
1224 const char *fw_name;
1225 const struct firmware *fw = nic->fw;
1226 u8 timer, bundle, min_size;
1227 int err = 0;
1228 bool required = false;
1230 /* do not load u-code for ICH devices */
1231 if (nic->flags & ich)
1232 return NULL;
1234 /* Search for ucode match against h/w revision
1236 * Based on comments in the source code for the FreeBSD fxp
1237 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1239 * "fixes for bugs in the B-step hardware (specifically, bugs
1240 * with Inline Receive)."
1242 * So we must fail if it cannot be loaded.
1244 * The other microcode files are only required for the optional
1245 * CPUSaver feature. Nice to have, but no reason to fail.
1247 if (nic->mac == mac_82559_D101M) {
1248 fw_name = FIRMWARE_D101M;
1249 } else if (nic->mac == mac_82559_D101S) {
1250 fw_name = FIRMWARE_D101S;
1251 } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1252 fw_name = FIRMWARE_D102E;
1253 required = true;
1254 } else { /* No ucode on other devices */
1255 return NULL;
1258 /* If the firmware has not previously been loaded, request a pointer
1259 * to it. If it was previously loaded, we are reinitializing the
1260 * adapter, possibly in a resume from hibernate, in which case
1261 * request_firmware() cannot be used.
1263 if (!fw)
1264 err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1266 if (err) {
1267 if (required) {
1268 netif_err(nic, probe, nic->netdev,
1269 "Failed to load firmware \"%s\": %d\n",
1270 fw_name, err);
1271 return ERR_PTR(err);
1272 } else {
1273 netif_info(nic, probe, nic->netdev,
1274 "CPUSaver disabled. Needs \"%s\": %d\n",
1275 fw_name, err);
1276 return NULL;
1280 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1281 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1282 if (fw->size != UCODE_SIZE * 4 + 3) {
1283 netif_err(nic, probe, nic->netdev,
1284 "Firmware \"%s\" has wrong size %zu\n",
1285 fw_name, fw->size);
1286 release_firmware(fw);
1287 return ERR_PTR(-EINVAL);
1290 /* Read timer, bundle and min_size from end of firmware blob */
1291 timer = fw->data[UCODE_SIZE * 4];
1292 bundle = fw->data[UCODE_SIZE * 4 + 1];
1293 min_size = fw->data[UCODE_SIZE * 4 + 2];
1295 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1296 min_size >= UCODE_SIZE) {
1297 netif_err(nic, probe, nic->netdev,
1298 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1299 fw_name, timer, bundle, min_size);
1300 release_firmware(fw);
1301 return ERR_PTR(-EINVAL);
1304 /* OK, firmware is validated and ready to use. Save a pointer
1305 * to it in the nic */
1306 nic->fw = fw;
1307 return fw;
1310 static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1311 struct sk_buff *skb)
1313 const struct firmware *fw = (void *)skb;
1314 u8 timer, bundle, min_size;
1316 /* It's not a real skb; we just abused the fact that e100_exec_cb
1317 will pass it through to here... */
1318 cb->skb = NULL;
1320 /* firmware is stored as little endian already */
1321 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1323 /* Read timer, bundle and min_size from end of firmware blob */
1324 timer = fw->data[UCODE_SIZE * 4];
1325 bundle = fw->data[UCODE_SIZE * 4 + 1];
1326 min_size = fw->data[UCODE_SIZE * 4 + 2];
1328 /* Insert user-tunable settings in cb->u.ucode */
1329 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1330 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1331 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1332 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1333 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1334 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1336 cb->command = cpu_to_le16(cb_ucode | cb_el);
1337 return 0;
1340 static inline int e100_load_ucode_wait(struct nic *nic)
1342 const struct firmware *fw;
1343 int err = 0, counter = 50;
1344 struct cb *cb = nic->cb_to_clean;
1346 fw = e100_request_firmware(nic);
1347 /* If it's NULL, then no ucode is required */
1348 if (!fw || IS_ERR(fw))
1349 return PTR_ERR(fw);
1351 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1352 netif_err(nic, probe, nic->netdev,
1353 "ucode cmd failed with error %d\n", err);
1355 /* must restart cuc */
1356 nic->cuc_cmd = cuc_start;
1358 /* wait for completion */
1359 e100_write_flush(nic);
1360 udelay(10);
1362 /* wait for possibly (ouch) 500ms */
1363 while (!(cb->status & cpu_to_le16(cb_complete))) {
1364 msleep(10);
1365 if (!--counter) break;
1368 /* ack any interrupts, something could have been set */
1369 iowrite8(~0, &nic->csr->scb.stat_ack);
1371 /* if the command failed, or is not OK, notify and return */
1372 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1373 netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1374 err = -EPERM;
1377 return err;
1380 static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1381 struct sk_buff *skb)
1383 cb->command = cpu_to_le16(cb_iaaddr);
1384 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1385 return 0;
1388 static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1390 cb->command = cpu_to_le16(cb_dump);
1391 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1392 offsetof(struct mem, dump_buf));
1393 return 0;
1396 static int e100_phy_check_without_mii(struct nic *nic)
1398 u8 phy_type;
1399 int without_mii;
1401 phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1403 switch (phy_type) {
1404 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1405 case I82503: /* Non-MII PHY; UNTESTED! */
1406 case S80C24: /* Non-MII PHY; tested and working */
1407 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1408 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1409 * doesn't have a programming interface of any sort. The
1410 * media is sensed automatically based on how the link partner
1411 * is configured. This is, in essence, manual configuration.
1413 netif_info(nic, probe, nic->netdev,
1414 "found MII-less i82503 or 80c24 or other PHY\n");
1416 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1417 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1419 /* these might be needed for certain MII-less cards...
1420 * nic->flags |= ich;
1421 * nic->flags |= ich_10h_workaround; */
1423 without_mii = 1;
1424 break;
1425 default:
1426 without_mii = 0;
1427 break;
1429 return without_mii;
1432 #define NCONFIG_AUTO_SWITCH 0x0080
1433 #define MII_NSC_CONG MII_RESV1
1434 #define NSC_CONG_ENABLE 0x0100
1435 #define NSC_CONG_TXREADY 0x0400
1436 #define ADVERTISE_FC_SUPPORTED 0x0400
1437 static int e100_phy_init(struct nic *nic)
1439 struct net_device *netdev = nic->netdev;
1440 u32 addr;
1441 u16 bmcr, stat, id_lo, id_hi, cong;
1443 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1444 for (addr = 0; addr < 32; addr++) {
1445 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1446 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1447 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1448 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1449 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1450 break;
1452 if (addr == 32) {
1453 /* uhoh, no PHY detected: check whether we seem to be some
1454 * weird, rare variant which is *known* to not have any MII.
1455 * But do this AFTER MII checking only, since this does
1456 * lookup of EEPROM values which may easily be unreliable. */
1457 if (e100_phy_check_without_mii(nic))
1458 return 0; /* simply return and hope for the best */
1459 else {
1460 /* for unknown cases log a fatal error */
1461 netif_err(nic, hw, nic->netdev,
1462 "Failed to locate any known PHY, aborting\n");
1463 return -EAGAIN;
1465 } else
1466 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1467 "phy_addr = %d\n", nic->mii.phy_id);
1469 /* Get phy ID */
1470 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1471 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1472 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1473 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1474 "phy ID = 0x%08X\n", nic->phy);
1476 /* Select the phy and isolate the rest */
1477 for (addr = 0; addr < 32; addr++) {
1478 if (addr != nic->mii.phy_id) {
1479 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1480 } else if (nic->phy != phy_82552_v) {
1481 bmcr = mdio_read(netdev, addr, MII_BMCR);
1482 mdio_write(netdev, addr, MII_BMCR,
1483 bmcr & ~BMCR_ISOLATE);
1487 * Workaround for 82552:
1488 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1489 * other phy_id's) using bmcr value from addr discovery loop above.
1491 if (nic->phy == phy_82552_v)
1492 mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1493 bmcr & ~BMCR_ISOLATE);
1495 /* Handle National tx phys */
1496 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1497 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1498 /* Disable congestion control */
1499 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1500 cong |= NSC_CONG_TXREADY;
1501 cong &= ~NSC_CONG_ENABLE;
1502 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1505 if (nic->phy == phy_82552_v) {
1506 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1508 /* assign special tweaked mdio_ctrl() function */
1509 nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1511 /* Workaround Si not advertising flow-control during autoneg */
1512 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1513 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1515 /* Reset for the above changes to take effect */
1516 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1517 bmcr |= BMCR_RESET;
1518 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1519 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1520 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1521 (nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1522 /* enable/disable MDI/MDI-X auto-switching. */
1523 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1524 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1527 return 0;
1530 static int e100_hw_init(struct nic *nic)
1532 int err = 0;
1534 e100_hw_reset(nic);
1536 netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1537 if (!in_interrupt() && (err = e100_self_test(nic)))
1538 return err;
1540 if ((err = e100_phy_init(nic)))
1541 return err;
1542 if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1543 return err;
1544 if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1545 return err;
1546 if ((err = e100_load_ucode_wait(nic)))
1547 return err;
1548 if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1549 return err;
1550 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1551 return err;
1552 if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1553 nic->dma_addr + offsetof(struct mem, stats))))
1554 return err;
1555 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1556 return err;
1558 e100_disable_irq(nic);
1560 return 0;
1563 static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1565 struct net_device *netdev = nic->netdev;
1566 struct netdev_hw_addr *ha;
1567 u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1569 cb->command = cpu_to_le16(cb_multi);
1570 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1571 i = 0;
1572 netdev_for_each_mc_addr(ha, netdev) {
1573 if (i == count)
1574 break;
1575 memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1576 ETH_ALEN);
1578 return 0;
1581 static void e100_set_multicast_list(struct net_device *netdev)
1583 struct nic *nic = netdev_priv(netdev);
1585 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1586 "mc_count=%d, flags=0x%04X\n",
1587 netdev_mc_count(netdev), netdev->flags);
1589 if (netdev->flags & IFF_PROMISC)
1590 nic->flags |= promiscuous;
1591 else
1592 nic->flags &= ~promiscuous;
1594 if (netdev->flags & IFF_ALLMULTI ||
1595 netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1596 nic->flags |= multicast_all;
1597 else
1598 nic->flags &= ~multicast_all;
1600 e100_exec_cb(nic, NULL, e100_configure);
1601 e100_exec_cb(nic, NULL, e100_multi);
1604 static void e100_update_stats(struct nic *nic)
1606 struct net_device *dev = nic->netdev;
1607 struct net_device_stats *ns = &dev->stats;
1608 struct stats *s = &nic->mem->stats;
1609 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1610 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1611 &s->complete;
1613 /* Device's stats reporting may take several microseconds to
1614 * complete, so we're always waiting for results of the
1615 * previous command. */
1617 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1618 *complete = 0;
1619 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1620 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1621 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1622 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1623 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1624 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1625 ns->collisions += nic->tx_collisions;
1626 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1627 le32_to_cpu(s->tx_lost_crs);
1628 nic->rx_short_frame_errors +=
1629 le32_to_cpu(s->rx_short_frame_errors);
1630 ns->rx_length_errors = nic->rx_short_frame_errors +
1631 nic->rx_over_length_errors;
1632 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1633 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1634 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1635 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1636 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1637 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1638 le32_to_cpu(s->rx_alignment_errors) +
1639 le32_to_cpu(s->rx_short_frame_errors) +
1640 le32_to_cpu(s->rx_cdt_errors);
1641 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1642 nic->tx_single_collisions +=
1643 le32_to_cpu(s->tx_single_collisions);
1644 nic->tx_multiple_collisions +=
1645 le32_to_cpu(s->tx_multiple_collisions);
1646 if (nic->mac >= mac_82558_D101_A4) {
1647 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1648 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1649 nic->rx_fc_unsupported +=
1650 le32_to_cpu(s->fc_rcv_unsupported);
1651 if (nic->mac >= mac_82559_D101M) {
1652 nic->tx_tco_frames +=
1653 le16_to_cpu(s->xmt_tco_frames);
1654 nic->rx_tco_frames +=
1655 le16_to_cpu(s->rcv_tco_frames);
1661 if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1662 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1663 "exec cuc_dump_reset failed\n");
1666 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1668 /* Adjust inter-frame-spacing (IFS) between two transmits if
1669 * we're getting collisions on a half-duplex connection. */
1671 if (duplex == DUPLEX_HALF) {
1672 u32 prev = nic->adaptive_ifs;
1673 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1675 if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1676 (nic->tx_frames > min_frames)) {
1677 if (nic->adaptive_ifs < 60)
1678 nic->adaptive_ifs += 5;
1679 } else if (nic->tx_frames < min_frames) {
1680 if (nic->adaptive_ifs >= 5)
1681 nic->adaptive_ifs -= 5;
1683 if (nic->adaptive_ifs != prev)
1684 e100_exec_cb(nic, NULL, e100_configure);
1688 static void e100_watchdog(struct timer_list *t)
1690 struct nic *nic = from_timer(nic, t, watchdog);
1691 struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1692 u32 speed;
1694 netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1695 "right now = %ld\n", jiffies);
1697 /* mii library handles link maintenance tasks */
1699 mii_ethtool_gset(&nic->mii, &cmd);
1700 speed = ethtool_cmd_speed(&cmd);
1702 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1703 netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1704 speed == SPEED_100 ? 100 : 10,
1705 cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1706 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1707 netdev_info(nic->netdev, "NIC Link is Down\n");
1710 mii_check_link(&nic->mii);
1712 /* Software generated interrupt to recover from (rare) Rx
1713 * allocation failure.
1714 * Unfortunately have to use a spinlock to not re-enable interrupts
1715 * accidentally, due to hardware that shares a register between the
1716 * interrupt mask bit and the SW Interrupt generation bit */
1717 spin_lock_irq(&nic->cmd_lock);
1718 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1719 e100_write_flush(nic);
1720 spin_unlock_irq(&nic->cmd_lock);
1722 e100_update_stats(nic);
1723 e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1725 if (nic->mac <= mac_82557_D100_C)
1726 /* Issue a multicast command to workaround a 557 lock up */
1727 e100_set_multicast_list(nic->netdev);
1729 if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1730 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1731 nic->flags |= ich_10h_workaround;
1732 else
1733 nic->flags &= ~ich_10h_workaround;
1735 mod_timer(&nic->watchdog,
1736 round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1739 static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1740 struct sk_buff *skb)
1742 dma_addr_t dma_addr;
1743 cb->command = nic->tx_command;
1745 dma_addr = pci_map_single(nic->pdev,
1746 skb->data, skb->len, PCI_DMA_TODEVICE);
1747 /* If we can't map the skb, have the upper layer try later */
1748 if (pci_dma_mapping_error(nic->pdev, dma_addr)) {
1749 dev_kfree_skb_any(skb);
1750 skb = NULL;
1751 return -ENOMEM;
1755 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1756 * testing, ie sending frames with bad CRC.
1758 if (unlikely(skb->no_fcs))
1759 cb->command |= cpu_to_le16(cb_tx_nc);
1760 else
1761 cb->command &= ~cpu_to_le16(cb_tx_nc);
1763 /* interrupt every 16 packets regardless of delay */
1764 if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1765 cb->command |= cpu_to_le16(cb_i);
1766 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1767 cb->u.tcb.tcb_byte_count = 0;
1768 cb->u.tcb.threshold = nic->tx_threshold;
1769 cb->u.tcb.tbd_count = 1;
1770 cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1771 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1772 skb_tx_timestamp(skb);
1773 return 0;
1776 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1777 struct net_device *netdev)
1779 struct nic *nic = netdev_priv(netdev);
1780 int err;
1782 if (nic->flags & ich_10h_workaround) {
1783 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1784 Issue a NOP command followed by a 1us delay before
1785 issuing the Tx command. */
1786 if (e100_exec_cmd(nic, cuc_nop, 0))
1787 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1788 "exec cuc_nop failed\n");
1789 udelay(1);
1792 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1794 switch (err) {
1795 case -ENOSPC:
1796 /* We queued the skb, but now we're out of space. */
1797 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1798 "No space for CB\n");
1799 netif_stop_queue(netdev);
1800 break;
1801 case -ENOMEM:
1802 /* This is a hard error - log it. */
1803 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1804 "Out of Tx resources, returning skb\n");
1805 netif_stop_queue(netdev);
1806 return NETDEV_TX_BUSY;
1809 return NETDEV_TX_OK;
1812 static int e100_tx_clean(struct nic *nic)
1814 struct net_device *dev = nic->netdev;
1815 struct cb *cb;
1816 int tx_cleaned = 0;
1818 spin_lock(&nic->cb_lock);
1820 /* Clean CBs marked complete */
1821 for (cb = nic->cb_to_clean;
1822 cb->status & cpu_to_le16(cb_complete);
1823 cb = nic->cb_to_clean = cb->next) {
1824 dma_rmb(); /* read skb after status */
1825 netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1826 "cb[%d]->status = 0x%04X\n",
1827 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1828 cb->status);
1830 if (likely(cb->skb != NULL)) {
1831 dev->stats.tx_packets++;
1832 dev->stats.tx_bytes += cb->skb->len;
1834 pci_unmap_single(nic->pdev,
1835 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1836 le16_to_cpu(cb->u.tcb.tbd.size),
1837 PCI_DMA_TODEVICE);
1838 dev_kfree_skb_any(cb->skb);
1839 cb->skb = NULL;
1840 tx_cleaned = 1;
1842 cb->status = 0;
1843 nic->cbs_avail++;
1846 spin_unlock(&nic->cb_lock);
1848 /* Recover from running out of Tx resources in xmit_frame */
1849 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1850 netif_wake_queue(nic->netdev);
1852 return tx_cleaned;
1855 static void e100_clean_cbs(struct nic *nic)
1857 if (nic->cbs) {
1858 while (nic->cbs_avail != nic->params.cbs.count) {
1859 struct cb *cb = nic->cb_to_clean;
1860 if (cb->skb) {
1861 pci_unmap_single(nic->pdev,
1862 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1863 le16_to_cpu(cb->u.tcb.tbd.size),
1864 PCI_DMA_TODEVICE);
1865 dev_kfree_skb(cb->skb);
1867 nic->cb_to_clean = nic->cb_to_clean->next;
1868 nic->cbs_avail++;
1870 dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1871 nic->cbs = NULL;
1872 nic->cbs_avail = 0;
1874 nic->cuc_cmd = cuc_start;
1875 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1876 nic->cbs;
1879 static int e100_alloc_cbs(struct nic *nic)
1881 struct cb *cb;
1882 unsigned int i, count = nic->params.cbs.count;
1884 nic->cuc_cmd = cuc_start;
1885 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1886 nic->cbs_avail = 0;
1888 nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1889 &nic->cbs_dma_addr);
1890 if (!nic->cbs)
1891 return -ENOMEM;
1893 for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1894 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1895 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1897 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1898 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1899 ((i+1) % count) * sizeof(struct cb));
1902 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1903 nic->cbs_avail = count;
1905 return 0;
1908 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1910 if (!nic->rxs) return;
1911 if (RU_SUSPENDED != nic->ru_running) return;
1913 /* handle init time starts */
1914 if (!rx) rx = nic->rxs;
1916 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1917 if (rx->skb) {
1918 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1919 nic->ru_running = RU_RUNNING;
1923 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1924 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1926 if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1927 return -ENOMEM;
1929 /* Init, and map the RFD. */
1930 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1931 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1932 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1934 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1935 dev_kfree_skb_any(rx->skb);
1936 rx->skb = NULL;
1937 rx->dma_addr = 0;
1938 return -ENOMEM;
1941 /* Link the RFD to end of RFA by linking previous RFD to
1942 * this one. We are safe to touch the previous RFD because
1943 * it is protected by the before last buffer's el bit being set */
1944 if (rx->prev->skb) {
1945 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1946 put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1947 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1948 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1951 return 0;
1954 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1955 unsigned int *work_done, unsigned int work_to_do)
1957 struct net_device *dev = nic->netdev;
1958 struct sk_buff *skb = rx->skb;
1959 struct rfd *rfd = (struct rfd *)skb->data;
1960 u16 rfd_status, actual_size;
1961 u16 fcs_pad = 0;
1963 if (unlikely(work_done && *work_done >= work_to_do))
1964 return -EAGAIN;
1966 /* Need to sync before taking a peek at cb_complete bit */
1967 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1968 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1969 rfd_status = le16_to_cpu(rfd->status);
1971 netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1972 "status=0x%04X\n", rfd_status);
1973 dma_rmb(); /* read size after status bit */
1975 /* If data isn't ready, nothing to indicate */
1976 if (unlikely(!(rfd_status & cb_complete))) {
1977 /* If the next buffer has the el bit, but we think the receiver
1978 * is still running, check to see if it really stopped while
1979 * we had interrupts off.
1980 * This allows for a fast restart without re-enabling
1981 * interrupts */
1982 if ((le16_to_cpu(rfd->command) & cb_el) &&
1983 (RU_RUNNING == nic->ru_running))
1985 if (ioread8(&nic->csr->scb.status) & rus_no_res)
1986 nic->ru_running = RU_SUSPENDED;
1987 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
1988 sizeof(struct rfd),
1989 PCI_DMA_FROMDEVICE);
1990 return -ENODATA;
1993 /* Get actual data size */
1994 if (unlikely(dev->features & NETIF_F_RXFCS))
1995 fcs_pad = 4;
1996 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1997 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1998 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
2000 /* Get data */
2001 pci_unmap_single(nic->pdev, rx->dma_addr,
2002 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2004 /* If this buffer has the el bit, but we think the receiver
2005 * is still running, check to see if it really stopped while
2006 * we had interrupts off.
2007 * This allows for a fast restart without re-enabling interrupts.
2008 * This can happen when the RU sees the size change but also sees
2009 * the el bit set. */
2010 if ((le16_to_cpu(rfd->command) & cb_el) &&
2011 (RU_RUNNING == nic->ru_running)) {
2013 if (ioread8(&nic->csr->scb.status) & rus_no_res)
2014 nic->ru_running = RU_SUSPENDED;
2017 /* Pull off the RFD and put the actual data (minus eth hdr) */
2018 skb_reserve(skb, sizeof(struct rfd));
2019 skb_put(skb, actual_size);
2020 skb->protocol = eth_type_trans(skb, nic->netdev);
2022 /* If we are receiving all frames, then don't bother
2023 * checking for errors.
2025 if (unlikely(dev->features & NETIF_F_RXALL)) {
2026 if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2027 /* Received oversized frame, but keep it. */
2028 nic->rx_over_length_errors++;
2029 goto process_skb;
2032 if (unlikely(!(rfd_status & cb_ok))) {
2033 /* Don't indicate if hardware indicates errors */
2034 dev_kfree_skb_any(skb);
2035 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2036 /* Don't indicate oversized frames */
2037 nic->rx_over_length_errors++;
2038 dev_kfree_skb_any(skb);
2039 } else {
2040 process_skb:
2041 dev->stats.rx_packets++;
2042 dev->stats.rx_bytes += (actual_size - fcs_pad);
2043 netif_receive_skb(skb);
2044 if (work_done)
2045 (*work_done)++;
2048 rx->skb = NULL;
2050 return 0;
2053 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2054 unsigned int work_to_do)
2056 struct rx *rx;
2057 int restart_required = 0, err = 0;
2058 struct rx *old_before_last_rx, *new_before_last_rx;
2059 struct rfd *old_before_last_rfd, *new_before_last_rfd;
2061 /* Indicate newly arrived packets */
2062 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2063 err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2064 /* Hit quota or no more to clean */
2065 if (-EAGAIN == err || -ENODATA == err)
2066 break;
2070 /* On EAGAIN, hit quota so have more work to do, restart once
2071 * cleanup is complete.
2072 * Else, are we already rnr? then pay attention!!! this ensures that
2073 * the state machine progression never allows a start with a
2074 * partially cleaned list, avoiding a race between hardware
2075 * and rx_to_clean when in NAPI mode */
2076 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2077 restart_required = 1;
2079 old_before_last_rx = nic->rx_to_use->prev->prev;
2080 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2082 /* Alloc new skbs to refill list */
2083 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2084 if (unlikely(e100_rx_alloc_skb(nic, rx)))
2085 break; /* Better luck next time (see watchdog) */
2088 new_before_last_rx = nic->rx_to_use->prev->prev;
2089 if (new_before_last_rx != old_before_last_rx) {
2090 /* Set the el-bit on the buffer that is before the last buffer.
2091 * This lets us update the next pointer on the last buffer
2092 * without worrying about hardware touching it.
2093 * We set the size to 0 to prevent hardware from touching this
2094 * buffer.
2095 * When the hardware hits the before last buffer with el-bit
2096 * and size of 0, it will RNR interrupt, the RUS will go into
2097 * the No Resources state. It will not complete nor write to
2098 * this buffer. */
2099 new_before_last_rfd =
2100 (struct rfd *)new_before_last_rx->skb->data;
2101 new_before_last_rfd->size = 0;
2102 new_before_last_rfd->command |= cpu_to_le16(cb_el);
2103 pci_dma_sync_single_for_device(nic->pdev,
2104 new_before_last_rx->dma_addr, sizeof(struct rfd),
2105 PCI_DMA_BIDIRECTIONAL);
2107 /* Now that we have a new stopping point, we can clear the old
2108 * stopping point. We must sync twice to get the proper
2109 * ordering on the hardware side of things. */
2110 old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2111 pci_dma_sync_single_for_device(nic->pdev,
2112 old_before_last_rx->dma_addr, sizeof(struct rfd),
2113 PCI_DMA_BIDIRECTIONAL);
2114 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2115 + ETH_FCS_LEN);
2116 pci_dma_sync_single_for_device(nic->pdev,
2117 old_before_last_rx->dma_addr, sizeof(struct rfd),
2118 PCI_DMA_BIDIRECTIONAL);
2121 if (restart_required) {
2122 // ack the rnr?
2123 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2124 e100_start_receiver(nic, nic->rx_to_clean);
2125 if (work_done)
2126 (*work_done)++;
2130 static void e100_rx_clean_list(struct nic *nic)
2132 struct rx *rx;
2133 unsigned int i, count = nic->params.rfds.count;
2135 nic->ru_running = RU_UNINITIALIZED;
2137 if (nic->rxs) {
2138 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2139 if (rx->skb) {
2140 pci_unmap_single(nic->pdev, rx->dma_addr,
2141 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2142 dev_kfree_skb(rx->skb);
2145 kfree(nic->rxs);
2146 nic->rxs = NULL;
2149 nic->rx_to_use = nic->rx_to_clean = NULL;
2152 static int e100_rx_alloc_list(struct nic *nic)
2154 struct rx *rx;
2155 unsigned int i, count = nic->params.rfds.count;
2156 struct rfd *before_last;
2158 nic->rx_to_use = nic->rx_to_clean = NULL;
2159 nic->ru_running = RU_UNINITIALIZED;
2161 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2162 return -ENOMEM;
2164 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2165 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2166 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2167 if (e100_rx_alloc_skb(nic, rx)) {
2168 e100_rx_clean_list(nic);
2169 return -ENOMEM;
2172 /* Set the el-bit on the buffer that is before the last buffer.
2173 * This lets us update the next pointer on the last buffer without
2174 * worrying about hardware touching it.
2175 * We set the size to 0 to prevent hardware from touching this buffer.
2176 * When the hardware hits the before last buffer with el-bit and size
2177 * of 0, it will RNR interrupt, the RU will go into the No Resources
2178 * state. It will not complete nor write to this buffer. */
2179 rx = nic->rxs->prev->prev;
2180 before_last = (struct rfd *)rx->skb->data;
2181 before_last->command |= cpu_to_le16(cb_el);
2182 before_last->size = 0;
2183 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2184 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2186 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2187 nic->ru_running = RU_SUSPENDED;
2189 return 0;
2192 static irqreturn_t e100_intr(int irq, void *dev_id)
2194 struct net_device *netdev = dev_id;
2195 struct nic *nic = netdev_priv(netdev);
2196 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2198 netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2199 "stat_ack = 0x%02X\n", stat_ack);
2201 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */
2202 stat_ack == stat_ack_not_present) /* Hardware is ejected */
2203 return IRQ_NONE;
2205 /* Ack interrupt(s) */
2206 iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2208 /* We hit Receive No Resource (RNR); restart RU after cleaning */
2209 if (stat_ack & stat_ack_rnr)
2210 nic->ru_running = RU_SUSPENDED;
2212 if (likely(napi_schedule_prep(&nic->napi))) {
2213 e100_disable_irq(nic);
2214 __napi_schedule(&nic->napi);
2217 return IRQ_HANDLED;
2220 static int e100_poll(struct napi_struct *napi, int budget)
2222 struct nic *nic = container_of(napi, struct nic, napi);
2223 unsigned int work_done = 0;
2225 e100_rx_clean(nic, &work_done, budget);
2226 e100_tx_clean(nic);
2228 /* If budget not fully consumed, exit the polling mode */
2229 if (work_done < budget) {
2230 napi_complete_done(napi, work_done);
2231 e100_enable_irq(nic);
2234 return work_done;
2237 #ifdef CONFIG_NET_POLL_CONTROLLER
2238 static void e100_netpoll(struct net_device *netdev)
2240 struct nic *nic = netdev_priv(netdev);
2242 e100_disable_irq(nic);
2243 e100_intr(nic->pdev->irq, netdev);
2244 e100_tx_clean(nic);
2245 e100_enable_irq(nic);
2247 #endif
2249 static int e100_set_mac_address(struct net_device *netdev, void *p)
2251 struct nic *nic = netdev_priv(netdev);
2252 struct sockaddr *addr = p;
2254 if (!is_valid_ether_addr(addr->sa_data))
2255 return -EADDRNOTAVAIL;
2257 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2258 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2260 return 0;
2263 static int e100_asf(struct nic *nic)
2265 /* ASF can be enabled from eeprom */
2266 return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2267 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2268 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2269 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
2272 static int e100_up(struct nic *nic)
2274 int err;
2276 if ((err = e100_rx_alloc_list(nic)))
2277 return err;
2278 if ((err = e100_alloc_cbs(nic)))
2279 goto err_rx_clean_list;
2280 if ((err = e100_hw_init(nic)))
2281 goto err_clean_cbs;
2282 e100_set_multicast_list(nic->netdev);
2283 e100_start_receiver(nic, NULL);
2284 mod_timer(&nic->watchdog, jiffies);
2285 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2286 nic->netdev->name, nic->netdev)))
2287 goto err_no_irq;
2288 netif_wake_queue(nic->netdev);
2289 napi_enable(&nic->napi);
2290 /* enable ints _after_ enabling poll, preventing a race between
2291 * disable ints+schedule */
2292 e100_enable_irq(nic);
2293 return 0;
2295 err_no_irq:
2296 del_timer_sync(&nic->watchdog);
2297 err_clean_cbs:
2298 e100_clean_cbs(nic);
2299 err_rx_clean_list:
2300 e100_rx_clean_list(nic);
2301 return err;
2304 static void e100_down(struct nic *nic)
2306 /* wait here for poll to complete */
2307 napi_disable(&nic->napi);
2308 netif_stop_queue(nic->netdev);
2309 e100_hw_reset(nic);
2310 free_irq(nic->pdev->irq, nic->netdev);
2311 del_timer_sync(&nic->watchdog);
2312 netif_carrier_off(nic->netdev);
2313 e100_clean_cbs(nic);
2314 e100_rx_clean_list(nic);
2317 static void e100_tx_timeout(struct net_device *netdev)
2319 struct nic *nic = netdev_priv(netdev);
2321 /* Reset outside of interrupt context, to avoid request_irq
2322 * in interrupt context */
2323 schedule_work(&nic->tx_timeout_task);
2326 static void e100_tx_timeout_task(struct work_struct *work)
2328 struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2329 struct net_device *netdev = nic->netdev;
2331 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2332 "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2334 rtnl_lock();
2335 if (netif_running(netdev)) {
2336 e100_down(netdev_priv(netdev));
2337 e100_up(netdev_priv(netdev));
2339 rtnl_unlock();
2342 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2344 int err;
2345 struct sk_buff *skb;
2347 /* Use driver resources to perform internal MAC or PHY
2348 * loopback test. A single packet is prepared and transmitted
2349 * in loopback mode, and the test passes if the received
2350 * packet compares byte-for-byte to the transmitted packet. */
2352 if ((err = e100_rx_alloc_list(nic)))
2353 return err;
2354 if ((err = e100_alloc_cbs(nic)))
2355 goto err_clean_rx;
2357 /* ICH PHY loopback is broken so do MAC loopback instead */
2358 if (nic->flags & ich && loopback_mode == lb_phy)
2359 loopback_mode = lb_mac;
2361 nic->loopback = loopback_mode;
2362 if ((err = e100_hw_init(nic)))
2363 goto err_loopback_none;
2365 if (loopback_mode == lb_phy)
2366 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2367 BMCR_LOOPBACK);
2369 e100_start_receiver(nic, NULL);
2371 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2372 err = -ENOMEM;
2373 goto err_loopback_none;
2375 skb_put(skb, ETH_DATA_LEN);
2376 memset(skb->data, 0xFF, ETH_DATA_LEN);
2377 e100_xmit_frame(skb, nic->netdev);
2379 msleep(10);
2381 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2382 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2384 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2385 skb->data, ETH_DATA_LEN))
2386 err = -EAGAIN;
2388 err_loopback_none:
2389 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2390 nic->loopback = lb_none;
2391 e100_clean_cbs(nic);
2392 e100_hw_reset(nic);
2393 err_clean_rx:
2394 e100_rx_clean_list(nic);
2395 return err;
2398 #define MII_LED_CONTROL 0x1B
2399 #define E100_82552_LED_OVERRIDE 0x19
2400 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
2401 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
2403 static int e100_get_link_ksettings(struct net_device *netdev,
2404 struct ethtool_link_ksettings *cmd)
2406 struct nic *nic = netdev_priv(netdev);
2408 mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2410 return 0;
2413 static int e100_set_link_ksettings(struct net_device *netdev,
2414 const struct ethtool_link_ksettings *cmd)
2416 struct nic *nic = netdev_priv(netdev);
2417 int err;
2419 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2420 err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2421 e100_exec_cb(nic, NULL, e100_configure);
2423 return err;
2426 static void e100_get_drvinfo(struct net_device *netdev,
2427 struct ethtool_drvinfo *info)
2429 struct nic *nic = netdev_priv(netdev);
2430 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2431 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2432 strlcpy(info->bus_info, pci_name(nic->pdev),
2433 sizeof(info->bus_info));
2436 #define E100_PHY_REGS 0x1C
2437 static int e100_get_regs_len(struct net_device *netdev)
2439 struct nic *nic = netdev_priv(netdev);
2440 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2443 static void e100_get_regs(struct net_device *netdev,
2444 struct ethtool_regs *regs, void *p)
2446 struct nic *nic = netdev_priv(netdev);
2447 u32 *buff = p;
2448 int i;
2450 regs->version = (1 << 24) | nic->pdev->revision;
2451 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2452 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2453 ioread16(&nic->csr->scb.status);
2454 for (i = E100_PHY_REGS; i >= 0; i--)
2455 buff[1 + E100_PHY_REGS - i] =
2456 mdio_read(netdev, nic->mii.phy_id, i);
2457 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2458 e100_exec_cb(nic, NULL, e100_dump);
2459 msleep(10);
2460 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2461 sizeof(nic->mem->dump_buf));
2464 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2466 struct nic *nic = netdev_priv(netdev);
2467 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2468 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2471 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2473 struct nic *nic = netdev_priv(netdev);
2475 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2476 !device_can_wakeup(&nic->pdev->dev))
2477 return -EOPNOTSUPP;
2479 if (wol->wolopts)
2480 nic->flags |= wol_magic;
2481 else
2482 nic->flags &= ~wol_magic;
2484 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2486 e100_exec_cb(nic, NULL, e100_configure);
2488 return 0;
2491 static u32 e100_get_msglevel(struct net_device *netdev)
2493 struct nic *nic = netdev_priv(netdev);
2494 return nic->msg_enable;
2497 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2499 struct nic *nic = netdev_priv(netdev);
2500 nic->msg_enable = value;
2503 static int e100_nway_reset(struct net_device *netdev)
2505 struct nic *nic = netdev_priv(netdev);
2506 return mii_nway_restart(&nic->mii);
2509 static u32 e100_get_link(struct net_device *netdev)
2511 struct nic *nic = netdev_priv(netdev);
2512 return mii_link_ok(&nic->mii);
2515 static int e100_get_eeprom_len(struct net_device *netdev)
2517 struct nic *nic = netdev_priv(netdev);
2518 return nic->eeprom_wc << 1;
2521 #define E100_EEPROM_MAGIC 0x1234
2522 static int e100_get_eeprom(struct net_device *netdev,
2523 struct ethtool_eeprom *eeprom, u8 *bytes)
2525 struct nic *nic = netdev_priv(netdev);
2527 eeprom->magic = E100_EEPROM_MAGIC;
2528 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2530 return 0;
2533 static int e100_set_eeprom(struct net_device *netdev,
2534 struct ethtool_eeprom *eeprom, u8 *bytes)
2536 struct nic *nic = netdev_priv(netdev);
2538 if (eeprom->magic != E100_EEPROM_MAGIC)
2539 return -EINVAL;
2541 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2543 return e100_eeprom_save(nic, eeprom->offset >> 1,
2544 (eeprom->len >> 1) + 1);
2547 static void e100_get_ringparam(struct net_device *netdev,
2548 struct ethtool_ringparam *ring)
2550 struct nic *nic = netdev_priv(netdev);
2551 struct param_range *rfds = &nic->params.rfds;
2552 struct param_range *cbs = &nic->params.cbs;
2554 ring->rx_max_pending = rfds->max;
2555 ring->tx_max_pending = cbs->max;
2556 ring->rx_pending = rfds->count;
2557 ring->tx_pending = cbs->count;
2560 static int e100_set_ringparam(struct net_device *netdev,
2561 struct ethtool_ringparam *ring)
2563 struct nic *nic = netdev_priv(netdev);
2564 struct param_range *rfds = &nic->params.rfds;
2565 struct param_range *cbs = &nic->params.cbs;
2567 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2568 return -EINVAL;
2570 if (netif_running(netdev))
2571 e100_down(nic);
2572 rfds->count = max(ring->rx_pending, rfds->min);
2573 rfds->count = min(rfds->count, rfds->max);
2574 cbs->count = max(ring->tx_pending, cbs->min);
2575 cbs->count = min(cbs->count, cbs->max);
2576 netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2577 rfds->count, cbs->count);
2578 if (netif_running(netdev))
2579 e100_up(nic);
2581 return 0;
2584 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2585 "Link test (on/offline)",
2586 "Eeprom test (on/offline)",
2587 "Self test (offline)",
2588 "Mac loopback (offline)",
2589 "Phy loopback (offline)",
2591 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2593 static void e100_diag_test(struct net_device *netdev,
2594 struct ethtool_test *test, u64 *data)
2596 struct ethtool_cmd cmd;
2597 struct nic *nic = netdev_priv(netdev);
2598 int i, err;
2600 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2601 data[0] = !mii_link_ok(&nic->mii);
2602 data[1] = e100_eeprom_load(nic);
2603 if (test->flags & ETH_TEST_FL_OFFLINE) {
2605 /* save speed, duplex & autoneg settings */
2606 err = mii_ethtool_gset(&nic->mii, &cmd);
2608 if (netif_running(netdev))
2609 e100_down(nic);
2610 data[2] = e100_self_test(nic);
2611 data[3] = e100_loopback_test(nic, lb_mac);
2612 data[4] = e100_loopback_test(nic, lb_phy);
2614 /* restore speed, duplex & autoneg settings */
2615 err = mii_ethtool_sset(&nic->mii, &cmd);
2617 if (netif_running(netdev))
2618 e100_up(nic);
2620 for (i = 0; i < E100_TEST_LEN; i++)
2621 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2623 msleep_interruptible(4 * 1000);
2626 static int e100_set_phys_id(struct net_device *netdev,
2627 enum ethtool_phys_id_state state)
2629 struct nic *nic = netdev_priv(netdev);
2630 enum led_state {
2631 led_on = 0x01,
2632 led_off = 0x04,
2633 led_on_559 = 0x05,
2634 led_on_557 = 0x07,
2636 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2637 MII_LED_CONTROL;
2638 u16 leds = 0;
2640 switch (state) {
2641 case ETHTOOL_ID_ACTIVE:
2642 return 2;
2644 case ETHTOOL_ID_ON:
2645 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2646 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2647 break;
2649 case ETHTOOL_ID_OFF:
2650 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2651 break;
2653 case ETHTOOL_ID_INACTIVE:
2654 break;
2657 mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2658 return 0;
2661 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2662 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2663 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2664 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2665 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2666 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2667 "tx_heartbeat_errors", "tx_window_errors",
2668 /* device-specific stats */
2669 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2670 "tx_flow_control_pause", "rx_flow_control_pause",
2671 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2672 "rx_short_frame_errors", "rx_over_length_errors",
2674 #define E100_NET_STATS_LEN 21
2675 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2677 static int e100_get_sset_count(struct net_device *netdev, int sset)
2679 switch (sset) {
2680 case ETH_SS_TEST:
2681 return E100_TEST_LEN;
2682 case ETH_SS_STATS:
2683 return E100_STATS_LEN;
2684 default:
2685 return -EOPNOTSUPP;
2689 static void e100_get_ethtool_stats(struct net_device *netdev,
2690 struct ethtool_stats *stats, u64 *data)
2692 struct nic *nic = netdev_priv(netdev);
2693 int i;
2695 for (i = 0; i < E100_NET_STATS_LEN; i++)
2696 data[i] = ((unsigned long *)&netdev->stats)[i];
2698 data[i++] = nic->tx_deferred;
2699 data[i++] = nic->tx_single_collisions;
2700 data[i++] = nic->tx_multiple_collisions;
2701 data[i++] = nic->tx_fc_pause;
2702 data[i++] = nic->rx_fc_pause;
2703 data[i++] = nic->rx_fc_unsupported;
2704 data[i++] = nic->tx_tco_frames;
2705 data[i++] = nic->rx_tco_frames;
2706 data[i++] = nic->rx_short_frame_errors;
2707 data[i++] = nic->rx_over_length_errors;
2710 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2712 switch (stringset) {
2713 case ETH_SS_TEST:
2714 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2715 break;
2716 case ETH_SS_STATS:
2717 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2718 break;
2722 static const struct ethtool_ops e100_ethtool_ops = {
2723 .get_drvinfo = e100_get_drvinfo,
2724 .get_regs_len = e100_get_regs_len,
2725 .get_regs = e100_get_regs,
2726 .get_wol = e100_get_wol,
2727 .set_wol = e100_set_wol,
2728 .get_msglevel = e100_get_msglevel,
2729 .set_msglevel = e100_set_msglevel,
2730 .nway_reset = e100_nway_reset,
2731 .get_link = e100_get_link,
2732 .get_eeprom_len = e100_get_eeprom_len,
2733 .get_eeprom = e100_get_eeprom,
2734 .set_eeprom = e100_set_eeprom,
2735 .get_ringparam = e100_get_ringparam,
2736 .set_ringparam = e100_set_ringparam,
2737 .self_test = e100_diag_test,
2738 .get_strings = e100_get_strings,
2739 .set_phys_id = e100_set_phys_id,
2740 .get_ethtool_stats = e100_get_ethtool_stats,
2741 .get_sset_count = e100_get_sset_count,
2742 .get_ts_info = ethtool_op_get_ts_info,
2743 .get_link_ksettings = e100_get_link_ksettings,
2744 .set_link_ksettings = e100_set_link_ksettings,
2747 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2749 struct nic *nic = netdev_priv(netdev);
2751 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2754 static int e100_alloc(struct nic *nic)
2756 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2757 &nic->dma_addr);
2758 return nic->mem ? 0 : -ENOMEM;
2761 static void e100_free(struct nic *nic)
2763 if (nic->mem) {
2764 pci_free_consistent(nic->pdev, sizeof(struct mem),
2765 nic->mem, nic->dma_addr);
2766 nic->mem = NULL;
2770 static int e100_open(struct net_device *netdev)
2772 struct nic *nic = netdev_priv(netdev);
2773 int err = 0;
2775 netif_carrier_off(netdev);
2776 if ((err = e100_up(nic)))
2777 netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2778 return err;
2781 static int e100_close(struct net_device *netdev)
2783 e100_down(netdev_priv(netdev));
2784 return 0;
2787 static int e100_set_features(struct net_device *netdev,
2788 netdev_features_t features)
2790 struct nic *nic = netdev_priv(netdev);
2791 netdev_features_t changed = features ^ netdev->features;
2793 if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2794 return 0;
2796 netdev->features = features;
2797 e100_exec_cb(nic, NULL, e100_configure);
2798 return 0;
2801 static const struct net_device_ops e100_netdev_ops = {
2802 .ndo_open = e100_open,
2803 .ndo_stop = e100_close,
2804 .ndo_start_xmit = e100_xmit_frame,
2805 .ndo_validate_addr = eth_validate_addr,
2806 .ndo_set_rx_mode = e100_set_multicast_list,
2807 .ndo_set_mac_address = e100_set_mac_address,
2808 .ndo_do_ioctl = e100_do_ioctl,
2809 .ndo_tx_timeout = e100_tx_timeout,
2810 #ifdef CONFIG_NET_POLL_CONTROLLER
2811 .ndo_poll_controller = e100_netpoll,
2812 #endif
2813 .ndo_set_features = e100_set_features,
2816 static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2818 struct net_device *netdev;
2819 struct nic *nic;
2820 int err;
2822 if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2823 return -ENOMEM;
2825 netdev->hw_features |= NETIF_F_RXFCS;
2826 netdev->priv_flags |= IFF_SUPP_NOFCS;
2827 netdev->hw_features |= NETIF_F_RXALL;
2829 netdev->netdev_ops = &e100_netdev_ops;
2830 netdev->ethtool_ops = &e100_ethtool_ops;
2831 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2832 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2834 nic = netdev_priv(netdev);
2835 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2836 nic->netdev = netdev;
2837 nic->pdev = pdev;
2838 nic->msg_enable = (1 << debug) - 1;
2839 nic->mdio_ctrl = mdio_ctrl_hw;
2840 pci_set_drvdata(pdev, netdev);
2842 if ((err = pci_enable_device(pdev))) {
2843 netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2844 goto err_out_free_dev;
2847 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2848 netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2849 err = -ENODEV;
2850 goto err_out_disable_pdev;
2853 if ((err = pci_request_regions(pdev, DRV_NAME))) {
2854 netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2855 goto err_out_disable_pdev;
2858 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2859 netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2860 goto err_out_free_res;
2863 SET_NETDEV_DEV(netdev, &pdev->dev);
2865 if (use_io)
2866 netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2868 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2869 if (!nic->csr) {
2870 netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2871 err = -ENOMEM;
2872 goto err_out_free_res;
2875 if (ent->driver_data)
2876 nic->flags |= ich;
2877 else
2878 nic->flags &= ~ich;
2880 e100_get_defaults(nic);
2882 /* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2883 if (nic->mac < mac_82558_D101_A4)
2884 netdev->features |= NETIF_F_VLAN_CHALLENGED;
2886 /* locks must be initialized before calling hw_reset */
2887 spin_lock_init(&nic->cb_lock);
2888 spin_lock_init(&nic->cmd_lock);
2889 spin_lock_init(&nic->mdio_lock);
2891 /* Reset the device before pci_set_master() in case device is in some
2892 * funky state and has an interrupt pending - hint: we don't have the
2893 * interrupt handler registered yet. */
2894 e100_hw_reset(nic);
2896 pci_set_master(pdev);
2898 timer_setup(&nic->watchdog, e100_watchdog, 0);
2900 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2902 if ((err = e100_alloc(nic))) {
2903 netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2904 goto err_out_iounmap;
2907 if ((err = e100_eeprom_load(nic)))
2908 goto err_out_free;
2910 e100_phy_init(nic);
2912 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2913 if (!is_valid_ether_addr(netdev->dev_addr)) {
2914 if (!eeprom_bad_csum_allow) {
2915 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2916 err = -EAGAIN;
2917 goto err_out_free;
2918 } else {
2919 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2923 /* Wol magic packet can be enabled from eeprom */
2924 if ((nic->mac >= mac_82558_D101_A4) &&
2925 (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2926 nic->flags |= wol_magic;
2927 device_set_wakeup_enable(&pdev->dev, true);
2930 /* ack any pending wake events, disable PME */
2931 pci_pme_active(pdev, false);
2933 strcpy(netdev->name, "eth%d");
2934 if ((err = register_netdev(netdev))) {
2935 netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2936 goto err_out_free;
2938 nic->cbs_pool = dma_pool_create(netdev->name,
2939 &nic->pdev->dev,
2940 nic->params.cbs.max * sizeof(struct cb),
2941 sizeof(u32),
2943 if (!nic->cbs_pool) {
2944 netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2945 err = -ENOMEM;
2946 goto err_out_pool;
2948 netif_info(nic, probe, nic->netdev,
2949 "addr 0x%llx, irq %d, MAC addr %pM\n",
2950 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2951 pdev->irq, netdev->dev_addr);
2953 return 0;
2955 err_out_pool:
2956 unregister_netdev(netdev);
2957 err_out_free:
2958 e100_free(nic);
2959 err_out_iounmap:
2960 pci_iounmap(pdev, nic->csr);
2961 err_out_free_res:
2962 pci_release_regions(pdev);
2963 err_out_disable_pdev:
2964 pci_disable_device(pdev);
2965 err_out_free_dev:
2966 free_netdev(netdev);
2967 return err;
2970 static void e100_remove(struct pci_dev *pdev)
2972 struct net_device *netdev = pci_get_drvdata(pdev);
2974 if (netdev) {
2975 struct nic *nic = netdev_priv(netdev);
2976 unregister_netdev(netdev);
2977 e100_free(nic);
2978 pci_iounmap(pdev, nic->csr);
2979 dma_pool_destroy(nic->cbs_pool);
2980 free_netdev(netdev);
2981 pci_release_regions(pdev);
2982 pci_disable_device(pdev);
2986 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
2987 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
2988 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
2989 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
2991 struct net_device *netdev = pci_get_drvdata(pdev);
2992 struct nic *nic = netdev_priv(netdev);
2994 if (netif_running(netdev))
2995 e100_down(nic);
2996 netif_device_detach(netdev);
2998 pci_save_state(pdev);
3000 if ((nic->flags & wol_magic) | e100_asf(nic)) {
3001 /* enable reverse auto-negotiation */
3002 if (nic->phy == phy_82552_v) {
3003 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3004 E100_82552_SMARTSPEED);
3006 mdio_write(netdev, nic->mii.phy_id,
3007 E100_82552_SMARTSPEED, smartspeed |
3008 E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3010 *enable_wake = true;
3011 } else {
3012 *enable_wake = false;
3015 pci_clear_master(pdev);
3018 static int __e100_power_off(struct pci_dev *pdev, bool wake)
3020 if (wake)
3021 return pci_prepare_to_sleep(pdev);
3023 pci_wake_from_d3(pdev, false);
3024 pci_set_power_state(pdev, PCI_D3hot);
3026 return 0;
3029 #ifdef CONFIG_PM
3030 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
3032 bool wake;
3033 __e100_shutdown(pdev, &wake);
3034 return __e100_power_off(pdev, wake);
3037 static int e100_resume(struct pci_dev *pdev)
3039 struct net_device *netdev = pci_get_drvdata(pdev);
3040 struct nic *nic = netdev_priv(netdev);
3042 pci_set_power_state(pdev, PCI_D0);
3043 pci_restore_state(pdev);
3044 /* ack any pending wake events, disable PME */
3045 pci_enable_wake(pdev, PCI_D0, 0);
3047 /* disable reverse auto-negotiation */
3048 if (nic->phy == phy_82552_v) {
3049 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3050 E100_82552_SMARTSPEED);
3052 mdio_write(netdev, nic->mii.phy_id,
3053 E100_82552_SMARTSPEED,
3054 smartspeed & ~(E100_82552_REV_ANEG));
3057 netif_device_attach(netdev);
3058 if (netif_running(netdev))
3059 e100_up(nic);
3061 return 0;
3063 #endif /* CONFIG_PM */
3065 static void e100_shutdown(struct pci_dev *pdev)
3067 bool wake;
3068 __e100_shutdown(pdev, &wake);
3069 if (system_state == SYSTEM_POWER_OFF)
3070 __e100_power_off(pdev, wake);
3073 /* ------------------ PCI Error Recovery infrastructure -------------- */
3075 * e100_io_error_detected - called when PCI error is detected.
3076 * @pdev: Pointer to PCI device
3077 * @state: The current pci connection state
3079 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3081 struct net_device *netdev = pci_get_drvdata(pdev);
3082 struct nic *nic = netdev_priv(netdev);
3084 netif_device_detach(netdev);
3086 if (state == pci_channel_io_perm_failure)
3087 return PCI_ERS_RESULT_DISCONNECT;
3089 if (netif_running(netdev))
3090 e100_down(nic);
3091 pci_disable_device(pdev);
3093 /* Request a slot reset. */
3094 return PCI_ERS_RESULT_NEED_RESET;
3098 * e100_io_slot_reset - called after the pci bus has been reset.
3099 * @pdev: Pointer to PCI device
3101 * Restart the card from scratch.
3103 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3105 struct net_device *netdev = pci_get_drvdata(pdev);
3106 struct nic *nic = netdev_priv(netdev);
3108 if (pci_enable_device(pdev)) {
3109 pr_err("Cannot re-enable PCI device after reset\n");
3110 return PCI_ERS_RESULT_DISCONNECT;
3112 pci_set_master(pdev);
3114 /* Only one device per card can do a reset */
3115 if (0 != PCI_FUNC(pdev->devfn))
3116 return PCI_ERS_RESULT_RECOVERED;
3117 e100_hw_reset(nic);
3118 e100_phy_init(nic);
3120 return PCI_ERS_RESULT_RECOVERED;
3124 * e100_io_resume - resume normal operations
3125 * @pdev: Pointer to PCI device
3127 * Resume normal operations after an error recovery
3128 * sequence has been completed.
3130 static void e100_io_resume(struct pci_dev *pdev)
3132 struct net_device *netdev = pci_get_drvdata(pdev);
3133 struct nic *nic = netdev_priv(netdev);
3135 /* ack any pending wake events, disable PME */
3136 pci_enable_wake(pdev, PCI_D0, 0);
3138 netif_device_attach(netdev);
3139 if (netif_running(netdev)) {
3140 e100_open(netdev);
3141 mod_timer(&nic->watchdog, jiffies);
3145 static const struct pci_error_handlers e100_err_handler = {
3146 .error_detected = e100_io_error_detected,
3147 .slot_reset = e100_io_slot_reset,
3148 .resume = e100_io_resume,
3151 static struct pci_driver e100_driver = {
3152 .name = DRV_NAME,
3153 .id_table = e100_id_table,
3154 .probe = e100_probe,
3155 .remove = e100_remove,
3156 #ifdef CONFIG_PM
3157 /* Power Management hooks */
3158 .suspend = e100_suspend,
3159 .resume = e100_resume,
3160 #endif
3161 .shutdown = e100_shutdown,
3162 .err_handler = &e100_err_handler,
3165 static int __init e100_init_module(void)
3167 if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3168 pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3169 pr_info("%s\n", DRV_COPYRIGHT);
3171 return pci_register_driver(&e100_driver);
3174 static void __exit e100_cleanup_module(void)
3176 pci_unregister_driver(&e100_driver);
3179 module_init(e100_init_module);
3180 module_exit(e100_cleanup_module);