staging: rtl8188eu: rename HalSetBrateCfg() - style
[linux/fpc-iii.git] / drivers / net / ethernet / intel / ice / ice_txrx.c
blob6481e3d863749837ff215621d6e1d21a33d574c3
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
4 /* The driver transmit and receive code */
6 #include <linux/prefetch.h>
7 #include <linux/mm.h>
8 #include "ice.h"
10 #define ICE_RX_HDR_SIZE 256
12 /**
13 * ice_unmap_and_free_tx_buf - Release a Tx buffer
14 * @ring: the ring that owns the buffer
15 * @tx_buf: the buffer to free
17 static void
18 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
20 if (tx_buf->skb) {
21 dev_kfree_skb_any(tx_buf->skb);
22 if (dma_unmap_len(tx_buf, len))
23 dma_unmap_single(ring->dev,
24 dma_unmap_addr(tx_buf, dma),
25 dma_unmap_len(tx_buf, len),
26 DMA_TO_DEVICE);
27 } else if (dma_unmap_len(tx_buf, len)) {
28 dma_unmap_page(ring->dev,
29 dma_unmap_addr(tx_buf, dma),
30 dma_unmap_len(tx_buf, len),
31 DMA_TO_DEVICE);
34 tx_buf->next_to_watch = NULL;
35 tx_buf->skb = NULL;
36 dma_unmap_len_set(tx_buf, len, 0);
37 /* tx_buf must be completely set up in the transmit path */
40 static struct netdev_queue *txring_txq(const struct ice_ring *ring)
42 return netdev_get_tx_queue(ring->netdev, ring->q_index);
45 /**
46 * ice_clean_tx_ring - Free any empty Tx buffers
47 * @tx_ring: ring to be cleaned
49 void ice_clean_tx_ring(struct ice_ring *tx_ring)
51 unsigned long size;
52 u16 i;
54 /* ring already cleared, nothing to do */
55 if (!tx_ring->tx_buf)
56 return;
58 /* Free all the Tx ring sk_bufss */
59 for (i = 0; i < tx_ring->count; i++)
60 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
62 size = sizeof(struct ice_tx_buf) * tx_ring->count;
63 memset(tx_ring->tx_buf, 0, size);
65 /* Zero out the descriptor ring */
66 memset(tx_ring->desc, 0, tx_ring->size);
68 tx_ring->next_to_use = 0;
69 tx_ring->next_to_clean = 0;
71 if (!tx_ring->netdev)
72 return;
74 /* cleanup Tx queue statistics */
75 netdev_tx_reset_queue(txring_txq(tx_ring));
78 /**
79 * ice_free_tx_ring - Free Tx resources per queue
80 * @tx_ring: Tx descriptor ring for a specific queue
82 * Free all transmit software resources
84 void ice_free_tx_ring(struct ice_ring *tx_ring)
86 ice_clean_tx_ring(tx_ring);
87 devm_kfree(tx_ring->dev, tx_ring->tx_buf);
88 tx_ring->tx_buf = NULL;
90 if (tx_ring->desc) {
91 dmam_free_coherent(tx_ring->dev, tx_ring->size,
92 tx_ring->desc, tx_ring->dma);
93 tx_ring->desc = NULL;
97 /**
98 * ice_clean_tx_irq - Reclaim resources after transmit completes
99 * @vsi: the VSI we care about
100 * @tx_ring: Tx ring to clean
101 * @napi_budget: Used to determine if we are in netpoll
103 * Returns true if there's any budget left (e.g. the clean is finished)
105 static bool ice_clean_tx_irq(struct ice_vsi *vsi, struct ice_ring *tx_ring,
106 int napi_budget)
108 unsigned int total_bytes = 0, total_pkts = 0;
109 unsigned int budget = vsi->work_lmt;
110 s16 i = tx_ring->next_to_clean;
111 struct ice_tx_desc *tx_desc;
112 struct ice_tx_buf *tx_buf;
114 tx_buf = &tx_ring->tx_buf[i];
115 tx_desc = ICE_TX_DESC(tx_ring, i);
116 i -= tx_ring->count;
118 do {
119 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
121 /* if next_to_watch is not set then there is no work pending */
122 if (!eop_desc)
123 break;
125 smp_rmb(); /* prevent any other reads prior to eop_desc */
127 /* if the descriptor isn't done, no work yet to do */
128 if (!(eop_desc->cmd_type_offset_bsz &
129 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
130 break;
132 /* clear next_to_watch to prevent false hangs */
133 tx_buf->next_to_watch = NULL;
135 /* update the statistics for this packet */
136 total_bytes += tx_buf->bytecount;
137 total_pkts += tx_buf->gso_segs;
139 /* free the skb */
140 napi_consume_skb(tx_buf->skb, napi_budget);
142 /* unmap skb header data */
143 dma_unmap_single(tx_ring->dev,
144 dma_unmap_addr(tx_buf, dma),
145 dma_unmap_len(tx_buf, len),
146 DMA_TO_DEVICE);
148 /* clear tx_buf data */
149 tx_buf->skb = NULL;
150 dma_unmap_len_set(tx_buf, len, 0);
152 /* unmap remaining buffers */
153 while (tx_desc != eop_desc) {
154 tx_buf++;
155 tx_desc++;
156 i++;
157 if (unlikely(!i)) {
158 i -= tx_ring->count;
159 tx_buf = tx_ring->tx_buf;
160 tx_desc = ICE_TX_DESC(tx_ring, 0);
163 /* unmap any remaining paged data */
164 if (dma_unmap_len(tx_buf, len)) {
165 dma_unmap_page(tx_ring->dev,
166 dma_unmap_addr(tx_buf, dma),
167 dma_unmap_len(tx_buf, len),
168 DMA_TO_DEVICE);
169 dma_unmap_len_set(tx_buf, len, 0);
173 /* move us one more past the eop_desc for start of next pkt */
174 tx_buf++;
175 tx_desc++;
176 i++;
177 if (unlikely(!i)) {
178 i -= tx_ring->count;
179 tx_buf = tx_ring->tx_buf;
180 tx_desc = ICE_TX_DESC(tx_ring, 0);
183 prefetch(tx_desc);
185 /* update budget accounting */
186 budget--;
187 } while (likely(budget));
189 i += tx_ring->count;
190 tx_ring->next_to_clean = i;
191 u64_stats_update_begin(&tx_ring->syncp);
192 tx_ring->stats.bytes += total_bytes;
193 tx_ring->stats.pkts += total_pkts;
194 u64_stats_update_end(&tx_ring->syncp);
195 tx_ring->q_vector->tx.total_bytes += total_bytes;
196 tx_ring->q_vector->tx.total_pkts += total_pkts;
198 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
199 total_bytes);
201 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
202 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
203 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
204 /* Make sure that anybody stopping the queue after this
205 * sees the new next_to_clean.
207 smp_mb();
208 if (__netif_subqueue_stopped(tx_ring->netdev,
209 tx_ring->q_index) &&
210 !test_bit(__ICE_DOWN, vsi->state)) {
211 netif_wake_subqueue(tx_ring->netdev,
212 tx_ring->q_index);
213 ++tx_ring->tx_stats.restart_q;
217 return !!budget;
221 * ice_setup_tx_ring - Allocate the Tx descriptors
222 * @tx_ring: the tx ring to set up
224 * Return 0 on success, negative on error
226 int ice_setup_tx_ring(struct ice_ring *tx_ring)
228 struct device *dev = tx_ring->dev;
229 int bi_size;
231 if (!dev)
232 return -ENOMEM;
234 /* warn if we are about to overwrite the pointer */
235 WARN_ON(tx_ring->tx_buf);
236 bi_size = sizeof(struct ice_tx_buf) * tx_ring->count;
237 tx_ring->tx_buf = devm_kzalloc(dev, bi_size, GFP_KERNEL);
238 if (!tx_ring->tx_buf)
239 return -ENOMEM;
241 /* round up to nearest 4K */
242 tx_ring->size = tx_ring->count * sizeof(struct ice_tx_desc);
243 tx_ring->size = ALIGN(tx_ring->size, 4096);
244 tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
245 GFP_KERNEL);
246 if (!tx_ring->desc) {
247 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
248 tx_ring->size);
249 goto err;
252 tx_ring->next_to_use = 0;
253 tx_ring->next_to_clean = 0;
254 return 0;
256 err:
257 devm_kfree(dev, tx_ring->tx_buf);
258 tx_ring->tx_buf = NULL;
259 return -ENOMEM;
263 * ice_clean_rx_ring - Free Rx buffers
264 * @rx_ring: ring to be cleaned
266 void ice_clean_rx_ring(struct ice_ring *rx_ring)
268 struct device *dev = rx_ring->dev;
269 unsigned long size;
270 u16 i;
272 /* ring already cleared, nothing to do */
273 if (!rx_ring->rx_buf)
274 return;
276 /* Free all the Rx ring sk_buffs */
277 for (i = 0; i < rx_ring->count; i++) {
278 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
280 if (rx_buf->skb) {
281 dev_kfree_skb(rx_buf->skb);
282 rx_buf->skb = NULL;
284 if (!rx_buf->page)
285 continue;
287 dma_unmap_page(dev, rx_buf->dma, PAGE_SIZE, DMA_FROM_DEVICE);
288 __free_pages(rx_buf->page, 0);
290 rx_buf->page = NULL;
291 rx_buf->page_offset = 0;
294 size = sizeof(struct ice_rx_buf) * rx_ring->count;
295 memset(rx_ring->rx_buf, 0, size);
297 /* Zero out the descriptor ring */
298 memset(rx_ring->desc, 0, rx_ring->size);
300 rx_ring->next_to_alloc = 0;
301 rx_ring->next_to_clean = 0;
302 rx_ring->next_to_use = 0;
306 * ice_free_rx_ring - Free Rx resources
307 * @rx_ring: ring to clean the resources from
309 * Free all receive software resources
311 void ice_free_rx_ring(struct ice_ring *rx_ring)
313 ice_clean_rx_ring(rx_ring);
314 devm_kfree(rx_ring->dev, rx_ring->rx_buf);
315 rx_ring->rx_buf = NULL;
317 if (rx_ring->desc) {
318 dmam_free_coherent(rx_ring->dev, rx_ring->size,
319 rx_ring->desc, rx_ring->dma);
320 rx_ring->desc = NULL;
325 * ice_setup_rx_ring - Allocate the Rx descriptors
326 * @rx_ring: the rx ring to set up
328 * Return 0 on success, negative on error
330 int ice_setup_rx_ring(struct ice_ring *rx_ring)
332 struct device *dev = rx_ring->dev;
333 int bi_size;
335 if (!dev)
336 return -ENOMEM;
338 /* warn if we are about to overwrite the pointer */
339 WARN_ON(rx_ring->rx_buf);
340 bi_size = sizeof(struct ice_rx_buf) * rx_ring->count;
341 rx_ring->rx_buf = devm_kzalloc(dev, bi_size, GFP_KERNEL);
342 if (!rx_ring->rx_buf)
343 return -ENOMEM;
345 /* round up to nearest 4K */
346 rx_ring->size = rx_ring->count * sizeof(union ice_32byte_rx_desc);
347 rx_ring->size = ALIGN(rx_ring->size, 4096);
348 rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
349 GFP_KERNEL);
350 if (!rx_ring->desc) {
351 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
352 rx_ring->size);
353 goto err;
356 rx_ring->next_to_use = 0;
357 rx_ring->next_to_clean = 0;
358 return 0;
360 err:
361 devm_kfree(dev, rx_ring->rx_buf);
362 rx_ring->rx_buf = NULL;
363 return -ENOMEM;
367 * ice_release_rx_desc - Store the new tail and head values
368 * @rx_ring: ring to bump
369 * @val: new head index
371 static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val)
373 rx_ring->next_to_use = val;
375 /* update next to alloc since we have filled the ring */
376 rx_ring->next_to_alloc = val;
378 /* Force memory writes to complete before letting h/w
379 * know there are new descriptors to fetch. (Only
380 * applicable for weak-ordered memory model archs,
381 * such as IA-64).
383 wmb();
384 writel(val, rx_ring->tail);
388 * ice_alloc_mapped_page - recycle or make a new page
389 * @rx_ring: ring to use
390 * @bi: rx_buf struct to modify
392 * Returns true if the page was successfully allocated or
393 * reused.
395 static bool ice_alloc_mapped_page(struct ice_ring *rx_ring,
396 struct ice_rx_buf *bi)
398 struct page *page = bi->page;
399 dma_addr_t dma;
401 /* since we are recycling buffers we should seldom need to alloc */
402 if (likely(page)) {
403 rx_ring->rx_stats.page_reuse_count++;
404 return true;
407 /* alloc new page for storage */
408 page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
409 if (unlikely(!page)) {
410 rx_ring->rx_stats.alloc_page_failed++;
411 return false;
414 /* map page for use */
415 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
417 /* if mapping failed free memory back to system since
418 * there isn't much point in holding memory we can't use
420 if (dma_mapping_error(rx_ring->dev, dma)) {
421 __free_pages(page, 0);
422 rx_ring->rx_stats.alloc_page_failed++;
423 return false;
426 bi->dma = dma;
427 bi->page = page;
428 bi->page_offset = 0;
430 return true;
434 * ice_alloc_rx_bufs - Replace used receive buffers
435 * @rx_ring: ring to place buffers on
436 * @cleaned_count: number of buffers to replace
438 * Returns false if all allocations were successful, true if any fail
440 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
442 union ice_32b_rx_flex_desc *rx_desc;
443 u16 ntu = rx_ring->next_to_use;
444 struct ice_rx_buf *bi;
446 /* do nothing if no valid netdev defined */
447 if (!rx_ring->netdev || !cleaned_count)
448 return false;
450 /* get the RX descriptor and buffer based on next_to_use */
451 rx_desc = ICE_RX_DESC(rx_ring, ntu);
452 bi = &rx_ring->rx_buf[ntu];
454 do {
455 if (!ice_alloc_mapped_page(rx_ring, bi))
456 goto no_bufs;
458 /* Refresh the desc even if buffer_addrs didn't change
459 * because each write-back erases this info.
461 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
463 rx_desc++;
464 bi++;
465 ntu++;
466 if (unlikely(ntu == rx_ring->count)) {
467 rx_desc = ICE_RX_DESC(rx_ring, 0);
468 bi = rx_ring->rx_buf;
469 ntu = 0;
472 /* clear the status bits for the next_to_use descriptor */
473 rx_desc->wb.status_error0 = 0;
475 cleaned_count--;
476 } while (cleaned_count);
478 if (rx_ring->next_to_use != ntu)
479 ice_release_rx_desc(rx_ring, ntu);
481 return false;
483 no_bufs:
484 if (rx_ring->next_to_use != ntu)
485 ice_release_rx_desc(rx_ring, ntu);
487 /* make sure to come back via polling to try again after
488 * allocation failure
490 return true;
494 * ice_page_is_reserved - check if reuse is possible
495 * @page: page struct to check
497 static bool ice_page_is_reserved(struct page *page)
499 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
503 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff
504 * @rx_buf: buffer containing page to add
505 * @rx_desc: descriptor containing length of buffer written by hardware
506 * @skb: sk_buf to place the data into
508 * This function will add the data contained in rx_buf->page to the skb.
509 * This is done either through a direct copy if the data in the buffer is
510 * less than the skb header size, otherwise it will just attach the page as
511 * a frag to the skb.
513 * The function will then update the page offset if necessary and return
514 * true if the buffer can be reused by the adapter.
516 static bool ice_add_rx_frag(struct ice_rx_buf *rx_buf,
517 union ice_32b_rx_flex_desc *rx_desc,
518 struct sk_buff *skb)
520 #if (PAGE_SIZE < 8192)
521 unsigned int truesize = ICE_RXBUF_2048;
522 #else
523 unsigned int last_offset = PAGE_SIZE - ICE_RXBUF_2048;
524 unsigned int truesize;
525 #endif /* PAGE_SIZE < 8192) */
527 struct page *page;
528 unsigned int size;
530 size = le16_to_cpu(rx_desc->wb.pkt_len) &
531 ICE_RX_FLX_DESC_PKT_LEN_M;
533 page = rx_buf->page;
535 #if (PAGE_SIZE >= 8192)
536 truesize = ALIGN(size, L1_CACHE_BYTES);
537 #endif /* PAGE_SIZE >= 8192) */
539 /* will the data fit in the skb we allocated? if so, just
540 * copy it as it is pretty small anyway
542 if (size <= ICE_RX_HDR_SIZE && !skb_is_nonlinear(skb)) {
543 unsigned char *va = page_address(page) + rx_buf->page_offset;
545 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
547 /* page is not reserved, we can reuse buffer as-is */
548 if (likely(!ice_page_is_reserved(page)))
549 return true;
551 /* this page cannot be reused so discard it */
552 __free_pages(page, 0);
553 return false;
556 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
557 rx_buf->page_offset, size, truesize);
559 /* avoid re-using remote pages */
560 if (unlikely(ice_page_is_reserved(page)))
561 return false;
563 #if (PAGE_SIZE < 8192)
564 /* if we are only owner of page we can reuse it */
565 if (unlikely(page_count(page) != 1))
566 return false;
568 /* flip page offset to other buffer */
569 rx_buf->page_offset ^= truesize;
570 #else
571 /* move offset up to the next cache line */
572 rx_buf->page_offset += truesize;
574 if (rx_buf->page_offset > last_offset)
575 return false;
576 #endif /* PAGE_SIZE < 8192) */
578 /* Even if we own the page, we are not allowed to use atomic_set()
579 * This would break get_page_unless_zero() users.
581 get_page(rx_buf->page);
583 return true;
587 * ice_reuse_rx_page - page flip buffer and store it back on the ring
588 * @rx_ring: rx descriptor ring to store buffers on
589 * @old_buf: donor buffer to have page reused
591 * Synchronizes page for reuse by the adapter
593 static void ice_reuse_rx_page(struct ice_ring *rx_ring,
594 struct ice_rx_buf *old_buf)
596 u16 nta = rx_ring->next_to_alloc;
597 struct ice_rx_buf *new_buf;
599 new_buf = &rx_ring->rx_buf[nta];
601 /* update, and store next to alloc */
602 nta++;
603 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
605 /* transfer page from old buffer to new buffer */
606 *new_buf = *old_buf;
610 * ice_fetch_rx_buf - Allocate skb and populate it
611 * @rx_ring: rx descriptor ring to transact packets on
612 * @rx_desc: descriptor containing info written by hardware
614 * This function allocates an skb on the fly, and populates it with the page
615 * data from the current receive descriptor, taking care to set up the skb
616 * correctly, as well as handling calling the page recycle function if
617 * necessary.
619 static struct sk_buff *ice_fetch_rx_buf(struct ice_ring *rx_ring,
620 union ice_32b_rx_flex_desc *rx_desc)
622 struct ice_rx_buf *rx_buf;
623 struct sk_buff *skb;
624 struct page *page;
626 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
627 page = rx_buf->page;
628 prefetchw(page);
630 skb = rx_buf->skb;
632 if (likely(!skb)) {
633 u8 *page_addr = page_address(page) + rx_buf->page_offset;
635 /* prefetch first cache line of first page */
636 prefetch(page_addr);
637 #if L1_CACHE_BYTES < 128
638 prefetch((void *)(page_addr + L1_CACHE_BYTES));
639 #endif /* L1_CACHE_BYTES */
641 /* allocate a skb to store the frags */
642 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
643 ICE_RX_HDR_SIZE,
644 GFP_ATOMIC | __GFP_NOWARN);
645 if (unlikely(!skb)) {
646 rx_ring->rx_stats.alloc_buf_failed++;
647 return NULL;
650 /* we will be copying header into skb->data in
651 * pskb_may_pull so it is in our interest to prefetch
652 * it now to avoid a possible cache miss
654 prefetchw(skb->data);
656 skb_record_rx_queue(skb, rx_ring->q_index);
657 } else {
658 /* we are reusing so sync this buffer for CPU use */
659 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
660 rx_buf->page_offset,
661 ICE_RXBUF_2048,
662 DMA_FROM_DEVICE);
664 rx_buf->skb = NULL;
667 /* pull page into skb */
668 if (ice_add_rx_frag(rx_buf, rx_desc, skb)) {
669 /* hand second half of page back to the ring */
670 ice_reuse_rx_page(rx_ring, rx_buf);
671 rx_ring->rx_stats.page_reuse_count++;
672 } else {
673 /* we are not reusing the buffer so unmap it */
674 dma_unmap_page(rx_ring->dev, rx_buf->dma, PAGE_SIZE,
675 DMA_FROM_DEVICE);
678 /* clear contents of buffer_info */
679 rx_buf->page = NULL;
681 return skb;
685 * ice_pull_tail - ice specific version of skb_pull_tail
686 * @skb: pointer to current skb being adjusted
688 * This function is an ice specific version of __pskb_pull_tail. The
689 * main difference between this version and the original function is that
690 * this function can make several assumptions about the state of things
691 * that allow for significant optimizations versus the standard function.
692 * As a result we can do things like drop a frag and maintain an accurate
693 * truesize for the skb.
695 static void ice_pull_tail(struct sk_buff *skb)
697 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
698 unsigned int pull_len;
699 unsigned char *va;
701 /* it is valid to use page_address instead of kmap since we are
702 * working with pages allocated out of the lomem pool per
703 * alloc_page(GFP_ATOMIC)
705 va = skb_frag_address(frag);
707 /* we need the header to contain the greater of either ETH_HLEN or
708 * 60 bytes if the skb->len is less than 60 for skb_pad.
710 pull_len = eth_get_headlen(va, ICE_RX_HDR_SIZE);
712 /* align pull length to size of long to optimize memcpy performance */
713 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
715 /* update all of the pointers */
716 skb_frag_size_sub(frag, pull_len);
717 frag->page_offset += pull_len;
718 skb->data_len -= pull_len;
719 skb->tail += pull_len;
723 * ice_cleanup_headers - Correct empty headers
724 * @skb: pointer to current skb being fixed
726 * Also address the case where we are pulling data in on pages only
727 * and as such no data is present in the skb header.
729 * In addition if skb is not at least 60 bytes we need to pad it so that
730 * it is large enough to qualify as a valid Ethernet frame.
732 * Returns true if an error was encountered and skb was freed.
734 static bool ice_cleanup_headers(struct sk_buff *skb)
736 /* place header in linear portion of buffer */
737 if (skb_is_nonlinear(skb))
738 ice_pull_tail(skb);
740 /* if eth_skb_pad returns an error the skb was freed */
741 if (eth_skb_pad(skb))
742 return true;
744 return false;
748 * ice_test_staterr - tests bits in Rx descriptor status and error fields
749 * @rx_desc: pointer to receive descriptor (in le64 format)
750 * @stat_err_bits: value to mask
752 * This function does some fast chicanery in order to return the
753 * value of the mask which is really only used for boolean tests.
754 * The status_error_len doesn't need to be shifted because it begins
755 * at offset zero.
757 static bool ice_test_staterr(union ice_32b_rx_flex_desc *rx_desc,
758 const u16 stat_err_bits)
760 return !!(rx_desc->wb.status_error0 &
761 cpu_to_le16(stat_err_bits));
765 * ice_is_non_eop - process handling of non-EOP buffers
766 * @rx_ring: Rx ring being processed
767 * @rx_desc: Rx descriptor for current buffer
768 * @skb: Current socket buffer containing buffer in progress
770 * This function updates next to clean. If the buffer is an EOP buffer
771 * this function exits returning false, otherwise it will place the
772 * sk_buff in the next buffer to be chained and return true indicating
773 * that this is in fact a non-EOP buffer.
775 static bool ice_is_non_eop(struct ice_ring *rx_ring,
776 union ice_32b_rx_flex_desc *rx_desc,
777 struct sk_buff *skb)
779 u32 ntc = rx_ring->next_to_clean + 1;
781 /* fetch, update, and store next to clean */
782 ntc = (ntc < rx_ring->count) ? ntc : 0;
783 rx_ring->next_to_clean = ntc;
785 prefetch(ICE_RX_DESC(rx_ring, ntc));
787 /* if we are the last buffer then there is nothing else to do */
788 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
789 if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
790 return false;
792 /* place skb in next buffer to be received */
793 rx_ring->rx_buf[ntc].skb = skb;
794 rx_ring->rx_stats.non_eop_descs++;
796 return true;
800 * ice_ptype_to_htype - get a hash type
801 * @ptype: the ptype value from the descriptor
803 * Returns a hash type to be used by skb_set_hash
805 static enum pkt_hash_types ice_ptype_to_htype(u8 __always_unused ptype)
807 return PKT_HASH_TYPE_NONE;
811 * ice_rx_hash - set the hash value in the skb
812 * @rx_ring: descriptor ring
813 * @rx_desc: specific descriptor
814 * @skb: pointer to current skb
815 * @rx_ptype: the ptype value from the descriptor
817 static void
818 ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
819 struct sk_buff *skb, u8 rx_ptype)
821 struct ice_32b_rx_flex_desc_nic *nic_mdid;
822 u32 hash;
824 if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
825 return;
827 if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)
828 return;
830 nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
831 hash = le32_to_cpu(nic_mdid->rss_hash);
832 skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
836 * ice_rx_csum - Indicate in skb if checksum is good
837 * @vsi: the VSI we care about
838 * @skb: skb currently being received and modified
839 * @rx_desc: the receive descriptor
840 * @ptype: the packet type decoded by hardware
842 * skb->protocol must be set before this function is called
844 static void ice_rx_csum(struct ice_vsi *vsi, struct sk_buff *skb,
845 union ice_32b_rx_flex_desc *rx_desc, u8 ptype)
847 struct ice_rx_ptype_decoded decoded;
848 u32 rx_error, rx_status;
849 bool ipv4, ipv6;
851 rx_status = le16_to_cpu(rx_desc->wb.status_error0);
852 rx_error = rx_status;
854 decoded = ice_decode_rx_desc_ptype(ptype);
856 /* Start with CHECKSUM_NONE and by default csum_level = 0 */
857 skb->ip_summed = CHECKSUM_NONE;
858 skb_checksum_none_assert(skb);
860 /* check if Rx checksum is enabled */
861 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
862 return;
864 /* check if HW has decoded the packet and checksum */
865 if (!(rx_status & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
866 return;
868 if (!(decoded.known && decoded.outer_ip))
869 return;
871 ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
872 (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
873 ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
874 (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);
876 if (ipv4 && (rx_error & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |
877 BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S))))
878 goto checksum_fail;
879 else if (ipv6 && (rx_status &
880 (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
881 goto checksum_fail;
883 /* check for L4 errors and handle packets that were not able to be
884 * checksummed due to arrival speed
886 if (rx_error & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
887 goto checksum_fail;
889 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
890 switch (decoded.inner_prot) {
891 case ICE_RX_PTYPE_INNER_PROT_TCP:
892 case ICE_RX_PTYPE_INNER_PROT_UDP:
893 case ICE_RX_PTYPE_INNER_PROT_SCTP:
894 skb->ip_summed = CHECKSUM_UNNECESSARY;
895 default:
896 break;
898 return;
900 checksum_fail:
901 vsi->back->hw_csum_rx_error++;
905 * ice_process_skb_fields - Populate skb header fields from Rx descriptor
906 * @rx_ring: rx descriptor ring packet is being transacted on
907 * @rx_desc: pointer to the EOP Rx descriptor
908 * @skb: pointer to current skb being populated
909 * @ptype: the packet type decoded by hardware
911 * This function checks the ring, descriptor, and packet information in
912 * order to populate the hash, checksum, VLAN, protocol, and
913 * other fields within the skb.
915 static void ice_process_skb_fields(struct ice_ring *rx_ring,
916 union ice_32b_rx_flex_desc *rx_desc,
917 struct sk_buff *skb, u8 ptype)
919 ice_rx_hash(rx_ring, rx_desc, skb, ptype);
921 /* modifies the skb - consumes the enet header */
922 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
924 ice_rx_csum(rx_ring->vsi, skb, rx_desc, ptype);
928 * ice_receive_skb - Send a completed packet up the stack
929 * @rx_ring: rx ring in play
930 * @skb: packet to send up
931 * @vlan_tag: vlan tag for packet
933 * This function sends the completed packet (via. skb) up the stack using
934 * gro receive functions (with/without vlan tag)
936 static void ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb,
937 u16 vlan_tag)
939 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
940 (vlan_tag & VLAN_VID_MASK)) {
941 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
943 napi_gro_receive(&rx_ring->q_vector->napi, skb);
947 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
948 * @rx_ring: rx descriptor ring to transact packets on
949 * @budget: Total limit on number of packets to process
951 * This function provides a "bounce buffer" approach to Rx interrupt
952 * processing. The advantage to this is that on systems that have
953 * expensive overhead for IOMMU access this provides a means of avoiding
954 * it by maintaining the mapping of the page to the system.
956 * Returns amount of work completed
958 static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
960 unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
961 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
962 bool failure = false;
964 /* start the loop to process RX packets bounded by 'budget' */
965 while (likely(total_rx_pkts < (unsigned int)budget)) {
966 union ice_32b_rx_flex_desc *rx_desc;
967 struct sk_buff *skb;
968 u16 stat_err_bits;
969 u16 vlan_tag = 0;
970 u8 rx_ptype;
972 /* return some buffers to hardware, one at a time is too slow */
973 if (cleaned_count >= ICE_RX_BUF_WRITE) {
974 failure = failure ||
975 ice_alloc_rx_bufs(rx_ring, cleaned_count);
976 cleaned_count = 0;
979 /* get the RX desc from RX ring based on 'next_to_clean' */
980 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
982 /* status_error_len will always be zero for unused descriptors
983 * because it's cleared in cleanup, and overlaps with hdr_addr
984 * which is always zero because packet split isn't used, if the
985 * hardware wrote DD then it will be non-zero
987 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
988 if (!ice_test_staterr(rx_desc, stat_err_bits))
989 break;
991 /* This memory barrier is needed to keep us from reading
992 * any other fields out of the rx_desc until we know the
993 * DD bit is set.
995 dma_rmb();
997 /* allocate (if needed) and populate skb */
998 skb = ice_fetch_rx_buf(rx_ring, rx_desc);
999 if (!skb)
1000 break;
1002 cleaned_count++;
1004 /* skip if it is NOP desc */
1005 if (ice_is_non_eop(rx_ring, rx_desc, skb))
1006 continue;
1008 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1009 if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1010 dev_kfree_skb_any(skb);
1011 continue;
1014 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1015 ICE_RX_FLEX_DESC_PTYPE_M;
1017 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1018 if (ice_test_staterr(rx_desc, stat_err_bits))
1019 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1021 /* correct empty headers and pad skb if needed (to make valid
1022 * ethernet frame
1024 if (ice_cleanup_headers(skb)) {
1025 skb = NULL;
1026 continue;
1029 /* probably a little skewed due to removing CRC */
1030 total_rx_bytes += skb->len;
1032 /* populate checksum, VLAN, and protocol */
1033 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1035 /* send completed skb up the stack */
1036 ice_receive_skb(rx_ring, skb, vlan_tag);
1038 /* update budget accounting */
1039 total_rx_pkts++;
1042 /* update queue and vector specific stats */
1043 u64_stats_update_begin(&rx_ring->syncp);
1044 rx_ring->stats.pkts += total_rx_pkts;
1045 rx_ring->stats.bytes += total_rx_bytes;
1046 u64_stats_update_end(&rx_ring->syncp);
1047 rx_ring->q_vector->rx.total_pkts += total_rx_pkts;
1048 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1050 /* guarantee a trip back through this routine if there was a failure */
1051 return failure ? budget : (int)total_rx_pkts;
1055 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1056 * @napi: napi struct with our devices info in it
1057 * @budget: amount of work driver is allowed to do this pass, in packets
1059 * This function will clean all queues associated with a q_vector.
1061 * Returns the amount of work done
1063 int ice_napi_poll(struct napi_struct *napi, int budget)
1065 struct ice_q_vector *q_vector =
1066 container_of(napi, struct ice_q_vector, napi);
1067 struct ice_vsi *vsi = q_vector->vsi;
1068 struct ice_pf *pf = vsi->back;
1069 bool clean_complete = true;
1070 int budget_per_ring = 0;
1071 struct ice_ring *ring;
1072 int work_done = 0;
1074 /* Since the actual Tx work is minimal, we can give the Tx a larger
1075 * budget and be more aggressive about cleaning up the Tx descriptors.
1077 ice_for_each_ring(ring, q_vector->tx)
1078 if (!ice_clean_tx_irq(vsi, ring, budget))
1079 clean_complete = false;
1081 /* Handle case where we are called by netpoll with a budget of 0 */
1082 if (budget <= 0)
1083 return budget;
1085 /* We attempt to distribute budget to each Rx queue fairly, but don't
1086 * allow the budget to go below 1 because that would exit polling early.
1088 if (q_vector->num_ring_rx)
1089 budget_per_ring = max(budget / q_vector->num_ring_rx, 1);
1091 ice_for_each_ring(ring, q_vector->rx) {
1092 int cleaned;
1094 cleaned = ice_clean_rx_irq(ring, budget_per_ring);
1095 work_done += cleaned;
1096 /* if we clean as many as budgeted, we must not be done */
1097 if (cleaned >= budget_per_ring)
1098 clean_complete = false;
1101 /* If work not completed, return budget and polling will return */
1102 if (!clean_complete)
1103 return budget;
1105 /* Work is done so exit the polling mode and re-enable the interrupt */
1106 napi_complete_done(napi, work_done);
1107 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
1108 ice_irq_dynamic_ena(&vsi->back->hw, vsi, q_vector);
1109 return 0;
1112 /* helper function for building cmd/type/offset */
1113 static __le64
1114 build_ctob(u64 td_cmd, u64 td_offset, unsigned int size, u64 td_tag)
1116 return cpu_to_le64(ICE_TX_DESC_DTYPE_DATA |
1117 (td_cmd << ICE_TXD_QW1_CMD_S) |
1118 (td_offset << ICE_TXD_QW1_OFFSET_S) |
1119 ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
1120 (td_tag << ICE_TXD_QW1_L2TAG1_S));
1124 * __ice_maybe_stop_tx - 2nd level check for tx stop conditions
1125 * @tx_ring: the ring to be checked
1126 * @size: the size buffer we want to assure is available
1128 * Returns -EBUSY if a stop is needed, else 0
1130 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1132 netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1133 /* Memory barrier before checking head and tail */
1134 smp_mb();
1136 /* Check again in a case another CPU has just made room available. */
1137 if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1138 return -EBUSY;
1140 /* A reprieve! - use start_subqueue because it doesn't call schedule */
1141 netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1142 ++tx_ring->tx_stats.restart_q;
1143 return 0;
1147 * ice_maybe_stop_tx - 1st level check for tx stop conditions
1148 * @tx_ring: the ring to be checked
1149 * @size: the size buffer we want to assure is available
1151 * Returns 0 if stop is not needed
1153 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1155 if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1156 return 0;
1157 return __ice_maybe_stop_tx(tx_ring, size);
1161 * ice_tx_map - Build the Tx descriptor
1162 * @tx_ring: ring to send buffer on
1163 * @first: first buffer info buffer to use
1164 * @off: pointer to struct that holds offload parameters
1166 * This function loops over the skb data pointed to by *first
1167 * and gets a physical address for each memory location and programs
1168 * it and the length into the transmit descriptor.
1170 static void
1171 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1172 struct ice_tx_offload_params *off)
1174 u64 td_offset, td_tag, td_cmd;
1175 u16 i = tx_ring->next_to_use;
1176 struct skb_frag_struct *frag;
1177 unsigned int data_len, size;
1178 struct ice_tx_desc *tx_desc;
1179 struct ice_tx_buf *tx_buf;
1180 struct sk_buff *skb;
1181 dma_addr_t dma;
1183 td_tag = off->td_l2tag1;
1184 td_cmd = off->td_cmd;
1185 td_offset = off->td_offset;
1186 skb = first->skb;
1188 data_len = skb->data_len;
1189 size = skb_headlen(skb);
1191 tx_desc = ICE_TX_DESC(tx_ring, i);
1193 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1194 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1195 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1196 ICE_TX_FLAGS_VLAN_S;
1199 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1201 tx_buf = first;
1203 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1204 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1206 if (dma_mapping_error(tx_ring->dev, dma))
1207 goto dma_error;
1209 /* record length, and DMA address */
1210 dma_unmap_len_set(tx_buf, len, size);
1211 dma_unmap_addr_set(tx_buf, dma, dma);
1213 /* align size to end of page */
1214 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1215 tx_desc->buf_addr = cpu_to_le64(dma);
1217 /* account for data chunks larger than the hardware
1218 * can handle
1220 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1221 tx_desc->cmd_type_offset_bsz =
1222 build_ctob(td_cmd, td_offset, max_data, td_tag);
1224 tx_desc++;
1225 i++;
1227 if (i == tx_ring->count) {
1228 tx_desc = ICE_TX_DESC(tx_ring, 0);
1229 i = 0;
1232 dma += max_data;
1233 size -= max_data;
1235 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1236 tx_desc->buf_addr = cpu_to_le64(dma);
1239 if (likely(!data_len))
1240 break;
1242 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1243 size, td_tag);
1245 tx_desc++;
1246 i++;
1248 if (i == tx_ring->count) {
1249 tx_desc = ICE_TX_DESC(tx_ring, 0);
1250 i = 0;
1253 size = skb_frag_size(frag);
1254 data_len -= size;
1256 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1257 DMA_TO_DEVICE);
1259 tx_buf = &tx_ring->tx_buf[i];
1262 /* record bytecount for BQL */
1263 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1265 /* record SW timestamp if HW timestamp is not available */
1266 skb_tx_timestamp(first->skb);
1268 i++;
1269 if (i == tx_ring->count)
1270 i = 0;
1272 /* write last descriptor with RS and EOP bits */
1273 td_cmd |= (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS);
1274 tx_desc->cmd_type_offset_bsz =
1275 build_ctob(td_cmd, td_offset, size, td_tag);
1277 /* Force memory writes to complete before letting h/w know there
1278 * are new descriptors to fetch.
1280 * We also use this memory barrier to make certain all of the
1281 * status bits have been updated before next_to_watch is written.
1283 wmb();
1285 /* set next_to_watch value indicating a packet is present */
1286 first->next_to_watch = tx_desc;
1288 tx_ring->next_to_use = i;
1290 ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1292 /* notify HW of packet */
1293 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1294 writel(i, tx_ring->tail);
1296 /* we need this if more than one processor can write to our tail
1297 * at a time, it synchronizes IO on IA64/Altix systems
1299 mmiowb();
1302 return;
1304 dma_error:
1305 /* clear dma mappings for failed tx_buf map */
1306 for (;;) {
1307 tx_buf = &tx_ring->tx_buf[i];
1308 ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1309 if (tx_buf == first)
1310 break;
1311 if (i == 0)
1312 i = tx_ring->count;
1313 i--;
1316 tx_ring->next_to_use = i;
1320 * ice_tx_csum - Enable Tx checksum offloads
1321 * @first: pointer to the first descriptor
1322 * @off: pointer to struct that holds offload parameters
1324 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1326 static
1327 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1329 u32 l4_len = 0, l3_len = 0, l2_len = 0;
1330 struct sk_buff *skb = first->skb;
1331 union {
1332 struct iphdr *v4;
1333 struct ipv6hdr *v6;
1334 unsigned char *hdr;
1335 } ip;
1336 union {
1337 struct tcphdr *tcp;
1338 unsigned char *hdr;
1339 } l4;
1340 __be16 frag_off, protocol;
1341 unsigned char *exthdr;
1342 u32 offset, cmd = 0;
1343 u8 l4_proto = 0;
1345 if (skb->ip_summed != CHECKSUM_PARTIAL)
1346 return 0;
1348 ip.hdr = skb_network_header(skb);
1349 l4.hdr = skb_transport_header(skb);
1351 /* compute outer L2 header size */
1352 l2_len = ip.hdr - skb->data;
1353 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1355 if (skb->encapsulation)
1356 return -1;
1358 /* Enable IP checksum offloads */
1359 protocol = vlan_get_protocol(skb);
1360 if (protocol == htons(ETH_P_IP)) {
1361 l4_proto = ip.v4->protocol;
1362 /* the stack computes the IP header already, the only time we
1363 * need the hardware to recompute it is in the case of TSO.
1365 if (first->tx_flags & ICE_TX_FLAGS_TSO)
1366 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1367 else
1368 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1370 } else if (protocol == htons(ETH_P_IPV6)) {
1371 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1372 exthdr = ip.hdr + sizeof(*ip.v6);
1373 l4_proto = ip.v6->nexthdr;
1374 if (l4.hdr != exthdr)
1375 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1376 &frag_off);
1377 } else {
1378 return -1;
1381 /* compute inner L3 header size */
1382 l3_len = l4.hdr - ip.hdr;
1383 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1385 /* Enable L4 checksum offloads */
1386 switch (l4_proto) {
1387 case IPPROTO_TCP:
1388 /* enable checksum offloads */
1389 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1390 l4_len = l4.tcp->doff;
1391 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1392 break;
1393 case IPPROTO_UDP:
1394 /* enable UDP checksum offload */
1395 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1396 l4_len = (sizeof(struct udphdr) >> 2);
1397 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1398 break;
1399 case IPPROTO_SCTP:
1400 default:
1401 if (first->tx_flags & ICE_TX_FLAGS_TSO)
1402 return -1;
1403 skb_checksum_help(skb);
1404 return 0;
1407 off->td_cmd |= cmd;
1408 off->td_offset |= offset;
1409 return 1;
1413 * ice_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1414 * @tx_ring: ring to send buffer on
1415 * @first: pointer to struct ice_tx_buf
1417 * Checks the skb and set up correspondingly several generic transmit flags
1418 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1420 * Returns error code indicate the frame should be dropped upon error and the
1421 * otherwise returns 0 to indicate the flags has been set properly.
1423 static int
1424 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
1426 struct sk_buff *skb = first->skb;
1427 __be16 protocol = skb->protocol;
1429 if (protocol == htons(ETH_P_8021Q) &&
1430 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1431 /* when HW VLAN acceleration is turned off by the user the
1432 * stack sets the protocol to 8021q so that the driver
1433 * can take any steps required to support the SW only
1434 * VLAN handling. In our case the driver doesn't need
1435 * to take any further steps so just set the protocol
1436 * to the encapsulated ethertype.
1438 skb->protocol = vlan_get_protocol(skb);
1439 goto out;
1442 /* if we have a HW VLAN tag being added, default to the HW one */
1443 if (skb_vlan_tag_present(skb)) {
1444 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1445 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1446 } else if (protocol == htons(ETH_P_8021Q)) {
1447 struct vlan_hdr *vhdr, _vhdr;
1449 /* for SW VLAN, check the next protocol and store the tag */
1450 vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
1451 sizeof(_vhdr),
1452 &_vhdr);
1453 if (!vhdr)
1454 return -EINVAL;
1456 first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
1457 ICE_TX_FLAGS_VLAN_S;
1458 first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
1461 out:
1462 return 0;
1466 * ice_tso - computes mss and TSO length to prepare for TSO
1467 * @first: pointer to struct ice_tx_buf
1468 * @off: pointer to struct that holds offload parameters
1470 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1472 static
1473 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1475 struct sk_buff *skb = first->skb;
1476 union {
1477 struct iphdr *v4;
1478 struct ipv6hdr *v6;
1479 unsigned char *hdr;
1480 } ip;
1481 union {
1482 struct tcphdr *tcp;
1483 unsigned char *hdr;
1484 } l4;
1485 u64 cd_mss, cd_tso_len;
1486 u32 paylen, l4_start;
1487 int err;
1489 if (skb->ip_summed != CHECKSUM_PARTIAL)
1490 return 0;
1492 if (!skb_is_gso(skb))
1493 return 0;
1495 err = skb_cow_head(skb, 0);
1496 if (err < 0)
1497 return err;
1499 ip.hdr = skb_network_header(skb);
1500 l4.hdr = skb_transport_header(skb);
1502 /* initialize outer IP header fields */
1503 if (ip.v4->version == 4) {
1504 ip.v4->tot_len = 0;
1505 ip.v4->check = 0;
1506 } else {
1507 ip.v6->payload_len = 0;
1510 /* determine offset of transport header */
1511 l4_start = l4.hdr - skb->data;
1513 /* remove payload length from checksum */
1514 paylen = skb->len - l4_start;
1515 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1517 /* compute length of segmentation header */
1518 off->header_len = (l4.tcp->doff * 4) + l4_start;
1520 /* update gso_segs and bytecount */
1521 first->gso_segs = skb_shinfo(skb)->gso_segs;
1522 first->bytecount = (first->gso_segs - 1) * off->header_len;
1524 cd_tso_len = skb->len - off->header_len;
1525 cd_mss = skb_shinfo(skb)->gso_size;
1527 /* record cdesc_qw1 with TSO parameters */
1528 off->cd_qw1 |= ICE_TX_DESC_DTYPE_CTX |
1529 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
1530 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1531 (cd_mss << ICE_TXD_CTX_QW1_MSS_S);
1532 first->tx_flags |= ICE_TX_FLAGS_TSO;
1533 return 1;
1537 * ice_txd_use_count - estimate the number of descriptors needed for Tx
1538 * @size: transmit request size in bytes
1540 * Due to hardware alignment restrictions (4K alignment), we need to
1541 * assume that we can have no more than 12K of data per descriptor, even
1542 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
1543 * Thus, we need to divide by 12K. But division is slow! Instead,
1544 * we decompose the operation into shifts and one relatively cheap
1545 * multiply operation.
1547 * To divide by 12K, we first divide by 4K, then divide by 3:
1548 * To divide by 4K, shift right by 12 bits
1549 * To divide by 3, multiply by 85, then divide by 256
1550 * (Divide by 256 is done by shifting right by 8 bits)
1551 * Finally, we add one to round up. Because 256 isn't an exact multiple of
1552 * 3, we'll underestimate near each multiple of 12K. This is actually more
1553 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
1554 * segment. For our purposes this is accurate out to 1M which is orders of
1555 * magnitude greater than our largest possible GSO size.
1557 * This would then be implemented as:
1558 * return (((size >> 12) * 85) >> 8) + 1;
1560 * Since multiplication and division are commutative, we can reorder
1561 * operations into:
1562 * return ((size * 85) >> 20) + 1;
1564 static unsigned int ice_txd_use_count(unsigned int size)
1566 return ((size * 85) >> 20) + 1;
1570 * ice_xmit_desc_count - calculate number of tx descriptors needed
1571 * @skb: send buffer
1573 * Returns number of data descriptors needed for this skb.
1575 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
1577 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
1578 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1579 unsigned int count = 0, size = skb_headlen(skb);
1581 for (;;) {
1582 count += ice_txd_use_count(size);
1584 if (!nr_frags--)
1585 break;
1587 size = skb_frag_size(frag++);
1590 return count;
1594 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
1595 * @skb: send buffer
1597 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
1598 * and so we need to figure out the cases where we need to linearize the skb.
1600 * For TSO we need to count the TSO header and segment payload separately.
1601 * As such we need to check cases where we have 7 fragments or more as we
1602 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1603 * the segment payload in the first descriptor, and another 7 for the
1604 * fragments.
1606 static bool __ice_chk_linearize(struct sk_buff *skb)
1608 const struct skb_frag_struct *frag, *stale;
1609 int nr_frags, sum;
1611 /* no need to check if number of frags is less than 7 */
1612 nr_frags = skb_shinfo(skb)->nr_frags;
1613 if (nr_frags < (ICE_MAX_BUF_TXD - 1))
1614 return false;
1616 /* We need to walk through the list and validate that each group
1617 * of 6 fragments totals at least gso_size.
1619 nr_frags -= ICE_MAX_BUF_TXD - 2;
1620 frag = &skb_shinfo(skb)->frags[0];
1622 /* Initialize size to the negative value of gso_size minus 1. We
1623 * use this as the worst case scenerio in which the frag ahead
1624 * of us only provides one byte which is why we are limited to 6
1625 * descriptors for a single transmit as the header and previous
1626 * fragment are already consuming 2 descriptors.
1628 sum = 1 - skb_shinfo(skb)->gso_size;
1630 /* Add size of frags 0 through 4 to create our initial sum */
1631 sum += skb_frag_size(frag++);
1632 sum += skb_frag_size(frag++);
1633 sum += skb_frag_size(frag++);
1634 sum += skb_frag_size(frag++);
1635 sum += skb_frag_size(frag++);
1637 /* Walk through fragments adding latest fragment, testing it, and
1638 * then removing stale fragments from the sum.
1640 stale = &skb_shinfo(skb)->frags[0];
1641 for (;;) {
1642 sum += skb_frag_size(frag++);
1644 /* if sum is negative we failed to make sufficient progress */
1645 if (sum < 0)
1646 return true;
1648 if (!nr_frags--)
1649 break;
1651 sum -= skb_frag_size(stale++);
1654 return false;
1658 * ice_chk_linearize - Check if there are more than 8 fragments per packet
1659 * @skb: send buffer
1660 * @count: number of buffers used
1662 * Note: Our HW can't scatter-gather more than 8 fragments to build
1663 * a packet on the wire and so we need to figure out the cases where we
1664 * need to linearize the skb.
1666 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
1668 /* Both TSO and single send will work if count is less than 8 */
1669 if (likely(count < ICE_MAX_BUF_TXD))
1670 return false;
1672 if (skb_is_gso(skb))
1673 return __ice_chk_linearize(skb);
1675 /* we can support up to 8 data buffers for a single send */
1676 return count != ICE_MAX_BUF_TXD;
1680 * ice_xmit_frame_ring - Sends buffer on Tx ring
1681 * @skb: send buffer
1682 * @tx_ring: ring to send buffer on
1684 * Returns NETDEV_TX_OK if sent, else an error code
1686 static netdev_tx_t
1687 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
1689 struct ice_tx_offload_params offload = { 0 };
1690 struct ice_tx_buf *first;
1691 unsigned int count;
1692 int tso, csum;
1694 count = ice_xmit_desc_count(skb);
1695 if (ice_chk_linearize(skb, count)) {
1696 if (__skb_linearize(skb))
1697 goto out_drop;
1698 count = ice_txd_use_count(skb->len);
1699 tx_ring->tx_stats.tx_linearize++;
1702 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
1703 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
1704 * + 4 desc gap to avoid the cache line where head is,
1705 * + 1 desc for context descriptor,
1706 * otherwise try next time
1708 if (ice_maybe_stop_tx(tx_ring, count + 4 + 1)) {
1709 tx_ring->tx_stats.tx_busy++;
1710 return NETDEV_TX_BUSY;
1713 offload.tx_ring = tx_ring;
1715 /* record the location of the first descriptor for this packet */
1716 first = &tx_ring->tx_buf[tx_ring->next_to_use];
1717 first->skb = skb;
1718 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1719 first->gso_segs = 1;
1720 first->tx_flags = 0;
1722 /* prepare the VLAN tagging flags for Tx */
1723 if (ice_tx_prepare_vlan_flags(tx_ring, first))
1724 goto out_drop;
1726 /* set up TSO offload */
1727 tso = ice_tso(first, &offload);
1728 if (tso < 0)
1729 goto out_drop;
1731 /* always set up Tx checksum offload */
1732 csum = ice_tx_csum(first, &offload);
1733 if (csum < 0)
1734 goto out_drop;
1736 if (tso || offload.cd_tunnel_params) {
1737 struct ice_tx_ctx_desc *cdesc;
1738 int i = tx_ring->next_to_use;
1740 /* grab the next descriptor */
1741 cdesc = ICE_TX_CTX_DESC(tx_ring, i);
1742 i++;
1743 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1745 /* setup context descriptor */
1746 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
1747 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
1748 cdesc->rsvd = cpu_to_le16(0);
1749 cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
1752 ice_tx_map(tx_ring, first, &offload);
1753 return NETDEV_TX_OK;
1755 out_drop:
1756 dev_kfree_skb_any(skb);
1757 return NETDEV_TX_OK;
1761 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
1762 * @skb: send buffer
1763 * @netdev: network interface device structure
1765 * Returns NETDEV_TX_OK if sent, else an error code
1767 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
1769 struct ice_netdev_priv *np = netdev_priv(netdev);
1770 struct ice_vsi *vsi = np->vsi;
1771 struct ice_ring *tx_ring;
1773 tx_ring = vsi->tx_rings[skb->queue_mapping];
1775 /* hardware can't handle really short frames, hardware padding works
1776 * beyond this point
1778 if (skb_put_padto(skb, ICE_MIN_TX_LEN))
1779 return NETDEV_TX_OK;
1781 return ice_xmit_frame_ring(skb, tx_ring);