1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
8 #include <linux/types.h>
9 #include <linux/if_ether.h>
12 #include "e1000_i210.h"
14 static s32
igb_update_flash_i210(struct e1000_hw
*hw
);
17 * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
18 * @hw: pointer to the HW structure
20 * Acquire the HW semaphore to access the PHY or NVM
22 static s32
igb_get_hw_semaphore_i210(struct e1000_hw
*hw
)
25 s32 timeout
= hw
->nvm
.word_size
+ 1;
28 /* Get the SW semaphore */
30 swsm
= rd32(E1000_SWSM
);
31 if (!(swsm
& E1000_SWSM_SMBI
))
39 /* In rare circumstances, the SW semaphore may already be held
40 * unintentionally. Clear the semaphore once before giving up.
42 if (hw
->dev_spec
._82575
.clear_semaphore_once
) {
43 hw
->dev_spec
._82575
.clear_semaphore_once
= false;
44 igb_put_hw_semaphore(hw
);
45 for (i
= 0; i
< timeout
; i
++) {
46 swsm
= rd32(E1000_SWSM
);
47 if (!(swsm
& E1000_SWSM_SMBI
))
54 /* If we do not have the semaphore here, we have to give up. */
56 hw_dbg("Driver can't access device - SMBI bit is set.\n");
57 return -E1000_ERR_NVM
;
61 /* Get the FW semaphore. */
62 for (i
= 0; i
< timeout
; i
++) {
63 swsm
= rd32(E1000_SWSM
);
64 wr32(E1000_SWSM
, swsm
| E1000_SWSM_SWESMBI
);
66 /* Semaphore acquired if bit latched */
67 if (rd32(E1000_SWSM
) & E1000_SWSM_SWESMBI
)
74 /* Release semaphores */
75 igb_put_hw_semaphore(hw
);
76 hw_dbg("Driver can't access the NVM\n");
77 return -E1000_ERR_NVM
;
84 * igb_acquire_nvm_i210 - Request for access to EEPROM
85 * @hw: pointer to the HW structure
87 * Acquire the necessary semaphores for exclusive access to the EEPROM.
88 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
89 * Return successful if access grant bit set, else clear the request for
90 * EEPROM access and return -E1000_ERR_NVM (-1).
92 static s32
igb_acquire_nvm_i210(struct e1000_hw
*hw
)
94 return igb_acquire_swfw_sync_i210(hw
, E1000_SWFW_EEP_SM
);
98 * igb_release_nvm_i210 - Release exclusive access to EEPROM
99 * @hw: pointer to the HW structure
101 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
102 * then release the semaphores acquired.
104 static void igb_release_nvm_i210(struct e1000_hw
*hw
)
106 igb_release_swfw_sync_i210(hw
, E1000_SWFW_EEP_SM
);
110 * igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
111 * @hw: pointer to the HW structure
112 * @mask: specifies which semaphore to acquire
114 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
115 * will also specify which port we're acquiring the lock for.
117 s32
igb_acquire_swfw_sync_i210(struct e1000_hw
*hw
, u16 mask
)
121 u32 fwmask
= mask
<< 16;
123 s32 i
= 0, timeout
= 200; /* FIXME: find real value to use here */
125 while (i
< timeout
) {
126 if (igb_get_hw_semaphore_i210(hw
)) {
127 ret_val
= -E1000_ERR_SWFW_SYNC
;
131 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
132 if (!(swfw_sync
& (fwmask
| swmask
)))
135 /* Firmware currently using resource (fwmask) */
136 igb_put_hw_semaphore(hw
);
142 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
143 ret_val
= -E1000_ERR_SWFW_SYNC
;
148 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
150 igb_put_hw_semaphore(hw
);
156 * igb_release_swfw_sync_i210 - Release SW/FW semaphore
157 * @hw: pointer to the HW structure
158 * @mask: specifies which semaphore to acquire
160 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
161 * will also specify which port we're releasing the lock for.
163 void igb_release_swfw_sync_i210(struct e1000_hw
*hw
, u16 mask
)
167 while (igb_get_hw_semaphore_i210(hw
))
170 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
172 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
174 igb_put_hw_semaphore(hw
);
178 * igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
179 * @hw: pointer to the HW structure
180 * @offset: offset of word in the Shadow Ram to read
181 * @words: number of words to read
182 * @data: word read from the Shadow Ram
184 * Reads a 16 bit word from the Shadow Ram using the EERD register.
185 * Uses necessary synchronization semaphores.
187 static s32
igb_read_nvm_srrd_i210(struct e1000_hw
*hw
, u16 offset
, u16 words
,
193 /* We cannot hold synchronization semaphores for too long,
194 * because of forceful takeover procedure. However it is more efficient
195 * to read in bursts than synchronizing access for each word.
197 for (i
= 0; i
< words
; i
+= E1000_EERD_EEWR_MAX_COUNT
) {
198 count
= (words
- i
) / E1000_EERD_EEWR_MAX_COUNT
> 0 ?
199 E1000_EERD_EEWR_MAX_COUNT
: (words
- i
);
200 if (!(hw
->nvm
.ops
.acquire(hw
))) {
201 status
= igb_read_nvm_eerd(hw
, offset
, count
,
203 hw
->nvm
.ops
.release(hw
);
205 status
= E1000_ERR_SWFW_SYNC
;
216 * igb_write_nvm_srwr - Write to Shadow Ram using EEWR
217 * @hw: pointer to the HW structure
218 * @offset: offset within the Shadow Ram to be written to
219 * @words: number of words to write
220 * @data: 16 bit word(s) to be written to the Shadow Ram
222 * Writes data to Shadow Ram at offset using EEWR register.
224 * If igb_update_nvm_checksum is not called after this function , the
225 * Shadow Ram will most likely contain an invalid checksum.
227 static s32
igb_write_nvm_srwr(struct e1000_hw
*hw
, u16 offset
, u16 words
,
230 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
232 u32 attempts
= 100000;
235 /* A check for invalid values: offset too large, too many words,
236 * too many words for the offset, and not enough words.
238 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
240 hw_dbg("nvm parameter(s) out of bounds\n");
241 ret_val
= -E1000_ERR_NVM
;
245 for (i
= 0; i
< words
; i
++) {
246 eewr
= ((offset
+i
) << E1000_NVM_RW_ADDR_SHIFT
) |
247 (data
[i
] << E1000_NVM_RW_REG_DATA
) |
248 E1000_NVM_RW_REG_START
;
250 wr32(E1000_SRWR
, eewr
);
252 for (k
= 0; k
< attempts
; k
++) {
253 if (E1000_NVM_RW_REG_DONE
&
262 hw_dbg("Shadow RAM write EEWR timed out\n");
272 * igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
273 * @hw: pointer to the HW structure
274 * @offset: offset within the Shadow RAM to be written to
275 * @words: number of words to write
276 * @data: 16 bit word(s) to be written to the Shadow RAM
278 * Writes data to Shadow RAM at offset using EEWR register.
280 * If e1000_update_nvm_checksum is not called after this function , the
281 * data will not be committed to FLASH and also Shadow RAM will most likely
282 * contain an invalid checksum.
284 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
287 static s32
igb_write_nvm_srwr_i210(struct e1000_hw
*hw
, u16 offset
, u16 words
,
293 /* We cannot hold synchronization semaphores for too long,
294 * because of forceful takeover procedure. However it is more efficient
295 * to write in bursts than synchronizing access for each word.
297 for (i
= 0; i
< words
; i
+= E1000_EERD_EEWR_MAX_COUNT
) {
298 count
= (words
- i
) / E1000_EERD_EEWR_MAX_COUNT
> 0 ?
299 E1000_EERD_EEWR_MAX_COUNT
: (words
- i
);
300 if (!(hw
->nvm
.ops
.acquire(hw
))) {
301 status
= igb_write_nvm_srwr(hw
, offset
, count
,
303 hw
->nvm
.ops
.release(hw
);
305 status
= E1000_ERR_SWFW_SYNC
;
316 * igb_read_invm_word_i210 - Reads OTP
317 * @hw: pointer to the HW structure
318 * @address: the word address (aka eeprom offset) to read
319 * @data: pointer to the data read
321 * Reads 16-bit words from the OTP. Return error when the word is not
324 static s32
igb_read_invm_word_i210(struct e1000_hw
*hw
, u8 address
, u16
*data
)
326 s32 status
= -E1000_ERR_INVM_VALUE_NOT_FOUND
;
329 u8 record_type
, word_address
;
331 for (i
= 0; i
< E1000_INVM_SIZE
; i
++) {
332 invm_dword
= rd32(E1000_INVM_DATA_REG(i
));
333 /* Get record type */
334 record_type
= INVM_DWORD_TO_RECORD_TYPE(invm_dword
);
335 if (record_type
== E1000_INVM_UNINITIALIZED_STRUCTURE
)
337 if (record_type
== E1000_INVM_CSR_AUTOLOAD_STRUCTURE
)
338 i
+= E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS
;
339 if (record_type
== E1000_INVM_RSA_KEY_SHA256_STRUCTURE
)
340 i
+= E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS
;
341 if (record_type
== E1000_INVM_WORD_AUTOLOAD_STRUCTURE
) {
342 word_address
= INVM_DWORD_TO_WORD_ADDRESS(invm_dword
);
343 if (word_address
== address
) {
344 *data
= INVM_DWORD_TO_WORD_DATA(invm_dword
);
345 hw_dbg("Read INVM Word 0x%02x = %x\n",
353 hw_dbg("Requested word 0x%02x not found in OTP\n", address
);
358 * igb_read_invm_i210 - Read invm wrapper function for I210/I211
359 * @hw: pointer to the HW structure
360 * @words: number of words to read
361 * @data: pointer to the data read
363 * Wrapper function to return data formerly found in the NVM.
365 static s32
igb_read_invm_i210(struct e1000_hw
*hw
, u16 offset
,
366 u16 words __always_unused
, u16
*data
)
370 /* Only the MAC addr is required to be present in the iNVM */
373 ret_val
= igb_read_invm_word_i210(hw
, (u8
)offset
, &data
[0]);
374 ret_val
|= igb_read_invm_word_i210(hw
, (u8
)offset
+1,
376 ret_val
|= igb_read_invm_word_i210(hw
, (u8
)offset
+2,
379 hw_dbg("MAC Addr not found in iNVM\n");
381 case NVM_INIT_CTRL_2
:
382 ret_val
= igb_read_invm_word_i210(hw
, (u8
)offset
, data
);
384 *data
= NVM_INIT_CTRL_2_DEFAULT_I211
;
388 case NVM_INIT_CTRL_4
:
389 ret_val
= igb_read_invm_word_i210(hw
, (u8
)offset
, data
);
391 *data
= NVM_INIT_CTRL_4_DEFAULT_I211
;
396 ret_val
= igb_read_invm_word_i210(hw
, (u8
)offset
, data
);
398 *data
= NVM_LED_1_CFG_DEFAULT_I211
;
402 case NVM_LED_0_2_CFG
:
403 ret_val
= igb_read_invm_word_i210(hw
, (u8
)offset
, data
);
405 *data
= NVM_LED_0_2_CFG_DEFAULT_I211
;
409 case NVM_ID_LED_SETTINGS
:
410 ret_val
= igb_read_invm_word_i210(hw
, (u8
)offset
, data
);
412 *data
= ID_LED_RESERVED_FFFF
;
417 *data
= hw
->subsystem_device_id
;
420 *data
= hw
->subsystem_vendor_id
;
423 *data
= hw
->device_id
;
426 *data
= hw
->vendor_id
;
429 hw_dbg("NVM word 0x%02x is not mapped.\n", offset
);
430 *data
= NVM_RESERVED_WORD
;
437 * igb_read_invm_version - Reads iNVM version and image type
438 * @hw: pointer to the HW structure
439 * @invm_ver: version structure for the version read
441 * Reads iNVM version and image type.
443 s32
igb_read_invm_version(struct e1000_hw
*hw
,
444 struct e1000_fw_version
*invm_ver
) {
446 u32
*next_record
= NULL
;
449 u32 invm_blocks
= E1000_INVM_SIZE
- (E1000_INVM_ULT_BYTES_SIZE
/
450 E1000_INVM_RECORD_SIZE_IN_BYTES
);
451 u32 buffer
[E1000_INVM_SIZE
];
452 s32 status
= -E1000_ERR_INVM_VALUE_NOT_FOUND
;
455 /* Read iNVM memory */
456 for (i
= 0; i
< E1000_INVM_SIZE
; i
++) {
457 invm_dword
= rd32(E1000_INVM_DATA_REG(i
));
458 buffer
[i
] = invm_dword
;
461 /* Read version number */
462 for (i
= 1; i
< invm_blocks
; i
++) {
463 record
= &buffer
[invm_blocks
- i
];
464 next_record
= &buffer
[invm_blocks
- i
+ 1];
466 /* Check if we have first version location used */
467 if ((i
== 1) && ((*record
& E1000_INVM_VER_FIELD_ONE
) == 0)) {
472 /* Check if we have second version location used */
474 ((*record
& E1000_INVM_VER_FIELD_TWO
) == 0)) {
475 version
= (*record
& E1000_INVM_VER_FIELD_ONE
) >> 3;
479 /* Check if we have odd version location
480 * used and it is the last one used
482 else if ((((*record
& E1000_INVM_VER_FIELD_ONE
) == 0) &&
483 ((*record
& 0x3) == 0)) || (((*record
& 0x3) != 0) &&
485 version
= (*next_record
& E1000_INVM_VER_FIELD_TWO
)
490 /* Check if we have even version location
491 * used and it is the last one used
493 else if (((*record
& E1000_INVM_VER_FIELD_TWO
) == 0) &&
494 ((*record
& 0x3) == 0)) {
495 version
= (*record
& E1000_INVM_VER_FIELD_ONE
) >> 3;
502 invm_ver
->invm_major
= (version
& E1000_INVM_MAJOR_MASK
)
503 >> E1000_INVM_MAJOR_SHIFT
;
504 invm_ver
->invm_minor
= version
& E1000_INVM_MINOR_MASK
;
506 /* Read Image Type */
507 for (i
= 1; i
< invm_blocks
; i
++) {
508 record
= &buffer
[invm_blocks
- i
];
509 next_record
= &buffer
[invm_blocks
- i
+ 1];
511 /* Check if we have image type in first location used */
512 if ((i
== 1) && ((*record
& E1000_INVM_IMGTYPE_FIELD
) == 0)) {
513 invm_ver
->invm_img_type
= 0;
517 /* Check if we have image type in first location used */
518 else if ((((*record
& 0x3) == 0) &&
519 ((*record
& E1000_INVM_IMGTYPE_FIELD
) == 0)) ||
520 ((((*record
& 0x3) != 0) && (i
!= 1)))) {
521 invm_ver
->invm_img_type
=
522 (*next_record
& E1000_INVM_IMGTYPE_FIELD
) >> 23;
531 * igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
532 * @hw: pointer to the HW structure
534 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
535 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
537 static s32
igb_validate_nvm_checksum_i210(struct e1000_hw
*hw
)
540 s32 (*read_op_ptr
)(struct e1000_hw
*, u16
, u16
, u16
*);
542 if (!(hw
->nvm
.ops
.acquire(hw
))) {
544 /* Replace the read function with semaphore grabbing with
545 * the one that skips this for a while.
546 * We have semaphore taken already here.
548 read_op_ptr
= hw
->nvm
.ops
.read
;
549 hw
->nvm
.ops
.read
= igb_read_nvm_eerd
;
551 status
= igb_validate_nvm_checksum(hw
);
553 /* Revert original read operation. */
554 hw
->nvm
.ops
.read
= read_op_ptr
;
556 hw
->nvm
.ops
.release(hw
);
558 status
= E1000_ERR_SWFW_SYNC
;
565 * igb_update_nvm_checksum_i210 - Update EEPROM checksum
566 * @hw: pointer to the HW structure
568 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
569 * up to the checksum. Then calculates the EEPROM checksum and writes the
570 * value to the EEPROM. Next commit EEPROM data onto the Flash.
572 static s32
igb_update_nvm_checksum_i210(struct e1000_hw
*hw
)
578 /* Read the first word from the EEPROM. If this times out or fails, do
579 * not continue or we could be in for a very long wait while every
582 ret_val
= igb_read_nvm_eerd(hw
, 0, 1, &nvm_data
);
584 hw_dbg("EEPROM read failed\n");
588 if (!(hw
->nvm
.ops
.acquire(hw
))) {
589 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
590 * because we do not want to take the synchronization
591 * semaphores twice here.
594 for (i
= 0; i
< NVM_CHECKSUM_REG
; i
++) {
595 ret_val
= igb_read_nvm_eerd(hw
, i
, 1, &nvm_data
);
597 hw
->nvm
.ops
.release(hw
);
598 hw_dbg("NVM Read Error while updating checksum.\n");
601 checksum
+= nvm_data
;
603 checksum
= (u16
) NVM_SUM
- checksum
;
604 ret_val
= igb_write_nvm_srwr(hw
, NVM_CHECKSUM_REG
, 1,
607 hw
->nvm
.ops
.release(hw
);
608 hw_dbg("NVM Write Error while updating checksum.\n");
612 hw
->nvm
.ops
.release(hw
);
614 ret_val
= igb_update_flash_i210(hw
);
616 ret_val
= -E1000_ERR_SWFW_SYNC
;
623 * igb_pool_flash_update_done_i210 - Pool FLUDONE status.
624 * @hw: pointer to the HW structure
627 static s32
igb_pool_flash_update_done_i210(struct e1000_hw
*hw
)
629 s32 ret_val
= -E1000_ERR_NVM
;
632 for (i
= 0; i
< E1000_FLUDONE_ATTEMPTS
; i
++) {
633 reg
= rd32(E1000_EECD
);
634 if (reg
& E1000_EECD_FLUDONE_I210
) {
645 * igb_get_flash_presence_i210 - Check if flash device is detected.
646 * @hw: pointer to the HW structure
649 bool igb_get_flash_presence_i210(struct e1000_hw
*hw
)
652 bool ret_val
= false;
654 eec
= rd32(E1000_EECD
);
655 if (eec
& E1000_EECD_FLASH_DETECTED_I210
)
662 * igb_update_flash_i210 - Commit EEPROM to the flash
663 * @hw: pointer to the HW structure
666 static s32
igb_update_flash_i210(struct e1000_hw
*hw
)
671 ret_val
= igb_pool_flash_update_done_i210(hw
);
672 if (ret_val
== -E1000_ERR_NVM
) {
673 hw_dbg("Flash update time out\n");
677 flup
= rd32(E1000_EECD
) | E1000_EECD_FLUPD_I210
;
678 wr32(E1000_EECD
, flup
);
680 ret_val
= igb_pool_flash_update_done_i210(hw
);
682 hw_dbg("Flash update time out\n");
684 hw_dbg("Flash update complete\n");
691 * igb_valid_led_default_i210 - Verify a valid default LED config
692 * @hw: pointer to the HW structure
693 * @data: pointer to the NVM (EEPROM)
695 * Read the EEPROM for the current default LED configuration. If the
696 * LED configuration is not valid, set to a valid LED configuration.
698 s32
igb_valid_led_default_i210(struct e1000_hw
*hw
, u16
*data
)
702 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
704 hw_dbg("NVM Read Error\n");
708 if (*data
== ID_LED_RESERVED_0000
|| *data
== ID_LED_RESERVED_FFFF
) {
709 switch (hw
->phy
.media_type
) {
710 case e1000_media_type_internal_serdes
:
711 *data
= ID_LED_DEFAULT_I210_SERDES
;
713 case e1000_media_type_copper
:
715 *data
= ID_LED_DEFAULT_I210
;
724 * __igb_access_xmdio_reg - Read/write XMDIO register
725 * @hw: pointer to the HW structure
726 * @address: XMDIO address to program
727 * @dev_addr: device address to program
728 * @data: pointer to value to read/write from/to the XMDIO address
729 * @read: boolean flag to indicate read or write
731 static s32
__igb_access_xmdio_reg(struct e1000_hw
*hw
, u16 address
,
732 u8 dev_addr
, u16
*data
, bool read
)
736 ret_val
= hw
->phy
.ops
.write_reg(hw
, E1000_MMDAC
, dev_addr
);
740 ret_val
= hw
->phy
.ops
.write_reg(hw
, E1000_MMDAAD
, address
);
744 ret_val
= hw
->phy
.ops
.write_reg(hw
, E1000_MMDAC
, E1000_MMDAC_FUNC_DATA
|
750 ret_val
= hw
->phy
.ops
.read_reg(hw
, E1000_MMDAAD
, data
);
752 ret_val
= hw
->phy
.ops
.write_reg(hw
, E1000_MMDAAD
, *data
);
756 /* Recalibrate the device back to 0 */
757 ret_val
= hw
->phy
.ops
.write_reg(hw
, E1000_MMDAC
, 0);
765 * igb_read_xmdio_reg - Read XMDIO register
766 * @hw: pointer to the HW structure
767 * @addr: XMDIO address to program
768 * @dev_addr: device address to program
769 * @data: value to be read from the EMI address
771 s32
igb_read_xmdio_reg(struct e1000_hw
*hw
, u16 addr
, u8 dev_addr
, u16
*data
)
773 return __igb_access_xmdio_reg(hw
, addr
, dev_addr
, data
, true);
777 * igb_write_xmdio_reg - Write XMDIO register
778 * @hw: pointer to the HW structure
779 * @addr: XMDIO address to program
780 * @dev_addr: device address to program
781 * @data: value to be written to the XMDIO address
783 s32
igb_write_xmdio_reg(struct e1000_hw
*hw
, u16 addr
, u8 dev_addr
, u16 data
)
785 return __igb_access_xmdio_reg(hw
, addr
, dev_addr
, &data
, false);
789 * igb_init_nvm_params_i210 - Init NVM func ptrs.
790 * @hw: pointer to the HW structure
792 s32
igb_init_nvm_params_i210(struct e1000_hw
*hw
)
795 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
797 nvm
->ops
.acquire
= igb_acquire_nvm_i210
;
798 nvm
->ops
.release
= igb_release_nvm_i210
;
799 nvm
->ops
.valid_led_default
= igb_valid_led_default_i210
;
801 /* NVM Function Pointers */
802 if (igb_get_flash_presence_i210(hw
)) {
803 hw
->nvm
.type
= e1000_nvm_flash_hw
;
804 nvm
->ops
.read
= igb_read_nvm_srrd_i210
;
805 nvm
->ops
.write
= igb_write_nvm_srwr_i210
;
806 nvm
->ops
.validate
= igb_validate_nvm_checksum_i210
;
807 nvm
->ops
.update
= igb_update_nvm_checksum_i210
;
809 hw
->nvm
.type
= e1000_nvm_invm
;
810 nvm
->ops
.read
= igb_read_invm_i210
;
811 nvm
->ops
.write
= NULL
;
812 nvm
->ops
.validate
= NULL
;
813 nvm
->ops
.update
= NULL
;
819 * igb_pll_workaround_i210
820 * @hw: pointer to the HW structure
822 * Works around an errata in the PLL circuit where it occasionally
823 * provides the wrong clock frequency after power up.
825 s32
igb_pll_workaround_i210(struct e1000_hw
*hw
)
828 u32 wuc
, mdicnfg
, ctrl
, ctrl_ext
, reg_val
;
829 u16 nvm_word
, phy_word
, pci_word
, tmp_nvm
;
832 /* Get and set needed register values */
833 wuc
= rd32(E1000_WUC
);
834 mdicnfg
= rd32(E1000_MDICNFG
);
835 reg_val
= mdicnfg
& ~E1000_MDICNFG_EXT_MDIO
;
836 wr32(E1000_MDICNFG
, reg_val
);
838 /* Get data from NVM, or set default */
839 ret_val
= igb_read_invm_word_i210(hw
, E1000_INVM_AUTOLOAD
,
842 nvm_word
= E1000_INVM_DEFAULT_AL
;
843 tmp_nvm
= nvm_word
| E1000_INVM_PLL_WO_VAL
;
844 igb_write_phy_reg_82580(hw
, I347AT4_PAGE_SELECT
, E1000_PHY_PLL_FREQ_PAGE
);
845 for (i
= 0; i
< E1000_MAX_PLL_TRIES
; i
++) {
846 /* check current state directly from internal PHY */
847 igb_read_phy_reg_82580(hw
, E1000_PHY_PLL_FREQ_REG
, &phy_word
);
848 if ((phy_word
& E1000_PHY_PLL_UNCONF
)
849 != E1000_PHY_PLL_UNCONF
) {
853 ret_val
= -E1000_ERR_PHY
;
855 /* directly reset the internal PHY */
856 ctrl
= rd32(E1000_CTRL
);
857 wr32(E1000_CTRL
, ctrl
|E1000_CTRL_PHY_RST
);
859 ctrl_ext
= rd32(E1000_CTRL_EXT
);
860 ctrl_ext
|= (E1000_CTRL_EXT_PHYPDEN
| E1000_CTRL_EXT_SDLPE
);
861 wr32(E1000_CTRL_EXT
, ctrl_ext
);
864 reg_val
= (E1000_INVM_AUTOLOAD
<< 4) | (tmp_nvm
<< 16);
865 wr32(E1000_EEARBC_I210
, reg_val
);
867 igb_read_pci_cfg(hw
, E1000_PCI_PMCSR
, &pci_word
);
868 pci_word
|= E1000_PCI_PMCSR_D3
;
869 igb_write_pci_cfg(hw
, E1000_PCI_PMCSR
, &pci_word
);
870 usleep_range(1000, 2000);
871 pci_word
&= ~E1000_PCI_PMCSR_D3
;
872 igb_write_pci_cfg(hw
, E1000_PCI_PMCSR
, &pci_word
);
873 reg_val
= (E1000_INVM_AUTOLOAD
<< 4) | (nvm_word
<< 16);
874 wr32(E1000_EEARBC_I210
, reg_val
);
876 /* restore WUC register */
877 wr32(E1000_WUC
, wuc
);
879 igb_write_phy_reg_82580(hw
, I347AT4_PAGE_SELECT
, 0);
880 /* restore MDICNFG setting */
881 wr32(E1000_MDICNFG
, mdicnfg
);
886 * igb_get_cfg_done_i210 - Read config done bit
887 * @hw: pointer to the HW structure
889 * Read the management control register for the config done bit for
890 * completion status. NOTE: silicon which is EEPROM-less will fail trying
891 * to read the config done bit, so an error is *ONLY* logged and returns
892 * 0. If we were to return with error, EEPROM-less silicon
893 * would not be able to be reset or change link.
895 s32
igb_get_cfg_done_i210(struct e1000_hw
*hw
)
897 s32 timeout
= PHY_CFG_TIMEOUT
;
898 u32 mask
= E1000_NVM_CFG_DONE_PORT_0
;
901 if (rd32(E1000_EEMNGCTL_I210
) & mask
)
903 usleep_range(1000, 2000);
907 hw_dbg("MNG configuration cycle has not completed.\n");