staging: rtl8188eu: rename HalSetBrateCfg() - style
[linux/fpc-iii.git] / drivers / net / ethernet / intel / ice / ice_common.c
blob661beea6af795cd72abf3e609347c89b21d9902d
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
8 #define ICE_PF_RESET_WAIT_COUNT 200
10 #define ICE_NIC_FLX_ENTRY(hw, mdid, idx) \
11 wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(ICE_RXDID_FLEX_NIC), \
12 ((ICE_RX_OPC_MDID << \
13 GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \
14 GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \
15 (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \
16 GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M))
18 #define ICE_NIC_FLX_FLG_ENTRY(hw, flg_0, flg_1, flg_2, flg_3, idx) \
19 wr32((hw), GLFLXP_RXDID_FLAGS(ICE_RXDID_FLEX_NIC, idx), \
20 (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \
21 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \
22 (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \
23 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \
24 (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \
25 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \
26 (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \
27 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M))
29 /**
30 * ice_set_mac_type - Sets MAC type
31 * @hw: pointer to the HW structure
33 * This function sets the MAC type of the adapter based on the
34 * vendor ID and device ID stored in the hw structure.
36 static enum ice_status ice_set_mac_type(struct ice_hw *hw)
38 if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
39 return ICE_ERR_DEVICE_NOT_SUPPORTED;
41 hw->mac_type = ICE_MAC_GENERIC;
42 return 0;
45 /**
46 * ice_clear_pf_cfg - Clear PF configuration
47 * @hw: pointer to the hardware structure
49 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
50 * configuration, flow director filters, etc.).
52 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
54 struct ice_aq_desc desc;
56 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
58 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
61 /**
62 * ice_aq_manage_mac_read - manage MAC address read command
63 * @hw: pointer to the hw struct
64 * @buf: a virtual buffer to hold the manage MAC read response
65 * @buf_size: Size of the virtual buffer
66 * @cd: pointer to command details structure or NULL
68 * This function is used to return per PF station MAC address (0x0107).
69 * NOTE: Upon successful completion of this command, MAC address information
70 * is returned in user specified buffer. Please interpret user specified
71 * buffer as "manage_mac_read" response.
72 * Response such as various MAC addresses are stored in HW struct (port.mac)
73 * ice_aq_discover_caps is expected to be called before this function is called.
75 static enum ice_status
76 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
77 struct ice_sq_cd *cd)
79 struct ice_aqc_manage_mac_read_resp *resp;
80 struct ice_aqc_manage_mac_read *cmd;
81 struct ice_aq_desc desc;
82 enum ice_status status;
83 u16 flags;
84 u8 i;
86 cmd = &desc.params.mac_read;
88 if (buf_size < sizeof(*resp))
89 return ICE_ERR_BUF_TOO_SHORT;
91 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
93 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
94 if (status)
95 return status;
97 resp = (struct ice_aqc_manage_mac_read_resp *)buf;
98 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
100 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
101 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
102 return ICE_ERR_CFG;
105 /* A single port can report up to two (LAN and WoL) addresses */
106 for (i = 0; i < cmd->num_addr; i++)
107 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
108 ether_addr_copy(hw->port_info->mac.lan_addr,
109 resp[i].mac_addr);
110 ether_addr_copy(hw->port_info->mac.perm_addr,
111 resp[i].mac_addr);
112 break;
115 return 0;
119 * ice_aq_get_phy_caps - returns PHY capabilities
120 * @pi: port information structure
121 * @qual_mods: report qualified modules
122 * @report_mode: report mode capabilities
123 * @pcaps: structure for PHY capabilities to be filled
124 * @cd: pointer to command details structure or NULL
126 * Returns the various PHY capabilities supported on the Port (0x0600)
128 static enum ice_status
129 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
130 struct ice_aqc_get_phy_caps_data *pcaps,
131 struct ice_sq_cd *cd)
133 struct ice_aqc_get_phy_caps *cmd;
134 u16 pcaps_size = sizeof(*pcaps);
135 struct ice_aq_desc desc;
136 enum ice_status status;
138 cmd = &desc.params.get_phy;
140 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
141 return ICE_ERR_PARAM;
143 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
145 if (qual_mods)
146 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
148 cmd->param0 |= cpu_to_le16(report_mode);
149 status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
151 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP)
152 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
154 return status;
158 * ice_get_media_type - Gets media type
159 * @pi: port information structure
161 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
163 struct ice_link_status *hw_link_info;
165 if (!pi)
166 return ICE_MEDIA_UNKNOWN;
168 hw_link_info = &pi->phy.link_info;
170 if (hw_link_info->phy_type_low) {
171 switch (hw_link_info->phy_type_low) {
172 case ICE_PHY_TYPE_LOW_1000BASE_SX:
173 case ICE_PHY_TYPE_LOW_1000BASE_LX:
174 case ICE_PHY_TYPE_LOW_10GBASE_SR:
175 case ICE_PHY_TYPE_LOW_10GBASE_LR:
176 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
177 case ICE_PHY_TYPE_LOW_25GBASE_SR:
178 case ICE_PHY_TYPE_LOW_25GBASE_LR:
179 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
180 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
181 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
182 return ICE_MEDIA_FIBER;
183 case ICE_PHY_TYPE_LOW_100BASE_TX:
184 case ICE_PHY_TYPE_LOW_1000BASE_T:
185 case ICE_PHY_TYPE_LOW_2500BASE_T:
186 case ICE_PHY_TYPE_LOW_5GBASE_T:
187 case ICE_PHY_TYPE_LOW_10GBASE_T:
188 case ICE_PHY_TYPE_LOW_25GBASE_T:
189 return ICE_MEDIA_BASET;
190 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
191 case ICE_PHY_TYPE_LOW_25GBASE_CR:
192 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
193 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
194 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
195 return ICE_MEDIA_DA;
196 case ICE_PHY_TYPE_LOW_1000BASE_KX:
197 case ICE_PHY_TYPE_LOW_2500BASE_KX:
198 case ICE_PHY_TYPE_LOW_2500BASE_X:
199 case ICE_PHY_TYPE_LOW_5GBASE_KR:
200 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
201 case ICE_PHY_TYPE_LOW_25GBASE_KR:
202 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
203 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
204 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
205 return ICE_MEDIA_BACKPLANE;
209 return ICE_MEDIA_UNKNOWN;
213 * ice_aq_get_link_info
214 * @pi: port information structure
215 * @ena_lse: enable/disable LinkStatusEvent reporting
216 * @link: pointer to link status structure - optional
217 * @cd: pointer to command details structure or NULL
219 * Get Link Status (0x607). Returns the link status of the adapter.
221 enum ice_status
222 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
223 struct ice_link_status *link, struct ice_sq_cd *cd)
225 struct ice_link_status *hw_link_info_old, *hw_link_info;
226 struct ice_aqc_get_link_status_data link_data = { 0 };
227 struct ice_aqc_get_link_status *resp;
228 enum ice_media_type *hw_media_type;
229 struct ice_fc_info *hw_fc_info;
230 bool tx_pause, rx_pause;
231 struct ice_aq_desc desc;
232 enum ice_status status;
233 u16 cmd_flags;
235 if (!pi)
236 return ICE_ERR_PARAM;
237 hw_link_info_old = &pi->phy.link_info_old;
238 hw_media_type = &pi->phy.media_type;
239 hw_link_info = &pi->phy.link_info;
240 hw_fc_info = &pi->fc;
242 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
243 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
244 resp = &desc.params.get_link_status;
245 resp->cmd_flags = cpu_to_le16(cmd_flags);
246 resp->lport_num = pi->lport;
248 status = ice_aq_send_cmd(pi->hw, &desc, &link_data, sizeof(link_data),
249 cd);
251 if (status)
252 return status;
254 /* save off old link status information */
255 *hw_link_info_old = *hw_link_info;
257 /* update current link status information */
258 hw_link_info->link_speed = le16_to_cpu(link_data.link_speed);
259 hw_link_info->phy_type_low = le64_to_cpu(link_data.phy_type_low);
260 *hw_media_type = ice_get_media_type(pi);
261 hw_link_info->link_info = link_data.link_info;
262 hw_link_info->an_info = link_data.an_info;
263 hw_link_info->ext_info = link_data.ext_info;
264 hw_link_info->max_frame_size = le16_to_cpu(link_data.max_frame_size);
265 hw_link_info->pacing = link_data.cfg & ICE_AQ_CFG_PACING_M;
267 /* update fc info */
268 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
269 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
270 if (tx_pause && rx_pause)
271 hw_fc_info->current_mode = ICE_FC_FULL;
272 else if (tx_pause)
273 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
274 else if (rx_pause)
275 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
276 else
277 hw_fc_info->current_mode = ICE_FC_NONE;
279 hw_link_info->lse_ena =
280 !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
282 /* save link status information */
283 if (link)
284 *link = *hw_link_info;
286 /* flag cleared so calling functions don't call AQ again */
287 pi->phy.get_link_info = false;
289 return status;
293 * ice_init_flex_parser - initialize rx flex parser
294 * @hw: pointer to the hardware structure
296 * Function to initialize flex descriptors
298 static void ice_init_flex_parser(struct ice_hw *hw)
300 u8 idx = 0;
302 ICE_NIC_FLX_ENTRY(hw, ICE_RX_MDID_HASH_LOW, 0);
303 ICE_NIC_FLX_ENTRY(hw, ICE_RX_MDID_HASH_HIGH, 1);
304 ICE_NIC_FLX_ENTRY(hw, ICE_RX_MDID_FLOW_ID_LOWER, 2);
305 ICE_NIC_FLX_ENTRY(hw, ICE_RX_MDID_FLOW_ID_HIGH, 3);
306 ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_PKT_FRG, ICE_RXFLG_UDP_GRE,
307 ICE_RXFLG_PKT_DSI, ICE_RXFLG_FIN, idx++);
308 ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_SYN, ICE_RXFLG_RST,
309 ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx++);
310 ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI,
311 ICE_RXFLG_EVLAN_x8100, ICE_RXFLG_EVLAN_x9100,
312 idx++);
313 ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_VLAN_x8100, ICE_RXFLG_TNL_VLAN,
314 ICE_RXFLG_TNL_MAC, ICE_RXFLG_TNL0, idx++);
315 ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_TNL1, ICE_RXFLG_TNL2,
316 ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx);
320 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
321 * @hw: pointer to the hw struct
323 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
325 struct ice_switch_info *sw;
327 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
328 sizeof(*hw->switch_info), GFP_KERNEL);
329 sw = hw->switch_info;
331 if (!sw)
332 return ICE_ERR_NO_MEMORY;
334 INIT_LIST_HEAD(&sw->vsi_list_map_head);
336 mutex_init(&sw->mac_list_lock);
337 INIT_LIST_HEAD(&sw->mac_list_head);
339 mutex_init(&sw->vlan_list_lock);
340 INIT_LIST_HEAD(&sw->vlan_list_head);
342 mutex_init(&sw->eth_m_list_lock);
343 INIT_LIST_HEAD(&sw->eth_m_list_head);
345 mutex_init(&sw->promisc_list_lock);
346 INIT_LIST_HEAD(&sw->promisc_list_head);
348 mutex_init(&sw->mac_vlan_list_lock);
349 INIT_LIST_HEAD(&sw->mac_vlan_list_head);
351 return 0;
355 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
356 * @hw: pointer to the hw struct
358 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
360 struct ice_switch_info *sw = hw->switch_info;
361 struct ice_vsi_list_map_info *v_pos_map;
362 struct ice_vsi_list_map_info *v_tmp_map;
364 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
365 list_entry) {
366 list_del(&v_pos_map->list_entry);
367 devm_kfree(ice_hw_to_dev(hw), v_pos_map);
370 mutex_destroy(&sw->mac_list_lock);
371 mutex_destroy(&sw->vlan_list_lock);
372 mutex_destroy(&sw->eth_m_list_lock);
373 mutex_destroy(&sw->promisc_list_lock);
374 mutex_destroy(&sw->mac_vlan_list_lock);
376 devm_kfree(ice_hw_to_dev(hw), sw);
380 * ice_init_hw - main hardware initialization routine
381 * @hw: pointer to the hardware structure
383 enum ice_status ice_init_hw(struct ice_hw *hw)
385 struct ice_aqc_get_phy_caps_data *pcaps;
386 enum ice_status status;
387 u16 mac_buf_len;
388 void *mac_buf;
390 /* Set MAC type based on DeviceID */
391 status = ice_set_mac_type(hw);
392 if (status)
393 return status;
395 hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
396 PF_FUNC_RID_FUNC_NUM_M) >>
397 PF_FUNC_RID_FUNC_NUM_S;
399 status = ice_reset(hw, ICE_RESET_PFR);
400 if (status)
401 return status;
403 /* set these values to minimum allowed */
404 hw->itr_gran_200 = ICE_ITR_GRAN_MIN_200;
405 hw->itr_gran_100 = ICE_ITR_GRAN_MIN_100;
406 hw->itr_gran_50 = ICE_ITR_GRAN_MIN_50;
407 hw->itr_gran_25 = ICE_ITR_GRAN_MIN_25;
409 status = ice_init_all_ctrlq(hw);
410 if (status)
411 goto err_unroll_cqinit;
413 status = ice_clear_pf_cfg(hw);
414 if (status)
415 goto err_unroll_cqinit;
417 ice_clear_pxe_mode(hw);
419 status = ice_init_nvm(hw);
420 if (status)
421 goto err_unroll_cqinit;
423 status = ice_get_caps(hw);
424 if (status)
425 goto err_unroll_cqinit;
427 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
428 sizeof(*hw->port_info), GFP_KERNEL);
429 if (!hw->port_info) {
430 status = ICE_ERR_NO_MEMORY;
431 goto err_unroll_cqinit;
434 /* set the back pointer to hw */
435 hw->port_info->hw = hw;
437 /* Initialize port_info struct with switch configuration data */
438 status = ice_get_initial_sw_cfg(hw);
439 if (status)
440 goto err_unroll_alloc;
442 hw->evb_veb = true;
444 /* Query the allocated resources for tx scheduler */
445 status = ice_sched_query_res_alloc(hw);
446 if (status) {
447 ice_debug(hw, ICE_DBG_SCHED,
448 "Failed to get scheduler allocated resources\n");
449 goto err_unroll_alloc;
452 /* Initialize port_info struct with scheduler data */
453 status = ice_sched_init_port(hw->port_info);
454 if (status)
455 goto err_unroll_sched;
457 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
458 if (!pcaps) {
459 status = ICE_ERR_NO_MEMORY;
460 goto err_unroll_sched;
463 /* Initialize port_info struct with PHY capabilities */
464 status = ice_aq_get_phy_caps(hw->port_info, false,
465 ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
466 devm_kfree(ice_hw_to_dev(hw), pcaps);
467 if (status)
468 goto err_unroll_sched;
470 /* Initialize port_info struct with link information */
471 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
472 if (status)
473 goto err_unroll_sched;
475 status = ice_init_fltr_mgmt_struct(hw);
476 if (status)
477 goto err_unroll_sched;
479 /* Get MAC information */
480 /* A single port can report up to two (LAN and WoL) addresses */
481 mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
482 sizeof(struct ice_aqc_manage_mac_read_resp),
483 GFP_KERNEL);
484 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
486 if (!mac_buf) {
487 status = ICE_ERR_NO_MEMORY;
488 goto err_unroll_fltr_mgmt_struct;
491 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
492 devm_kfree(ice_hw_to_dev(hw), mac_buf);
494 if (status)
495 goto err_unroll_fltr_mgmt_struct;
497 ice_init_flex_parser(hw);
499 return 0;
501 err_unroll_fltr_mgmt_struct:
502 ice_cleanup_fltr_mgmt_struct(hw);
503 err_unroll_sched:
504 ice_sched_cleanup_all(hw);
505 err_unroll_alloc:
506 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
507 err_unroll_cqinit:
508 ice_shutdown_all_ctrlq(hw);
509 return status;
513 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
514 * @hw: pointer to the hardware structure
516 void ice_deinit_hw(struct ice_hw *hw)
518 ice_sched_cleanup_all(hw);
519 ice_shutdown_all_ctrlq(hw);
521 if (hw->port_info) {
522 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
523 hw->port_info = NULL;
526 ice_cleanup_fltr_mgmt_struct(hw);
530 * ice_check_reset - Check to see if a global reset is complete
531 * @hw: pointer to the hardware structure
533 enum ice_status ice_check_reset(struct ice_hw *hw)
535 u32 cnt, reg = 0, grst_delay;
537 /* Poll for Device Active state in case a recent CORER, GLOBR,
538 * or EMPR has occurred. The grst delay value is in 100ms units.
539 * Add 1sec for outstanding AQ commands that can take a long time.
541 grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
542 GLGEN_RSTCTL_GRSTDEL_S) + 10;
544 for (cnt = 0; cnt < grst_delay; cnt++) {
545 mdelay(100);
546 reg = rd32(hw, GLGEN_RSTAT);
547 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
548 break;
551 if (cnt == grst_delay) {
552 ice_debug(hw, ICE_DBG_INIT,
553 "Global reset polling failed to complete.\n");
554 return ICE_ERR_RESET_FAILED;
557 #define ICE_RESET_DONE_MASK (GLNVM_ULD_CORER_DONE_M | \
558 GLNVM_ULD_GLOBR_DONE_M)
560 /* Device is Active; check Global Reset processes are done */
561 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
562 reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK;
563 if (reg == ICE_RESET_DONE_MASK) {
564 ice_debug(hw, ICE_DBG_INIT,
565 "Global reset processes done. %d\n", cnt);
566 break;
568 mdelay(10);
571 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
572 ice_debug(hw, ICE_DBG_INIT,
573 "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
574 reg);
575 return ICE_ERR_RESET_FAILED;
578 return 0;
582 * ice_pf_reset - Reset the PF
583 * @hw: pointer to the hardware structure
585 * If a global reset has been triggered, this function checks
586 * for its completion and then issues the PF reset
588 static enum ice_status ice_pf_reset(struct ice_hw *hw)
590 u32 cnt, reg;
592 /* If at function entry a global reset was already in progress, i.e.
593 * state is not 'device active' or any of the reset done bits are not
594 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
595 * global reset is done.
597 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
598 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
599 /* poll on global reset currently in progress until done */
600 if (ice_check_reset(hw))
601 return ICE_ERR_RESET_FAILED;
603 return 0;
606 /* Reset the PF */
607 reg = rd32(hw, PFGEN_CTRL);
609 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
611 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
612 reg = rd32(hw, PFGEN_CTRL);
613 if (!(reg & PFGEN_CTRL_PFSWR_M))
614 break;
616 mdelay(1);
619 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
620 ice_debug(hw, ICE_DBG_INIT,
621 "PF reset polling failed to complete.\n");
622 return ICE_ERR_RESET_FAILED;
625 return 0;
629 * ice_reset - Perform different types of reset
630 * @hw: pointer to the hardware structure
631 * @req: reset request
633 * This function triggers a reset as specified by the req parameter.
635 * Note:
636 * If anything other than a PF reset is triggered, PXE mode is restored.
637 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
638 * interface has been restored in the rebuild flow.
640 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
642 u32 val = 0;
644 switch (req) {
645 case ICE_RESET_PFR:
646 return ice_pf_reset(hw);
647 case ICE_RESET_CORER:
648 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
649 val = GLGEN_RTRIG_CORER_M;
650 break;
651 case ICE_RESET_GLOBR:
652 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
653 val = GLGEN_RTRIG_GLOBR_M;
654 break;
657 val |= rd32(hw, GLGEN_RTRIG);
658 wr32(hw, GLGEN_RTRIG, val);
659 ice_flush(hw);
661 /* wait for the FW to be ready */
662 return ice_check_reset(hw);
666 * ice_copy_rxq_ctx_to_hw
667 * @hw: pointer to the hardware structure
668 * @ice_rxq_ctx: pointer to the rxq context
669 * @rxq_index: the index of the rx queue
671 * Copies rxq context from dense structure to hw register space
673 static enum ice_status
674 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
676 u8 i;
678 if (!ice_rxq_ctx)
679 return ICE_ERR_BAD_PTR;
681 if (rxq_index > QRX_CTRL_MAX_INDEX)
682 return ICE_ERR_PARAM;
684 /* Copy each dword separately to hw */
685 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
686 wr32(hw, QRX_CONTEXT(i, rxq_index),
687 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
689 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
690 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
693 return 0;
696 /* LAN Rx Queue Context */
697 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
698 /* Field Width LSB */
699 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
700 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
701 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
702 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
703 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
704 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
705 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
706 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
707 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
708 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
709 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
710 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
711 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
712 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
713 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
714 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
715 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
716 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
717 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
718 { 0 }
722 * ice_write_rxq_ctx
723 * @hw: pointer to the hardware structure
724 * @rlan_ctx: pointer to the rxq context
725 * @rxq_index: the index of the rx queue
727 * Converts rxq context from sparse to dense structure and then writes
728 * it to hw register space
730 enum ice_status
731 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
732 u32 rxq_index)
734 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
736 ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
737 return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
740 /* LAN Tx Queue Context */
741 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
742 /* Field Width LSB */
743 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
744 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
745 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
746 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
747 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
748 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
749 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
750 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
751 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
752 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
753 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
754 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
755 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
756 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
757 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
758 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
759 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
760 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
761 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
762 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
763 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
764 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
765 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
766 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
767 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
768 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
769 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 110, 171),
770 { 0 }
774 * ice_debug_cq
775 * @hw: pointer to the hardware structure
776 * @mask: debug mask
777 * @desc: pointer to control queue descriptor
778 * @buf: pointer to command buffer
779 * @buf_len: max length of buf
781 * Dumps debug log about control command with descriptor contents.
783 void ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc,
784 void *buf, u16 buf_len)
786 struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc;
787 u16 len;
789 #ifndef CONFIG_DYNAMIC_DEBUG
790 if (!(mask & hw->debug_mask))
791 return;
792 #endif
794 if (!desc)
795 return;
797 len = le16_to_cpu(cq_desc->datalen);
799 ice_debug(hw, mask,
800 "CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
801 le16_to_cpu(cq_desc->opcode),
802 le16_to_cpu(cq_desc->flags),
803 le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval));
804 ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
805 le32_to_cpu(cq_desc->cookie_high),
806 le32_to_cpu(cq_desc->cookie_low));
807 ice_debug(hw, mask, "\tparam (0,1) 0x%08X 0x%08X\n",
808 le32_to_cpu(cq_desc->params.generic.param0),
809 le32_to_cpu(cq_desc->params.generic.param1));
810 ice_debug(hw, mask, "\taddr (h,l) 0x%08X 0x%08X\n",
811 le32_to_cpu(cq_desc->params.generic.addr_high),
812 le32_to_cpu(cq_desc->params.generic.addr_low));
813 if (buf && cq_desc->datalen != 0) {
814 ice_debug(hw, mask, "Buffer:\n");
815 if (buf_len < len)
816 len = buf_len;
818 ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len);
822 /* FW Admin Queue command wrappers */
825 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
826 * @hw: pointer to the hw struct
827 * @desc: descriptor describing the command
828 * @buf: buffer to use for indirect commands (NULL for direct commands)
829 * @buf_size: size of buffer for indirect commands (0 for direct commands)
830 * @cd: pointer to command details structure
832 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
834 enum ice_status
835 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
836 u16 buf_size, struct ice_sq_cd *cd)
838 return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
842 * ice_aq_get_fw_ver
843 * @hw: pointer to the hw struct
844 * @cd: pointer to command details structure or NULL
846 * Get the firmware version (0x0001) from the admin queue commands
848 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
850 struct ice_aqc_get_ver *resp;
851 struct ice_aq_desc desc;
852 enum ice_status status;
854 resp = &desc.params.get_ver;
856 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
858 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
860 if (!status) {
861 hw->fw_branch = resp->fw_branch;
862 hw->fw_maj_ver = resp->fw_major;
863 hw->fw_min_ver = resp->fw_minor;
864 hw->fw_patch = resp->fw_patch;
865 hw->fw_build = le32_to_cpu(resp->fw_build);
866 hw->api_branch = resp->api_branch;
867 hw->api_maj_ver = resp->api_major;
868 hw->api_min_ver = resp->api_minor;
869 hw->api_patch = resp->api_patch;
872 return status;
876 * ice_aq_q_shutdown
877 * @hw: pointer to the hw struct
878 * @unloading: is the driver unloading itself
880 * Tell the Firmware that we're shutting down the AdminQ and whether
881 * or not the driver is unloading as well (0x0003).
883 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
885 struct ice_aqc_q_shutdown *cmd;
886 struct ice_aq_desc desc;
888 cmd = &desc.params.q_shutdown;
890 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
892 if (unloading)
893 cmd->driver_unloading = cpu_to_le32(ICE_AQC_DRIVER_UNLOADING);
895 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
899 * ice_aq_req_res
900 * @hw: pointer to the hw struct
901 * @res: resource id
902 * @access: access type
903 * @sdp_number: resource number
904 * @timeout: the maximum time in ms that the driver may hold the resource
905 * @cd: pointer to command details structure or NULL
907 * requests common resource using the admin queue commands (0x0008)
909 static enum ice_status
910 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
911 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
912 struct ice_sq_cd *cd)
914 struct ice_aqc_req_res *cmd_resp;
915 struct ice_aq_desc desc;
916 enum ice_status status;
918 cmd_resp = &desc.params.res_owner;
920 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
922 cmd_resp->res_id = cpu_to_le16(res);
923 cmd_resp->access_type = cpu_to_le16(access);
924 cmd_resp->res_number = cpu_to_le32(sdp_number);
926 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
927 /* The completion specifies the maximum time in ms that the driver
928 * may hold the resource in the Timeout field.
929 * If the resource is held by someone else, the command completes with
930 * busy return value and the timeout field indicates the maximum time
931 * the current owner of the resource has to free it.
933 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
934 *timeout = le32_to_cpu(cmd_resp->timeout);
936 return status;
940 * ice_aq_release_res
941 * @hw: pointer to the hw struct
942 * @res: resource id
943 * @sdp_number: resource number
944 * @cd: pointer to command details structure or NULL
946 * release common resource using the admin queue commands (0x0009)
948 static enum ice_status
949 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
950 struct ice_sq_cd *cd)
952 struct ice_aqc_req_res *cmd;
953 struct ice_aq_desc desc;
955 cmd = &desc.params.res_owner;
957 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
959 cmd->res_id = cpu_to_le16(res);
960 cmd->res_number = cpu_to_le32(sdp_number);
962 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
966 * ice_acquire_res
967 * @hw: pointer to the HW structure
968 * @res: resource id
969 * @access: access type (read or write)
971 * This function will attempt to acquire the ownership of a resource.
973 enum ice_status
974 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
975 enum ice_aq_res_access_type access)
977 #define ICE_RES_POLLING_DELAY_MS 10
978 u32 delay = ICE_RES_POLLING_DELAY_MS;
979 enum ice_status status;
980 u32 time_left = 0;
981 u32 timeout;
983 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
985 /* An admin queue return code of ICE_AQ_RC_EEXIST means that another
986 * driver has previously acquired the resource and performed any
987 * necessary updates; in this case the caller does not obtain the
988 * resource and has no further work to do.
990 if (hw->adminq.sq_last_status == ICE_AQ_RC_EEXIST) {
991 status = ICE_ERR_AQ_NO_WORK;
992 goto ice_acquire_res_exit;
995 if (status)
996 ice_debug(hw, ICE_DBG_RES,
997 "resource %d acquire type %d failed.\n", res, access);
999 /* If necessary, poll until the current lock owner timeouts */
1000 timeout = time_left;
1001 while (status && timeout && time_left) {
1002 mdelay(delay);
1003 timeout = (timeout > delay) ? timeout - delay : 0;
1004 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1006 if (hw->adminq.sq_last_status == ICE_AQ_RC_EEXIST) {
1007 /* lock free, but no work to do */
1008 status = ICE_ERR_AQ_NO_WORK;
1009 break;
1012 if (!status)
1013 /* lock acquired */
1014 break;
1016 if (status && status != ICE_ERR_AQ_NO_WORK)
1017 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1019 ice_acquire_res_exit:
1020 if (status == ICE_ERR_AQ_NO_WORK) {
1021 if (access == ICE_RES_WRITE)
1022 ice_debug(hw, ICE_DBG_RES,
1023 "resource indicates no work to do.\n");
1024 else
1025 ice_debug(hw, ICE_DBG_RES,
1026 "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1028 return status;
1032 * ice_release_res
1033 * @hw: pointer to the HW structure
1034 * @res: resource id
1036 * This function will release a resource using the proper Admin Command.
1038 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1040 enum ice_status status;
1041 u32 total_delay = 0;
1043 status = ice_aq_release_res(hw, res, 0, NULL);
1045 /* there are some rare cases when trying to release the resource
1046 * results in an admin Q timeout, so handle them correctly
1048 while ((status == ICE_ERR_AQ_TIMEOUT) &&
1049 (total_delay < hw->adminq.sq_cmd_timeout)) {
1050 mdelay(1);
1051 status = ice_aq_release_res(hw, res, 0, NULL);
1052 total_delay++;
1057 * ice_parse_caps - parse function/device capabilities
1058 * @hw: pointer to the hw struct
1059 * @buf: pointer to a buffer containing function/device capability records
1060 * @cap_count: number of capability records in the list
1061 * @opc: type of capabilities list to parse
1063 * Helper function to parse function(0x000a)/device(0x000b) capabilities list.
1065 static void
1066 ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
1067 enum ice_adminq_opc opc)
1069 struct ice_aqc_list_caps_elem *cap_resp;
1070 struct ice_hw_func_caps *func_p = NULL;
1071 struct ice_hw_dev_caps *dev_p = NULL;
1072 struct ice_hw_common_caps *caps;
1073 u32 i;
1075 if (!buf)
1076 return;
1078 cap_resp = (struct ice_aqc_list_caps_elem *)buf;
1080 if (opc == ice_aqc_opc_list_dev_caps) {
1081 dev_p = &hw->dev_caps;
1082 caps = &dev_p->common_cap;
1083 } else if (opc == ice_aqc_opc_list_func_caps) {
1084 func_p = &hw->func_caps;
1085 caps = &func_p->common_cap;
1086 } else {
1087 ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
1088 return;
1091 for (i = 0; caps && i < cap_count; i++, cap_resp++) {
1092 u32 logical_id = le32_to_cpu(cap_resp->logical_id);
1093 u32 phys_id = le32_to_cpu(cap_resp->phys_id);
1094 u32 number = le32_to_cpu(cap_resp->number);
1095 u16 cap = le16_to_cpu(cap_resp->cap);
1097 switch (cap) {
1098 case ICE_AQC_CAPS_VSI:
1099 if (dev_p) {
1100 dev_p->num_vsi_allocd_to_host = number;
1101 ice_debug(hw, ICE_DBG_INIT,
1102 "HW caps: Dev.VSI cnt = %d\n",
1103 dev_p->num_vsi_allocd_to_host);
1104 } else if (func_p) {
1105 func_p->guaranteed_num_vsi = number;
1106 ice_debug(hw, ICE_DBG_INIT,
1107 "HW caps: Func.VSI cnt = %d\n",
1108 func_p->guaranteed_num_vsi);
1110 break;
1111 case ICE_AQC_CAPS_RSS:
1112 caps->rss_table_size = number;
1113 caps->rss_table_entry_width = logical_id;
1114 ice_debug(hw, ICE_DBG_INIT,
1115 "HW caps: RSS table size = %d\n",
1116 caps->rss_table_size);
1117 ice_debug(hw, ICE_DBG_INIT,
1118 "HW caps: RSS table width = %d\n",
1119 caps->rss_table_entry_width);
1120 break;
1121 case ICE_AQC_CAPS_RXQS:
1122 caps->num_rxq = number;
1123 caps->rxq_first_id = phys_id;
1124 ice_debug(hw, ICE_DBG_INIT,
1125 "HW caps: Num Rx Qs = %d\n", caps->num_rxq);
1126 ice_debug(hw, ICE_DBG_INIT,
1127 "HW caps: Rx first queue ID = %d\n",
1128 caps->rxq_first_id);
1129 break;
1130 case ICE_AQC_CAPS_TXQS:
1131 caps->num_txq = number;
1132 caps->txq_first_id = phys_id;
1133 ice_debug(hw, ICE_DBG_INIT,
1134 "HW caps: Num Tx Qs = %d\n", caps->num_txq);
1135 ice_debug(hw, ICE_DBG_INIT,
1136 "HW caps: Tx first queue ID = %d\n",
1137 caps->txq_first_id);
1138 break;
1139 case ICE_AQC_CAPS_MSIX:
1140 caps->num_msix_vectors = number;
1141 caps->msix_vector_first_id = phys_id;
1142 ice_debug(hw, ICE_DBG_INIT,
1143 "HW caps: MSIX vector count = %d\n",
1144 caps->num_msix_vectors);
1145 ice_debug(hw, ICE_DBG_INIT,
1146 "HW caps: MSIX first vector index = %d\n",
1147 caps->msix_vector_first_id);
1148 break;
1149 case ICE_AQC_CAPS_MAX_MTU:
1150 caps->max_mtu = number;
1151 if (dev_p)
1152 ice_debug(hw, ICE_DBG_INIT,
1153 "HW caps: Dev.MaxMTU = %d\n",
1154 caps->max_mtu);
1155 else if (func_p)
1156 ice_debug(hw, ICE_DBG_INIT,
1157 "HW caps: func.MaxMTU = %d\n",
1158 caps->max_mtu);
1159 break;
1160 default:
1161 ice_debug(hw, ICE_DBG_INIT,
1162 "HW caps: Unknown capability[%d]: 0x%x\n", i,
1163 cap);
1164 break;
1170 * ice_aq_discover_caps - query function/device capabilities
1171 * @hw: pointer to the hw struct
1172 * @buf: a virtual buffer to hold the capabilities
1173 * @buf_size: Size of the virtual buffer
1174 * @data_size: Size of the returned data, or buf size needed if AQ err==ENOMEM
1175 * @opc: capabilities type to discover - pass in the command opcode
1176 * @cd: pointer to command details structure or NULL
1178 * Get the function(0x000a)/device(0x000b) capabilities description from
1179 * the firmware.
1181 static enum ice_status
1182 ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u16 *data_size,
1183 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1185 struct ice_aqc_list_caps *cmd;
1186 struct ice_aq_desc desc;
1187 enum ice_status status;
1189 cmd = &desc.params.get_cap;
1191 if (opc != ice_aqc_opc_list_func_caps &&
1192 opc != ice_aqc_opc_list_dev_caps)
1193 return ICE_ERR_PARAM;
1195 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1197 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1198 if (!status)
1199 ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
1200 *data_size = le16_to_cpu(desc.datalen);
1202 return status;
1206 * ice_get_caps - get info about the HW
1207 * @hw: pointer to the hardware structure
1209 enum ice_status ice_get_caps(struct ice_hw *hw)
1211 enum ice_status status;
1212 u16 data_size = 0;
1213 u16 cbuf_len;
1214 u8 retries;
1216 /* The driver doesn't know how many capabilities the device will return
1217 * so the buffer size required isn't known ahead of time. The driver
1218 * starts with cbuf_len and if this turns out to be insufficient, the
1219 * device returns ICE_AQ_RC_ENOMEM and also the buffer size it needs.
1220 * The driver then allocates the buffer of this size and retries the
1221 * operation. So it follows that the retry count is 2.
1223 #define ICE_GET_CAP_BUF_COUNT 40
1224 #define ICE_GET_CAP_RETRY_COUNT 2
1226 cbuf_len = ICE_GET_CAP_BUF_COUNT *
1227 sizeof(struct ice_aqc_list_caps_elem);
1229 retries = ICE_GET_CAP_RETRY_COUNT;
1231 do {
1232 void *cbuf;
1234 cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
1235 if (!cbuf)
1236 return ICE_ERR_NO_MEMORY;
1238 status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &data_size,
1239 ice_aqc_opc_list_func_caps, NULL);
1240 devm_kfree(ice_hw_to_dev(hw), cbuf);
1242 if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
1243 break;
1245 /* If ENOMEM is returned, try again with bigger buffer */
1246 cbuf_len = data_size;
1247 } while (--retries);
1249 return status;
1253 * ice_aq_manage_mac_write - manage MAC address write command
1254 * @hw: pointer to the hw struct
1255 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
1256 * @flags: flags to control write behavior
1257 * @cd: pointer to command details structure or NULL
1259 * This function is used to write MAC address to the NVM (0x0108).
1261 enum ice_status
1262 ice_aq_manage_mac_write(struct ice_hw *hw, u8 *mac_addr, u8 flags,
1263 struct ice_sq_cd *cd)
1265 struct ice_aqc_manage_mac_write *cmd;
1266 struct ice_aq_desc desc;
1268 cmd = &desc.params.mac_write;
1269 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
1271 cmd->flags = flags;
1273 /* Prep values for flags, sah, sal */
1274 cmd->sah = htons(*((u16 *)mac_addr));
1275 cmd->sal = htonl(*((u32 *)(mac_addr + 2)));
1277 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1281 * ice_aq_clear_pxe_mode
1282 * @hw: pointer to the hw struct
1284 * Tell the firmware that the driver is taking over from PXE (0x0110).
1286 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
1288 struct ice_aq_desc desc;
1290 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
1291 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
1293 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1297 * ice_clear_pxe_mode - clear pxe operations mode
1298 * @hw: pointer to the hw struct
1300 * Make sure all PXE mode settings are cleared, including things
1301 * like descriptor fetch/write-back mode.
1303 void ice_clear_pxe_mode(struct ice_hw *hw)
1305 if (ice_check_sq_alive(hw, &hw->adminq))
1306 ice_aq_clear_pxe_mode(hw);
1310 * ice_aq_set_phy_cfg
1311 * @hw: pointer to the hw struct
1312 * @lport: logical port number
1313 * @cfg: structure with PHY configuration data to be set
1314 * @cd: pointer to command details structure or NULL
1316 * Set the various PHY configuration parameters supported on the Port.
1317 * One or more of the Set PHY config parameters may be ignored in an MFP
1318 * mode as the PF may not have the privilege to set some of the PHY Config
1319 * parameters. This status will be indicated by the command response (0x0601).
1321 static enum ice_status
1322 ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
1323 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
1325 struct ice_aqc_set_phy_cfg *cmd;
1326 struct ice_aq_desc desc;
1328 if (!cfg)
1329 return ICE_ERR_PARAM;
1331 cmd = &desc.params.set_phy;
1332 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
1333 cmd->lport_num = lport;
1335 return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
1339 * ice_update_link_info - update status of the HW network link
1340 * @pi: port info structure of the interested logical port
1342 static enum ice_status
1343 ice_update_link_info(struct ice_port_info *pi)
1345 struct ice_aqc_get_phy_caps_data *pcaps;
1346 struct ice_phy_info *phy_info;
1347 enum ice_status status;
1348 struct ice_hw *hw;
1350 if (!pi)
1351 return ICE_ERR_PARAM;
1353 hw = pi->hw;
1355 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1356 if (!pcaps)
1357 return ICE_ERR_NO_MEMORY;
1359 phy_info = &pi->phy;
1360 status = ice_aq_get_link_info(pi, true, NULL, NULL);
1361 if (status)
1362 goto out;
1364 if (phy_info->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
1365 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG,
1366 pcaps, NULL);
1367 if (status)
1368 goto out;
1370 memcpy(phy_info->link_info.module_type, &pcaps->module_type,
1371 sizeof(phy_info->link_info.module_type));
1373 out:
1374 devm_kfree(ice_hw_to_dev(hw), pcaps);
1375 return status;
1379 * ice_set_fc
1380 * @pi: port information structure
1381 * @aq_failures: pointer to status code, specific to ice_set_fc routine
1382 * @atomic_restart: enable automatic link update
1384 * Set the requested flow control mode.
1386 enum ice_status
1387 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool atomic_restart)
1389 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
1390 struct ice_aqc_get_phy_caps_data *pcaps;
1391 enum ice_status status;
1392 u8 pause_mask = 0x0;
1393 struct ice_hw *hw;
1395 if (!pi)
1396 return ICE_ERR_PARAM;
1397 hw = pi->hw;
1398 *aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
1400 switch (pi->fc.req_mode) {
1401 case ICE_FC_FULL:
1402 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
1403 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
1404 break;
1405 case ICE_FC_RX_PAUSE:
1406 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
1407 break;
1408 case ICE_FC_TX_PAUSE:
1409 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
1410 break;
1411 default:
1412 break;
1415 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1416 if (!pcaps)
1417 return ICE_ERR_NO_MEMORY;
1419 /* Get the current phy config */
1420 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1421 NULL);
1422 if (status) {
1423 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
1424 goto out;
1427 /* clear the old pause settings */
1428 cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
1429 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
1430 /* set the new capabilities */
1431 cfg.caps |= pause_mask;
1432 /* If the capabilities have changed, then set the new config */
1433 if (cfg.caps != pcaps->caps) {
1434 int retry_count, retry_max = 10;
1436 /* Auto restart link so settings take effect */
1437 if (atomic_restart)
1438 cfg.caps |= ICE_AQ_PHY_ENA_ATOMIC_LINK;
1439 /* Copy over all the old settings */
1440 cfg.phy_type_low = pcaps->phy_type_low;
1441 cfg.low_power_ctrl = pcaps->low_power_ctrl;
1442 cfg.eee_cap = pcaps->eee_cap;
1443 cfg.eeer_value = pcaps->eeer_value;
1444 cfg.link_fec_opt = pcaps->link_fec_options;
1446 status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
1447 if (status) {
1448 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
1449 goto out;
1452 /* Update the link info
1453 * It sometimes takes a really long time for link to
1454 * come back from the atomic reset. Thus, we wait a
1455 * little bit.
1457 for (retry_count = 0; retry_count < retry_max; retry_count++) {
1458 status = ice_update_link_info(pi);
1460 if (!status)
1461 break;
1463 mdelay(100);
1466 if (status)
1467 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
1470 out:
1471 devm_kfree(ice_hw_to_dev(hw), pcaps);
1472 return status;
1476 * ice_get_link_status - get status of the HW network link
1477 * @pi: port information structure
1478 * @link_up: pointer to bool (true/false = linkup/linkdown)
1480 * Variable link_up is true if link is up, false if link is down.
1481 * The variable link_up is invalid if status is non zero. As a
1482 * result of this call, link status reporting becomes enabled
1484 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
1486 struct ice_phy_info *phy_info;
1487 enum ice_status status = 0;
1489 if (!pi || !link_up)
1490 return ICE_ERR_PARAM;
1492 phy_info = &pi->phy;
1494 if (phy_info->get_link_info) {
1495 status = ice_update_link_info(pi);
1497 if (status)
1498 ice_debug(pi->hw, ICE_DBG_LINK,
1499 "get link status error, status = %d\n",
1500 status);
1503 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
1505 return status;
1509 * ice_aq_set_link_restart_an
1510 * @pi: pointer to the port information structure
1511 * @ena_link: if true: enable link, if false: disable link
1512 * @cd: pointer to command details structure or NULL
1514 * Sets up the link and restarts the Auto-Negotiation over the link.
1516 enum ice_status
1517 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
1518 struct ice_sq_cd *cd)
1520 struct ice_aqc_restart_an *cmd;
1521 struct ice_aq_desc desc;
1523 cmd = &desc.params.restart_an;
1525 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
1527 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
1528 cmd->lport_num = pi->lport;
1529 if (ena_link)
1530 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
1531 else
1532 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
1534 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
1538 * ice_aq_set_event_mask
1539 * @hw: pointer to the hw struct
1540 * @port_num: port number of the physical function
1541 * @mask: event mask to be set
1542 * @cd: pointer to command details structure or NULL
1544 * Set event mask (0x0613)
1546 enum ice_status
1547 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
1548 struct ice_sq_cd *cd)
1550 struct ice_aqc_set_event_mask *cmd;
1551 struct ice_aq_desc desc;
1553 cmd = &desc.params.set_event_mask;
1555 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
1557 cmd->lport_num = port_num;
1559 cmd->event_mask = cpu_to_le16(mask);
1561 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1565 * __ice_aq_get_set_rss_lut
1566 * @hw: pointer to the hardware structure
1567 * @vsi_id: VSI FW index
1568 * @lut_type: LUT table type
1569 * @lut: pointer to the LUT buffer provided by the caller
1570 * @lut_size: size of the LUT buffer
1571 * @glob_lut_idx: global LUT index
1572 * @set: set true to set the table, false to get the table
1574 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
1576 static enum ice_status
1577 __ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
1578 u16 lut_size, u8 glob_lut_idx, bool set)
1580 struct ice_aqc_get_set_rss_lut *cmd_resp;
1581 struct ice_aq_desc desc;
1582 enum ice_status status;
1583 u16 flags = 0;
1585 cmd_resp = &desc.params.get_set_rss_lut;
1587 if (set) {
1588 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
1589 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1590 } else {
1591 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
1594 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
1595 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
1596 ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
1597 ICE_AQC_GSET_RSS_LUT_VSI_VALID);
1599 switch (lut_type) {
1600 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
1601 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
1602 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
1603 flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
1604 ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
1605 break;
1606 default:
1607 status = ICE_ERR_PARAM;
1608 goto ice_aq_get_set_rss_lut_exit;
1611 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
1612 flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
1613 ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
1615 if (!set)
1616 goto ice_aq_get_set_rss_lut_send;
1617 } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
1618 if (!set)
1619 goto ice_aq_get_set_rss_lut_send;
1620 } else {
1621 goto ice_aq_get_set_rss_lut_send;
1624 /* LUT size is only valid for Global and PF table types */
1625 switch (lut_size) {
1626 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
1627 break;
1628 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
1629 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
1630 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
1631 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
1632 break;
1633 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
1634 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
1635 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
1636 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
1637 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
1638 break;
1640 /* fall-through */
1641 default:
1642 status = ICE_ERR_PARAM;
1643 goto ice_aq_get_set_rss_lut_exit;
1646 ice_aq_get_set_rss_lut_send:
1647 cmd_resp->flags = cpu_to_le16(flags);
1648 status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
1650 ice_aq_get_set_rss_lut_exit:
1651 return status;
1655 * ice_aq_get_rss_lut
1656 * @hw: pointer to the hardware structure
1657 * @vsi_id: VSI FW index
1658 * @lut_type: LUT table type
1659 * @lut: pointer to the LUT buffer provided by the caller
1660 * @lut_size: size of the LUT buffer
1662 * get the RSS lookup table, PF or VSI type
1664 enum ice_status
1665 ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
1666 u16 lut_size)
1668 return __ice_aq_get_set_rss_lut(hw, vsi_id, lut_type, lut, lut_size, 0,
1669 false);
1673 * ice_aq_set_rss_lut
1674 * @hw: pointer to the hardware structure
1675 * @vsi_id: VSI FW index
1676 * @lut_type: LUT table type
1677 * @lut: pointer to the LUT buffer provided by the caller
1678 * @lut_size: size of the LUT buffer
1680 * set the RSS lookup table, PF or VSI type
1682 enum ice_status
1683 ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
1684 u16 lut_size)
1686 return __ice_aq_get_set_rss_lut(hw, vsi_id, lut_type, lut, lut_size, 0,
1687 true);
1691 * __ice_aq_get_set_rss_key
1692 * @hw: pointer to the hw struct
1693 * @vsi_id: VSI FW index
1694 * @key: pointer to key info struct
1695 * @set: set true to set the key, false to get the key
1697 * get (0x0B04) or set (0x0B02) the RSS key per VSI
1699 static enum
1700 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
1701 struct ice_aqc_get_set_rss_keys *key,
1702 bool set)
1704 struct ice_aqc_get_set_rss_key *cmd_resp;
1705 u16 key_size = sizeof(*key);
1706 struct ice_aq_desc desc;
1708 cmd_resp = &desc.params.get_set_rss_key;
1710 if (set) {
1711 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
1712 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1713 } else {
1714 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
1717 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
1718 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
1719 ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
1720 ICE_AQC_GSET_RSS_KEY_VSI_VALID);
1722 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
1726 * ice_aq_get_rss_key
1727 * @hw: pointer to the hw struct
1728 * @vsi_id: VSI FW index
1729 * @key: pointer to key info struct
1731 * get the RSS key per VSI
1733 enum ice_status
1734 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_id,
1735 struct ice_aqc_get_set_rss_keys *key)
1737 return __ice_aq_get_set_rss_key(hw, vsi_id, key, false);
1741 * ice_aq_set_rss_key
1742 * @hw: pointer to the hw struct
1743 * @vsi_id: VSI FW index
1744 * @keys: pointer to key info struct
1746 * set the RSS key per VSI
1748 enum ice_status
1749 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_id,
1750 struct ice_aqc_get_set_rss_keys *keys)
1752 return __ice_aq_get_set_rss_key(hw, vsi_id, keys, true);
1756 * ice_aq_add_lan_txq
1757 * @hw: pointer to the hardware structure
1758 * @num_qgrps: Number of added queue groups
1759 * @qg_list: list of queue groups to be added
1760 * @buf_size: size of buffer for indirect command
1761 * @cd: pointer to command details structure or NULL
1763 * Add Tx LAN queue (0x0C30)
1765 * NOTE:
1766 * Prior to calling add Tx LAN queue:
1767 * Initialize the following as part of the Tx queue context:
1768 * Completion queue ID if the queue uses Completion queue, Quanta profile,
1769 * Cache profile and Packet shaper profile.
1771 * After add Tx LAN queue AQ command is completed:
1772 * Interrupts should be associated with specific queues,
1773 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
1774 * flow.
1776 static enum ice_status
1777 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
1778 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
1779 struct ice_sq_cd *cd)
1781 u16 i, sum_header_size, sum_q_size = 0;
1782 struct ice_aqc_add_tx_qgrp *list;
1783 struct ice_aqc_add_txqs *cmd;
1784 struct ice_aq_desc desc;
1786 cmd = &desc.params.add_txqs;
1788 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
1790 if (!qg_list)
1791 return ICE_ERR_PARAM;
1793 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
1794 return ICE_ERR_PARAM;
1796 sum_header_size = num_qgrps *
1797 (sizeof(*qg_list) - sizeof(*qg_list->txqs));
1799 list = qg_list;
1800 for (i = 0; i < num_qgrps; i++) {
1801 struct ice_aqc_add_txqs_perq *q = list->txqs;
1803 sum_q_size += list->num_txqs * sizeof(*q);
1804 list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
1807 if (buf_size != (sum_header_size + sum_q_size))
1808 return ICE_ERR_PARAM;
1810 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1812 cmd->num_qgrps = num_qgrps;
1814 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
1818 * ice_aq_dis_lan_txq
1819 * @hw: pointer to the hardware structure
1820 * @num_qgrps: number of groups in the list
1821 * @qg_list: the list of groups to disable
1822 * @buf_size: the total size of the qg_list buffer in bytes
1823 * @cd: pointer to command details structure or NULL
1825 * Disable LAN Tx queue (0x0C31)
1827 static enum ice_status
1828 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
1829 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
1830 struct ice_sq_cd *cd)
1832 struct ice_aqc_dis_txqs *cmd;
1833 struct ice_aq_desc desc;
1834 u16 i, sz = 0;
1836 cmd = &desc.params.dis_txqs;
1837 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
1839 if (!qg_list)
1840 return ICE_ERR_PARAM;
1842 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
1843 return ICE_ERR_PARAM;
1844 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1845 cmd->num_entries = num_qgrps;
1847 for (i = 0; i < num_qgrps; ++i) {
1848 /* Calculate the size taken up by the queue IDs in this group */
1849 sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
1851 /* Add the size of the group header */
1852 sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
1854 /* If the num of queues is even, add 2 bytes of padding */
1855 if ((qg_list[i].num_qs % 2) == 0)
1856 sz += 2;
1859 if (buf_size != sz)
1860 return ICE_ERR_PARAM;
1862 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
1865 /* End of FW Admin Queue command wrappers */
1868 * ice_write_byte - write a byte to a packed context structure
1869 * @src_ctx: the context structure to read from
1870 * @dest_ctx: the context to be written to
1871 * @ce_info: a description of the struct to be filled
1873 static void ice_write_byte(u8 *src_ctx, u8 *dest_ctx,
1874 const struct ice_ctx_ele *ce_info)
1876 u8 src_byte, dest_byte, mask;
1877 u8 *from, *dest;
1878 u16 shift_width;
1880 /* copy from the next struct field */
1881 from = src_ctx + ce_info->offset;
1883 /* prepare the bits and mask */
1884 shift_width = ce_info->lsb % 8;
1885 mask = (u8)(BIT(ce_info->width) - 1);
1887 src_byte = *from;
1888 src_byte &= mask;
1890 /* shift to correct alignment */
1891 mask <<= shift_width;
1892 src_byte <<= shift_width;
1894 /* get the current bits from the target bit string */
1895 dest = dest_ctx + (ce_info->lsb / 8);
1897 memcpy(&dest_byte, dest, sizeof(dest_byte));
1899 dest_byte &= ~mask; /* get the bits not changing */
1900 dest_byte |= src_byte; /* add in the new bits */
1902 /* put it all back */
1903 memcpy(dest, &dest_byte, sizeof(dest_byte));
1907 * ice_write_word - write a word to a packed context structure
1908 * @src_ctx: the context structure to read from
1909 * @dest_ctx: the context to be written to
1910 * @ce_info: a description of the struct to be filled
1912 static void ice_write_word(u8 *src_ctx, u8 *dest_ctx,
1913 const struct ice_ctx_ele *ce_info)
1915 u16 src_word, mask;
1916 __le16 dest_word;
1917 u8 *from, *dest;
1918 u16 shift_width;
1920 /* copy from the next struct field */
1921 from = src_ctx + ce_info->offset;
1923 /* prepare the bits and mask */
1924 shift_width = ce_info->lsb % 8;
1925 mask = BIT(ce_info->width) - 1;
1927 /* don't swizzle the bits until after the mask because the mask bits
1928 * will be in a different bit position on big endian machines
1930 src_word = *(u16 *)from;
1931 src_word &= mask;
1933 /* shift to correct alignment */
1934 mask <<= shift_width;
1935 src_word <<= shift_width;
1937 /* get the current bits from the target bit string */
1938 dest = dest_ctx + (ce_info->lsb / 8);
1940 memcpy(&dest_word, dest, sizeof(dest_word));
1942 dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */
1943 dest_word |= cpu_to_le16(src_word); /* add in the new bits */
1945 /* put it all back */
1946 memcpy(dest, &dest_word, sizeof(dest_word));
1950 * ice_write_dword - write a dword to a packed context structure
1951 * @src_ctx: the context structure to read from
1952 * @dest_ctx: the context to be written to
1953 * @ce_info: a description of the struct to be filled
1955 static void ice_write_dword(u8 *src_ctx, u8 *dest_ctx,
1956 const struct ice_ctx_ele *ce_info)
1958 u32 src_dword, mask;
1959 __le32 dest_dword;
1960 u8 *from, *dest;
1961 u16 shift_width;
1963 /* copy from the next struct field */
1964 from = src_ctx + ce_info->offset;
1966 /* prepare the bits and mask */
1967 shift_width = ce_info->lsb % 8;
1969 /* if the field width is exactly 32 on an x86 machine, then the shift
1970 * operation will not work because the SHL instructions count is masked
1971 * to 5 bits so the shift will do nothing
1973 if (ce_info->width < 32)
1974 mask = BIT(ce_info->width) - 1;
1975 else
1976 mask = (u32)~0;
1978 /* don't swizzle the bits until after the mask because the mask bits
1979 * will be in a different bit position on big endian machines
1981 src_dword = *(u32 *)from;
1982 src_dword &= mask;
1984 /* shift to correct alignment */
1985 mask <<= shift_width;
1986 src_dword <<= shift_width;
1988 /* get the current bits from the target bit string */
1989 dest = dest_ctx + (ce_info->lsb / 8);
1991 memcpy(&dest_dword, dest, sizeof(dest_dword));
1993 dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */
1994 dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */
1996 /* put it all back */
1997 memcpy(dest, &dest_dword, sizeof(dest_dword));
2001 * ice_write_qword - write a qword to a packed context structure
2002 * @src_ctx: the context structure to read from
2003 * @dest_ctx: the context to be written to
2004 * @ce_info: a description of the struct to be filled
2006 static void ice_write_qword(u8 *src_ctx, u8 *dest_ctx,
2007 const struct ice_ctx_ele *ce_info)
2009 u64 src_qword, mask;
2010 __le64 dest_qword;
2011 u8 *from, *dest;
2012 u16 shift_width;
2014 /* copy from the next struct field */
2015 from = src_ctx + ce_info->offset;
2017 /* prepare the bits and mask */
2018 shift_width = ce_info->lsb % 8;
2020 /* if the field width is exactly 64 on an x86 machine, then the shift
2021 * operation will not work because the SHL instructions count is masked
2022 * to 6 bits so the shift will do nothing
2024 if (ce_info->width < 64)
2025 mask = BIT_ULL(ce_info->width) - 1;
2026 else
2027 mask = (u64)~0;
2029 /* don't swizzle the bits until after the mask because the mask bits
2030 * will be in a different bit position on big endian machines
2032 src_qword = *(u64 *)from;
2033 src_qword &= mask;
2035 /* shift to correct alignment */
2036 mask <<= shift_width;
2037 src_qword <<= shift_width;
2039 /* get the current bits from the target bit string */
2040 dest = dest_ctx + (ce_info->lsb / 8);
2042 memcpy(&dest_qword, dest, sizeof(dest_qword));
2044 dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */
2045 dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */
2047 /* put it all back */
2048 memcpy(dest, &dest_qword, sizeof(dest_qword));
2052 * ice_set_ctx - set context bits in packed structure
2053 * @src_ctx: pointer to a generic non-packed context structure
2054 * @dest_ctx: pointer to memory for the packed structure
2055 * @ce_info: a description of the structure to be transformed
2057 enum ice_status
2058 ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2060 int f;
2062 for (f = 0; ce_info[f].width; f++) {
2063 /* We have to deal with each element of the FW response
2064 * using the correct size so that we are correct regardless
2065 * of the endianness of the machine.
2067 switch (ce_info[f].size_of) {
2068 case sizeof(u8):
2069 ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
2070 break;
2071 case sizeof(u16):
2072 ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
2073 break;
2074 case sizeof(u32):
2075 ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
2076 break;
2077 case sizeof(u64):
2078 ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
2079 break;
2080 default:
2081 return ICE_ERR_INVAL_SIZE;
2085 return 0;
2089 * ice_ena_vsi_txq
2090 * @pi: port information structure
2091 * @vsi_id: VSI id
2092 * @tc: tc number
2093 * @num_qgrps: Number of added queue groups
2094 * @buf: list of queue groups to be added
2095 * @buf_size: size of buffer for indirect command
2096 * @cd: pointer to command details structure or NULL
2098 * This function adds one lan q
2100 enum ice_status
2101 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_id, u8 tc, u8 num_qgrps,
2102 struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
2103 struct ice_sq_cd *cd)
2105 struct ice_aqc_txsched_elem_data node = { 0 };
2106 struct ice_sched_node *parent;
2107 enum ice_status status;
2108 struct ice_hw *hw;
2110 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2111 return ICE_ERR_CFG;
2113 if (num_qgrps > 1 || buf->num_txqs > 1)
2114 return ICE_ERR_MAX_LIMIT;
2116 hw = pi->hw;
2118 mutex_lock(&pi->sched_lock);
2120 /* find a parent node */
2121 parent = ice_sched_get_free_qparent(pi, vsi_id, tc,
2122 ICE_SCHED_NODE_OWNER_LAN);
2123 if (!parent) {
2124 status = ICE_ERR_PARAM;
2125 goto ena_txq_exit;
2127 buf->parent_teid = parent->info.node_teid;
2128 node.parent_teid = parent->info.node_teid;
2129 /* Mark that the values in the "generic" section as valid. The default
2130 * value in the "generic" section is zero. This means that :
2131 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
2132 * - 0 priority among siblings, indicated by Bit 1-3.
2133 * - WFQ, indicated by Bit 4.
2134 * - 0 Adjustment value is used in PSM credit update flow, indicated by
2135 * Bit 5-6.
2136 * - Bit 7 is reserved.
2137 * Without setting the generic section as valid in valid_sections, the
2138 * Admin Q command will fail with error code ICE_AQ_RC_EINVAL.
2140 buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
2142 /* add the lan q */
2143 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
2144 if (status)
2145 goto ena_txq_exit;
2147 node.node_teid = buf->txqs[0].q_teid;
2148 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
2150 /* add a leaf node into schduler tree q layer */
2151 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
2153 ena_txq_exit:
2154 mutex_unlock(&pi->sched_lock);
2155 return status;
2159 * ice_dis_vsi_txq
2160 * @pi: port information structure
2161 * @num_queues: number of queues
2162 * @q_ids: pointer to the q_id array
2163 * @q_teids: pointer to queue node teids
2164 * @cd: pointer to command details structure or NULL
2166 * This function removes queues and their corresponding nodes in SW DB
2168 enum ice_status
2169 ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
2170 u32 *q_teids, struct ice_sq_cd *cd)
2172 enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
2173 struct ice_aqc_dis_txq_item qg_list;
2174 u16 i;
2176 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2177 return ICE_ERR_CFG;
2179 mutex_lock(&pi->sched_lock);
2181 for (i = 0; i < num_queues; i++) {
2182 struct ice_sched_node *node;
2184 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
2185 if (!node)
2186 continue;
2187 qg_list.parent_teid = node->info.parent_teid;
2188 qg_list.num_qs = 1;
2189 qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
2190 status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
2191 sizeof(qg_list), cd);
2193 if (status)
2194 break;
2195 ice_free_sched_node(pi, node);
2197 mutex_unlock(&pi->sched_lock);
2198 return status;
2202 * ice_cfg_vsi_qs - configure the new/exisiting VSI queues
2203 * @pi: port information structure
2204 * @vsi_id: VSI Id
2205 * @tc_bitmap: TC bitmap
2206 * @maxqs: max queues array per TC
2207 * @owner: lan or rdma
2209 * This function adds/updates the VSI queues per TC.
2211 static enum ice_status
2212 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_id, u8 tc_bitmap,
2213 u16 *maxqs, u8 owner)
2215 enum ice_status status = 0;
2216 u8 i;
2218 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2219 return ICE_ERR_CFG;
2221 mutex_lock(&pi->sched_lock);
2223 for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
2224 /* configuration is possible only if TC node is present */
2225 if (!ice_sched_get_tc_node(pi, i))
2226 continue;
2228 status = ice_sched_cfg_vsi(pi, vsi_id, i, maxqs[i], owner,
2229 ice_is_tc_ena(tc_bitmap, i));
2230 if (status)
2231 break;
2234 mutex_unlock(&pi->sched_lock);
2235 return status;
2239 * ice_cfg_vsi_lan - configure VSI lan queues
2240 * @pi: port information structure
2241 * @vsi_id: VSI Id
2242 * @tc_bitmap: TC bitmap
2243 * @max_lanqs: max lan queues array per TC
2245 * This function adds/updates the VSI lan queues per TC.
2247 enum ice_status
2248 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_id, u8 tc_bitmap,
2249 u16 *max_lanqs)
2251 return ice_cfg_vsi_qs(pi, vsi_id, tc_bitmap, max_lanqs,
2252 ICE_SCHED_NODE_OWNER_LAN);