1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
22 #include "farch_regs.h"
24 #include "workarounds.h"
26 /* Falcon-architecture (SFC4000) support */
28 /**************************************************************************
32 **************************************************************************
35 /* This is set to 16 for a good reason. In summary, if larger than
36 * 16, the descriptor cache holds more than a default socket
37 * buffer's worth of packets (for UDP we can only have at most one
38 * socket buffer's worth outstanding). This combined with the fact
39 * that we only get 1 TX event per descriptor cache means the NIC
42 #define TX_DC_ENTRIES 16
43 #define TX_DC_ENTRIES_ORDER 1
45 #define RX_DC_ENTRIES 64
46 #define RX_DC_ENTRIES_ORDER 3
48 /* If EF4_MAX_INT_ERRORS internal errors occur within
49 * EF4_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
52 #define EF4_INT_ERROR_EXPIRE 3600
53 #define EF4_MAX_INT_ERRORS 5
55 /* Depth of RX flush request fifo */
56 #define EF4_RX_FLUSH_COUNT 4
58 /* Driver generated events */
59 #define _EF4_CHANNEL_MAGIC_TEST 0x000101
60 #define _EF4_CHANNEL_MAGIC_FILL 0x000102
61 #define _EF4_CHANNEL_MAGIC_RX_DRAIN 0x000103
62 #define _EF4_CHANNEL_MAGIC_TX_DRAIN 0x000104
64 #define _EF4_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
65 #define _EF4_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
67 #define EF4_CHANNEL_MAGIC_TEST(_channel) \
68 _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TEST, (_channel)->channel)
69 #define EF4_CHANNEL_MAGIC_FILL(_rx_queue) \
70 _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_FILL, \
71 ef4_rx_queue_index(_rx_queue))
72 #define EF4_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
73 _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_RX_DRAIN, \
74 ef4_rx_queue_index(_rx_queue))
75 #define EF4_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
76 _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TX_DRAIN, \
79 static void ef4_farch_magic_event(struct ef4_channel
*channel
, u32 magic
);
81 /**************************************************************************
85 **************************************************************************/
87 static inline void ef4_write_buf_tbl(struct ef4_nic
*efx
, ef4_qword_t
*value
,
90 ef4_sram_writeq(efx
, efx
->membase
+ efx
->type
->buf_tbl_base
,
94 static bool ef4_masked_compare_oword(const ef4_oword_t
*a
, const ef4_oword_t
*b
,
95 const ef4_oword_t
*mask
)
97 return ((a
->u64
[0] ^ b
->u64
[0]) & mask
->u64
[0]) ||
98 ((a
->u64
[1] ^ b
->u64
[1]) & mask
->u64
[1]);
101 int ef4_farch_test_registers(struct ef4_nic
*efx
,
102 const struct ef4_farch_register_test
*regs
,
105 unsigned address
= 0;
107 ef4_oword_t mask
, imask
, original
, reg
, buf
;
109 for (i
= 0; i
< n_regs
; ++i
) {
110 address
= regs
[i
].address
;
111 mask
= imask
= regs
[i
].mask
;
112 EF4_INVERT_OWORD(imask
);
114 ef4_reado(efx
, &original
, address
);
116 /* bit sweep on and off */
117 for (j
= 0; j
< 128; j
++) {
118 if (!EF4_EXTRACT_OWORD32(mask
, j
, j
))
121 /* Test this testable bit can be set in isolation */
122 EF4_AND_OWORD(reg
, original
, mask
);
123 EF4_SET_OWORD32(reg
, j
, j
, 1);
125 ef4_writeo(efx
, ®
, address
);
126 ef4_reado(efx
, &buf
, address
);
128 if (ef4_masked_compare_oword(®
, &buf
, &mask
))
131 /* Test this testable bit can be cleared in isolation */
132 EF4_OR_OWORD(reg
, original
, mask
);
133 EF4_SET_OWORD32(reg
, j
, j
, 0);
135 ef4_writeo(efx
, ®
, address
);
136 ef4_reado(efx
, &buf
, address
);
138 if (ef4_masked_compare_oword(®
, &buf
, &mask
))
142 ef4_writeo(efx
, &original
, address
);
148 netif_err(efx
, hw
, efx
->net_dev
,
149 "wrote "EF4_OWORD_FMT
" read "EF4_OWORD_FMT
150 " at address 0x%x mask "EF4_OWORD_FMT
"\n", EF4_OWORD_VAL(reg
),
151 EF4_OWORD_VAL(buf
), address
, EF4_OWORD_VAL(mask
));
155 /**************************************************************************
157 * Special buffer handling
158 * Special buffers are used for event queues and the TX and RX
161 *************************************************************************/
164 * Initialise a special buffer
166 * This will define a buffer (previously allocated via
167 * ef4_alloc_special_buffer()) in the buffer table, allowing
168 * it to be used for event queues, descriptor rings etc.
171 ef4_init_special_buffer(struct ef4_nic
*efx
, struct ef4_special_buffer
*buffer
)
173 ef4_qword_t buf_desc
;
178 EF4_BUG_ON_PARANOID(!buffer
->buf
.addr
);
180 /* Write buffer descriptors to NIC */
181 for (i
= 0; i
< buffer
->entries
; i
++) {
182 index
= buffer
->index
+ i
;
183 dma_addr
= buffer
->buf
.dma_addr
+ (i
* EF4_BUF_SIZE
);
184 netif_dbg(efx
, probe
, efx
->net_dev
,
185 "mapping special buffer %d at %llx\n",
186 index
, (unsigned long long)dma_addr
);
187 EF4_POPULATE_QWORD_3(buf_desc
,
188 FRF_AZ_BUF_ADR_REGION
, 0,
189 FRF_AZ_BUF_ADR_FBUF
, dma_addr
>> 12,
190 FRF_AZ_BUF_OWNER_ID_FBUF
, 0);
191 ef4_write_buf_tbl(efx
, &buf_desc
, index
);
195 /* Unmaps a buffer and clears the buffer table entries */
197 ef4_fini_special_buffer(struct ef4_nic
*efx
, struct ef4_special_buffer
*buffer
)
199 ef4_oword_t buf_tbl_upd
;
200 unsigned int start
= buffer
->index
;
201 unsigned int end
= (buffer
->index
+ buffer
->entries
- 1);
203 if (!buffer
->entries
)
206 netif_dbg(efx
, hw
, efx
->net_dev
, "unmapping special buffers %d-%d\n",
207 buffer
->index
, buffer
->index
+ buffer
->entries
- 1);
209 EF4_POPULATE_OWORD_4(buf_tbl_upd
,
210 FRF_AZ_BUF_UPD_CMD
, 0,
211 FRF_AZ_BUF_CLR_CMD
, 1,
212 FRF_AZ_BUF_CLR_END_ID
, end
,
213 FRF_AZ_BUF_CLR_START_ID
, start
);
214 ef4_writeo(efx
, &buf_tbl_upd
, FR_AZ_BUF_TBL_UPD
);
218 * Allocate a new special buffer
220 * This allocates memory for a new buffer, clears it and allocates a
221 * new buffer ID range. It does not write into the buffer table.
223 * This call will allocate 4KB buffers, since 8KB buffers can't be
224 * used for event queues and descriptor rings.
226 static int ef4_alloc_special_buffer(struct ef4_nic
*efx
,
227 struct ef4_special_buffer
*buffer
,
230 len
= ALIGN(len
, EF4_BUF_SIZE
);
232 if (ef4_nic_alloc_buffer(efx
, &buffer
->buf
, len
, GFP_KERNEL
))
234 buffer
->entries
= len
/ EF4_BUF_SIZE
;
235 BUG_ON(buffer
->buf
.dma_addr
& (EF4_BUF_SIZE
- 1));
237 /* Select new buffer ID */
238 buffer
->index
= efx
->next_buffer_table
;
239 efx
->next_buffer_table
+= buffer
->entries
;
241 netif_dbg(efx
, probe
, efx
->net_dev
,
242 "allocating special buffers %d-%d at %llx+%x "
243 "(virt %p phys %llx)\n", buffer
->index
,
244 buffer
->index
+ buffer
->entries
- 1,
245 (u64
)buffer
->buf
.dma_addr
, len
,
246 buffer
->buf
.addr
, (u64
)virt_to_phys(buffer
->buf
.addr
));
252 ef4_free_special_buffer(struct ef4_nic
*efx
, struct ef4_special_buffer
*buffer
)
254 if (!buffer
->buf
.addr
)
257 netif_dbg(efx
, hw
, efx
->net_dev
,
258 "deallocating special buffers %d-%d at %llx+%x "
259 "(virt %p phys %llx)\n", buffer
->index
,
260 buffer
->index
+ buffer
->entries
- 1,
261 (u64
)buffer
->buf
.dma_addr
, buffer
->buf
.len
,
262 buffer
->buf
.addr
, (u64
)virt_to_phys(buffer
->buf
.addr
));
264 ef4_nic_free_buffer(efx
, &buffer
->buf
);
268 /**************************************************************************
272 **************************************************************************/
274 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
275 static inline void ef4_farch_notify_tx_desc(struct ef4_tx_queue
*tx_queue
)
280 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
281 EF4_POPULATE_DWORD_1(reg
, FRF_AZ_TX_DESC_WPTR_DWORD
, write_ptr
);
282 ef4_writed_page(tx_queue
->efx
, ®
,
283 FR_AZ_TX_DESC_UPD_DWORD_P0
, tx_queue
->queue
);
286 /* Write pointer and first descriptor for TX descriptor ring */
287 static inline void ef4_farch_push_tx_desc(struct ef4_tx_queue
*tx_queue
,
288 const ef4_qword_t
*txd
)
293 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN
!= 0);
294 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER
!= FR_BZ_TX_DESC_UPD_P0
);
296 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
297 EF4_POPULATE_OWORD_2(reg
, FRF_AZ_TX_DESC_PUSH_CMD
, true,
298 FRF_AZ_TX_DESC_WPTR
, write_ptr
);
300 ef4_writeo_page(tx_queue
->efx
, ®
,
301 FR_BZ_TX_DESC_UPD_P0
, tx_queue
->queue
);
305 /* For each entry inserted into the software descriptor ring, create a
306 * descriptor in the hardware TX descriptor ring (in host memory), and
309 void ef4_farch_tx_write(struct ef4_tx_queue
*tx_queue
)
311 struct ef4_tx_buffer
*buffer
;
314 unsigned old_write_count
= tx_queue
->write_count
;
316 tx_queue
->xmit_more_available
= false;
317 if (unlikely(tx_queue
->write_count
== tx_queue
->insert_count
))
321 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
322 buffer
= &tx_queue
->buffer
[write_ptr
];
323 txd
= ef4_tx_desc(tx_queue
, write_ptr
);
324 ++tx_queue
->write_count
;
326 EF4_BUG_ON_PARANOID(buffer
->flags
& EF4_TX_BUF_OPTION
);
328 /* Create TX descriptor ring entry */
329 BUILD_BUG_ON(EF4_TX_BUF_CONT
!= 1);
330 EF4_POPULATE_QWORD_4(*txd
,
332 buffer
->flags
& EF4_TX_BUF_CONT
,
333 FSF_AZ_TX_KER_BYTE_COUNT
, buffer
->len
,
334 FSF_AZ_TX_KER_BUF_REGION
, 0,
335 FSF_AZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
336 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
338 wmb(); /* Ensure descriptors are written before they are fetched */
340 if (ef4_nic_may_push_tx_desc(tx_queue
, old_write_count
)) {
341 txd
= ef4_tx_desc(tx_queue
,
342 old_write_count
& tx_queue
->ptr_mask
);
343 ef4_farch_push_tx_desc(tx_queue
, txd
);
346 ef4_farch_notify_tx_desc(tx_queue
);
350 unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue
*tx_queue
,
351 dma_addr_t dma_addr
, unsigned int len
)
353 /* Don't cross 4K boundaries with descriptors. */
354 unsigned int limit
= (~dma_addr
& (EF4_PAGE_SIZE
- 1)) + 1;
356 len
= min(limit
, len
);
358 if (EF4_WORKAROUND_5391(tx_queue
->efx
) && (dma_addr
& 0xf))
359 len
= min_t(unsigned int, len
, 512 - (dma_addr
& 0xf));
365 /* Allocate hardware resources for a TX queue */
366 int ef4_farch_tx_probe(struct ef4_tx_queue
*tx_queue
)
368 struct ef4_nic
*efx
= tx_queue
->efx
;
371 entries
= tx_queue
->ptr_mask
+ 1;
372 return ef4_alloc_special_buffer(efx
, &tx_queue
->txd
,
373 entries
* sizeof(ef4_qword_t
));
376 void ef4_farch_tx_init(struct ef4_tx_queue
*tx_queue
)
378 struct ef4_nic
*efx
= tx_queue
->efx
;
381 /* Pin TX descriptor ring */
382 ef4_init_special_buffer(efx
, &tx_queue
->txd
);
384 /* Push TX descriptor ring to card */
385 EF4_POPULATE_OWORD_10(reg
,
386 FRF_AZ_TX_DESCQ_EN
, 1,
387 FRF_AZ_TX_ISCSI_DDIG_EN
, 0,
388 FRF_AZ_TX_ISCSI_HDIG_EN
, 0,
389 FRF_AZ_TX_DESCQ_BUF_BASE_ID
, tx_queue
->txd
.index
,
390 FRF_AZ_TX_DESCQ_EVQ_ID
,
391 tx_queue
->channel
->channel
,
392 FRF_AZ_TX_DESCQ_OWNER_ID
, 0,
393 FRF_AZ_TX_DESCQ_LABEL
, tx_queue
->queue
,
394 FRF_AZ_TX_DESCQ_SIZE
,
395 __ffs(tx_queue
->txd
.entries
),
396 FRF_AZ_TX_DESCQ_TYPE
, 0,
397 FRF_BZ_TX_NON_IP_DROP_DIS
, 1);
399 if (ef4_nic_rev(efx
) >= EF4_REV_FALCON_B0
) {
400 int csum
= tx_queue
->queue
& EF4_TXQ_TYPE_OFFLOAD
;
401 EF4_SET_OWORD_FIELD(reg
, FRF_BZ_TX_IP_CHKSM_DIS
, !csum
);
402 EF4_SET_OWORD_FIELD(reg
, FRF_BZ_TX_TCP_CHKSM_DIS
,
406 ef4_writeo_table(efx
, ®
, efx
->type
->txd_ptr_tbl_base
,
409 if (ef4_nic_rev(efx
) < EF4_REV_FALCON_B0
) {
410 /* Only 128 bits in this register */
411 BUILD_BUG_ON(EF4_MAX_TX_QUEUES
> 128);
413 ef4_reado(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
414 if (tx_queue
->queue
& EF4_TXQ_TYPE_OFFLOAD
)
415 __clear_bit_le(tx_queue
->queue
, ®
);
417 __set_bit_le(tx_queue
->queue
, ®
);
418 ef4_writeo(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
421 if (ef4_nic_rev(efx
) >= EF4_REV_FALCON_B0
) {
422 EF4_POPULATE_OWORD_1(reg
,
424 (tx_queue
->queue
& EF4_TXQ_TYPE_HIGHPRI
) ?
426 FFE_BZ_TX_PACE_RESERVED
);
427 ef4_writeo_table(efx
, ®
, FR_BZ_TX_PACE_TBL
,
432 static void ef4_farch_flush_tx_queue(struct ef4_tx_queue
*tx_queue
)
434 struct ef4_nic
*efx
= tx_queue
->efx
;
435 ef4_oword_t tx_flush_descq
;
437 WARN_ON(atomic_read(&tx_queue
->flush_outstanding
));
438 atomic_set(&tx_queue
->flush_outstanding
, 1);
440 EF4_POPULATE_OWORD_2(tx_flush_descq
,
441 FRF_AZ_TX_FLUSH_DESCQ_CMD
, 1,
442 FRF_AZ_TX_FLUSH_DESCQ
, tx_queue
->queue
);
443 ef4_writeo(efx
, &tx_flush_descq
, FR_AZ_TX_FLUSH_DESCQ
);
446 void ef4_farch_tx_fini(struct ef4_tx_queue
*tx_queue
)
448 struct ef4_nic
*efx
= tx_queue
->efx
;
449 ef4_oword_t tx_desc_ptr
;
451 /* Remove TX descriptor ring from card */
452 EF4_ZERO_OWORD(tx_desc_ptr
);
453 ef4_writeo_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
456 /* Unpin TX descriptor ring */
457 ef4_fini_special_buffer(efx
, &tx_queue
->txd
);
460 /* Free buffers backing TX queue */
461 void ef4_farch_tx_remove(struct ef4_tx_queue
*tx_queue
)
463 ef4_free_special_buffer(tx_queue
->efx
, &tx_queue
->txd
);
466 /**************************************************************************
470 **************************************************************************/
472 /* This creates an entry in the RX descriptor queue */
474 ef4_farch_build_rx_desc(struct ef4_rx_queue
*rx_queue
, unsigned index
)
476 struct ef4_rx_buffer
*rx_buf
;
479 rxd
= ef4_rx_desc(rx_queue
, index
);
480 rx_buf
= ef4_rx_buffer(rx_queue
, index
);
481 EF4_POPULATE_QWORD_3(*rxd
,
482 FSF_AZ_RX_KER_BUF_SIZE
,
484 rx_queue
->efx
->type
->rx_buffer_padding
,
485 FSF_AZ_RX_KER_BUF_REGION
, 0,
486 FSF_AZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
489 /* This writes to the RX_DESC_WPTR register for the specified receive
492 void ef4_farch_rx_write(struct ef4_rx_queue
*rx_queue
)
494 struct ef4_nic
*efx
= rx_queue
->efx
;
498 while (rx_queue
->notified_count
!= rx_queue
->added_count
) {
499 ef4_farch_build_rx_desc(
501 rx_queue
->notified_count
& rx_queue
->ptr_mask
);
502 ++rx_queue
->notified_count
;
506 write_ptr
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
507 EF4_POPULATE_DWORD_1(reg
, FRF_AZ_RX_DESC_WPTR_DWORD
, write_ptr
);
508 ef4_writed_page(efx
, ®
, FR_AZ_RX_DESC_UPD_DWORD_P0
,
509 ef4_rx_queue_index(rx_queue
));
512 int ef4_farch_rx_probe(struct ef4_rx_queue
*rx_queue
)
514 struct ef4_nic
*efx
= rx_queue
->efx
;
517 entries
= rx_queue
->ptr_mask
+ 1;
518 return ef4_alloc_special_buffer(efx
, &rx_queue
->rxd
,
519 entries
* sizeof(ef4_qword_t
));
522 void ef4_farch_rx_init(struct ef4_rx_queue
*rx_queue
)
524 ef4_oword_t rx_desc_ptr
;
525 struct ef4_nic
*efx
= rx_queue
->efx
;
526 bool is_b0
= ef4_nic_rev(efx
) >= EF4_REV_FALCON_B0
;
527 bool iscsi_digest_en
= is_b0
;
530 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
531 * DMA to continue after a PCIe page boundary (and scattering
532 * is not possible). In Falcon B0 and Siena, it enables
535 jumbo_en
= !is_b0
|| efx
->rx_scatter
;
537 netif_dbg(efx
, hw
, efx
->net_dev
,
538 "RX queue %d ring in special buffers %d-%d\n",
539 ef4_rx_queue_index(rx_queue
), rx_queue
->rxd
.index
,
540 rx_queue
->rxd
.index
+ rx_queue
->rxd
.entries
- 1);
542 rx_queue
->scatter_n
= 0;
544 /* Pin RX descriptor ring */
545 ef4_init_special_buffer(efx
, &rx_queue
->rxd
);
547 /* Push RX descriptor ring to card */
548 EF4_POPULATE_OWORD_10(rx_desc_ptr
,
549 FRF_AZ_RX_ISCSI_DDIG_EN
, iscsi_digest_en
,
550 FRF_AZ_RX_ISCSI_HDIG_EN
, iscsi_digest_en
,
551 FRF_AZ_RX_DESCQ_BUF_BASE_ID
, rx_queue
->rxd
.index
,
552 FRF_AZ_RX_DESCQ_EVQ_ID
,
553 ef4_rx_queue_channel(rx_queue
)->channel
,
554 FRF_AZ_RX_DESCQ_OWNER_ID
, 0,
555 FRF_AZ_RX_DESCQ_LABEL
,
556 ef4_rx_queue_index(rx_queue
),
557 FRF_AZ_RX_DESCQ_SIZE
,
558 __ffs(rx_queue
->rxd
.entries
),
559 FRF_AZ_RX_DESCQ_TYPE
, 0 /* kernel queue */ ,
560 FRF_AZ_RX_DESCQ_JUMBO
, jumbo_en
,
561 FRF_AZ_RX_DESCQ_EN
, 1);
562 ef4_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
563 ef4_rx_queue_index(rx_queue
));
566 static void ef4_farch_flush_rx_queue(struct ef4_rx_queue
*rx_queue
)
568 struct ef4_nic
*efx
= rx_queue
->efx
;
569 ef4_oword_t rx_flush_descq
;
571 EF4_POPULATE_OWORD_2(rx_flush_descq
,
572 FRF_AZ_RX_FLUSH_DESCQ_CMD
, 1,
573 FRF_AZ_RX_FLUSH_DESCQ
,
574 ef4_rx_queue_index(rx_queue
));
575 ef4_writeo(efx
, &rx_flush_descq
, FR_AZ_RX_FLUSH_DESCQ
);
578 void ef4_farch_rx_fini(struct ef4_rx_queue
*rx_queue
)
580 ef4_oword_t rx_desc_ptr
;
581 struct ef4_nic
*efx
= rx_queue
->efx
;
583 /* Remove RX descriptor ring from card */
584 EF4_ZERO_OWORD(rx_desc_ptr
);
585 ef4_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
586 ef4_rx_queue_index(rx_queue
));
588 /* Unpin RX descriptor ring */
589 ef4_fini_special_buffer(efx
, &rx_queue
->rxd
);
592 /* Free buffers backing RX queue */
593 void ef4_farch_rx_remove(struct ef4_rx_queue
*rx_queue
)
595 ef4_free_special_buffer(rx_queue
->efx
, &rx_queue
->rxd
);
598 /**************************************************************************
602 **************************************************************************/
604 /* ef4_farch_flush_queues() must be woken up when all flushes are completed,
605 * or more RX flushes can be kicked off.
607 static bool ef4_farch_flush_wake(struct ef4_nic
*efx
)
609 /* Ensure that all updates are visible to ef4_farch_flush_queues() */
612 return (atomic_read(&efx
->active_queues
) == 0 ||
613 (atomic_read(&efx
->rxq_flush_outstanding
) < EF4_RX_FLUSH_COUNT
614 && atomic_read(&efx
->rxq_flush_pending
) > 0));
617 static bool ef4_check_tx_flush_complete(struct ef4_nic
*efx
)
620 ef4_oword_t txd_ptr_tbl
;
621 struct ef4_channel
*channel
;
622 struct ef4_tx_queue
*tx_queue
;
624 ef4_for_each_channel(channel
, efx
) {
625 ef4_for_each_channel_tx_queue(tx_queue
, channel
) {
626 ef4_reado_table(efx
, &txd_ptr_tbl
,
627 FR_BZ_TX_DESC_PTR_TBL
, tx_queue
->queue
);
628 if (EF4_OWORD_FIELD(txd_ptr_tbl
,
629 FRF_AZ_TX_DESCQ_FLUSH
) ||
630 EF4_OWORD_FIELD(txd_ptr_tbl
,
631 FRF_AZ_TX_DESCQ_EN
)) {
632 netif_dbg(efx
, hw
, efx
->net_dev
,
633 "flush did not complete on TXQ %d\n",
636 } else if (atomic_cmpxchg(&tx_queue
->flush_outstanding
,
638 /* The flush is complete, but we didn't
639 * receive a flush completion event
641 netif_dbg(efx
, hw
, efx
->net_dev
,
642 "flush complete on TXQ %d, so drain "
643 "the queue\n", tx_queue
->queue
);
644 /* Don't need to increment active_queues as it
645 * has already been incremented for the queues
646 * which did not drain
648 ef4_farch_magic_event(channel
,
649 EF4_CHANNEL_MAGIC_TX_DRAIN(
658 /* Flush all the transmit queues, and continue flushing receive queues until
659 * they're all flushed. Wait for the DRAIN events to be received so that there
660 * are no more RX and TX events left on any channel. */
661 static int ef4_farch_do_flush(struct ef4_nic
*efx
)
663 unsigned timeout
= msecs_to_jiffies(5000); /* 5s for all flushes and drains */
664 struct ef4_channel
*channel
;
665 struct ef4_rx_queue
*rx_queue
;
666 struct ef4_tx_queue
*tx_queue
;
669 ef4_for_each_channel(channel
, efx
) {
670 ef4_for_each_channel_tx_queue(tx_queue
, channel
) {
671 ef4_farch_flush_tx_queue(tx_queue
);
673 ef4_for_each_channel_rx_queue(rx_queue
, channel
) {
674 rx_queue
->flush_pending
= true;
675 atomic_inc(&efx
->rxq_flush_pending
);
679 while (timeout
&& atomic_read(&efx
->active_queues
) > 0) {
680 /* The hardware supports four concurrent rx flushes, each of
681 * which may need to be retried if there is an outstanding
684 ef4_for_each_channel(channel
, efx
) {
685 ef4_for_each_channel_rx_queue(rx_queue
, channel
) {
686 if (atomic_read(&efx
->rxq_flush_outstanding
) >=
690 if (rx_queue
->flush_pending
) {
691 rx_queue
->flush_pending
= false;
692 atomic_dec(&efx
->rxq_flush_pending
);
693 atomic_inc(&efx
->rxq_flush_outstanding
);
694 ef4_farch_flush_rx_queue(rx_queue
);
699 timeout
= wait_event_timeout(efx
->flush_wq
,
700 ef4_farch_flush_wake(efx
),
704 if (atomic_read(&efx
->active_queues
) &&
705 !ef4_check_tx_flush_complete(efx
)) {
706 netif_err(efx
, hw
, efx
->net_dev
, "failed to flush %d queues "
707 "(rx %d+%d)\n", atomic_read(&efx
->active_queues
),
708 atomic_read(&efx
->rxq_flush_outstanding
),
709 atomic_read(&efx
->rxq_flush_pending
));
712 atomic_set(&efx
->active_queues
, 0);
713 atomic_set(&efx
->rxq_flush_pending
, 0);
714 atomic_set(&efx
->rxq_flush_outstanding
, 0);
720 int ef4_farch_fini_dmaq(struct ef4_nic
*efx
)
722 struct ef4_channel
*channel
;
723 struct ef4_tx_queue
*tx_queue
;
724 struct ef4_rx_queue
*rx_queue
;
727 /* Do not attempt to write to the NIC during EEH recovery */
728 if (efx
->state
!= STATE_RECOVERY
) {
729 /* Only perform flush if DMA is enabled */
730 if (efx
->pci_dev
->is_busmaster
) {
731 efx
->type
->prepare_flush(efx
);
732 rc
= ef4_farch_do_flush(efx
);
733 efx
->type
->finish_flush(efx
);
736 ef4_for_each_channel(channel
, efx
) {
737 ef4_for_each_channel_rx_queue(rx_queue
, channel
)
738 ef4_farch_rx_fini(rx_queue
);
739 ef4_for_each_channel_tx_queue(tx_queue
, channel
)
740 ef4_farch_tx_fini(tx_queue
);
747 /* Reset queue and flush accounting after FLR
749 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
750 * mastering was disabled), in which case we don't receive (RXQ) flush
751 * completion events. This means that efx->rxq_flush_outstanding remained at 4
752 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
753 * events were received, and we didn't go through ef4_check_tx_flush_complete())
754 * If we don't fix this up, on the next call to ef4_realloc_channels() we won't
755 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
756 * for batched flush requests; and the efx->active_queues gets messed up because
757 * we keep incrementing for the newly initialised queues, but it never went to
758 * zero previously. Then we get a timeout every time we try to restart the
759 * queues, as it doesn't go back to zero when we should be flushing the queues.
761 void ef4_farch_finish_flr(struct ef4_nic
*efx
)
763 atomic_set(&efx
->rxq_flush_pending
, 0);
764 atomic_set(&efx
->rxq_flush_outstanding
, 0);
765 atomic_set(&efx
->active_queues
, 0);
769 /**************************************************************************
771 * Event queue processing
772 * Event queues are processed by per-channel tasklets.
774 **************************************************************************/
776 /* Update a channel's event queue's read pointer (RPTR) register
778 * This writes the EVQ_RPTR_REG register for the specified channel's
781 void ef4_farch_ev_read_ack(struct ef4_channel
*channel
)
784 struct ef4_nic
*efx
= channel
->efx
;
786 EF4_POPULATE_DWORD_1(reg
, FRF_AZ_EVQ_RPTR
,
787 channel
->eventq_read_ptr
& channel
->eventq_mask
);
789 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
790 * of 4 bytes, but it is really 16 bytes just like later revisions.
792 ef4_writed(efx
, ®
,
793 efx
->type
->evq_rptr_tbl_base
+
794 FR_BZ_EVQ_RPTR_STEP
* channel
->channel
);
797 /* Use HW to insert a SW defined event */
798 void ef4_farch_generate_event(struct ef4_nic
*efx
, unsigned int evq
,
801 ef4_oword_t drv_ev_reg
;
803 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN
!= 0 ||
804 FRF_AZ_DRV_EV_DATA_WIDTH
!= 64);
805 drv_ev_reg
.u32
[0] = event
->u32
[0];
806 drv_ev_reg
.u32
[1] = event
->u32
[1];
807 drv_ev_reg
.u32
[2] = 0;
808 drv_ev_reg
.u32
[3] = 0;
809 EF4_SET_OWORD_FIELD(drv_ev_reg
, FRF_AZ_DRV_EV_QID
, evq
);
810 ef4_writeo(efx
, &drv_ev_reg
, FR_AZ_DRV_EV
);
813 static void ef4_farch_magic_event(struct ef4_channel
*channel
, u32 magic
)
817 EF4_POPULATE_QWORD_2(event
, FSF_AZ_EV_CODE
,
818 FSE_AZ_EV_CODE_DRV_GEN_EV
,
819 FSF_AZ_DRV_GEN_EV_MAGIC
, magic
);
820 ef4_farch_generate_event(channel
->efx
, channel
->channel
, &event
);
823 /* Handle a transmit completion event
825 * The NIC batches TX completion events; the message we receive is of
826 * the form "complete all TX events up to this index".
829 ef4_farch_handle_tx_event(struct ef4_channel
*channel
, ef4_qword_t
*event
)
831 unsigned int tx_ev_desc_ptr
;
832 unsigned int tx_ev_q_label
;
833 struct ef4_tx_queue
*tx_queue
;
834 struct ef4_nic
*efx
= channel
->efx
;
837 if (unlikely(READ_ONCE(efx
->reset_pending
)))
840 if (likely(EF4_QWORD_FIELD(*event
, FSF_AZ_TX_EV_COMP
))) {
841 /* Transmit completion */
842 tx_ev_desc_ptr
= EF4_QWORD_FIELD(*event
, FSF_AZ_TX_EV_DESC_PTR
);
843 tx_ev_q_label
= EF4_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
844 tx_queue
= ef4_channel_get_tx_queue(
845 channel
, tx_ev_q_label
% EF4_TXQ_TYPES
);
846 tx_packets
= ((tx_ev_desc_ptr
- tx_queue
->read_count
) &
848 ef4_xmit_done(tx_queue
, tx_ev_desc_ptr
);
849 } else if (EF4_QWORD_FIELD(*event
, FSF_AZ_TX_EV_WQ_FF_FULL
)) {
850 /* Rewrite the FIFO write pointer */
851 tx_ev_q_label
= EF4_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
852 tx_queue
= ef4_channel_get_tx_queue(
853 channel
, tx_ev_q_label
% EF4_TXQ_TYPES
);
855 netif_tx_lock(efx
->net_dev
);
856 ef4_farch_notify_tx_desc(tx_queue
);
857 netif_tx_unlock(efx
->net_dev
);
858 } else if (EF4_QWORD_FIELD(*event
, FSF_AZ_TX_EV_PKT_ERR
)) {
859 ef4_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
861 netif_err(efx
, tx_err
, efx
->net_dev
,
862 "channel %d unexpected TX event "
863 EF4_QWORD_FMT
"\n", channel
->channel
,
864 EF4_QWORD_VAL(*event
));
870 /* Detect errors included in the rx_evt_pkt_ok bit. */
871 static u16
ef4_farch_handle_rx_not_ok(struct ef4_rx_queue
*rx_queue
,
872 const ef4_qword_t
*event
)
874 struct ef4_channel
*channel
= ef4_rx_queue_channel(rx_queue
);
875 struct ef4_nic
*efx
= rx_queue
->efx
;
876 bool rx_ev_buf_owner_id_err
, rx_ev_ip_hdr_chksum_err
;
877 bool rx_ev_tcp_udp_chksum_err
, rx_ev_eth_crc_err
;
878 bool rx_ev_frm_trunc
, rx_ev_drib_nib
, rx_ev_tobe_disc
;
879 bool rx_ev_other_err
, rx_ev_pause_frm
;
880 bool rx_ev_hdr_type
, rx_ev_mcast_pkt
;
881 unsigned rx_ev_pkt_type
;
883 rx_ev_hdr_type
= EF4_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
884 rx_ev_mcast_pkt
= EF4_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
885 rx_ev_tobe_disc
= EF4_QWORD_FIELD(*event
, FSF_AZ_RX_EV_TOBE_DISC
);
886 rx_ev_pkt_type
= EF4_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_TYPE
);
887 rx_ev_buf_owner_id_err
= EF4_QWORD_FIELD(*event
,
888 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR
);
889 rx_ev_ip_hdr_chksum_err
= EF4_QWORD_FIELD(*event
,
890 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR
);
891 rx_ev_tcp_udp_chksum_err
= EF4_QWORD_FIELD(*event
,
892 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR
);
893 rx_ev_eth_crc_err
= EF4_QWORD_FIELD(*event
, FSF_AZ_RX_EV_ETH_CRC_ERR
);
894 rx_ev_frm_trunc
= EF4_QWORD_FIELD(*event
, FSF_AZ_RX_EV_FRM_TRUNC
);
895 rx_ev_drib_nib
= ((ef4_nic_rev(efx
) >= EF4_REV_FALCON_B0
) ?
896 0 : EF4_QWORD_FIELD(*event
, FSF_AA_RX_EV_DRIB_NIB
));
897 rx_ev_pause_frm
= EF4_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PAUSE_FRM_ERR
);
899 /* Every error apart from tobe_disc and pause_frm */
900 rx_ev_other_err
= (rx_ev_drib_nib
| rx_ev_tcp_udp_chksum_err
|
901 rx_ev_buf_owner_id_err
| rx_ev_eth_crc_err
|
902 rx_ev_frm_trunc
| rx_ev_ip_hdr_chksum_err
);
904 /* Count errors that are not in MAC stats. Ignore expected
905 * checksum errors during self-test. */
907 ++channel
->n_rx_frm_trunc
;
908 else if (rx_ev_tobe_disc
)
909 ++channel
->n_rx_tobe_disc
;
910 else if (!efx
->loopback_selftest
) {
911 if (rx_ev_ip_hdr_chksum_err
)
912 ++channel
->n_rx_ip_hdr_chksum_err
;
913 else if (rx_ev_tcp_udp_chksum_err
)
914 ++channel
->n_rx_tcp_udp_chksum_err
;
917 /* TOBE_DISC is expected on unicast mismatches; don't print out an
918 * error message. FRM_TRUNC indicates RXDP dropped the packet due
919 * to a FIFO overflow.
922 if (rx_ev_other_err
&& net_ratelimit()) {
923 netif_dbg(efx
, rx_err
, efx
->net_dev
,
924 " RX queue %d unexpected RX event "
925 EF4_QWORD_FMT
"%s%s%s%s%s%s%s%s\n",
926 ef4_rx_queue_index(rx_queue
), EF4_QWORD_VAL(*event
),
927 rx_ev_buf_owner_id_err
? " [OWNER_ID_ERR]" : "",
928 rx_ev_ip_hdr_chksum_err
?
929 " [IP_HDR_CHKSUM_ERR]" : "",
930 rx_ev_tcp_udp_chksum_err
?
931 " [TCP_UDP_CHKSUM_ERR]" : "",
932 rx_ev_eth_crc_err
? " [ETH_CRC_ERR]" : "",
933 rx_ev_frm_trunc
? " [FRM_TRUNC]" : "",
934 rx_ev_drib_nib
? " [DRIB_NIB]" : "",
935 rx_ev_tobe_disc
? " [TOBE_DISC]" : "",
936 rx_ev_pause_frm
? " [PAUSE]" : "");
940 /* The frame must be discarded if any of these are true. */
941 return (rx_ev_eth_crc_err
| rx_ev_frm_trunc
| rx_ev_drib_nib
|
942 rx_ev_tobe_disc
| rx_ev_pause_frm
) ?
943 EF4_RX_PKT_DISCARD
: 0;
946 /* Handle receive events that are not in-order. Return true if this
947 * can be handled as a partial packet discard, false if it's more
951 ef4_farch_handle_rx_bad_index(struct ef4_rx_queue
*rx_queue
, unsigned index
)
953 struct ef4_channel
*channel
= ef4_rx_queue_channel(rx_queue
);
954 struct ef4_nic
*efx
= rx_queue
->efx
;
955 unsigned expected
, dropped
;
957 if (rx_queue
->scatter_n
&&
958 index
== ((rx_queue
->removed_count
+ rx_queue
->scatter_n
- 1) &
959 rx_queue
->ptr_mask
)) {
960 ++channel
->n_rx_nodesc_trunc
;
964 expected
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
965 dropped
= (index
- expected
) & rx_queue
->ptr_mask
;
966 netif_info(efx
, rx_err
, efx
->net_dev
,
967 "dropped %d events (index=%d expected=%d)\n",
968 dropped
, index
, expected
);
970 ef4_schedule_reset(efx
, EF4_WORKAROUND_5676(efx
) ?
971 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
975 /* Handle a packet received event
977 * The NIC gives a "discard" flag if it's a unicast packet with the
978 * wrong destination address
979 * Also "is multicast" and "matches multicast filter" flags can be used to
980 * discard non-matching multicast packets.
983 ef4_farch_handle_rx_event(struct ef4_channel
*channel
, const ef4_qword_t
*event
)
985 unsigned int rx_ev_desc_ptr
, rx_ev_byte_cnt
;
986 unsigned int rx_ev_hdr_type
, rx_ev_mcast_pkt
;
987 unsigned expected_ptr
;
988 bool rx_ev_pkt_ok
, rx_ev_sop
, rx_ev_cont
;
990 struct ef4_rx_queue
*rx_queue
;
991 struct ef4_nic
*efx
= channel
->efx
;
993 if (unlikely(READ_ONCE(efx
->reset_pending
)))
996 rx_ev_cont
= EF4_QWORD_FIELD(*event
, FSF_AZ_RX_EV_JUMBO_CONT
);
997 rx_ev_sop
= EF4_QWORD_FIELD(*event
, FSF_AZ_RX_EV_SOP
);
998 WARN_ON(EF4_QWORD_FIELD(*event
, FSF_AZ_RX_EV_Q_LABEL
) !=
1001 rx_queue
= ef4_channel_get_rx_queue(channel
);
1003 rx_ev_desc_ptr
= EF4_QWORD_FIELD(*event
, FSF_AZ_RX_EV_DESC_PTR
);
1004 expected_ptr
= ((rx_queue
->removed_count
+ rx_queue
->scatter_n
) &
1005 rx_queue
->ptr_mask
);
1007 /* Check for partial drops and other errors */
1008 if (unlikely(rx_ev_desc_ptr
!= expected_ptr
) ||
1009 unlikely(rx_ev_sop
!= (rx_queue
->scatter_n
== 0))) {
1010 if (rx_ev_desc_ptr
!= expected_ptr
&&
1011 !ef4_farch_handle_rx_bad_index(rx_queue
, rx_ev_desc_ptr
))
1014 /* Discard all pending fragments */
1015 if (rx_queue
->scatter_n
) {
1018 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
1019 rx_queue
->scatter_n
, 0, EF4_RX_PKT_DISCARD
);
1020 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
1021 rx_queue
->scatter_n
= 0;
1024 /* Return if there is no new fragment */
1025 if (rx_ev_desc_ptr
!= expected_ptr
)
1028 /* Discard new fragment if not SOP */
1032 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
1033 1, 0, EF4_RX_PKT_DISCARD
);
1034 ++rx_queue
->removed_count
;
1039 ++rx_queue
->scatter_n
;
1043 rx_ev_byte_cnt
= EF4_QWORD_FIELD(*event
, FSF_AZ_RX_EV_BYTE_CNT
);
1044 rx_ev_pkt_ok
= EF4_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_OK
);
1045 rx_ev_hdr_type
= EF4_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
1047 if (likely(rx_ev_pkt_ok
)) {
1048 /* If packet is marked as OK then we can rely on the
1049 * hardware checksum and classification.
1052 switch (rx_ev_hdr_type
) {
1053 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP
:
1054 flags
|= EF4_RX_PKT_TCP
;
1056 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP
:
1057 flags
|= EF4_RX_PKT_CSUMMED
;
1059 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER
:
1060 case FSE_AZ_RX_EV_HDR_TYPE_OTHER
:
1064 flags
= ef4_farch_handle_rx_not_ok(rx_queue
, event
);
1067 /* Detect multicast packets that didn't match the filter */
1068 rx_ev_mcast_pkt
= EF4_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
1069 if (rx_ev_mcast_pkt
) {
1070 unsigned int rx_ev_mcast_hash_match
=
1071 EF4_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_HASH_MATCH
);
1073 if (unlikely(!rx_ev_mcast_hash_match
)) {
1074 ++channel
->n_rx_mcast_mismatch
;
1075 flags
|= EF4_RX_PKT_DISCARD
;
1079 channel
->irq_mod_score
+= 2;
1081 /* Handle received packet */
1082 ef4_rx_packet(rx_queue
,
1083 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
1084 rx_queue
->scatter_n
, rx_ev_byte_cnt
, flags
);
1085 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
1086 rx_queue
->scatter_n
= 0;
1089 /* If this flush done event corresponds to a &struct ef4_tx_queue, then
1090 * send an %EF4_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1091 * of all transmit completions.
1094 ef4_farch_handle_tx_flush_done(struct ef4_nic
*efx
, ef4_qword_t
*event
)
1096 struct ef4_tx_queue
*tx_queue
;
1099 qid
= EF4_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
1100 if (qid
< EF4_TXQ_TYPES
* efx
->n_tx_channels
) {
1101 tx_queue
= ef4_get_tx_queue(efx
, qid
/ EF4_TXQ_TYPES
,
1102 qid
% EF4_TXQ_TYPES
);
1103 if (atomic_cmpxchg(&tx_queue
->flush_outstanding
, 1, 0)) {
1104 ef4_farch_magic_event(tx_queue
->channel
,
1105 EF4_CHANNEL_MAGIC_TX_DRAIN(tx_queue
));
1110 /* If this flush done event corresponds to a &struct ef4_rx_queue: If the flush
1111 * was successful then send an %EF4_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1112 * the RX queue back to the mask of RX queues in need of flushing.
1115 ef4_farch_handle_rx_flush_done(struct ef4_nic
*efx
, ef4_qword_t
*event
)
1117 struct ef4_channel
*channel
;
1118 struct ef4_rx_queue
*rx_queue
;
1122 qid
= EF4_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_RX_DESCQ_ID
);
1123 failed
= EF4_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL
);
1124 if (qid
>= efx
->n_channels
)
1126 channel
= ef4_get_channel(efx
, qid
);
1127 if (!ef4_channel_has_rx_queue(channel
))
1129 rx_queue
= ef4_channel_get_rx_queue(channel
);
1132 netif_info(efx
, hw
, efx
->net_dev
,
1133 "RXQ %d flush retry\n", qid
);
1134 rx_queue
->flush_pending
= true;
1135 atomic_inc(&efx
->rxq_flush_pending
);
1137 ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue
),
1138 EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue
));
1140 atomic_dec(&efx
->rxq_flush_outstanding
);
1141 if (ef4_farch_flush_wake(efx
))
1142 wake_up(&efx
->flush_wq
);
1146 ef4_farch_handle_drain_event(struct ef4_channel
*channel
)
1148 struct ef4_nic
*efx
= channel
->efx
;
1150 WARN_ON(atomic_read(&efx
->active_queues
) == 0);
1151 atomic_dec(&efx
->active_queues
);
1152 if (ef4_farch_flush_wake(efx
))
1153 wake_up(&efx
->flush_wq
);
1156 static void ef4_farch_handle_generated_event(struct ef4_channel
*channel
,
1159 struct ef4_nic
*efx
= channel
->efx
;
1160 struct ef4_rx_queue
*rx_queue
=
1161 ef4_channel_has_rx_queue(channel
) ?
1162 ef4_channel_get_rx_queue(channel
) : NULL
;
1163 unsigned magic
, code
;
1165 magic
= EF4_QWORD_FIELD(*event
, FSF_AZ_DRV_GEN_EV_MAGIC
);
1166 code
= _EF4_CHANNEL_MAGIC_CODE(magic
);
1168 if (magic
== EF4_CHANNEL_MAGIC_TEST(channel
)) {
1169 channel
->event_test_cpu
= raw_smp_processor_id();
1170 } else if (rx_queue
&& magic
== EF4_CHANNEL_MAGIC_FILL(rx_queue
)) {
1171 /* The queue must be empty, so we won't receive any rx
1172 * events, so ef4_process_channel() won't refill the
1173 * queue. Refill it here */
1174 ef4_fast_push_rx_descriptors(rx_queue
, true);
1175 } else if (rx_queue
&& magic
== EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue
)) {
1176 ef4_farch_handle_drain_event(channel
);
1177 } else if (code
== _EF4_CHANNEL_MAGIC_TX_DRAIN
) {
1178 ef4_farch_handle_drain_event(channel
);
1180 netif_dbg(efx
, hw
, efx
->net_dev
, "channel %d received "
1181 "generated event "EF4_QWORD_FMT
"\n",
1182 channel
->channel
, EF4_QWORD_VAL(*event
));
1187 ef4_farch_handle_driver_event(struct ef4_channel
*channel
, ef4_qword_t
*event
)
1189 struct ef4_nic
*efx
= channel
->efx
;
1190 unsigned int ev_sub_code
;
1191 unsigned int ev_sub_data
;
1193 ev_sub_code
= EF4_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBCODE
);
1194 ev_sub_data
= EF4_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
1196 switch (ev_sub_code
) {
1197 case FSE_AZ_TX_DESCQ_FLS_DONE_EV
:
1198 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d TXQ %d flushed\n",
1199 channel
->channel
, ev_sub_data
);
1200 ef4_farch_handle_tx_flush_done(efx
, event
);
1202 case FSE_AZ_RX_DESCQ_FLS_DONE_EV
:
1203 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d RXQ %d flushed\n",
1204 channel
->channel
, ev_sub_data
);
1205 ef4_farch_handle_rx_flush_done(efx
, event
);
1207 case FSE_AZ_EVQ_INIT_DONE_EV
:
1208 netif_dbg(efx
, hw
, efx
->net_dev
,
1209 "channel %d EVQ %d initialised\n",
1210 channel
->channel
, ev_sub_data
);
1212 case FSE_AZ_SRM_UPD_DONE_EV
:
1213 netif_vdbg(efx
, hw
, efx
->net_dev
,
1214 "channel %d SRAM update done\n", channel
->channel
);
1216 case FSE_AZ_WAKE_UP_EV
:
1217 netif_vdbg(efx
, hw
, efx
->net_dev
,
1218 "channel %d RXQ %d wakeup event\n",
1219 channel
->channel
, ev_sub_data
);
1221 case FSE_AZ_TIMER_EV
:
1222 netif_vdbg(efx
, hw
, efx
->net_dev
,
1223 "channel %d RX queue %d timer expired\n",
1224 channel
->channel
, ev_sub_data
);
1226 case FSE_AA_RX_RECOVER_EV
:
1227 netif_err(efx
, rx_err
, efx
->net_dev
,
1228 "channel %d seen DRIVER RX_RESET event. "
1229 "Resetting.\n", channel
->channel
);
1230 atomic_inc(&efx
->rx_reset
);
1231 ef4_schedule_reset(efx
,
1232 EF4_WORKAROUND_6555(efx
) ?
1233 RESET_TYPE_RX_RECOVERY
:
1234 RESET_TYPE_DISABLE
);
1236 case FSE_BZ_RX_DSC_ERROR_EV
:
1237 netif_err(efx
, rx_err
, efx
->net_dev
,
1238 "RX DMA Q %d reports descriptor fetch error."
1239 " RX Q %d is disabled.\n", ev_sub_data
,
1241 ef4_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
1243 case FSE_BZ_TX_DSC_ERROR_EV
:
1244 netif_err(efx
, tx_err
, efx
->net_dev
,
1245 "TX DMA Q %d reports descriptor fetch error."
1246 " TX Q %d is disabled.\n", ev_sub_data
,
1248 ef4_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
1251 netif_vdbg(efx
, hw
, efx
->net_dev
,
1252 "channel %d unknown driver event code %d "
1253 "data %04x\n", channel
->channel
, ev_sub_code
,
1259 int ef4_farch_ev_process(struct ef4_channel
*channel
, int budget
)
1261 struct ef4_nic
*efx
= channel
->efx
;
1262 unsigned int read_ptr
;
1263 ef4_qword_t event
, *p_event
;
1271 read_ptr
= channel
->eventq_read_ptr
;
1274 p_event
= ef4_event(channel
, read_ptr
);
1277 if (!ef4_event_present(&event
))
1281 netif_vdbg(channel
->efx
, intr
, channel
->efx
->net_dev
,
1282 "channel %d event is "EF4_QWORD_FMT
"\n",
1283 channel
->channel
, EF4_QWORD_VAL(event
));
1285 /* Clear this event by marking it all ones */
1286 EF4_SET_QWORD(*p_event
);
1290 ev_code
= EF4_QWORD_FIELD(event
, FSF_AZ_EV_CODE
);
1293 case FSE_AZ_EV_CODE_RX_EV
:
1294 ef4_farch_handle_rx_event(channel
, &event
);
1295 if (++spent
== budget
)
1298 case FSE_AZ_EV_CODE_TX_EV
:
1299 tx_packets
+= ef4_farch_handle_tx_event(channel
,
1301 if (tx_packets
> efx
->txq_entries
) {
1306 case FSE_AZ_EV_CODE_DRV_GEN_EV
:
1307 ef4_farch_handle_generated_event(channel
, &event
);
1309 case FSE_AZ_EV_CODE_DRIVER_EV
:
1310 ef4_farch_handle_driver_event(channel
, &event
);
1312 case FSE_AZ_EV_CODE_GLOBAL_EV
:
1313 if (efx
->type
->handle_global_event
&&
1314 efx
->type
->handle_global_event(channel
, &event
))
1316 /* else fall through */
1318 netif_err(channel
->efx
, hw
, channel
->efx
->net_dev
,
1319 "channel %d unknown event type %d (data "
1320 EF4_QWORD_FMT
")\n", channel
->channel
,
1321 ev_code
, EF4_QWORD_VAL(event
));
1326 channel
->eventq_read_ptr
= read_ptr
;
1330 /* Allocate buffer table entries for event queue */
1331 int ef4_farch_ev_probe(struct ef4_channel
*channel
)
1333 struct ef4_nic
*efx
= channel
->efx
;
1336 entries
= channel
->eventq_mask
+ 1;
1337 return ef4_alloc_special_buffer(efx
, &channel
->eventq
,
1338 entries
* sizeof(ef4_qword_t
));
1341 int ef4_farch_ev_init(struct ef4_channel
*channel
)
1344 struct ef4_nic
*efx
= channel
->efx
;
1346 netif_dbg(efx
, hw
, efx
->net_dev
,
1347 "channel %d event queue in special buffers %d-%d\n",
1348 channel
->channel
, channel
->eventq
.index
,
1349 channel
->eventq
.index
+ channel
->eventq
.entries
- 1);
1351 /* Pin event queue buffer */
1352 ef4_init_special_buffer(efx
, &channel
->eventq
);
1354 /* Fill event queue with all ones (i.e. empty events) */
1355 memset(channel
->eventq
.buf
.addr
, 0xff, channel
->eventq
.buf
.len
);
1357 /* Push event queue to card */
1358 EF4_POPULATE_OWORD_3(reg
,
1360 FRF_AZ_EVQ_SIZE
, __ffs(channel
->eventq
.entries
),
1361 FRF_AZ_EVQ_BUF_BASE_ID
, channel
->eventq
.index
);
1362 ef4_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1368 void ef4_farch_ev_fini(struct ef4_channel
*channel
)
1371 struct ef4_nic
*efx
= channel
->efx
;
1373 /* Remove event queue from card */
1374 EF4_ZERO_OWORD(reg
);
1375 ef4_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1378 /* Unpin event queue */
1379 ef4_fini_special_buffer(efx
, &channel
->eventq
);
1382 /* Free buffers backing event queue */
1383 void ef4_farch_ev_remove(struct ef4_channel
*channel
)
1385 ef4_free_special_buffer(channel
->efx
, &channel
->eventq
);
1389 void ef4_farch_ev_test_generate(struct ef4_channel
*channel
)
1391 ef4_farch_magic_event(channel
, EF4_CHANNEL_MAGIC_TEST(channel
));
1394 void ef4_farch_rx_defer_refill(struct ef4_rx_queue
*rx_queue
)
1396 ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue
),
1397 EF4_CHANNEL_MAGIC_FILL(rx_queue
));
1400 /**************************************************************************
1402 * Hardware interrupts
1403 * The hardware interrupt handler does very little work; all the event
1404 * queue processing is carried out by per-channel tasklets.
1406 **************************************************************************/
1408 /* Enable/disable/generate interrupts */
1409 static inline void ef4_farch_interrupts(struct ef4_nic
*efx
,
1410 bool enabled
, bool force
)
1412 ef4_oword_t int_en_reg_ker
;
1414 EF4_POPULATE_OWORD_3(int_en_reg_ker
,
1415 FRF_AZ_KER_INT_LEVE_SEL
, efx
->irq_level
,
1416 FRF_AZ_KER_INT_KER
, force
,
1417 FRF_AZ_DRV_INT_EN_KER
, enabled
);
1418 ef4_writeo(efx
, &int_en_reg_ker
, FR_AZ_INT_EN_KER
);
1421 void ef4_farch_irq_enable_master(struct ef4_nic
*efx
)
1423 EF4_ZERO_OWORD(*((ef4_oword_t
*) efx
->irq_status
.addr
));
1424 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1426 ef4_farch_interrupts(efx
, true, false);
1429 void ef4_farch_irq_disable_master(struct ef4_nic
*efx
)
1431 /* Disable interrupts */
1432 ef4_farch_interrupts(efx
, false, false);
1435 /* Generate a test interrupt
1436 * Interrupt must already have been enabled, otherwise nasty things
1439 int ef4_farch_irq_test_generate(struct ef4_nic
*efx
)
1441 ef4_farch_interrupts(efx
, true, true);
1445 /* Process a fatal interrupt
1446 * Disable bus mastering ASAP and schedule a reset
1448 irqreturn_t
ef4_farch_fatal_interrupt(struct ef4_nic
*efx
)
1450 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1451 ef4_oword_t
*int_ker
= efx
->irq_status
.addr
;
1452 ef4_oword_t fatal_intr
;
1453 int error
, mem_perr
;
1455 ef4_reado(efx
, &fatal_intr
, FR_AZ_FATAL_INTR_KER
);
1456 error
= EF4_OWORD_FIELD(fatal_intr
, FRF_AZ_FATAL_INTR
);
1458 netif_err(efx
, hw
, efx
->net_dev
, "SYSTEM ERROR "EF4_OWORD_FMT
" status "
1459 EF4_OWORD_FMT
": %s\n", EF4_OWORD_VAL(*int_ker
),
1460 EF4_OWORD_VAL(fatal_intr
),
1461 error
? "disabling bus mastering" : "no recognised error");
1463 /* If this is a memory parity error dump which blocks are offending */
1464 mem_perr
= (EF4_OWORD_FIELD(fatal_intr
, FRF_AZ_MEM_PERR_INT_KER
) ||
1465 EF4_OWORD_FIELD(fatal_intr
, FRF_AZ_SRM_PERR_INT_KER
));
1468 ef4_reado(efx
, ®
, FR_AZ_MEM_STAT
);
1469 netif_err(efx
, hw
, efx
->net_dev
,
1470 "SYSTEM ERROR: memory parity error "EF4_OWORD_FMT
"\n",
1471 EF4_OWORD_VAL(reg
));
1474 /* Disable both devices */
1475 pci_clear_master(efx
->pci_dev
);
1476 if (ef4_nic_is_dual_func(efx
))
1477 pci_clear_master(nic_data
->pci_dev2
);
1478 ef4_farch_irq_disable_master(efx
);
1480 /* Count errors and reset or disable the NIC accordingly */
1481 if (efx
->int_error_count
== 0 ||
1482 time_after(jiffies
, efx
->int_error_expire
)) {
1483 efx
->int_error_count
= 0;
1484 efx
->int_error_expire
=
1485 jiffies
+ EF4_INT_ERROR_EXPIRE
* HZ
;
1487 if (++efx
->int_error_count
< EF4_MAX_INT_ERRORS
) {
1488 netif_err(efx
, hw
, efx
->net_dev
,
1489 "SYSTEM ERROR - reset scheduled\n");
1490 ef4_schedule_reset(efx
, RESET_TYPE_INT_ERROR
);
1492 netif_err(efx
, hw
, efx
->net_dev
,
1493 "SYSTEM ERROR - max number of errors seen."
1494 "NIC will be disabled\n");
1495 ef4_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1501 /* Handle a legacy interrupt
1502 * Acknowledges the interrupt and schedule event queue processing.
1504 irqreturn_t
ef4_farch_legacy_interrupt(int irq
, void *dev_id
)
1506 struct ef4_nic
*efx
= dev_id
;
1507 bool soft_enabled
= READ_ONCE(efx
->irq_soft_enabled
);
1508 ef4_oword_t
*int_ker
= efx
->irq_status
.addr
;
1509 irqreturn_t result
= IRQ_NONE
;
1510 struct ef4_channel
*channel
;
1515 /* Read the ISR which also ACKs the interrupts */
1516 ef4_readd(efx
, ®
, FR_BZ_INT_ISR0
);
1517 queues
= EF4_EXTRACT_DWORD(reg
, 0, 31);
1519 /* Legacy interrupts are disabled too late by the EEH kernel
1520 * code. Disable them earlier.
1521 * If an EEH error occurred, the read will have returned all ones.
1523 if (EF4_DWORD_IS_ALL_ONES(reg
) && ef4_try_recovery(efx
) &&
1524 !efx
->eeh_disabled_legacy_irq
) {
1525 disable_irq_nosync(efx
->legacy_irq
);
1526 efx
->eeh_disabled_legacy_irq
= true;
1529 /* Handle non-event-queue sources */
1530 if (queues
& (1U << efx
->irq_level
) && soft_enabled
) {
1531 syserr
= EF4_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1532 if (unlikely(syserr
))
1533 return ef4_farch_fatal_interrupt(efx
);
1534 efx
->last_irq_cpu
= raw_smp_processor_id();
1538 efx
->irq_zero_count
= 0;
1540 /* Schedule processing of any interrupting queues */
1541 if (likely(soft_enabled
)) {
1542 ef4_for_each_channel(channel
, efx
) {
1544 ef4_schedule_channel_irq(channel
);
1548 result
= IRQ_HANDLED
;
1553 /* Legacy ISR read can return zero once (SF bug 15783) */
1555 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1556 * because this might be a shared interrupt. */
1557 if (efx
->irq_zero_count
++ == 0)
1558 result
= IRQ_HANDLED
;
1560 /* Ensure we schedule or rearm all event queues */
1561 if (likely(soft_enabled
)) {
1562 ef4_for_each_channel(channel
, efx
) {
1563 event
= ef4_event(channel
,
1564 channel
->eventq_read_ptr
);
1565 if (ef4_event_present(event
))
1566 ef4_schedule_channel_irq(channel
);
1568 ef4_farch_ev_read_ack(channel
);
1573 if (result
== IRQ_HANDLED
)
1574 netif_vdbg(efx
, intr
, efx
->net_dev
,
1575 "IRQ %d on CPU %d status " EF4_DWORD_FMT
"\n",
1576 irq
, raw_smp_processor_id(), EF4_DWORD_VAL(reg
));
1581 /* Handle an MSI interrupt
1583 * Handle an MSI hardware interrupt. This routine schedules event
1584 * queue processing. No interrupt acknowledgement cycle is necessary.
1585 * Also, we never need to check that the interrupt is for us, since
1586 * MSI interrupts cannot be shared.
1588 irqreturn_t
ef4_farch_msi_interrupt(int irq
, void *dev_id
)
1590 struct ef4_msi_context
*context
= dev_id
;
1591 struct ef4_nic
*efx
= context
->efx
;
1592 ef4_oword_t
*int_ker
= efx
->irq_status
.addr
;
1595 netif_vdbg(efx
, intr
, efx
->net_dev
,
1596 "IRQ %d on CPU %d status " EF4_OWORD_FMT
"\n",
1597 irq
, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker
));
1599 if (!likely(READ_ONCE(efx
->irq_soft_enabled
)))
1602 /* Handle non-event-queue sources */
1603 if (context
->index
== efx
->irq_level
) {
1604 syserr
= EF4_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1605 if (unlikely(syserr
))
1606 return ef4_farch_fatal_interrupt(efx
);
1607 efx
->last_irq_cpu
= raw_smp_processor_id();
1610 /* Schedule processing of the channel */
1611 ef4_schedule_channel_irq(efx
->channel
[context
->index
]);
1616 /* Setup RSS indirection table.
1617 * This maps from the hash value of the packet to RXQ
1619 void ef4_farch_rx_push_indir_table(struct ef4_nic
*efx
)
1624 BUG_ON(ef4_nic_rev(efx
) < EF4_REV_FALCON_B0
);
1626 BUILD_BUG_ON(ARRAY_SIZE(efx
->rx_indir_table
) !=
1627 FR_BZ_RX_INDIRECTION_TBL_ROWS
);
1629 for (i
= 0; i
< FR_BZ_RX_INDIRECTION_TBL_ROWS
; i
++) {
1630 EF4_POPULATE_DWORD_1(dword
, FRF_BZ_IT_QUEUE
,
1631 efx
->rx_indir_table
[i
]);
1632 ef4_writed(efx
, &dword
,
1633 FR_BZ_RX_INDIRECTION_TBL
+
1634 FR_BZ_RX_INDIRECTION_TBL_STEP
* i
);
1638 /* Looks at available SRAM resources and works out how many queues we
1639 * can support, and where things like descriptor caches should live.
1641 * SRAM is split up as follows:
1642 * 0 buftbl entries for channels
1643 * efx->vf_buftbl_base buftbl entries for SR-IOV
1644 * efx->rx_dc_base RX descriptor caches
1645 * efx->tx_dc_base TX descriptor caches
1647 void ef4_farch_dimension_resources(struct ef4_nic
*efx
, unsigned sram_lim_qw
)
1649 unsigned vi_count
, buftbl_min
;
1651 /* Account for the buffer table entries backing the datapath channels
1652 * and the descriptor caches for those channels.
1654 buftbl_min
= ((efx
->n_rx_channels
* EF4_MAX_DMAQ_SIZE
+
1655 efx
->n_tx_channels
* EF4_TXQ_TYPES
* EF4_MAX_DMAQ_SIZE
+
1656 efx
->n_channels
* EF4_MAX_EVQ_SIZE
)
1657 * sizeof(ef4_qword_t
) / EF4_BUF_SIZE
);
1658 vi_count
= max(efx
->n_channels
, efx
->n_tx_channels
* EF4_TXQ_TYPES
);
1660 efx
->tx_dc_base
= sram_lim_qw
- vi_count
* TX_DC_ENTRIES
;
1661 efx
->rx_dc_base
= efx
->tx_dc_base
- vi_count
* RX_DC_ENTRIES
;
1664 u32
ef4_farch_fpga_ver(struct ef4_nic
*efx
)
1666 ef4_oword_t altera_build
;
1667 ef4_reado(efx
, &altera_build
, FR_AZ_ALTERA_BUILD
);
1668 return EF4_OWORD_FIELD(altera_build
, FRF_AZ_ALTERA_BUILD_VER
);
1671 void ef4_farch_init_common(struct ef4_nic
*efx
)
1675 /* Set positions of descriptor caches in SRAM. */
1676 EF4_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_TX_DC_BASE_ADR
, efx
->tx_dc_base
);
1677 ef4_writeo(efx
, &temp
, FR_AZ_SRM_TX_DC_CFG
);
1678 EF4_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_RX_DC_BASE_ADR
, efx
->rx_dc_base
);
1679 ef4_writeo(efx
, &temp
, FR_AZ_SRM_RX_DC_CFG
);
1681 /* Set TX descriptor cache size. */
1682 BUILD_BUG_ON(TX_DC_ENTRIES
!= (8 << TX_DC_ENTRIES_ORDER
));
1683 EF4_POPULATE_OWORD_1(temp
, FRF_AZ_TX_DC_SIZE
, TX_DC_ENTRIES_ORDER
);
1684 ef4_writeo(efx
, &temp
, FR_AZ_TX_DC_CFG
);
1686 /* Set RX descriptor cache size. Set low watermark to size-8, as
1687 * this allows most efficient prefetching.
1689 BUILD_BUG_ON(RX_DC_ENTRIES
!= (8 << RX_DC_ENTRIES_ORDER
));
1690 EF4_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_SIZE
, RX_DC_ENTRIES_ORDER
);
1691 ef4_writeo(efx
, &temp
, FR_AZ_RX_DC_CFG
);
1692 EF4_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_PF_LWM
, RX_DC_ENTRIES
- 8);
1693 ef4_writeo(efx
, &temp
, FR_AZ_RX_DC_PF_WM
);
1695 /* Program INT_KER address */
1696 EF4_POPULATE_OWORD_2(temp
,
1697 FRF_AZ_NORM_INT_VEC_DIS_KER
,
1698 EF4_INT_MODE_USE_MSI(efx
),
1699 FRF_AZ_INT_ADR_KER
, efx
->irq_status
.dma_addr
);
1700 ef4_writeo(efx
, &temp
, FR_AZ_INT_ADR_KER
);
1702 /* Use a valid MSI-X vector */
1705 /* Enable all the genuinely fatal interrupts. (They are still
1706 * masked by the overall interrupt mask, controlled by
1707 * falcon_interrupts()).
1709 * Note: All other fatal interrupts are enabled
1711 EF4_POPULATE_OWORD_3(temp
,
1712 FRF_AZ_ILL_ADR_INT_KER_EN
, 1,
1713 FRF_AZ_RBUF_OWN_INT_KER_EN
, 1,
1714 FRF_AZ_TBUF_OWN_INT_KER_EN
, 1);
1715 EF4_INVERT_OWORD(temp
);
1716 ef4_writeo(efx
, &temp
, FR_AZ_FATAL_INTR_KER
);
1718 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1719 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1721 ef4_reado(efx
, &temp
, FR_AZ_TX_RESERVED
);
1722 EF4_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER
, 0xfe);
1723 EF4_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER_EN
, 1);
1724 EF4_SET_OWORD_FIELD(temp
, FRF_AZ_TX_ONE_PKT_PER_Q
, 1);
1725 EF4_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PUSH_EN
, 1);
1726 EF4_SET_OWORD_FIELD(temp
, FRF_AZ_TX_DIS_NON_IP_EV
, 1);
1727 /* Enable SW_EV to inherit in char driver - assume harmless here */
1728 EF4_SET_OWORD_FIELD(temp
, FRF_AZ_TX_SOFT_EVT_EN
, 1);
1729 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1730 EF4_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_THRESHOLD
, 2);
1731 /* Disable hardware watchdog which can misfire */
1732 EF4_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_WD_TMR
, 0x3fffff);
1733 /* Squash TX of packets of 16 bytes or less */
1734 if (ef4_nic_rev(efx
) >= EF4_REV_FALCON_B0
)
1735 EF4_SET_OWORD_FIELD(temp
, FRF_BZ_TX_FLUSH_MIN_LEN_EN
, 1);
1736 ef4_writeo(efx
, &temp
, FR_AZ_TX_RESERVED
);
1738 if (ef4_nic_rev(efx
) >= EF4_REV_FALCON_B0
) {
1739 EF4_POPULATE_OWORD_4(temp
,
1740 /* Default values */
1741 FRF_BZ_TX_PACE_SB_NOT_AF
, 0x15,
1742 FRF_BZ_TX_PACE_SB_AF
, 0xb,
1743 FRF_BZ_TX_PACE_FB_BASE
, 0,
1744 /* Allow large pace values in the
1746 FRF_BZ_TX_PACE_BIN_TH
,
1747 FFE_BZ_TX_PACE_RESERVED
);
1748 ef4_writeo(efx
, &temp
, FR_BZ_TX_PACE
);
1752 /**************************************************************************
1756 **************************************************************************
1759 /* "Fudge factors" - difference between programmed value and actual depth.
1760 * Due to pipelined implementation we need to program H/W with a value that
1761 * is larger than the hop limit we want.
1763 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1764 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1766 /* Hard maximum search limit. Hardware will time-out beyond 200-something.
1767 * We also need to avoid infinite loops in ef4_farch_filter_search() when the
1770 #define EF4_FARCH_FILTER_CTL_SRCH_MAX 200
1772 /* Don't try very hard to find space for performance hints, as this is
1773 * counter-productive. */
1774 #define EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1776 enum ef4_farch_filter_type
{
1777 EF4_FARCH_FILTER_TCP_FULL
= 0,
1778 EF4_FARCH_FILTER_TCP_WILD
,
1779 EF4_FARCH_FILTER_UDP_FULL
,
1780 EF4_FARCH_FILTER_UDP_WILD
,
1781 EF4_FARCH_FILTER_MAC_FULL
= 4,
1782 EF4_FARCH_FILTER_MAC_WILD
,
1783 EF4_FARCH_FILTER_UC_DEF
= 8,
1784 EF4_FARCH_FILTER_MC_DEF
,
1785 EF4_FARCH_FILTER_TYPE_COUNT
, /* number of specific types */
1788 enum ef4_farch_filter_table_id
{
1789 EF4_FARCH_FILTER_TABLE_RX_IP
= 0,
1790 EF4_FARCH_FILTER_TABLE_RX_MAC
,
1791 EF4_FARCH_FILTER_TABLE_RX_DEF
,
1792 EF4_FARCH_FILTER_TABLE_TX_MAC
,
1793 EF4_FARCH_FILTER_TABLE_COUNT
,
1796 enum ef4_farch_filter_index
{
1797 EF4_FARCH_FILTER_INDEX_UC_DEF
,
1798 EF4_FARCH_FILTER_INDEX_MC_DEF
,
1799 EF4_FARCH_FILTER_SIZE_RX_DEF
,
1802 struct ef4_farch_filter_spec
{
1810 struct ef4_farch_filter_table
{
1811 enum ef4_farch_filter_table_id id
;
1812 u32 offset
; /* address of table relative to BAR */
1813 unsigned size
; /* number of entries */
1814 unsigned step
; /* step between entries */
1815 unsigned used
; /* number currently used */
1816 unsigned long *used_bitmap
;
1817 struct ef4_farch_filter_spec
*spec
;
1818 unsigned search_limit
[EF4_FARCH_FILTER_TYPE_COUNT
];
1821 struct ef4_farch_filter_state
{
1822 struct ef4_farch_filter_table table
[EF4_FARCH_FILTER_TABLE_COUNT
];
1826 ef4_farch_filter_table_clear_entry(struct ef4_nic
*efx
,
1827 struct ef4_farch_filter_table
*table
,
1828 unsigned int filter_idx
);
1830 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1831 * key derived from the n-tuple. The initial LFSR state is 0xffff. */
1832 static u16
ef4_farch_filter_hash(u32 key
)
1836 /* First 16 rounds */
1837 tmp
= 0x1fff ^ key
>> 16;
1838 tmp
= tmp
^ tmp
>> 3 ^ tmp
>> 6;
1839 tmp
= tmp
^ tmp
>> 9;
1840 /* Last 16 rounds */
1841 tmp
= tmp
^ tmp
<< 13 ^ key
;
1842 tmp
= tmp
^ tmp
>> 3 ^ tmp
>> 6;
1843 return tmp
^ tmp
>> 9;
1846 /* To allow for hash collisions, filter search continues at these
1847 * increments from the first possible entry selected by the hash. */
1848 static u16
ef4_farch_filter_increment(u32 key
)
1853 static enum ef4_farch_filter_table_id
1854 ef4_farch_filter_spec_table_id(const struct ef4_farch_filter_spec
*spec
)
1856 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP
!=
1857 (EF4_FARCH_FILTER_TCP_FULL
>> 2));
1858 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP
!=
1859 (EF4_FARCH_FILTER_TCP_WILD
>> 2));
1860 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP
!=
1861 (EF4_FARCH_FILTER_UDP_FULL
>> 2));
1862 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP
!=
1863 (EF4_FARCH_FILTER_UDP_WILD
>> 2));
1864 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC
!=
1865 (EF4_FARCH_FILTER_MAC_FULL
>> 2));
1866 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC
!=
1867 (EF4_FARCH_FILTER_MAC_WILD
>> 2));
1868 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_TX_MAC
!=
1869 EF4_FARCH_FILTER_TABLE_RX_MAC
+ 2);
1870 return (spec
->type
>> 2) + ((spec
->flags
& EF4_FILTER_FLAG_TX
) ? 2 : 0);
1873 static void ef4_farch_filter_push_rx_config(struct ef4_nic
*efx
)
1875 struct ef4_farch_filter_state
*state
= efx
->filter_state
;
1876 struct ef4_farch_filter_table
*table
;
1877 ef4_oword_t filter_ctl
;
1879 ef4_reado(efx
, &filter_ctl
, FR_BZ_RX_FILTER_CTL
);
1881 table
= &state
->table
[EF4_FARCH_FILTER_TABLE_RX_IP
];
1882 EF4_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_TCP_FULL_SRCH_LIMIT
,
1883 table
->search_limit
[EF4_FARCH_FILTER_TCP_FULL
] +
1884 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
1885 EF4_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_TCP_WILD_SRCH_LIMIT
,
1886 table
->search_limit
[EF4_FARCH_FILTER_TCP_WILD
] +
1887 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
1888 EF4_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_UDP_FULL_SRCH_LIMIT
,
1889 table
->search_limit
[EF4_FARCH_FILTER_UDP_FULL
] +
1890 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
1891 EF4_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_UDP_WILD_SRCH_LIMIT
,
1892 table
->search_limit
[EF4_FARCH_FILTER_UDP_WILD
] +
1893 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
1895 table
= &state
->table
[EF4_FARCH_FILTER_TABLE_RX_MAC
];
1897 EF4_SET_OWORD_FIELD(
1898 filter_ctl
, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT
,
1899 table
->search_limit
[EF4_FARCH_FILTER_MAC_FULL
] +
1900 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
1901 EF4_SET_OWORD_FIELD(
1902 filter_ctl
, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT
,
1903 table
->search_limit
[EF4_FARCH_FILTER_MAC_WILD
] +
1904 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
1907 table
= &state
->table
[EF4_FARCH_FILTER_TABLE_RX_DEF
];
1909 EF4_SET_OWORD_FIELD(
1910 filter_ctl
, FRF_CZ_UNICAST_NOMATCH_Q_ID
,
1911 table
->spec
[EF4_FARCH_FILTER_INDEX_UC_DEF
].dmaq_id
);
1912 EF4_SET_OWORD_FIELD(
1913 filter_ctl
, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED
,
1914 !!(table
->spec
[EF4_FARCH_FILTER_INDEX_UC_DEF
].flags
&
1915 EF4_FILTER_FLAG_RX_RSS
));
1916 EF4_SET_OWORD_FIELD(
1917 filter_ctl
, FRF_CZ_MULTICAST_NOMATCH_Q_ID
,
1918 table
->spec
[EF4_FARCH_FILTER_INDEX_MC_DEF
].dmaq_id
);
1919 EF4_SET_OWORD_FIELD(
1920 filter_ctl
, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED
,
1921 !!(table
->spec
[EF4_FARCH_FILTER_INDEX_MC_DEF
].flags
&
1922 EF4_FILTER_FLAG_RX_RSS
));
1924 /* There is a single bit to enable RX scatter for all
1925 * unmatched packets. Only set it if scatter is
1926 * enabled in both filter specs.
1928 EF4_SET_OWORD_FIELD(
1929 filter_ctl
, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q
,
1930 !!(table
->spec
[EF4_FARCH_FILTER_INDEX_UC_DEF
].flags
&
1931 table
->spec
[EF4_FARCH_FILTER_INDEX_MC_DEF
].flags
&
1932 EF4_FILTER_FLAG_RX_SCATTER
));
1933 } else if (ef4_nic_rev(efx
) >= EF4_REV_FALCON_B0
) {
1934 /* We don't expose 'default' filters because unmatched
1935 * packets always go to the queue number found in the
1936 * RSS table. But we still need to set the RX scatter
1939 EF4_SET_OWORD_FIELD(
1940 filter_ctl
, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q
,
1944 ef4_writeo(efx
, &filter_ctl
, FR_BZ_RX_FILTER_CTL
);
1947 static void ef4_farch_filter_push_tx_limits(struct ef4_nic
*efx
)
1949 struct ef4_farch_filter_state
*state
= efx
->filter_state
;
1950 struct ef4_farch_filter_table
*table
;
1953 ef4_reado(efx
, &tx_cfg
, FR_AZ_TX_CFG
);
1955 table
= &state
->table
[EF4_FARCH_FILTER_TABLE_TX_MAC
];
1957 EF4_SET_OWORD_FIELD(
1958 tx_cfg
, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE
,
1959 table
->search_limit
[EF4_FARCH_FILTER_MAC_FULL
] +
1960 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
1961 EF4_SET_OWORD_FIELD(
1962 tx_cfg
, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE
,
1963 table
->search_limit
[EF4_FARCH_FILTER_MAC_WILD
] +
1964 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
1967 ef4_writeo(efx
, &tx_cfg
, FR_AZ_TX_CFG
);
1971 ef4_farch_filter_from_gen_spec(struct ef4_farch_filter_spec
*spec
,
1972 const struct ef4_filter_spec
*gen_spec
)
1974 bool is_full
= false;
1976 if ((gen_spec
->flags
& EF4_FILTER_FLAG_RX_RSS
) &&
1977 gen_spec
->rss_context
!= EF4_FILTER_RSS_CONTEXT_DEFAULT
)
1980 spec
->priority
= gen_spec
->priority
;
1981 spec
->flags
= gen_spec
->flags
;
1982 spec
->dmaq_id
= gen_spec
->dmaq_id
;
1984 switch (gen_spec
->match_flags
) {
1985 case (EF4_FILTER_MATCH_ETHER_TYPE
| EF4_FILTER_MATCH_IP_PROTO
|
1986 EF4_FILTER_MATCH_LOC_HOST
| EF4_FILTER_MATCH_LOC_PORT
|
1987 EF4_FILTER_MATCH_REM_HOST
| EF4_FILTER_MATCH_REM_PORT
):
1990 case (EF4_FILTER_MATCH_ETHER_TYPE
| EF4_FILTER_MATCH_IP_PROTO
|
1991 EF4_FILTER_MATCH_LOC_HOST
| EF4_FILTER_MATCH_LOC_PORT
): {
1992 __be32 rhost
, host1
, host2
;
1993 __be16 rport
, port1
, port2
;
1995 EF4_BUG_ON_PARANOID(!(gen_spec
->flags
& EF4_FILTER_FLAG_RX
));
1997 if (gen_spec
->ether_type
!= htons(ETH_P_IP
))
1998 return -EPROTONOSUPPORT
;
1999 if (gen_spec
->loc_port
== 0 ||
2000 (is_full
&& gen_spec
->rem_port
== 0))
2001 return -EADDRNOTAVAIL
;
2002 switch (gen_spec
->ip_proto
) {
2004 spec
->type
= (is_full
? EF4_FARCH_FILTER_TCP_FULL
:
2005 EF4_FARCH_FILTER_TCP_WILD
);
2008 spec
->type
= (is_full
? EF4_FARCH_FILTER_UDP_FULL
:
2009 EF4_FARCH_FILTER_UDP_WILD
);
2012 return -EPROTONOSUPPORT
;
2015 /* Filter is constructed in terms of source and destination,
2016 * with the odd wrinkle that the ports are swapped in a UDP
2017 * wildcard filter. We need to convert from local and remote
2018 * (= zero for wildcard) addresses.
2020 rhost
= is_full
? gen_spec
->rem_host
[0] : 0;
2021 rport
= is_full
? gen_spec
->rem_port
: 0;
2023 host2
= gen_spec
->loc_host
[0];
2024 if (!is_full
&& gen_spec
->ip_proto
== IPPROTO_UDP
) {
2025 port1
= gen_spec
->loc_port
;
2029 port2
= gen_spec
->loc_port
;
2031 spec
->data
[0] = ntohl(host1
) << 16 | ntohs(port1
);
2032 spec
->data
[1] = ntohs(port2
) << 16 | ntohl(host1
) >> 16;
2033 spec
->data
[2] = ntohl(host2
);
2038 case EF4_FILTER_MATCH_LOC_MAC
| EF4_FILTER_MATCH_OUTER_VID
:
2041 case EF4_FILTER_MATCH_LOC_MAC
:
2042 spec
->type
= (is_full
? EF4_FARCH_FILTER_MAC_FULL
:
2043 EF4_FARCH_FILTER_MAC_WILD
);
2044 spec
->data
[0] = is_full
? ntohs(gen_spec
->outer_vid
) : 0;
2045 spec
->data
[1] = (gen_spec
->loc_mac
[2] << 24 |
2046 gen_spec
->loc_mac
[3] << 16 |
2047 gen_spec
->loc_mac
[4] << 8 |
2048 gen_spec
->loc_mac
[5]);
2049 spec
->data
[2] = (gen_spec
->loc_mac
[0] << 8 |
2050 gen_spec
->loc_mac
[1]);
2053 case EF4_FILTER_MATCH_LOC_MAC_IG
:
2054 spec
->type
= (is_multicast_ether_addr(gen_spec
->loc_mac
) ?
2055 EF4_FARCH_FILTER_MC_DEF
:
2056 EF4_FARCH_FILTER_UC_DEF
);
2057 memset(spec
->data
, 0, sizeof(spec
->data
)); /* ensure equality */
2061 return -EPROTONOSUPPORT
;
2068 ef4_farch_filter_to_gen_spec(struct ef4_filter_spec
*gen_spec
,
2069 const struct ef4_farch_filter_spec
*spec
)
2071 bool is_full
= false;
2073 /* *gen_spec should be completely initialised, to be consistent
2074 * with ef4_filter_init_{rx,tx}() and in case we want to copy
2075 * it back to userland.
2077 memset(gen_spec
, 0, sizeof(*gen_spec
));
2079 gen_spec
->priority
= spec
->priority
;
2080 gen_spec
->flags
= spec
->flags
;
2081 gen_spec
->dmaq_id
= spec
->dmaq_id
;
2083 switch (spec
->type
) {
2084 case EF4_FARCH_FILTER_TCP_FULL
:
2085 case EF4_FARCH_FILTER_UDP_FULL
:
2088 case EF4_FARCH_FILTER_TCP_WILD
:
2089 case EF4_FARCH_FILTER_UDP_WILD
: {
2090 __be32 host1
, host2
;
2091 __be16 port1
, port2
;
2093 gen_spec
->match_flags
=
2094 EF4_FILTER_MATCH_ETHER_TYPE
|
2095 EF4_FILTER_MATCH_IP_PROTO
|
2096 EF4_FILTER_MATCH_LOC_HOST
| EF4_FILTER_MATCH_LOC_PORT
;
2098 gen_spec
->match_flags
|= (EF4_FILTER_MATCH_REM_HOST
|
2099 EF4_FILTER_MATCH_REM_PORT
);
2100 gen_spec
->ether_type
= htons(ETH_P_IP
);
2101 gen_spec
->ip_proto
=
2102 (spec
->type
== EF4_FARCH_FILTER_TCP_FULL
||
2103 spec
->type
== EF4_FARCH_FILTER_TCP_WILD
) ?
2104 IPPROTO_TCP
: IPPROTO_UDP
;
2106 host1
= htonl(spec
->data
[0] >> 16 | spec
->data
[1] << 16);
2107 port1
= htons(spec
->data
[0]);
2108 host2
= htonl(spec
->data
[2]);
2109 port2
= htons(spec
->data
[1] >> 16);
2110 if (spec
->flags
& EF4_FILTER_FLAG_TX
) {
2111 gen_spec
->loc_host
[0] = host1
;
2112 gen_spec
->rem_host
[0] = host2
;
2114 gen_spec
->loc_host
[0] = host2
;
2115 gen_spec
->rem_host
[0] = host1
;
2117 if (!!(gen_spec
->flags
& EF4_FILTER_FLAG_TX
) ^
2118 (!is_full
&& gen_spec
->ip_proto
== IPPROTO_UDP
)) {
2119 gen_spec
->loc_port
= port1
;
2120 gen_spec
->rem_port
= port2
;
2122 gen_spec
->loc_port
= port2
;
2123 gen_spec
->rem_port
= port1
;
2129 case EF4_FARCH_FILTER_MAC_FULL
:
2132 case EF4_FARCH_FILTER_MAC_WILD
:
2133 gen_spec
->match_flags
= EF4_FILTER_MATCH_LOC_MAC
;
2135 gen_spec
->match_flags
|= EF4_FILTER_MATCH_OUTER_VID
;
2136 gen_spec
->loc_mac
[0] = spec
->data
[2] >> 8;
2137 gen_spec
->loc_mac
[1] = spec
->data
[2];
2138 gen_spec
->loc_mac
[2] = spec
->data
[1] >> 24;
2139 gen_spec
->loc_mac
[3] = spec
->data
[1] >> 16;
2140 gen_spec
->loc_mac
[4] = spec
->data
[1] >> 8;
2141 gen_spec
->loc_mac
[5] = spec
->data
[1];
2142 gen_spec
->outer_vid
= htons(spec
->data
[0]);
2145 case EF4_FARCH_FILTER_UC_DEF
:
2146 case EF4_FARCH_FILTER_MC_DEF
:
2147 gen_spec
->match_flags
= EF4_FILTER_MATCH_LOC_MAC_IG
;
2148 gen_spec
->loc_mac
[0] = spec
->type
== EF4_FARCH_FILTER_MC_DEF
;
2158 ef4_farch_filter_init_rx_auto(struct ef4_nic
*efx
,
2159 struct ef4_farch_filter_spec
*spec
)
2161 /* If there's only one channel then disable RSS for non VF
2162 * traffic, thereby allowing VFs to use RSS when the PF can't.
2164 spec
->priority
= EF4_FILTER_PRI_AUTO
;
2165 spec
->flags
= (EF4_FILTER_FLAG_RX
|
2166 (ef4_rss_enabled(efx
) ? EF4_FILTER_FLAG_RX_RSS
: 0) |
2167 (efx
->rx_scatter
? EF4_FILTER_FLAG_RX_SCATTER
: 0));
2171 /* Build a filter entry and return its n-tuple key. */
2172 static u32
ef4_farch_filter_build(ef4_oword_t
*filter
,
2173 struct ef4_farch_filter_spec
*spec
)
2177 switch (ef4_farch_filter_spec_table_id(spec
)) {
2178 case EF4_FARCH_FILTER_TABLE_RX_IP
: {
2179 bool is_udp
= (spec
->type
== EF4_FARCH_FILTER_UDP_FULL
||
2180 spec
->type
== EF4_FARCH_FILTER_UDP_WILD
);
2181 EF4_POPULATE_OWORD_7(
2184 !!(spec
->flags
& EF4_FILTER_FLAG_RX_RSS
),
2186 !!(spec
->flags
& EF4_FILTER_FLAG_RX_SCATTER
),
2187 FRF_BZ_TCP_UDP
, is_udp
,
2188 FRF_BZ_RXQ_ID
, spec
->dmaq_id
,
2189 EF4_DWORD_2
, spec
->data
[2],
2190 EF4_DWORD_1
, spec
->data
[1],
2191 EF4_DWORD_0
, spec
->data
[0]);
2196 case EF4_FARCH_FILTER_TABLE_RX_MAC
: {
2197 bool is_wild
= spec
->type
== EF4_FARCH_FILTER_MAC_WILD
;
2198 EF4_POPULATE_OWORD_7(
2201 !!(spec
->flags
& EF4_FILTER_FLAG_RX_RSS
),
2202 FRF_CZ_RMFT_SCATTER_EN
,
2203 !!(spec
->flags
& EF4_FILTER_FLAG_RX_SCATTER
),
2204 FRF_CZ_RMFT_RXQ_ID
, spec
->dmaq_id
,
2205 FRF_CZ_RMFT_WILDCARD_MATCH
, is_wild
,
2206 FRF_CZ_RMFT_DEST_MAC_HI
, spec
->data
[2],
2207 FRF_CZ_RMFT_DEST_MAC_LO
, spec
->data
[1],
2208 FRF_CZ_RMFT_VLAN_ID
, spec
->data
[0]);
2213 case EF4_FARCH_FILTER_TABLE_TX_MAC
: {
2214 bool is_wild
= spec
->type
== EF4_FARCH_FILTER_MAC_WILD
;
2215 EF4_POPULATE_OWORD_5(*filter
,
2216 FRF_CZ_TMFT_TXQ_ID
, spec
->dmaq_id
,
2217 FRF_CZ_TMFT_WILDCARD_MATCH
, is_wild
,
2218 FRF_CZ_TMFT_SRC_MAC_HI
, spec
->data
[2],
2219 FRF_CZ_TMFT_SRC_MAC_LO
, spec
->data
[1],
2220 FRF_CZ_TMFT_VLAN_ID
, spec
->data
[0]);
2221 data3
= is_wild
| spec
->dmaq_id
<< 1;
2229 return spec
->data
[0] ^ spec
->data
[1] ^ spec
->data
[2] ^ data3
;
2232 static bool ef4_farch_filter_equal(const struct ef4_farch_filter_spec
*left
,
2233 const struct ef4_farch_filter_spec
*right
)
2235 if (left
->type
!= right
->type
||
2236 memcmp(left
->data
, right
->data
, sizeof(left
->data
)))
2239 if (left
->flags
& EF4_FILTER_FLAG_TX
&&
2240 left
->dmaq_id
!= right
->dmaq_id
)
2247 * Construct/deconstruct external filter IDs. At least the RX filter
2248 * IDs must be ordered by matching priority, for RX NFC semantics.
2250 * Deconstruction needs to be robust against invalid IDs so that
2251 * ef4_filter_remove_id_safe() and ef4_filter_get_filter_safe() can
2252 * accept user-provided IDs.
2255 #define EF4_FARCH_FILTER_MATCH_PRI_COUNT 5
2257 static const u8 ef4_farch_filter_type_match_pri
[EF4_FARCH_FILTER_TYPE_COUNT
] = {
2258 [EF4_FARCH_FILTER_TCP_FULL
] = 0,
2259 [EF4_FARCH_FILTER_UDP_FULL
] = 0,
2260 [EF4_FARCH_FILTER_TCP_WILD
] = 1,
2261 [EF4_FARCH_FILTER_UDP_WILD
] = 1,
2262 [EF4_FARCH_FILTER_MAC_FULL
] = 2,
2263 [EF4_FARCH_FILTER_MAC_WILD
] = 3,
2264 [EF4_FARCH_FILTER_UC_DEF
] = 4,
2265 [EF4_FARCH_FILTER_MC_DEF
] = 4,
2268 static const enum ef4_farch_filter_table_id ef4_farch_filter_range_table
[] = {
2269 EF4_FARCH_FILTER_TABLE_RX_IP
, /* RX match pri 0 */
2270 EF4_FARCH_FILTER_TABLE_RX_IP
,
2271 EF4_FARCH_FILTER_TABLE_RX_MAC
,
2272 EF4_FARCH_FILTER_TABLE_RX_MAC
,
2273 EF4_FARCH_FILTER_TABLE_RX_DEF
, /* RX match pri 4 */
2274 EF4_FARCH_FILTER_TABLE_TX_MAC
, /* TX match pri 0 */
2275 EF4_FARCH_FILTER_TABLE_TX_MAC
, /* TX match pri 1 */
2278 #define EF4_FARCH_FILTER_INDEX_WIDTH 13
2279 #define EF4_FARCH_FILTER_INDEX_MASK ((1 << EF4_FARCH_FILTER_INDEX_WIDTH) - 1)
2282 ef4_farch_filter_make_id(const struct ef4_farch_filter_spec
*spec
,
2287 range
= ef4_farch_filter_type_match_pri
[spec
->type
];
2288 if (!(spec
->flags
& EF4_FILTER_FLAG_RX
))
2289 range
+= EF4_FARCH_FILTER_MATCH_PRI_COUNT
;
2291 return range
<< EF4_FARCH_FILTER_INDEX_WIDTH
| index
;
2294 static inline enum ef4_farch_filter_table_id
2295 ef4_farch_filter_id_table_id(u32 id
)
2297 unsigned int range
= id
>> EF4_FARCH_FILTER_INDEX_WIDTH
;
2299 if (range
< ARRAY_SIZE(ef4_farch_filter_range_table
))
2300 return ef4_farch_filter_range_table
[range
];
2302 return EF4_FARCH_FILTER_TABLE_COUNT
; /* invalid */
2305 static inline unsigned int ef4_farch_filter_id_index(u32 id
)
2307 return id
& EF4_FARCH_FILTER_INDEX_MASK
;
2310 u32
ef4_farch_filter_get_rx_id_limit(struct ef4_nic
*efx
)
2312 struct ef4_farch_filter_state
*state
= efx
->filter_state
;
2313 unsigned int range
= EF4_FARCH_FILTER_MATCH_PRI_COUNT
- 1;
2314 enum ef4_farch_filter_table_id table_id
;
2317 table_id
= ef4_farch_filter_range_table
[range
];
2318 if (state
->table
[table_id
].size
!= 0)
2319 return range
<< EF4_FARCH_FILTER_INDEX_WIDTH
|
2320 state
->table
[table_id
].size
;
2326 s32
ef4_farch_filter_insert(struct ef4_nic
*efx
,
2327 struct ef4_filter_spec
*gen_spec
,
2330 struct ef4_farch_filter_state
*state
= efx
->filter_state
;
2331 struct ef4_farch_filter_table
*table
;
2332 struct ef4_farch_filter_spec spec
;
2334 int rep_index
, ins_index
;
2335 unsigned int depth
= 0;
2338 rc
= ef4_farch_filter_from_gen_spec(&spec
, gen_spec
);
2342 table
= &state
->table
[ef4_farch_filter_spec_table_id(&spec
)];
2343 if (table
->size
== 0)
2346 netif_vdbg(efx
, hw
, efx
->net_dev
,
2347 "%s: type %d search_limit=%d", __func__
, spec
.type
,
2348 table
->search_limit
[spec
.type
]);
2350 if (table
->id
== EF4_FARCH_FILTER_TABLE_RX_DEF
) {
2351 /* One filter spec per type */
2352 BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_UC_DEF
!= 0);
2353 BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_MC_DEF
!=
2354 EF4_FARCH_FILTER_MC_DEF
- EF4_FARCH_FILTER_UC_DEF
);
2355 rep_index
= spec
.type
- EF4_FARCH_FILTER_UC_DEF
;
2356 ins_index
= rep_index
;
2358 spin_lock_bh(&efx
->filter_lock
);
2360 /* Search concurrently for
2361 * (1) a filter to be replaced (rep_index): any filter
2362 * with the same match values, up to the current
2363 * search depth for this type, and
2364 * (2) the insertion point (ins_index): (1) or any
2365 * free slot before it or up to the maximum search
2366 * depth for this priority
2367 * We fail if we cannot find (2).
2369 * We can stop once either
2370 * (a) we find (1), in which case we have definitely
2371 * found (2) as well; or
2372 * (b) we have searched exhaustively for (1), and have
2373 * either found (2) or searched exhaustively for it
2375 u32 key
= ef4_farch_filter_build(&filter
, &spec
);
2376 unsigned int hash
= ef4_farch_filter_hash(key
);
2377 unsigned int incr
= ef4_farch_filter_increment(key
);
2378 unsigned int max_rep_depth
= table
->search_limit
[spec
.type
];
2379 unsigned int max_ins_depth
=
2380 spec
.priority
<= EF4_FILTER_PRI_HINT
?
2381 EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX
:
2382 EF4_FARCH_FILTER_CTL_SRCH_MAX
;
2383 unsigned int i
= hash
& (table
->size
- 1);
2388 spin_lock_bh(&efx
->filter_lock
);
2391 if (!test_bit(i
, table
->used_bitmap
)) {
2394 } else if (ef4_farch_filter_equal(&spec
,
2403 if (depth
>= max_rep_depth
&&
2404 (ins_index
>= 0 || depth
>= max_ins_depth
)) {
2406 if (ins_index
< 0) {
2414 i
= (i
+ incr
) & (table
->size
- 1);
2419 /* If we found a filter to be replaced, check whether we
2422 if (rep_index
>= 0) {
2423 struct ef4_farch_filter_spec
*saved_spec
=
2424 &table
->spec
[rep_index
];
2426 if (spec
.priority
== saved_spec
->priority
&& !replace_equal
) {
2430 if (spec
.priority
< saved_spec
->priority
) {
2434 if (saved_spec
->priority
== EF4_FILTER_PRI_AUTO
||
2435 saved_spec
->flags
& EF4_FILTER_FLAG_RX_OVER_AUTO
)
2436 spec
.flags
|= EF4_FILTER_FLAG_RX_OVER_AUTO
;
2439 /* Insert the filter */
2440 if (ins_index
!= rep_index
) {
2441 __set_bit(ins_index
, table
->used_bitmap
);
2444 table
->spec
[ins_index
] = spec
;
2446 if (table
->id
== EF4_FARCH_FILTER_TABLE_RX_DEF
) {
2447 ef4_farch_filter_push_rx_config(efx
);
2449 if (table
->search_limit
[spec
.type
] < depth
) {
2450 table
->search_limit
[spec
.type
] = depth
;
2451 if (spec
.flags
& EF4_FILTER_FLAG_TX
)
2452 ef4_farch_filter_push_tx_limits(efx
);
2454 ef4_farch_filter_push_rx_config(efx
);
2457 ef4_writeo(efx
, &filter
,
2458 table
->offset
+ table
->step
* ins_index
);
2460 /* If we were able to replace a filter by inserting
2461 * at a lower depth, clear the replaced filter
2463 if (ins_index
!= rep_index
&& rep_index
>= 0)
2464 ef4_farch_filter_table_clear_entry(efx
, table
,
2468 netif_vdbg(efx
, hw
, efx
->net_dev
,
2469 "%s: filter type %d index %d rxq %u set",
2470 __func__
, spec
.type
, ins_index
, spec
.dmaq_id
);
2471 rc
= ef4_farch_filter_make_id(&spec
, ins_index
);
2474 spin_unlock_bh(&efx
->filter_lock
);
2479 ef4_farch_filter_table_clear_entry(struct ef4_nic
*efx
,
2480 struct ef4_farch_filter_table
*table
,
2481 unsigned int filter_idx
)
2483 static ef4_oword_t filter
;
2485 EF4_WARN_ON_PARANOID(!test_bit(filter_idx
, table
->used_bitmap
));
2486 BUG_ON(table
->offset
== 0); /* can't clear MAC default filters */
2488 __clear_bit(filter_idx
, table
->used_bitmap
);
2490 memset(&table
->spec
[filter_idx
], 0, sizeof(table
->spec
[0]));
2492 ef4_writeo(efx
, &filter
, table
->offset
+ table
->step
* filter_idx
);
2494 /* If this filter required a greater search depth than
2495 * any other, the search limit for its type can now be
2496 * decreased. However, it is hard to determine that
2497 * unless the table has become completely empty - in
2498 * which case, all its search limits can be set to 0.
2500 if (unlikely(table
->used
== 0)) {
2501 memset(table
->search_limit
, 0, sizeof(table
->search_limit
));
2502 if (table
->id
== EF4_FARCH_FILTER_TABLE_TX_MAC
)
2503 ef4_farch_filter_push_tx_limits(efx
);
2505 ef4_farch_filter_push_rx_config(efx
);
2509 static int ef4_farch_filter_remove(struct ef4_nic
*efx
,
2510 struct ef4_farch_filter_table
*table
,
2511 unsigned int filter_idx
,
2512 enum ef4_filter_priority priority
)
2514 struct ef4_farch_filter_spec
*spec
= &table
->spec
[filter_idx
];
2516 if (!test_bit(filter_idx
, table
->used_bitmap
) ||
2517 spec
->priority
!= priority
)
2520 if (spec
->flags
& EF4_FILTER_FLAG_RX_OVER_AUTO
) {
2521 ef4_farch_filter_init_rx_auto(efx
, spec
);
2522 ef4_farch_filter_push_rx_config(efx
);
2524 ef4_farch_filter_table_clear_entry(efx
, table
, filter_idx
);
2530 int ef4_farch_filter_remove_safe(struct ef4_nic
*efx
,
2531 enum ef4_filter_priority priority
,
2534 struct ef4_farch_filter_state
*state
= efx
->filter_state
;
2535 enum ef4_farch_filter_table_id table_id
;
2536 struct ef4_farch_filter_table
*table
;
2537 unsigned int filter_idx
;
2538 struct ef4_farch_filter_spec
*spec
;
2541 table_id
= ef4_farch_filter_id_table_id(filter_id
);
2542 if ((unsigned int)table_id
>= EF4_FARCH_FILTER_TABLE_COUNT
)
2544 table
= &state
->table
[table_id
];
2546 filter_idx
= ef4_farch_filter_id_index(filter_id
);
2547 if (filter_idx
>= table
->size
)
2549 spec
= &table
->spec
[filter_idx
];
2551 spin_lock_bh(&efx
->filter_lock
);
2552 rc
= ef4_farch_filter_remove(efx
, table
, filter_idx
, priority
);
2553 spin_unlock_bh(&efx
->filter_lock
);
2558 int ef4_farch_filter_get_safe(struct ef4_nic
*efx
,
2559 enum ef4_filter_priority priority
,
2560 u32 filter_id
, struct ef4_filter_spec
*spec_buf
)
2562 struct ef4_farch_filter_state
*state
= efx
->filter_state
;
2563 enum ef4_farch_filter_table_id table_id
;
2564 struct ef4_farch_filter_table
*table
;
2565 struct ef4_farch_filter_spec
*spec
;
2566 unsigned int filter_idx
;
2569 table_id
= ef4_farch_filter_id_table_id(filter_id
);
2570 if ((unsigned int)table_id
>= EF4_FARCH_FILTER_TABLE_COUNT
)
2572 table
= &state
->table
[table_id
];
2574 filter_idx
= ef4_farch_filter_id_index(filter_id
);
2575 if (filter_idx
>= table
->size
)
2577 spec
= &table
->spec
[filter_idx
];
2579 spin_lock_bh(&efx
->filter_lock
);
2581 if (test_bit(filter_idx
, table
->used_bitmap
) &&
2582 spec
->priority
== priority
) {
2583 ef4_farch_filter_to_gen_spec(spec_buf
, spec
);
2589 spin_unlock_bh(&efx
->filter_lock
);
2595 ef4_farch_filter_table_clear(struct ef4_nic
*efx
,
2596 enum ef4_farch_filter_table_id table_id
,
2597 enum ef4_filter_priority priority
)
2599 struct ef4_farch_filter_state
*state
= efx
->filter_state
;
2600 struct ef4_farch_filter_table
*table
= &state
->table
[table_id
];
2601 unsigned int filter_idx
;
2603 spin_lock_bh(&efx
->filter_lock
);
2604 for (filter_idx
= 0; filter_idx
< table
->size
; ++filter_idx
) {
2605 if (table
->spec
[filter_idx
].priority
!= EF4_FILTER_PRI_AUTO
)
2606 ef4_farch_filter_remove(efx
, table
,
2607 filter_idx
, priority
);
2609 spin_unlock_bh(&efx
->filter_lock
);
2612 int ef4_farch_filter_clear_rx(struct ef4_nic
*efx
,
2613 enum ef4_filter_priority priority
)
2615 ef4_farch_filter_table_clear(efx
, EF4_FARCH_FILTER_TABLE_RX_IP
,
2617 ef4_farch_filter_table_clear(efx
, EF4_FARCH_FILTER_TABLE_RX_MAC
,
2619 ef4_farch_filter_table_clear(efx
, EF4_FARCH_FILTER_TABLE_RX_DEF
,
2624 u32
ef4_farch_filter_count_rx_used(struct ef4_nic
*efx
,
2625 enum ef4_filter_priority priority
)
2627 struct ef4_farch_filter_state
*state
= efx
->filter_state
;
2628 enum ef4_farch_filter_table_id table_id
;
2629 struct ef4_farch_filter_table
*table
;
2630 unsigned int filter_idx
;
2633 spin_lock_bh(&efx
->filter_lock
);
2635 for (table_id
= EF4_FARCH_FILTER_TABLE_RX_IP
;
2636 table_id
<= EF4_FARCH_FILTER_TABLE_RX_DEF
;
2638 table
= &state
->table
[table_id
];
2639 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2640 if (test_bit(filter_idx
, table
->used_bitmap
) &&
2641 table
->spec
[filter_idx
].priority
== priority
)
2646 spin_unlock_bh(&efx
->filter_lock
);
2651 s32
ef4_farch_filter_get_rx_ids(struct ef4_nic
*efx
,
2652 enum ef4_filter_priority priority
,
2655 struct ef4_farch_filter_state
*state
= efx
->filter_state
;
2656 enum ef4_farch_filter_table_id table_id
;
2657 struct ef4_farch_filter_table
*table
;
2658 unsigned int filter_idx
;
2661 spin_lock_bh(&efx
->filter_lock
);
2663 for (table_id
= EF4_FARCH_FILTER_TABLE_RX_IP
;
2664 table_id
<= EF4_FARCH_FILTER_TABLE_RX_DEF
;
2666 table
= &state
->table
[table_id
];
2667 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2668 if (test_bit(filter_idx
, table
->used_bitmap
) &&
2669 table
->spec
[filter_idx
].priority
== priority
) {
2670 if (count
== size
) {
2674 buf
[count
++] = ef4_farch_filter_make_id(
2675 &table
->spec
[filter_idx
], filter_idx
);
2680 spin_unlock_bh(&efx
->filter_lock
);
2685 /* Restore filter stater after reset */
2686 void ef4_farch_filter_table_restore(struct ef4_nic
*efx
)
2688 struct ef4_farch_filter_state
*state
= efx
->filter_state
;
2689 enum ef4_farch_filter_table_id table_id
;
2690 struct ef4_farch_filter_table
*table
;
2692 unsigned int filter_idx
;
2694 spin_lock_bh(&efx
->filter_lock
);
2696 for (table_id
= 0; table_id
< EF4_FARCH_FILTER_TABLE_COUNT
; table_id
++) {
2697 table
= &state
->table
[table_id
];
2699 /* Check whether this is a regular register table */
2700 if (table
->step
== 0)
2703 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2704 if (!test_bit(filter_idx
, table
->used_bitmap
))
2706 ef4_farch_filter_build(&filter
, &table
->spec
[filter_idx
]);
2707 ef4_writeo(efx
, &filter
,
2708 table
->offset
+ table
->step
* filter_idx
);
2712 ef4_farch_filter_push_rx_config(efx
);
2713 ef4_farch_filter_push_tx_limits(efx
);
2715 spin_unlock_bh(&efx
->filter_lock
);
2718 void ef4_farch_filter_table_remove(struct ef4_nic
*efx
)
2720 struct ef4_farch_filter_state
*state
= efx
->filter_state
;
2721 enum ef4_farch_filter_table_id table_id
;
2723 for (table_id
= 0; table_id
< EF4_FARCH_FILTER_TABLE_COUNT
; table_id
++) {
2724 kfree(state
->table
[table_id
].used_bitmap
);
2725 vfree(state
->table
[table_id
].spec
);
2730 int ef4_farch_filter_table_probe(struct ef4_nic
*efx
)
2732 struct ef4_farch_filter_state
*state
;
2733 struct ef4_farch_filter_table
*table
;
2736 state
= kzalloc(sizeof(struct ef4_farch_filter_state
), GFP_KERNEL
);
2739 efx
->filter_state
= state
;
2741 if (ef4_nic_rev(efx
) >= EF4_REV_FALCON_B0
) {
2742 table
= &state
->table
[EF4_FARCH_FILTER_TABLE_RX_IP
];
2743 table
->id
= EF4_FARCH_FILTER_TABLE_RX_IP
;
2744 table
->offset
= FR_BZ_RX_FILTER_TBL0
;
2745 table
->size
= FR_BZ_RX_FILTER_TBL0_ROWS
;
2746 table
->step
= FR_BZ_RX_FILTER_TBL0_STEP
;
2749 for (table_id
= 0; table_id
< EF4_FARCH_FILTER_TABLE_COUNT
; table_id
++) {
2750 table
= &state
->table
[table_id
];
2751 if (table
->size
== 0)
2753 table
->used_bitmap
= kcalloc(BITS_TO_LONGS(table
->size
),
2754 sizeof(unsigned long),
2756 if (!table
->used_bitmap
)
2758 table
->spec
= vzalloc(array_size(sizeof(*table
->spec
),
2764 table
= &state
->table
[EF4_FARCH_FILTER_TABLE_RX_DEF
];
2766 /* RX default filters must always exist */
2767 struct ef4_farch_filter_spec
*spec
;
2770 for (i
= 0; i
< EF4_FARCH_FILTER_SIZE_RX_DEF
; i
++) {
2771 spec
= &table
->spec
[i
];
2772 spec
->type
= EF4_FARCH_FILTER_UC_DEF
+ i
;
2773 ef4_farch_filter_init_rx_auto(efx
, spec
);
2774 __set_bit(i
, table
->used_bitmap
);
2778 ef4_farch_filter_push_rx_config(efx
);
2783 ef4_farch_filter_table_remove(efx
);
2787 /* Update scatter enable flags for filters pointing to our own RX queues */
2788 void ef4_farch_filter_update_rx_scatter(struct ef4_nic
*efx
)
2790 struct ef4_farch_filter_state
*state
= efx
->filter_state
;
2791 enum ef4_farch_filter_table_id table_id
;
2792 struct ef4_farch_filter_table
*table
;
2794 unsigned int filter_idx
;
2796 spin_lock_bh(&efx
->filter_lock
);
2798 for (table_id
= EF4_FARCH_FILTER_TABLE_RX_IP
;
2799 table_id
<= EF4_FARCH_FILTER_TABLE_RX_DEF
;
2801 table
= &state
->table
[table_id
];
2803 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2804 if (!test_bit(filter_idx
, table
->used_bitmap
) ||
2805 table
->spec
[filter_idx
].dmaq_id
>=
2809 if (efx
->rx_scatter
)
2810 table
->spec
[filter_idx
].flags
|=
2811 EF4_FILTER_FLAG_RX_SCATTER
;
2813 table
->spec
[filter_idx
].flags
&=
2814 ~EF4_FILTER_FLAG_RX_SCATTER
;
2816 if (table_id
== EF4_FARCH_FILTER_TABLE_RX_DEF
)
2817 /* Pushed by ef4_farch_filter_push_rx_config() */
2820 ef4_farch_filter_build(&filter
, &table
->spec
[filter_idx
]);
2821 ef4_writeo(efx
, &filter
,
2822 table
->offset
+ table
->step
* filter_idx
);
2826 ef4_farch_filter_push_rx_config(efx
);
2828 spin_unlock_bh(&efx
->filter_lock
);
2831 #ifdef CONFIG_RFS_ACCEL
2833 s32
ef4_farch_filter_rfs_insert(struct ef4_nic
*efx
,
2834 struct ef4_filter_spec
*gen_spec
)
2836 return ef4_farch_filter_insert(efx
, gen_spec
, true);
2839 bool ef4_farch_filter_rfs_expire_one(struct ef4_nic
*efx
, u32 flow_id
,
2842 struct ef4_farch_filter_state
*state
= efx
->filter_state
;
2843 struct ef4_farch_filter_table
*table
=
2844 &state
->table
[EF4_FARCH_FILTER_TABLE_RX_IP
];
2846 if (test_bit(index
, table
->used_bitmap
) &&
2847 table
->spec
[index
].priority
== EF4_FILTER_PRI_HINT
&&
2848 rps_may_expire_flow(efx
->net_dev
, table
->spec
[index
].dmaq_id
,
2850 ef4_farch_filter_table_clear_entry(efx
, table
, index
);
2857 #endif /* CONFIG_RFS_ACCEL */
2859 void ef4_farch_filter_sync_rx_mode(struct ef4_nic
*efx
)
2861 struct net_device
*net_dev
= efx
->net_dev
;
2862 struct netdev_hw_addr
*ha
;
2863 union ef4_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
2867 if (!ef4_dev_registered(efx
))
2870 netif_addr_lock_bh(net_dev
);
2872 efx
->unicast_filter
= !(net_dev
->flags
& IFF_PROMISC
);
2874 /* Build multicast hash table */
2875 if (net_dev
->flags
& (IFF_PROMISC
| IFF_ALLMULTI
)) {
2876 memset(mc_hash
, 0xff, sizeof(*mc_hash
));
2878 memset(mc_hash
, 0x00, sizeof(*mc_hash
));
2879 netdev_for_each_mc_addr(ha
, net_dev
) {
2880 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
2881 bit
= crc
& (EF4_MCAST_HASH_ENTRIES
- 1);
2882 __set_bit_le(bit
, mc_hash
);
2885 /* Broadcast packets go through the multicast hash filter.
2886 * ether_crc_le() of the broadcast address is 0xbe2612ff
2887 * so we always add bit 0xff to the mask.
2889 __set_bit_le(0xff, mc_hash
);
2892 netif_addr_unlock_bh(net_dev
);