2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, see <http://www.gnu.org/licenses/>.
23 Abstract: rt2x00 queue specific routines.
26 #include <linux/slab.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/dma-mapping.h>
32 #include "rt2x00lib.h"
34 struct sk_buff
*rt2x00queue_alloc_rxskb(struct queue_entry
*entry
, gfp_t gfp
)
36 struct data_queue
*queue
= entry
->queue
;
37 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
39 struct skb_frame_desc
*skbdesc
;
40 unsigned int frame_size
;
41 unsigned int head_size
= 0;
42 unsigned int tail_size
= 0;
45 * The frame size includes descriptor size, because the
46 * hardware directly receive the frame into the skbuffer.
48 frame_size
= queue
->data_size
+ queue
->desc_size
+ queue
->winfo_size
;
51 * The payload should be aligned to a 4-byte boundary,
52 * this means we need at least 3 bytes for moving the frame
53 * into the correct offset.
58 * For IV/EIV/ICV assembly we must make sure there is
59 * at least 8 bytes bytes available in headroom for IV/EIV
60 * and 8 bytes for ICV data as tailroon.
62 if (rt2x00_has_cap_hw_crypto(rt2x00dev
)) {
70 skb
= __dev_alloc_skb(frame_size
+ head_size
+ tail_size
, gfp
);
75 * Make sure we not have a frame with the requested bytes
76 * available in the head and tail.
78 skb_reserve(skb
, head_size
);
79 skb_put(skb
, frame_size
);
84 skbdesc
= get_skb_frame_desc(skb
);
85 memset(skbdesc
, 0, sizeof(*skbdesc
));
87 if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_DMA
)) {
90 skb_dma
= dma_map_single(rt2x00dev
->dev
, skb
->data
, skb
->len
,
92 if (unlikely(dma_mapping_error(rt2x00dev
->dev
, skb_dma
))) {
93 dev_kfree_skb_any(skb
);
97 skbdesc
->skb_dma
= skb_dma
;
98 skbdesc
->flags
|= SKBDESC_DMA_MAPPED_RX
;
104 int rt2x00queue_map_txskb(struct queue_entry
*entry
)
106 struct device
*dev
= entry
->queue
->rt2x00dev
->dev
;
107 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
110 dma_map_single(dev
, entry
->skb
->data
, entry
->skb
->len
, DMA_TO_DEVICE
);
112 if (unlikely(dma_mapping_error(dev
, skbdesc
->skb_dma
)))
115 skbdesc
->flags
|= SKBDESC_DMA_MAPPED_TX
;
118 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb
);
120 void rt2x00queue_unmap_skb(struct queue_entry
*entry
)
122 struct device
*dev
= entry
->queue
->rt2x00dev
->dev
;
123 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
125 if (skbdesc
->flags
& SKBDESC_DMA_MAPPED_RX
) {
126 dma_unmap_single(dev
, skbdesc
->skb_dma
, entry
->skb
->len
,
128 skbdesc
->flags
&= ~SKBDESC_DMA_MAPPED_RX
;
129 } else if (skbdesc
->flags
& SKBDESC_DMA_MAPPED_TX
) {
130 dma_unmap_single(dev
, skbdesc
->skb_dma
, entry
->skb
->len
,
132 skbdesc
->flags
&= ~SKBDESC_DMA_MAPPED_TX
;
135 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb
);
137 void rt2x00queue_free_skb(struct queue_entry
*entry
)
142 rt2x00queue_unmap_skb(entry
);
143 dev_kfree_skb_any(entry
->skb
);
147 void rt2x00queue_align_frame(struct sk_buff
*skb
)
149 unsigned int frame_length
= skb
->len
;
150 unsigned int align
= ALIGN_SIZE(skb
, 0);
155 skb_push(skb
, align
);
156 memmove(skb
->data
, skb
->data
+ align
, frame_length
);
157 skb_trim(skb
, frame_length
);
161 * H/W needs L2 padding between the header and the paylod if header size
162 * is not 4 bytes aligned.
164 void rt2x00queue_insert_l2pad(struct sk_buff
*skb
, unsigned int hdr_len
)
166 unsigned int l2pad
= (skb
->len
> hdr_len
) ? L2PAD_SIZE(hdr_len
) : 0;
171 skb_push(skb
, l2pad
);
172 memmove(skb
->data
, skb
->data
+ l2pad
, hdr_len
);
175 void rt2x00queue_remove_l2pad(struct sk_buff
*skb
, unsigned int hdr_len
)
177 unsigned int l2pad
= (skb
->len
> hdr_len
) ? L2PAD_SIZE(hdr_len
) : 0;
182 memmove(skb
->data
+ l2pad
, skb
->data
, hdr_len
);
183 skb_pull(skb
, l2pad
);
186 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev
*rt2x00dev
,
188 struct txentry_desc
*txdesc
)
190 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
191 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
192 struct rt2x00_intf
*intf
= vif_to_intf(tx_info
->control
.vif
);
195 if (!(tx_info
->flags
& IEEE80211_TX_CTL_ASSIGN_SEQ
))
198 __set_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
);
200 if (!rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_SW_SEQNO
)) {
202 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
203 * seqno on retransmited data (non-QOS) frames. To workaround
204 * the problem let's generate seqno in software if QOS is
207 if (test_bit(CONFIG_QOS_DISABLED
, &rt2x00dev
->flags
))
208 __clear_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
);
210 /* H/W will generate sequence number */
215 * The hardware is not able to insert a sequence number. Assign a
216 * software generated one here.
218 * This is wrong because beacons are not getting sequence
219 * numbers assigned properly.
221 * A secondary problem exists for drivers that cannot toggle
222 * sequence counting per-frame, since those will override the
223 * sequence counter given by mac80211.
225 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
))
226 seqno
= atomic_add_return(0x10, &intf
->seqno
);
228 seqno
= atomic_read(&intf
->seqno
);
230 hdr
->seq_ctrl
&= cpu_to_le16(IEEE80211_SCTL_FRAG
);
231 hdr
->seq_ctrl
|= cpu_to_le16(seqno
);
234 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev
*rt2x00dev
,
236 struct txentry_desc
*txdesc
,
237 const struct rt2x00_rate
*hwrate
)
239 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
240 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
241 unsigned int data_length
;
242 unsigned int duration
;
243 unsigned int residual
;
246 * Determine with what IFS priority this frame should be send.
247 * Set ifs to IFS_SIFS when the this is not the first fragment,
248 * or this fragment came after RTS/CTS.
250 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
))
251 txdesc
->u
.plcp
.ifs
= IFS_BACKOFF
;
253 txdesc
->u
.plcp
.ifs
= IFS_SIFS
;
255 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
256 data_length
= skb
->len
+ 4;
257 data_length
+= rt2x00crypto_tx_overhead(rt2x00dev
, skb
);
261 * Length calculation depends on OFDM/CCK rate.
263 txdesc
->u
.plcp
.signal
= hwrate
->plcp
;
264 txdesc
->u
.plcp
.service
= 0x04;
266 if (hwrate
->flags
& DEV_RATE_OFDM
) {
267 txdesc
->u
.plcp
.length_high
= (data_length
>> 6) & 0x3f;
268 txdesc
->u
.plcp
.length_low
= data_length
& 0x3f;
271 * Convert length to microseconds.
273 residual
= GET_DURATION_RES(data_length
, hwrate
->bitrate
);
274 duration
= GET_DURATION(data_length
, hwrate
->bitrate
);
280 * Check if we need to set the Length Extension
282 if (hwrate
->bitrate
== 110 && residual
<= 30)
283 txdesc
->u
.plcp
.service
|= 0x80;
286 txdesc
->u
.plcp
.length_high
= (duration
>> 8) & 0xff;
287 txdesc
->u
.plcp
.length_low
= duration
& 0xff;
290 * When preamble is enabled we should set the
291 * preamble bit for the signal.
293 if (txrate
->flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
294 txdesc
->u
.plcp
.signal
|= 0x08;
298 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev
*rt2x00dev
,
300 struct txentry_desc
*txdesc
,
301 struct ieee80211_sta
*sta
,
302 const struct rt2x00_rate
*hwrate
)
304 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
305 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
306 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
307 struct rt2x00_sta
*sta_priv
= NULL
;
311 sta_priv
= sta_to_rt2x00_sta(sta
);
312 txdesc
->u
.ht
.wcid
= sta_priv
->wcid
;
313 density
= sta
->ht_cap
.ampdu_density
;
317 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
318 * mcs rate to be used
320 if (txrate
->flags
& IEEE80211_TX_RC_MCS
) {
321 txdesc
->u
.ht
.mcs
= txrate
->idx
;
324 * MIMO PS should be set to 1 for STA's using dynamic SM PS
325 * when using more then one tx stream (>MCS7).
327 if (sta
&& txdesc
->u
.ht
.mcs
> 7 &&
328 sta
->smps_mode
== IEEE80211_SMPS_DYNAMIC
)
329 __set_bit(ENTRY_TXD_HT_MIMO_PS
, &txdesc
->flags
);
331 txdesc
->u
.ht
.mcs
= rt2x00_get_rate_mcs(hwrate
->mcs
);
332 if (txrate
->flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
333 txdesc
->u
.ht
.mcs
|= 0x08;
336 if (test_bit(CONFIG_HT_DISABLED
, &rt2x00dev
->flags
)) {
337 if (!(tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
))
338 txdesc
->u
.ht
.txop
= TXOP_SIFS
;
340 txdesc
->u
.ht
.txop
= TXOP_BACKOFF
;
342 /* Left zero on all other settings. */
347 * Only one STBC stream is supported for now.
349 if (tx_info
->flags
& IEEE80211_TX_CTL_STBC
)
350 txdesc
->u
.ht
.stbc
= 1;
353 * This frame is eligible for an AMPDU, however, don't aggregate
354 * frames that are intended to probe a specific tx rate.
356 if (tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
&&
357 !(tx_info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
)) {
358 __set_bit(ENTRY_TXD_HT_AMPDU
, &txdesc
->flags
);
359 txdesc
->u
.ht
.mpdu_density
= density
;
360 txdesc
->u
.ht
.ba_size
= 7; /* FIXME: What value is needed? */
364 * Set 40Mhz mode if necessary (for legacy rates this will
365 * duplicate the frame to both channels).
367 if (txrate
->flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
||
368 txrate
->flags
& IEEE80211_TX_RC_DUP_DATA
)
369 __set_bit(ENTRY_TXD_HT_BW_40
, &txdesc
->flags
);
370 if (txrate
->flags
& IEEE80211_TX_RC_SHORT_GI
)
371 __set_bit(ENTRY_TXD_HT_SHORT_GI
, &txdesc
->flags
);
374 * Determine IFS values
375 * - Use TXOP_BACKOFF for management frames except beacons
376 * - Use TXOP_SIFS for fragment bursts
377 * - Use TXOP_HTTXOP for everything else
379 * Note: rt2800 devices won't use CTS protection (if used)
380 * for frames not transmitted with TXOP_HTTXOP
382 if (ieee80211_is_mgmt(hdr
->frame_control
) &&
383 !ieee80211_is_beacon(hdr
->frame_control
))
384 txdesc
->u
.ht
.txop
= TXOP_BACKOFF
;
385 else if (!(tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
))
386 txdesc
->u
.ht
.txop
= TXOP_SIFS
;
388 txdesc
->u
.ht
.txop
= TXOP_HTTXOP
;
391 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev
*rt2x00dev
,
393 struct txentry_desc
*txdesc
,
394 struct ieee80211_sta
*sta
)
396 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
397 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
398 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
399 struct ieee80211_rate
*rate
;
400 const struct rt2x00_rate
*hwrate
= NULL
;
402 memset(txdesc
, 0, sizeof(*txdesc
));
405 * Header and frame information.
407 txdesc
->length
= skb
->len
;
408 txdesc
->header_length
= ieee80211_get_hdrlen_from_skb(skb
);
411 * Check whether this frame is to be acked.
413 if (!(tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
))
414 __set_bit(ENTRY_TXD_ACK
, &txdesc
->flags
);
417 * Check if this is a RTS/CTS frame
419 if (ieee80211_is_rts(hdr
->frame_control
) ||
420 ieee80211_is_cts(hdr
->frame_control
)) {
421 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
422 if (ieee80211_is_rts(hdr
->frame_control
))
423 __set_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
);
425 __set_bit(ENTRY_TXD_CTS_FRAME
, &txdesc
->flags
);
426 if (tx_info
->control
.rts_cts_rate_idx
>= 0)
428 ieee80211_get_rts_cts_rate(rt2x00dev
->hw
, tx_info
);
432 * Determine retry information.
434 txdesc
->retry_limit
= tx_info
->control
.rates
[0].count
- 1;
435 if (txdesc
->retry_limit
>= rt2x00dev
->long_retry
)
436 __set_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
);
439 * Check if more fragments are pending
441 if (ieee80211_has_morefrags(hdr
->frame_control
)) {
442 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
443 __set_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
);
447 * Check if more frames (!= fragments) are pending
449 if (tx_info
->flags
& IEEE80211_TX_CTL_MORE_FRAMES
)
450 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
453 * Beacons and probe responses require the tsf timestamp
454 * to be inserted into the frame.
456 if (ieee80211_is_beacon(hdr
->frame_control
) ||
457 ieee80211_is_probe_resp(hdr
->frame_control
))
458 __set_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
);
460 if ((tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
) &&
461 !test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
))
462 __set_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
);
465 * Determine rate modulation.
467 if (txrate
->flags
& IEEE80211_TX_RC_GREEN_FIELD
)
468 txdesc
->rate_mode
= RATE_MODE_HT_GREENFIELD
;
469 else if (txrate
->flags
& IEEE80211_TX_RC_MCS
)
470 txdesc
->rate_mode
= RATE_MODE_HT_MIX
;
472 rate
= ieee80211_get_tx_rate(rt2x00dev
->hw
, tx_info
);
473 hwrate
= rt2x00_get_rate(rate
->hw_value
);
474 if (hwrate
->flags
& DEV_RATE_OFDM
)
475 txdesc
->rate_mode
= RATE_MODE_OFDM
;
477 txdesc
->rate_mode
= RATE_MODE_CCK
;
481 * Apply TX descriptor handling by components
483 rt2x00crypto_create_tx_descriptor(rt2x00dev
, skb
, txdesc
);
484 rt2x00queue_create_tx_descriptor_seq(rt2x00dev
, skb
, txdesc
);
486 if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_HT_TX_DESC
))
487 rt2x00queue_create_tx_descriptor_ht(rt2x00dev
, skb
, txdesc
,
490 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev
, skb
, txdesc
,
494 static int rt2x00queue_write_tx_data(struct queue_entry
*entry
,
495 struct txentry_desc
*txdesc
)
497 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
500 * This should not happen, we already checked the entry
501 * was ours. When the hardware disagrees there has been
502 * a queue corruption!
504 if (unlikely(rt2x00dev
->ops
->lib
->get_entry_state
&&
505 rt2x00dev
->ops
->lib
->get_entry_state(entry
))) {
506 rt2x00_err(rt2x00dev
,
507 "Corrupt queue %d, accessing entry which is not ours\n"
508 "Please file bug report to %s\n",
509 entry
->queue
->qid
, DRV_PROJECT
);
514 * Add the requested extra tx headroom in front of the skb.
516 skb_push(entry
->skb
, rt2x00dev
->extra_tx_headroom
);
517 memset(entry
->skb
->data
, 0, rt2x00dev
->extra_tx_headroom
);
520 * Call the driver's write_tx_data function, if it exists.
522 if (rt2x00dev
->ops
->lib
->write_tx_data
)
523 rt2x00dev
->ops
->lib
->write_tx_data(entry
, txdesc
);
526 * Map the skb to DMA.
528 if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_DMA
) &&
529 rt2x00queue_map_txskb(entry
))
535 static void rt2x00queue_write_tx_descriptor(struct queue_entry
*entry
,
536 struct txentry_desc
*txdesc
)
538 struct data_queue
*queue
= entry
->queue
;
540 queue
->rt2x00dev
->ops
->lib
->write_tx_desc(entry
, txdesc
);
543 * All processing on the frame has been completed, this means
544 * it is now ready to be dumped to userspace through debugfs.
546 rt2x00debug_dump_frame(queue
->rt2x00dev
, DUMP_FRAME_TX
, entry
);
549 static void rt2x00queue_kick_tx_queue(struct data_queue
*queue
,
550 struct txentry_desc
*txdesc
)
553 * Check if we need to kick the queue, there are however a few rules
554 * 1) Don't kick unless this is the last in frame in a burst.
555 * When the burst flag is set, this frame is always followed
556 * by another frame which in some way are related to eachother.
557 * This is true for fragments, RTS or CTS-to-self frames.
558 * 2) Rule 1 can be broken when the available entries
559 * in the queue are less then a certain threshold.
561 if (rt2x00queue_threshold(queue
) ||
562 !test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
))
563 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
566 static void rt2x00queue_bar_check(struct queue_entry
*entry
)
568 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
569 struct ieee80211_bar
*bar
= (void *) (entry
->skb
->data
+
570 rt2x00dev
->extra_tx_headroom
);
571 struct rt2x00_bar_list_entry
*bar_entry
;
573 if (likely(!ieee80211_is_back_req(bar
->frame_control
)))
576 bar_entry
= kmalloc(sizeof(*bar_entry
), GFP_ATOMIC
);
579 * If the alloc fails we still send the BAR out but just don't track
580 * it in our bar list. And as a result we will report it to mac80211
586 bar_entry
->entry
= entry
;
587 bar_entry
->block_acked
= 0;
590 * Copy the relevant parts of the 802.11 BAR into out check list
591 * such that we can use RCU for less-overhead in the RX path since
592 * sending BARs and processing the according BlockAck should be
595 memcpy(bar_entry
->ra
, bar
->ra
, sizeof(bar
->ra
));
596 memcpy(bar_entry
->ta
, bar
->ta
, sizeof(bar
->ta
));
597 bar_entry
->control
= bar
->control
;
598 bar_entry
->start_seq_num
= bar
->start_seq_num
;
601 * Insert BAR into our BAR check list.
603 spin_lock_bh(&rt2x00dev
->bar_list_lock
);
604 list_add_tail_rcu(&bar_entry
->list
, &rt2x00dev
->bar_list
);
605 spin_unlock_bh(&rt2x00dev
->bar_list_lock
);
608 int rt2x00queue_write_tx_frame(struct data_queue
*queue
, struct sk_buff
*skb
,
609 struct ieee80211_sta
*sta
, bool local
)
611 struct ieee80211_tx_info
*tx_info
;
612 struct queue_entry
*entry
;
613 struct txentry_desc txdesc
;
614 struct skb_frame_desc
*skbdesc
;
615 u8 rate_idx
, rate_flags
;
619 * Copy all TX descriptor information into txdesc,
620 * after that we are free to use the skb->cb array
621 * for our information.
623 rt2x00queue_create_tx_descriptor(queue
->rt2x00dev
, skb
, &txdesc
, sta
);
626 * All information is retrieved from the skb->cb array,
627 * now we should claim ownership of the driver part of that
628 * array, preserving the bitrate index and flags.
630 tx_info
= IEEE80211_SKB_CB(skb
);
631 rate_idx
= tx_info
->control
.rates
[0].idx
;
632 rate_flags
= tx_info
->control
.rates
[0].flags
;
633 skbdesc
= get_skb_frame_desc(skb
);
634 memset(skbdesc
, 0, sizeof(*skbdesc
));
635 skbdesc
->tx_rate_idx
= rate_idx
;
636 skbdesc
->tx_rate_flags
= rate_flags
;
639 skbdesc
->flags
|= SKBDESC_NOT_MAC80211
;
642 * When hardware encryption is supported, and this frame
643 * is to be encrypted, we should strip the IV/EIV data from
644 * the frame so we can provide it to the driver separately.
646 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
.flags
) &&
647 !test_bit(ENTRY_TXD_ENCRYPT_IV
, &txdesc
.flags
)) {
648 if (rt2x00_has_cap_flag(queue
->rt2x00dev
, REQUIRE_COPY_IV
))
649 rt2x00crypto_tx_copy_iv(skb
, &txdesc
);
651 rt2x00crypto_tx_remove_iv(skb
, &txdesc
);
655 * When DMA allocation is required we should guarantee to the
656 * driver that the DMA is aligned to a 4-byte boundary.
657 * However some drivers require L2 padding to pad the payload
658 * rather then the header. This could be a requirement for
659 * PCI and USB devices, while header alignment only is valid
662 if (rt2x00_has_cap_flag(queue
->rt2x00dev
, REQUIRE_L2PAD
))
663 rt2x00queue_insert_l2pad(skb
, txdesc
.header_length
);
664 else if (rt2x00_has_cap_flag(queue
->rt2x00dev
, REQUIRE_DMA
))
665 rt2x00queue_align_frame(skb
);
668 * That function must be called with bh disabled.
670 spin_lock(&queue
->tx_lock
);
672 if (unlikely(rt2x00queue_full(queue
))) {
673 rt2x00_err(queue
->rt2x00dev
, "Dropping frame due to full tx queue %d\n",
679 entry
= rt2x00queue_get_entry(queue
, Q_INDEX
);
681 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA
,
683 rt2x00_err(queue
->rt2x00dev
,
684 "Arrived at non-free entry in the non-full queue %d\n"
685 "Please file bug report to %s\n",
686 queue
->qid
, DRV_PROJECT
);
694 * It could be possible that the queue was corrupted and this
695 * call failed. Since we always return NETDEV_TX_OK to mac80211,
696 * this frame will simply be dropped.
698 if (unlikely(rt2x00queue_write_tx_data(entry
, &txdesc
))) {
699 clear_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
706 * Put BlockAckReqs into our check list for driver BA processing.
708 rt2x00queue_bar_check(entry
);
710 set_bit(ENTRY_DATA_PENDING
, &entry
->flags
);
712 rt2x00queue_index_inc(entry
, Q_INDEX
);
713 rt2x00queue_write_tx_descriptor(entry
, &txdesc
);
714 rt2x00queue_kick_tx_queue(queue
, &txdesc
);
718 * Pausing queue has to be serialized with rt2x00lib_txdone(), so we
719 * do this under queue->tx_lock. Bottom halve was already disabled
720 * before ieee80211_xmit() call.
722 if (rt2x00queue_threshold(queue
))
723 rt2x00queue_pause_queue(queue
);
725 spin_unlock(&queue
->tx_lock
);
729 int rt2x00queue_clear_beacon(struct rt2x00_dev
*rt2x00dev
,
730 struct ieee80211_vif
*vif
)
732 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
734 if (unlikely(!intf
->beacon
))
738 * Clean up the beacon skb.
740 rt2x00queue_free_skb(intf
->beacon
);
743 * Clear beacon (single bssid devices don't need to clear the beacon
744 * since the beacon queue will get stopped anyway).
746 if (rt2x00dev
->ops
->lib
->clear_beacon
)
747 rt2x00dev
->ops
->lib
->clear_beacon(intf
->beacon
);
752 int rt2x00queue_update_beacon(struct rt2x00_dev
*rt2x00dev
,
753 struct ieee80211_vif
*vif
)
755 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
756 struct skb_frame_desc
*skbdesc
;
757 struct txentry_desc txdesc
;
759 if (unlikely(!intf
->beacon
))
763 * Clean up the beacon skb.
765 rt2x00queue_free_skb(intf
->beacon
);
767 intf
->beacon
->skb
= ieee80211_beacon_get(rt2x00dev
->hw
, vif
);
768 if (!intf
->beacon
->skb
)
772 * Copy all TX descriptor information into txdesc,
773 * after that we are free to use the skb->cb array
774 * for our information.
776 rt2x00queue_create_tx_descriptor(rt2x00dev
, intf
->beacon
->skb
, &txdesc
, NULL
);
779 * Fill in skb descriptor
781 skbdesc
= get_skb_frame_desc(intf
->beacon
->skb
);
782 memset(skbdesc
, 0, sizeof(*skbdesc
));
785 * Send beacon to hardware.
787 rt2x00dev
->ops
->lib
->write_beacon(intf
->beacon
, &txdesc
);
793 bool rt2x00queue_for_each_entry(struct data_queue
*queue
,
794 enum queue_index start
,
795 enum queue_index end
,
797 bool (*fn
)(struct queue_entry
*entry
,
800 unsigned long irqflags
;
801 unsigned int index_start
;
802 unsigned int index_end
;
805 if (unlikely(start
>= Q_INDEX_MAX
|| end
>= Q_INDEX_MAX
)) {
806 rt2x00_err(queue
->rt2x00dev
,
807 "Entry requested from invalid index range (%d - %d)\n",
813 * Only protect the range we are going to loop over,
814 * if during our loop a extra entry is set to pending
815 * it should not be kicked during this run, since it
816 * is part of another TX operation.
818 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
819 index_start
= queue
->index
[start
];
820 index_end
= queue
->index
[end
];
821 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
824 * Start from the TX done pointer, this guarantees that we will
825 * send out all frames in the correct order.
827 if (index_start
< index_end
) {
828 for (i
= index_start
; i
< index_end
; i
++) {
829 if (fn(&queue
->entries
[i
], data
))
833 for (i
= index_start
; i
< queue
->limit
; i
++) {
834 if (fn(&queue
->entries
[i
], data
))
838 for (i
= 0; i
< index_end
; i
++) {
839 if (fn(&queue
->entries
[i
], data
))
846 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry
);
848 struct queue_entry
*rt2x00queue_get_entry(struct data_queue
*queue
,
849 enum queue_index index
)
851 struct queue_entry
*entry
;
852 unsigned long irqflags
;
854 if (unlikely(index
>= Q_INDEX_MAX
)) {
855 rt2x00_err(queue
->rt2x00dev
, "Entry requested from invalid index type (%d)\n",
860 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
862 entry
= &queue
->entries
[queue
->index
[index
]];
864 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
868 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry
);
870 void rt2x00queue_index_inc(struct queue_entry
*entry
, enum queue_index index
)
872 struct data_queue
*queue
= entry
->queue
;
873 unsigned long irqflags
;
875 if (unlikely(index
>= Q_INDEX_MAX
)) {
876 rt2x00_err(queue
->rt2x00dev
,
877 "Index change on invalid index type (%d)\n", index
);
881 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
883 queue
->index
[index
]++;
884 if (queue
->index
[index
] >= queue
->limit
)
885 queue
->index
[index
] = 0;
887 entry
->last_action
= jiffies
;
889 if (index
== Q_INDEX
) {
891 } else if (index
== Q_INDEX_DONE
) {
896 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
899 static void rt2x00queue_pause_queue_nocheck(struct data_queue
*queue
)
901 switch (queue
->qid
) {
907 * For TX queues, we have to disable the queue
910 ieee80211_stop_queue(queue
->rt2x00dev
->hw
, queue
->qid
);
916 void rt2x00queue_pause_queue(struct data_queue
*queue
)
918 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
919 !test_bit(QUEUE_STARTED
, &queue
->flags
) ||
920 test_and_set_bit(QUEUE_PAUSED
, &queue
->flags
))
923 rt2x00queue_pause_queue_nocheck(queue
);
925 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue
);
927 void rt2x00queue_unpause_queue(struct data_queue
*queue
)
929 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
930 !test_bit(QUEUE_STARTED
, &queue
->flags
) ||
931 !test_and_clear_bit(QUEUE_PAUSED
, &queue
->flags
))
934 switch (queue
->qid
) {
940 * For TX queues, we have to enable the queue
943 ieee80211_wake_queue(queue
->rt2x00dev
->hw
, queue
->qid
);
947 * For RX we need to kick the queue now in order to
950 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
955 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue
);
957 void rt2x00queue_start_queue(struct data_queue
*queue
)
959 mutex_lock(&queue
->status_lock
);
961 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
962 test_and_set_bit(QUEUE_STARTED
, &queue
->flags
)) {
963 mutex_unlock(&queue
->status_lock
);
967 set_bit(QUEUE_PAUSED
, &queue
->flags
);
969 queue
->rt2x00dev
->ops
->lib
->start_queue(queue
);
971 rt2x00queue_unpause_queue(queue
);
973 mutex_unlock(&queue
->status_lock
);
975 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue
);
977 void rt2x00queue_stop_queue(struct data_queue
*queue
)
979 mutex_lock(&queue
->status_lock
);
981 if (!test_and_clear_bit(QUEUE_STARTED
, &queue
->flags
)) {
982 mutex_unlock(&queue
->status_lock
);
986 rt2x00queue_pause_queue_nocheck(queue
);
988 queue
->rt2x00dev
->ops
->lib
->stop_queue(queue
);
990 mutex_unlock(&queue
->status_lock
);
992 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue
);
994 void rt2x00queue_flush_queue(struct data_queue
*queue
, bool drop
)
997 (queue
->qid
== QID_AC_VO
) ||
998 (queue
->qid
== QID_AC_VI
) ||
999 (queue
->qid
== QID_AC_BE
) ||
1000 (queue
->qid
== QID_AC_BK
);
1002 if (rt2x00queue_empty(queue
))
1006 * If we are not supposed to drop any pending
1007 * frames, this means we must force a start (=kick)
1008 * to the queue to make sure the hardware will
1009 * start transmitting.
1011 if (!drop
&& tx_queue
)
1012 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
1015 * Check if driver supports flushing, if that is the case we can
1016 * defer the flushing to the driver. Otherwise we must use the
1017 * alternative which just waits for the queue to become empty.
1019 if (likely(queue
->rt2x00dev
->ops
->lib
->flush_queue
))
1020 queue
->rt2x00dev
->ops
->lib
->flush_queue(queue
, drop
);
1023 * The queue flush has failed...
1025 if (unlikely(!rt2x00queue_empty(queue
)))
1026 rt2x00_warn(queue
->rt2x00dev
, "Queue %d failed to flush\n",
1029 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue
);
1031 void rt2x00queue_start_queues(struct rt2x00_dev
*rt2x00dev
)
1033 struct data_queue
*queue
;
1036 * rt2x00queue_start_queue will call ieee80211_wake_queue
1037 * for each queue after is has been properly initialized.
1039 tx_queue_for_each(rt2x00dev
, queue
)
1040 rt2x00queue_start_queue(queue
);
1042 rt2x00queue_start_queue(rt2x00dev
->rx
);
1044 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues
);
1046 void rt2x00queue_stop_queues(struct rt2x00_dev
*rt2x00dev
)
1048 struct data_queue
*queue
;
1051 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1052 * as well, but we are completely shutting doing everything
1053 * now, so it is much safer to stop all TX queues at once,
1054 * and use rt2x00queue_stop_queue for cleaning up.
1056 ieee80211_stop_queues(rt2x00dev
->hw
);
1058 tx_queue_for_each(rt2x00dev
, queue
)
1059 rt2x00queue_stop_queue(queue
);
1061 rt2x00queue_stop_queue(rt2x00dev
->rx
);
1063 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues
);
1065 void rt2x00queue_flush_queues(struct rt2x00_dev
*rt2x00dev
, bool drop
)
1067 struct data_queue
*queue
;
1069 tx_queue_for_each(rt2x00dev
, queue
)
1070 rt2x00queue_flush_queue(queue
, drop
);
1072 rt2x00queue_flush_queue(rt2x00dev
->rx
, drop
);
1074 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues
);
1076 static void rt2x00queue_reset(struct data_queue
*queue
)
1078 unsigned long irqflags
;
1081 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
1086 for (i
= 0; i
< Q_INDEX_MAX
; i
++)
1087 queue
->index
[i
] = 0;
1089 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
1092 void rt2x00queue_init_queues(struct rt2x00_dev
*rt2x00dev
)
1094 struct data_queue
*queue
;
1097 queue_for_each(rt2x00dev
, queue
) {
1098 rt2x00queue_reset(queue
);
1100 for (i
= 0; i
< queue
->limit
; i
++)
1101 rt2x00dev
->ops
->lib
->clear_entry(&queue
->entries
[i
]);
1105 static int rt2x00queue_alloc_entries(struct data_queue
*queue
)
1107 struct queue_entry
*entries
;
1108 unsigned int entry_size
;
1111 rt2x00queue_reset(queue
);
1114 * Allocate all queue entries.
1116 entry_size
= sizeof(*entries
) + queue
->priv_size
;
1117 entries
= kcalloc(queue
->limit
, entry_size
, GFP_KERNEL
);
1121 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1122 (((char *)(__base)) + ((__limit) * (__esize)) + \
1123 ((__index) * (__psize)))
1125 for (i
= 0; i
< queue
->limit
; i
++) {
1126 entries
[i
].flags
= 0;
1127 entries
[i
].queue
= queue
;
1128 entries
[i
].skb
= NULL
;
1129 entries
[i
].entry_idx
= i
;
1130 entries
[i
].priv_data
=
1131 QUEUE_ENTRY_PRIV_OFFSET(entries
, i
, queue
->limit
,
1132 sizeof(*entries
), queue
->priv_size
);
1135 #undef QUEUE_ENTRY_PRIV_OFFSET
1137 queue
->entries
= entries
;
1142 static void rt2x00queue_free_skbs(struct data_queue
*queue
)
1146 if (!queue
->entries
)
1149 for (i
= 0; i
< queue
->limit
; i
++) {
1150 rt2x00queue_free_skb(&queue
->entries
[i
]);
1154 static int rt2x00queue_alloc_rxskbs(struct data_queue
*queue
)
1157 struct sk_buff
*skb
;
1159 for (i
= 0; i
< queue
->limit
; i
++) {
1160 skb
= rt2x00queue_alloc_rxskb(&queue
->entries
[i
], GFP_KERNEL
);
1163 queue
->entries
[i
].skb
= skb
;
1169 int rt2x00queue_initialize(struct rt2x00_dev
*rt2x00dev
)
1171 struct data_queue
*queue
;
1174 status
= rt2x00queue_alloc_entries(rt2x00dev
->rx
);
1178 tx_queue_for_each(rt2x00dev
, queue
) {
1179 status
= rt2x00queue_alloc_entries(queue
);
1184 status
= rt2x00queue_alloc_entries(rt2x00dev
->bcn
);
1188 if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_ATIM_QUEUE
)) {
1189 status
= rt2x00queue_alloc_entries(rt2x00dev
->atim
);
1194 status
= rt2x00queue_alloc_rxskbs(rt2x00dev
->rx
);
1201 rt2x00_err(rt2x00dev
, "Queue entries allocation failed\n");
1203 rt2x00queue_uninitialize(rt2x00dev
);
1208 void rt2x00queue_uninitialize(struct rt2x00_dev
*rt2x00dev
)
1210 struct data_queue
*queue
;
1212 rt2x00queue_free_skbs(rt2x00dev
->rx
);
1214 queue_for_each(rt2x00dev
, queue
) {
1215 kfree(queue
->entries
);
1216 queue
->entries
= NULL
;
1220 static void rt2x00queue_init(struct rt2x00_dev
*rt2x00dev
,
1221 struct data_queue
*queue
, enum data_queue_qid qid
)
1223 mutex_init(&queue
->status_lock
);
1224 spin_lock_init(&queue
->tx_lock
);
1225 spin_lock_init(&queue
->index_lock
);
1227 queue
->rt2x00dev
= rt2x00dev
;
1234 rt2x00dev
->ops
->queue_init(queue
);
1236 queue
->threshold
= DIV_ROUND_UP(queue
->limit
, 10);
1239 int rt2x00queue_allocate(struct rt2x00_dev
*rt2x00dev
)
1241 struct data_queue
*queue
;
1242 enum data_queue_qid qid
;
1243 unsigned int req_atim
=
1244 rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_ATIM_QUEUE
);
1247 * We need the following queues:
1249 * TX: ops->tx_queues
1251 * Atim: 1 (if required)
1253 rt2x00dev
->data_queues
= 2 + rt2x00dev
->ops
->tx_queues
+ req_atim
;
1255 queue
= kcalloc(rt2x00dev
->data_queues
, sizeof(*queue
), GFP_KERNEL
);
1260 * Initialize pointers
1262 rt2x00dev
->rx
= queue
;
1263 rt2x00dev
->tx
= &queue
[1];
1264 rt2x00dev
->bcn
= &queue
[1 + rt2x00dev
->ops
->tx_queues
];
1265 rt2x00dev
->atim
= req_atim
? &queue
[2 + rt2x00dev
->ops
->tx_queues
] : NULL
;
1268 * Initialize queue parameters.
1270 * TX: qid = QID_AC_VO + index
1271 * TX: cw_min: 2^5 = 32.
1272 * TX: cw_max: 2^10 = 1024.
1273 * BCN: qid = QID_BEACON
1274 * ATIM: qid = QID_ATIM
1276 rt2x00queue_init(rt2x00dev
, rt2x00dev
->rx
, QID_RX
);
1279 tx_queue_for_each(rt2x00dev
, queue
)
1280 rt2x00queue_init(rt2x00dev
, queue
, qid
++);
1282 rt2x00queue_init(rt2x00dev
, rt2x00dev
->bcn
, QID_BEACON
);
1284 rt2x00queue_init(rt2x00dev
, rt2x00dev
->atim
, QID_ATIM
);
1289 void rt2x00queue_free(struct rt2x00_dev
*rt2x00dev
)
1291 kfree(rt2x00dev
->rx
);
1292 rt2x00dev
->rx
= NULL
;
1293 rt2x00dev
->tx
= NULL
;
1294 rt2x00dev
->bcn
= NULL
;