staging: rtl8188eu: rename HalSetBrateCfg() - style
[linux/fpc-iii.git] / drivers / pci / controller / pci-hyperv.c
blobc00f82cc54aacac60c6b24ce424402cb3e4dfea1
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) Microsoft Corporation.
5 * Author:
6 * Jake Oshins <jakeo@microsoft.com>
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM. This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications. Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique. Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector. This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities. For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
47 #include <asm/apic.h>
48 #include <linux/irq.h>
49 #include <linux/msi.h>
50 #include <linux/hyperv.h>
51 #include <linux/refcount.h>
52 #include <asm/mshyperv.h>
55 * Protocol versions. The low word is the minor version, the high word the
56 * major version.
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
63 enum pci_protocol_version_t {
64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */
65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */
68 #define CPU_AFFINITY_ALL -1ULL
71 * Supported protocol versions in the order of probing - highest go
72 * first.
74 static enum pci_protocol_version_t pci_protocol_versions[] = {
75 PCI_PROTOCOL_VERSION_1_2,
76 PCI_PROTOCOL_VERSION_1_1,
80 * Protocol version negotiated by hv_pci_protocol_negotiation().
82 static enum pci_protocol_version_t pci_protocol_version;
84 #define PCI_CONFIG_MMIO_LENGTH 0x2000
85 #define CFG_PAGE_OFFSET 0x1000
86 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
88 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
90 #define STATUS_REVISION_MISMATCH 0xC0000059
93 * Message Types
96 enum pci_message_type {
98 * Version 1.1
100 PCI_MESSAGE_BASE = 0x42490000,
101 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0,
102 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1,
103 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4,
104 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
105 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6,
106 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7,
107 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8,
108 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9,
109 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA,
110 PCI_EJECT = PCI_MESSAGE_BASE + 0xB,
111 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC,
112 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD,
113 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE,
114 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF,
115 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10,
116 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11,
117 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12,
118 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13,
119 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14,
120 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15,
121 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16,
122 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17,
123 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */
124 PCI_MESSAGE_MAXIMUM
128 * Structures defining the virtual PCI Express protocol.
131 union pci_version {
132 struct {
133 u16 minor_version;
134 u16 major_version;
135 } parts;
136 u32 version;
137 } __packed;
140 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
141 * which is all this driver does. This representation is the one used in
142 * Windows, which is what is expected when sending this back and forth with
143 * the Hyper-V parent partition.
145 union win_slot_encoding {
146 struct {
147 u32 dev:5;
148 u32 func:3;
149 u32 reserved:24;
150 } bits;
151 u32 slot;
152 } __packed;
155 * Pretty much as defined in the PCI Specifications.
157 struct pci_function_description {
158 u16 v_id; /* vendor ID */
159 u16 d_id; /* device ID */
160 u8 rev;
161 u8 prog_intf;
162 u8 subclass;
163 u8 base_class;
164 u32 subsystem_id;
165 union win_slot_encoding win_slot;
166 u32 ser; /* serial number */
167 } __packed;
170 * struct hv_msi_desc
171 * @vector: IDT entry
172 * @delivery_mode: As defined in Intel's Programmer's
173 * Reference Manual, Volume 3, Chapter 8.
174 * @vector_count: Number of contiguous entries in the
175 * Interrupt Descriptor Table that are
176 * occupied by this Message-Signaled
177 * Interrupt. For "MSI", as first defined
178 * in PCI 2.2, this can be between 1 and
179 * 32. For "MSI-X," as first defined in PCI
180 * 3.0, this must be 1, as each MSI-X table
181 * entry would have its own descriptor.
182 * @reserved: Empty space
183 * @cpu_mask: All the target virtual processors.
185 struct hv_msi_desc {
186 u8 vector;
187 u8 delivery_mode;
188 u16 vector_count;
189 u32 reserved;
190 u64 cpu_mask;
191 } __packed;
194 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
195 * @vector: IDT entry
196 * @delivery_mode: As defined in Intel's Programmer's
197 * Reference Manual, Volume 3, Chapter 8.
198 * @vector_count: Number of contiguous entries in the
199 * Interrupt Descriptor Table that are
200 * occupied by this Message-Signaled
201 * Interrupt. For "MSI", as first defined
202 * in PCI 2.2, this can be between 1 and
203 * 32. For "MSI-X," as first defined in PCI
204 * 3.0, this must be 1, as each MSI-X table
205 * entry would have its own descriptor.
206 * @processor_count: number of bits enabled in array.
207 * @processor_array: All the target virtual processors.
209 struct hv_msi_desc2 {
210 u8 vector;
211 u8 delivery_mode;
212 u16 vector_count;
213 u16 processor_count;
214 u16 processor_array[32];
215 } __packed;
218 * struct tran_int_desc
219 * @reserved: unused, padding
220 * @vector_count: same as in hv_msi_desc
221 * @data: This is the "data payload" value that is
222 * written by the device when it generates
223 * a message-signaled interrupt, either MSI
224 * or MSI-X.
225 * @address: This is the address to which the data
226 * payload is written on interrupt
227 * generation.
229 struct tran_int_desc {
230 u16 reserved;
231 u16 vector_count;
232 u32 data;
233 u64 address;
234 } __packed;
237 * A generic message format for virtual PCI.
238 * Specific message formats are defined later in the file.
241 struct pci_message {
242 u32 type;
243 } __packed;
245 struct pci_child_message {
246 struct pci_message message_type;
247 union win_slot_encoding wslot;
248 } __packed;
250 struct pci_incoming_message {
251 struct vmpacket_descriptor hdr;
252 struct pci_message message_type;
253 } __packed;
255 struct pci_response {
256 struct vmpacket_descriptor hdr;
257 s32 status; /* negative values are failures */
258 } __packed;
260 struct pci_packet {
261 void (*completion_func)(void *context, struct pci_response *resp,
262 int resp_packet_size);
263 void *compl_ctxt;
265 struct pci_message message[0];
269 * Specific message types supporting the PCI protocol.
273 * Version negotiation message. Sent from the guest to the host.
274 * The guest is free to try different versions until the host
275 * accepts the version.
277 * pci_version: The protocol version requested.
278 * is_last_attempt: If TRUE, this is the last version guest will request.
279 * reservedz: Reserved field, set to zero.
282 struct pci_version_request {
283 struct pci_message message_type;
284 u32 protocol_version;
285 } __packed;
288 * Bus D0 Entry. This is sent from the guest to the host when the virtual
289 * bus (PCI Express port) is ready for action.
292 struct pci_bus_d0_entry {
293 struct pci_message message_type;
294 u32 reserved;
295 u64 mmio_base;
296 } __packed;
298 struct pci_bus_relations {
299 struct pci_incoming_message incoming;
300 u32 device_count;
301 struct pci_function_description func[0];
302 } __packed;
304 struct pci_q_res_req_response {
305 struct vmpacket_descriptor hdr;
306 s32 status; /* negative values are failures */
307 u32 probed_bar[6];
308 } __packed;
310 struct pci_set_power {
311 struct pci_message message_type;
312 union win_slot_encoding wslot;
313 u32 power_state; /* In Windows terms */
314 u32 reserved;
315 } __packed;
317 struct pci_set_power_response {
318 struct vmpacket_descriptor hdr;
319 s32 status; /* negative values are failures */
320 union win_slot_encoding wslot;
321 u32 resultant_state; /* In Windows terms */
322 u32 reserved;
323 } __packed;
325 struct pci_resources_assigned {
326 struct pci_message message_type;
327 union win_slot_encoding wslot;
328 u8 memory_range[0x14][6]; /* not used here */
329 u32 msi_descriptors;
330 u32 reserved[4];
331 } __packed;
333 struct pci_resources_assigned2 {
334 struct pci_message message_type;
335 union win_slot_encoding wslot;
336 u8 memory_range[0x14][6]; /* not used here */
337 u32 msi_descriptor_count;
338 u8 reserved[70];
339 } __packed;
341 struct pci_create_interrupt {
342 struct pci_message message_type;
343 union win_slot_encoding wslot;
344 struct hv_msi_desc int_desc;
345 } __packed;
347 struct pci_create_int_response {
348 struct pci_response response;
349 u32 reserved;
350 struct tran_int_desc int_desc;
351 } __packed;
353 struct pci_create_interrupt2 {
354 struct pci_message message_type;
355 union win_slot_encoding wslot;
356 struct hv_msi_desc2 int_desc;
357 } __packed;
359 struct pci_delete_interrupt {
360 struct pci_message message_type;
361 union win_slot_encoding wslot;
362 struct tran_int_desc int_desc;
363 } __packed;
365 struct pci_dev_incoming {
366 struct pci_incoming_message incoming;
367 union win_slot_encoding wslot;
368 } __packed;
370 struct pci_eject_response {
371 struct pci_message message_type;
372 union win_slot_encoding wslot;
373 u32 status;
374 } __packed;
376 static int pci_ring_size = (4 * PAGE_SIZE);
379 * Definitions or interrupt steering hypercall.
381 #define HV_PARTITION_ID_SELF ((u64)-1)
382 #define HVCALL_RETARGET_INTERRUPT 0x7e
384 struct hv_interrupt_entry {
385 u32 source; /* 1 for MSI(-X) */
386 u32 reserved1;
387 u32 address;
388 u32 data;
391 #define HV_VP_SET_BANK_COUNT_MAX 5 /* current implementation limit */
393 struct hv_vp_set {
394 u64 format; /* 0 (HvGenericSetSparse4k) */
395 u64 valid_banks;
396 u64 masks[HV_VP_SET_BANK_COUNT_MAX];
400 * flags for hv_device_interrupt_target.flags
402 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1
403 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2
405 struct hv_device_interrupt_target {
406 u32 vector;
407 u32 flags;
408 union {
409 u64 vp_mask;
410 struct hv_vp_set vp_set;
414 struct retarget_msi_interrupt {
415 u64 partition_id; /* use "self" */
416 u64 device_id;
417 struct hv_interrupt_entry int_entry;
418 u64 reserved2;
419 struct hv_device_interrupt_target int_target;
420 } __packed;
423 * Driver specific state.
426 enum hv_pcibus_state {
427 hv_pcibus_init = 0,
428 hv_pcibus_probed,
429 hv_pcibus_installed,
430 hv_pcibus_removed,
431 hv_pcibus_maximum
434 struct hv_pcibus_device {
435 struct pci_sysdata sysdata;
436 enum hv_pcibus_state state;
437 refcount_t remove_lock;
438 struct hv_device *hdev;
439 resource_size_t low_mmio_space;
440 resource_size_t high_mmio_space;
441 struct resource *mem_config;
442 struct resource *low_mmio_res;
443 struct resource *high_mmio_res;
444 struct completion *survey_event;
445 struct completion remove_event;
446 struct pci_bus *pci_bus;
447 spinlock_t config_lock; /* Avoid two threads writing index page */
448 spinlock_t device_list_lock; /* Protect lists below */
449 void __iomem *cfg_addr;
451 struct list_head resources_for_children;
453 struct list_head children;
454 struct list_head dr_list;
456 struct msi_domain_info msi_info;
457 struct msi_controller msi_chip;
458 struct irq_domain *irq_domain;
460 /* hypercall arg, must not cross page boundary */
461 struct retarget_msi_interrupt retarget_msi_interrupt_params;
463 spinlock_t retarget_msi_interrupt_lock;
465 struct workqueue_struct *wq;
469 * Tracks "Device Relations" messages from the host, which must be both
470 * processed in order and deferred so that they don't run in the context
471 * of the incoming packet callback.
473 struct hv_dr_work {
474 struct work_struct wrk;
475 struct hv_pcibus_device *bus;
478 struct hv_dr_state {
479 struct list_head list_entry;
480 u32 device_count;
481 struct pci_function_description func[0];
484 enum hv_pcichild_state {
485 hv_pcichild_init = 0,
486 hv_pcichild_requirements,
487 hv_pcichild_resourced,
488 hv_pcichild_ejecting,
489 hv_pcichild_maximum
492 struct hv_pci_dev {
493 /* List protected by pci_rescan_remove_lock */
494 struct list_head list_entry;
495 refcount_t refs;
496 enum hv_pcichild_state state;
497 struct pci_function_description desc;
498 bool reported_missing;
499 struct hv_pcibus_device *hbus;
500 struct work_struct wrk;
503 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
504 * read it back, for each of the BAR offsets within config space.
506 u32 probed_bar[6];
509 struct hv_pci_compl {
510 struct completion host_event;
511 s32 completion_status;
514 static void hv_pci_onchannelcallback(void *context);
517 * hv_pci_generic_compl() - Invoked for a completion packet
518 * @context: Set up by the sender of the packet.
519 * @resp: The response packet
520 * @resp_packet_size: Size in bytes of the packet
522 * This function is used to trigger an event and report status
523 * for any message for which the completion packet contains a
524 * status and nothing else.
526 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
527 int resp_packet_size)
529 struct hv_pci_compl *comp_pkt = context;
531 if (resp_packet_size >= offsetofend(struct pci_response, status))
532 comp_pkt->completion_status = resp->status;
533 else
534 comp_pkt->completion_status = -1;
536 complete(&comp_pkt->host_event);
539 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
540 u32 wslot);
542 static void get_pcichild(struct hv_pci_dev *hpdev)
544 refcount_inc(&hpdev->refs);
547 static void put_pcichild(struct hv_pci_dev *hpdev)
549 if (refcount_dec_and_test(&hpdev->refs))
550 kfree(hpdev);
553 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
554 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
557 * There is no good way to get notified from vmbus_onoffer_rescind(),
558 * so let's use polling here, since this is not a hot path.
560 static int wait_for_response(struct hv_device *hdev,
561 struct completion *comp)
563 while (true) {
564 if (hdev->channel->rescind) {
565 dev_warn_once(&hdev->device, "The device is gone.\n");
566 return -ENODEV;
569 if (wait_for_completion_timeout(comp, HZ / 10))
570 break;
573 return 0;
577 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
578 * @devfn: The Linux representation of PCI slot
580 * Windows uses a slightly different representation of PCI slot.
582 * Return: The Windows representation
584 static u32 devfn_to_wslot(int devfn)
586 union win_slot_encoding wslot;
588 wslot.slot = 0;
589 wslot.bits.dev = PCI_SLOT(devfn);
590 wslot.bits.func = PCI_FUNC(devfn);
592 return wslot.slot;
596 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
597 * @wslot: The Windows representation of PCI slot
599 * Windows uses a slightly different representation of PCI slot.
601 * Return: The Linux representation
603 static int wslot_to_devfn(u32 wslot)
605 union win_slot_encoding slot_no;
607 slot_no.slot = wslot;
608 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
612 * PCI Configuration Space for these root PCI buses is implemented as a pair
613 * of pages in memory-mapped I/O space. Writing to the first page chooses
614 * the PCI function being written or read. Once the first page has been
615 * written to, the following page maps in the entire configuration space of
616 * the function.
620 * _hv_pcifront_read_config() - Internal PCI config read
621 * @hpdev: The PCI driver's representation of the device
622 * @where: Offset within config space
623 * @size: Size of the transfer
624 * @val: Pointer to the buffer receiving the data
626 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
627 int size, u32 *val)
629 unsigned long flags;
630 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
633 * If the attempt is to read the IDs or the ROM BAR, simulate that.
635 if (where + size <= PCI_COMMAND) {
636 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
637 } else if (where >= PCI_CLASS_REVISION && where + size <=
638 PCI_CACHE_LINE_SIZE) {
639 memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
640 PCI_CLASS_REVISION, size);
641 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
642 PCI_ROM_ADDRESS) {
643 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
644 PCI_SUBSYSTEM_VENDOR_ID, size);
645 } else if (where >= PCI_ROM_ADDRESS && where + size <=
646 PCI_CAPABILITY_LIST) {
647 /* ROM BARs are unimplemented */
648 *val = 0;
649 } else if (where >= PCI_INTERRUPT_LINE && where + size <=
650 PCI_INTERRUPT_PIN) {
652 * Interrupt Line and Interrupt PIN are hard-wired to zero
653 * because this front-end only supports message-signaled
654 * interrupts.
656 *val = 0;
657 } else if (where + size <= CFG_PAGE_SIZE) {
658 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
659 /* Choose the function to be read. (See comment above) */
660 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
661 /* Make sure the function was chosen before we start reading. */
662 mb();
663 /* Read from that function's config space. */
664 switch (size) {
665 case 1:
666 *val = readb(addr);
667 break;
668 case 2:
669 *val = readw(addr);
670 break;
671 default:
672 *val = readl(addr);
673 break;
676 * Make sure the read was done before we release the spinlock
677 * allowing consecutive reads/writes.
679 mb();
680 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
681 } else {
682 dev_err(&hpdev->hbus->hdev->device,
683 "Attempt to read beyond a function's config space.\n");
687 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
689 u16 ret;
690 unsigned long flags;
691 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
692 PCI_VENDOR_ID;
694 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
696 /* Choose the function to be read. (See comment above) */
697 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
698 /* Make sure the function was chosen before we start reading. */
699 mb();
700 /* Read from that function's config space. */
701 ret = readw(addr);
703 * mb() is not required here, because the spin_unlock_irqrestore()
704 * is a barrier.
707 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
709 return ret;
713 * _hv_pcifront_write_config() - Internal PCI config write
714 * @hpdev: The PCI driver's representation of the device
715 * @where: Offset within config space
716 * @size: Size of the transfer
717 * @val: The data being transferred
719 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
720 int size, u32 val)
722 unsigned long flags;
723 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
725 if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
726 where + size <= PCI_CAPABILITY_LIST) {
727 /* SSIDs and ROM BARs are read-only */
728 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
729 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
730 /* Choose the function to be written. (See comment above) */
731 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
732 /* Make sure the function was chosen before we start writing. */
733 wmb();
734 /* Write to that function's config space. */
735 switch (size) {
736 case 1:
737 writeb(val, addr);
738 break;
739 case 2:
740 writew(val, addr);
741 break;
742 default:
743 writel(val, addr);
744 break;
747 * Make sure the write was done before we release the spinlock
748 * allowing consecutive reads/writes.
750 mb();
751 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
752 } else {
753 dev_err(&hpdev->hbus->hdev->device,
754 "Attempt to write beyond a function's config space.\n");
759 * hv_pcifront_read_config() - Read configuration space
760 * @bus: PCI Bus structure
761 * @devfn: Device/function
762 * @where: Offset from base
763 * @size: Byte/word/dword
764 * @val: Value to be read
766 * Return: PCIBIOS_SUCCESSFUL on success
767 * PCIBIOS_DEVICE_NOT_FOUND on failure
769 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
770 int where, int size, u32 *val)
772 struct hv_pcibus_device *hbus =
773 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
774 struct hv_pci_dev *hpdev;
776 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
777 if (!hpdev)
778 return PCIBIOS_DEVICE_NOT_FOUND;
780 _hv_pcifront_read_config(hpdev, where, size, val);
782 put_pcichild(hpdev);
783 return PCIBIOS_SUCCESSFUL;
787 * hv_pcifront_write_config() - Write configuration space
788 * @bus: PCI Bus structure
789 * @devfn: Device/function
790 * @where: Offset from base
791 * @size: Byte/word/dword
792 * @val: Value to be written to device
794 * Return: PCIBIOS_SUCCESSFUL on success
795 * PCIBIOS_DEVICE_NOT_FOUND on failure
797 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
798 int where, int size, u32 val)
800 struct hv_pcibus_device *hbus =
801 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
802 struct hv_pci_dev *hpdev;
804 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
805 if (!hpdev)
806 return PCIBIOS_DEVICE_NOT_FOUND;
808 _hv_pcifront_write_config(hpdev, where, size, val);
810 put_pcichild(hpdev);
811 return PCIBIOS_SUCCESSFUL;
814 /* PCIe operations */
815 static struct pci_ops hv_pcifront_ops = {
816 .read = hv_pcifront_read_config,
817 .write = hv_pcifront_write_config,
820 /* Interrupt management hooks */
821 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
822 struct tran_int_desc *int_desc)
824 struct pci_delete_interrupt *int_pkt;
825 struct {
826 struct pci_packet pkt;
827 u8 buffer[sizeof(struct pci_delete_interrupt)];
828 } ctxt;
830 memset(&ctxt, 0, sizeof(ctxt));
831 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
832 int_pkt->message_type.type =
833 PCI_DELETE_INTERRUPT_MESSAGE;
834 int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
835 int_pkt->int_desc = *int_desc;
836 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
837 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
838 kfree(int_desc);
842 * hv_msi_free() - Free the MSI.
843 * @domain: The interrupt domain pointer
844 * @info: Extra MSI-related context
845 * @irq: Identifies the IRQ.
847 * The Hyper-V parent partition and hypervisor are tracking the
848 * messages that are in use, keeping the interrupt redirection
849 * table up to date. This callback sends a message that frees
850 * the IRT entry and related tracking nonsense.
852 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
853 unsigned int irq)
855 struct hv_pcibus_device *hbus;
856 struct hv_pci_dev *hpdev;
857 struct pci_dev *pdev;
858 struct tran_int_desc *int_desc;
859 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
860 struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
862 pdev = msi_desc_to_pci_dev(msi);
863 hbus = info->data;
864 int_desc = irq_data_get_irq_chip_data(irq_data);
865 if (!int_desc)
866 return;
868 irq_data->chip_data = NULL;
869 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
870 if (!hpdev) {
871 kfree(int_desc);
872 return;
875 hv_int_desc_free(hpdev, int_desc);
876 put_pcichild(hpdev);
879 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
880 bool force)
882 struct irq_data *parent = data->parent_data;
884 return parent->chip->irq_set_affinity(parent, dest, force);
887 static void hv_irq_mask(struct irq_data *data)
889 pci_msi_mask_irq(data);
893 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
894 * affinity.
895 * @data: Describes the IRQ
897 * Build new a destination for the MSI and make a hypercall to
898 * update the Interrupt Redirection Table. "Device Logical ID"
899 * is built out of this PCI bus's instance GUID and the function
900 * number of the device.
902 static void hv_irq_unmask(struct irq_data *data)
904 struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
905 struct irq_cfg *cfg = irqd_cfg(data);
906 struct retarget_msi_interrupt *params;
907 struct hv_pcibus_device *hbus;
908 struct cpumask *dest;
909 struct pci_bus *pbus;
910 struct pci_dev *pdev;
911 unsigned long flags;
912 u32 var_size = 0;
913 int cpu_vmbus;
914 int cpu;
915 u64 res;
917 dest = irq_data_get_effective_affinity_mask(data);
918 pdev = msi_desc_to_pci_dev(msi_desc);
919 pbus = pdev->bus;
920 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
922 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
924 params = &hbus->retarget_msi_interrupt_params;
925 memset(params, 0, sizeof(*params));
926 params->partition_id = HV_PARTITION_ID_SELF;
927 params->int_entry.source = 1; /* MSI(-X) */
928 params->int_entry.address = msi_desc->msg.address_lo;
929 params->int_entry.data = msi_desc->msg.data;
930 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
931 (hbus->hdev->dev_instance.b[4] << 16) |
932 (hbus->hdev->dev_instance.b[7] << 8) |
933 (hbus->hdev->dev_instance.b[6] & 0xf8) |
934 PCI_FUNC(pdev->devfn);
935 params->int_target.vector = cfg->vector;
938 * Honoring apic->irq_delivery_mode set to dest_Fixed by
939 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
940 * spurious interrupt storm. Not doing so does not seem to have a
941 * negative effect (yet?).
944 if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
946 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
947 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
948 * with >64 VP support.
949 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
950 * is not sufficient for this hypercall.
952 params->int_target.flags |=
953 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
954 params->int_target.vp_set.valid_banks =
955 (1ull << HV_VP_SET_BANK_COUNT_MAX) - 1;
958 * var-sized hypercall, var-size starts after vp_mask (thus
959 * vp_set.format does not count, but vp_set.valid_banks does).
961 var_size = 1 + HV_VP_SET_BANK_COUNT_MAX;
963 for_each_cpu_and(cpu, dest, cpu_online_mask) {
964 cpu_vmbus = hv_cpu_number_to_vp_number(cpu);
966 if (cpu_vmbus >= HV_VP_SET_BANK_COUNT_MAX * 64) {
967 dev_err(&hbus->hdev->device,
968 "too high CPU %d", cpu_vmbus);
969 res = 1;
970 goto exit_unlock;
973 params->int_target.vp_set.masks[cpu_vmbus / 64] |=
974 (1ULL << (cpu_vmbus & 63));
976 } else {
977 for_each_cpu_and(cpu, dest, cpu_online_mask) {
978 params->int_target.vp_mask |=
979 (1ULL << hv_cpu_number_to_vp_number(cpu));
983 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
984 params, NULL);
986 exit_unlock:
987 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
989 if (res) {
990 dev_err(&hbus->hdev->device,
991 "%s() failed: %#llx", __func__, res);
992 return;
995 pci_msi_unmask_irq(data);
998 struct compose_comp_ctxt {
999 struct hv_pci_compl comp_pkt;
1000 struct tran_int_desc int_desc;
1003 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1004 int resp_packet_size)
1006 struct compose_comp_ctxt *comp_pkt = context;
1007 struct pci_create_int_response *int_resp =
1008 (struct pci_create_int_response *)resp;
1010 comp_pkt->comp_pkt.completion_status = resp->status;
1011 comp_pkt->int_desc = int_resp->int_desc;
1012 complete(&comp_pkt->comp_pkt.host_event);
1015 static u32 hv_compose_msi_req_v1(
1016 struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1017 u32 slot, u8 vector)
1019 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1020 int_pkt->wslot.slot = slot;
1021 int_pkt->int_desc.vector = vector;
1022 int_pkt->int_desc.vector_count = 1;
1023 int_pkt->int_desc.delivery_mode = dest_Fixed;
1026 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1027 * hv_irq_unmask().
1029 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1031 return sizeof(*int_pkt);
1034 static u32 hv_compose_msi_req_v2(
1035 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1036 u32 slot, u8 vector)
1038 int cpu;
1040 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1041 int_pkt->wslot.slot = slot;
1042 int_pkt->int_desc.vector = vector;
1043 int_pkt->int_desc.vector_count = 1;
1044 int_pkt->int_desc.delivery_mode = dest_Fixed;
1047 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1048 * by subsequent retarget in hv_irq_unmask().
1050 cpu = cpumask_first_and(affinity, cpu_online_mask);
1051 int_pkt->int_desc.processor_array[0] =
1052 hv_cpu_number_to_vp_number(cpu);
1053 int_pkt->int_desc.processor_count = 1;
1055 return sizeof(*int_pkt);
1059 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1060 * @data: Everything about this MSI
1061 * @msg: Buffer that is filled in by this function
1063 * This function unpacks the IRQ looking for target CPU set, IDT
1064 * vector and mode and sends a message to the parent partition
1065 * asking for a mapping for that tuple in this partition. The
1066 * response supplies a data value and address to which that data
1067 * should be written to trigger that interrupt.
1069 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1071 struct irq_cfg *cfg = irqd_cfg(data);
1072 struct hv_pcibus_device *hbus;
1073 struct hv_pci_dev *hpdev;
1074 struct pci_bus *pbus;
1075 struct pci_dev *pdev;
1076 struct cpumask *dest;
1077 unsigned long flags;
1078 struct compose_comp_ctxt comp;
1079 struct tran_int_desc *int_desc;
1080 struct {
1081 struct pci_packet pci_pkt;
1082 union {
1083 struct pci_create_interrupt v1;
1084 struct pci_create_interrupt2 v2;
1085 } int_pkts;
1086 } __packed ctxt;
1088 u32 size;
1089 int ret;
1091 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1092 dest = irq_data_get_effective_affinity_mask(data);
1093 pbus = pdev->bus;
1094 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1095 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1096 if (!hpdev)
1097 goto return_null_message;
1099 /* Free any previous message that might have already been composed. */
1100 if (data->chip_data) {
1101 int_desc = data->chip_data;
1102 data->chip_data = NULL;
1103 hv_int_desc_free(hpdev, int_desc);
1106 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1107 if (!int_desc)
1108 goto drop_reference;
1110 memset(&ctxt, 0, sizeof(ctxt));
1111 init_completion(&comp.comp_pkt.host_event);
1112 ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1113 ctxt.pci_pkt.compl_ctxt = &comp;
1115 switch (pci_protocol_version) {
1116 case PCI_PROTOCOL_VERSION_1_1:
1117 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1118 dest,
1119 hpdev->desc.win_slot.slot,
1120 cfg->vector);
1121 break;
1123 case PCI_PROTOCOL_VERSION_1_2:
1124 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1125 dest,
1126 hpdev->desc.win_slot.slot,
1127 cfg->vector);
1128 break;
1130 default:
1131 /* As we only negotiate protocol versions known to this driver,
1132 * this path should never hit. However, this is it not a hot
1133 * path so we print a message to aid future updates.
1135 dev_err(&hbus->hdev->device,
1136 "Unexpected vPCI protocol, update driver.");
1137 goto free_int_desc;
1140 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1141 size, (unsigned long)&ctxt.pci_pkt,
1142 VM_PKT_DATA_INBAND,
1143 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1144 if (ret) {
1145 dev_err(&hbus->hdev->device,
1146 "Sending request for interrupt failed: 0x%x",
1147 comp.comp_pkt.completion_status);
1148 goto free_int_desc;
1152 * Since this function is called with IRQ locks held, can't
1153 * do normal wait for completion; instead poll.
1155 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1156 /* 0xFFFF means an invalid PCI VENDOR ID. */
1157 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1158 dev_err_once(&hbus->hdev->device,
1159 "the device has gone\n");
1160 goto free_int_desc;
1164 * When the higher level interrupt code calls us with
1165 * interrupt disabled, we must poll the channel by calling
1166 * the channel callback directly when channel->target_cpu is
1167 * the current CPU. When the higher level interrupt code
1168 * calls us with interrupt enabled, let's add the
1169 * local_irq_save()/restore() to avoid race:
1170 * hv_pci_onchannelcallback() can also run in tasklet.
1172 local_irq_save(flags);
1174 if (hbus->hdev->channel->target_cpu == smp_processor_id())
1175 hv_pci_onchannelcallback(hbus);
1177 local_irq_restore(flags);
1179 if (hpdev->state == hv_pcichild_ejecting) {
1180 dev_err_once(&hbus->hdev->device,
1181 "the device is being ejected\n");
1182 goto free_int_desc;
1185 udelay(100);
1188 if (comp.comp_pkt.completion_status < 0) {
1189 dev_err(&hbus->hdev->device,
1190 "Request for interrupt failed: 0x%x",
1191 comp.comp_pkt.completion_status);
1192 goto free_int_desc;
1196 * Record the assignment so that this can be unwound later. Using
1197 * irq_set_chip_data() here would be appropriate, but the lock it takes
1198 * is already held.
1200 *int_desc = comp.int_desc;
1201 data->chip_data = int_desc;
1203 /* Pass up the result. */
1204 msg->address_hi = comp.int_desc.address >> 32;
1205 msg->address_lo = comp.int_desc.address & 0xffffffff;
1206 msg->data = comp.int_desc.data;
1208 put_pcichild(hpdev);
1209 return;
1211 free_int_desc:
1212 kfree(int_desc);
1213 drop_reference:
1214 put_pcichild(hpdev);
1215 return_null_message:
1216 msg->address_hi = 0;
1217 msg->address_lo = 0;
1218 msg->data = 0;
1221 /* HW Interrupt Chip Descriptor */
1222 static struct irq_chip hv_msi_irq_chip = {
1223 .name = "Hyper-V PCIe MSI",
1224 .irq_compose_msi_msg = hv_compose_msi_msg,
1225 .irq_set_affinity = hv_set_affinity,
1226 .irq_ack = irq_chip_ack_parent,
1227 .irq_mask = hv_irq_mask,
1228 .irq_unmask = hv_irq_unmask,
1231 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1232 msi_alloc_info_t *arg)
1234 return arg->msi_hwirq;
1237 static struct msi_domain_ops hv_msi_ops = {
1238 .get_hwirq = hv_msi_domain_ops_get_hwirq,
1239 .msi_prepare = pci_msi_prepare,
1240 .set_desc = pci_msi_set_desc,
1241 .msi_free = hv_msi_free,
1245 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1246 * @hbus: The root PCI bus
1248 * This function creates an IRQ domain which will be used for
1249 * interrupts from devices that have been passed through. These
1250 * devices only support MSI and MSI-X, not line-based interrupts
1251 * or simulations of line-based interrupts through PCIe's
1252 * fabric-layer messages. Because interrupts are remapped, we
1253 * can support multi-message MSI here.
1255 * Return: '0' on success and error value on failure
1257 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1259 hbus->msi_info.chip = &hv_msi_irq_chip;
1260 hbus->msi_info.ops = &hv_msi_ops;
1261 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1262 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1263 MSI_FLAG_PCI_MSIX);
1264 hbus->msi_info.handler = handle_edge_irq;
1265 hbus->msi_info.handler_name = "edge";
1266 hbus->msi_info.data = hbus;
1267 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1268 &hbus->msi_info,
1269 x86_vector_domain);
1270 if (!hbus->irq_domain) {
1271 dev_err(&hbus->hdev->device,
1272 "Failed to build an MSI IRQ domain\n");
1273 return -ENODEV;
1276 return 0;
1280 * get_bar_size() - Get the address space consumed by a BAR
1281 * @bar_val: Value that a BAR returned after -1 was written
1282 * to it.
1284 * This function returns the size of the BAR, rounded up to 1
1285 * page. It has to be rounded up because the hypervisor's page
1286 * table entry that maps the BAR into the VM can't specify an
1287 * offset within a page. The invariant is that the hypervisor
1288 * must place any BARs of smaller than page length at the
1289 * beginning of a page.
1291 * Return: Size in bytes of the consumed MMIO space.
1293 static u64 get_bar_size(u64 bar_val)
1295 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1296 PAGE_SIZE);
1300 * survey_child_resources() - Total all MMIO requirements
1301 * @hbus: Root PCI bus, as understood by this driver
1303 static void survey_child_resources(struct hv_pcibus_device *hbus)
1305 struct hv_pci_dev *hpdev;
1306 resource_size_t bar_size = 0;
1307 unsigned long flags;
1308 struct completion *event;
1309 u64 bar_val;
1310 int i;
1312 /* If nobody is waiting on the answer, don't compute it. */
1313 event = xchg(&hbus->survey_event, NULL);
1314 if (!event)
1315 return;
1317 /* If the answer has already been computed, go with it. */
1318 if (hbus->low_mmio_space || hbus->high_mmio_space) {
1319 complete(event);
1320 return;
1323 spin_lock_irqsave(&hbus->device_list_lock, flags);
1326 * Due to an interesting quirk of the PCI spec, all memory regions
1327 * for a child device are a power of 2 in size and aligned in memory,
1328 * so it's sufficient to just add them up without tracking alignment.
1330 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1331 for (i = 0; i < 6; i++) {
1332 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1333 dev_err(&hbus->hdev->device,
1334 "There's an I/O BAR in this list!\n");
1336 if (hpdev->probed_bar[i] != 0) {
1338 * A probed BAR has all the upper bits set that
1339 * can be changed.
1342 bar_val = hpdev->probed_bar[i];
1343 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1344 bar_val |=
1345 ((u64)hpdev->probed_bar[++i] << 32);
1346 else
1347 bar_val |= 0xffffffff00000000ULL;
1349 bar_size = get_bar_size(bar_val);
1351 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1352 hbus->high_mmio_space += bar_size;
1353 else
1354 hbus->low_mmio_space += bar_size;
1359 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1360 complete(event);
1364 * prepopulate_bars() - Fill in BARs with defaults
1365 * @hbus: Root PCI bus, as understood by this driver
1367 * The core PCI driver code seems much, much happier if the BARs
1368 * for a device have values upon first scan. So fill them in.
1369 * The algorithm below works down from large sizes to small,
1370 * attempting to pack the assignments optimally. The assumption,
1371 * enforced in other parts of the code, is that the beginning of
1372 * the memory-mapped I/O space will be aligned on the largest
1373 * BAR size.
1375 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1377 resource_size_t high_size = 0;
1378 resource_size_t low_size = 0;
1379 resource_size_t high_base = 0;
1380 resource_size_t low_base = 0;
1381 resource_size_t bar_size;
1382 struct hv_pci_dev *hpdev;
1383 unsigned long flags;
1384 u64 bar_val;
1385 u32 command;
1386 bool high;
1387 int i;
1389 if (hbus->low_mmio_space) {
1390 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1391 low_base = hbus->low_mmio_res->start;
1394 if (hbus->high_mmio_space) {
1395 high_size = 1ULL <<
1396 (63 - __builtin_clzll(hbus->high_mmio_space));
1397 high_base = hbus->high_mmio_res->start;
1400 spin_lock_irqsave(&hbus->device_list_lock, flags);
1402 /* Pick addresses for the BARs. */
1403 do {
1404 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1405 for (i = 0; i < 6; i++) {
1406 bar_val = hpdev->probed_bar[i];
1407 if (bar_val == 0)
1408 continue;
1409 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1410 if (high) {
1411 bar_val |=
1412 ((u64)hpdev->probed_bar[i + 1]
1413 << 32);
1414 } else {
1415 bar_val |= 0xffffffffULL << 32;
1417 bar_size = get_bar_size(bar_val);
1418 if (high) {
1419 if (high_size != bar_size) {
1420 i++;
1421 continue;
1423 _hv_pcifront_write_config(hpdev,
1424 PCI_BASE_ADDRESS_0 + (4 * i),
1426 (u32)(high_base & 0xffffff00));
1427 i++;
1428 _hv_pcifront_write_config(hpdev,
1429 PCI_BASE_ADDRESS_0 + (4 * i),
1430 4, (u32)(high_base >> 32));
1431 high_base += bar_size;
1432 } else {
1433 if (low_size != bar_size)
1434 continue;
1435 _hv_pcifront_write_config(hpdev,
1436 PCI_BASE_ADDRESS_0 + (4 * i),
1438 (u32)(low_base & 0xffffff00));
1439 low_base += bar_size;
1442 if (high_size <= 1 && low_size <= 1) {
1443 /* Set the memory enable bit. */
1444 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1445 &command);
1446 command |= PCI_COMMAND_MEMORY;
1447 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1448 command);
1449 break;
1453 high_size >>= 1;
1454 low_size >>= 1;
1455 } while (high_size || low_size);
1457 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1461 * create_root_hv_pci_bus() - Expose a new root PCI bus
1462 * @hbus: Root PCI bus, as understood by this driver
1464 * Return: 0 on success, -errno on failure
1466 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1468 /* Register the device */
1469 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1470 0, /* bus number is always zero */
1471 &hv_pcifront_ops,
1472 &hbus->sysdata,
1473 &hbus->resources_for_children);
1474 if (!hbus->pci_bus)
1475 return -ENODEV;
1477 hbus->pci_bus->msi = &hbus->msi_chip;
1478 hbus->pci_bus->msi->dev = &hbus->hdev->device;
1480 pci_lock_rescan_remove();
1481 pci_scan_child_bus(hbus->pci_bus);
1482 pci_bus_assign_resources(hbus->pci_bus);
1483 pci_bus_add_devices(hbus->pci_bus);
1484 pci_unlock_rescan_remove();
1485 hbus->state = hv_pcibus_installed;
1486 return 0;
1489 struct q_res_req_compl {
1490 struct completion host_event;
1491 struct hv_pci_dev *hpdev;
1495 * q_resource_requirements() - Query Resource Requirements
1496 * @context: The completion context.
1497 * @resp: The response that came from the host.
1498 * @resp_packet_size: The size in bytes of resp.
1500 * This function is invoked on completion of a Query Resource
1501 * Requirements packet.
1503 static void q_resource_requirements(void *context, struct pci_response *resp,
1504 int resp_packet_size)
1506 struct q_res_req_compl *completion = context;
1507 struct pci_q_res_req_response *q_res_req =
1508 (struct pci_q_res_req_response *)resp;
1509 int i;
1511 if (resp->status < 0) {
1512 dev_err(&completion->hpdev->hbus->hdev->device,
1513 "query resource requirements failed: %x\n",
1514 resp->status);
1515 } else {
1516 for (i = 0; i < 6; i++) {
1517 completion->hpdev->probed_bar[i] =
1518 q_res_req->probed_bar[i];
1522 complete(&completion->host_event);
1526 * new_pcichild_device() - Create a new child device
1527 * @hbus: The internal struct tracking this root PCI bus.
1528 * @desc: The information supplied so far from the host
1529 * about the device.
1531 * This function creates the tracking structure for a new child
1532 * device and kicks off the process of figuring out what it is.
1534 * Return: Pointer to the new tracking struct
1536 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1537 struct pci_function_description *desc)
1539 struct hv_pci_dev *hpdev;
1540 struct pci_child_message *res_req;
1541 struct q_res_req_compl comp_pkt;
1542 struct {
1543 struct pci_packet init_packet;
1544 u8 buffer[sizeof(struct pci_child_message)];
1545 } pkt;
1546 unsigned long flags;
1547 int ret;
1549 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1550 if (!hpdev)
1551 return NULL;
1553 hpdev->hbus = hbus;
1555 memset(&pkt, 0, sizeof(pkt));
1556 init_completion(&comp_pkt.host_event);
1557 comp_pkt.hpdev = hpdev;
1558 pkt.init_packet.compl_ctxt = &comp_pkt;
1559 pkt.init_packet.completion_func = q_resource_requirements;
1560 res_req = (struct pci_child_message *)&pkt.init_packet.message;
1561 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1562 res_req->wslot.slot = desc->win_slot.slot;
1564 ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1565 sizeof(struct pci_child_message),
1566 (unsigned long)&pkt.init_packet,
1567 VM_PKT_DATA_INBAND,
1568 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1569 if (ret)
1570 goto error;
1572 if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1573 goto error;
1575 hpdev->desc = *desc;
1576 refcount_set(&hpdev->refs, 1);
1577 get_pcichild(hpdev);
1578 spin_lock_irqsave(&hbus->device_list_lock, flags);
1580 list_add_tail(&hpdev->list_entry, &hbus->children);
1581 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1582 return hpdev;
1584 error:
1585 kfree(hpdev);
1586 return NULL;
1590 * get_pcichild_wslot() - Find device from slot
1591 * @hbus: Root PCI bus, as understood by this driver
1592 * @wslot: Location on the bus
1594 * This function looks up a PCI device and returns the internal
1595 * representation of it. It acquires a reference on it, so that
1596 * the device won't be deleted while somebody is using it. The
1597 * caller is responsible for calling put_pcichild() to release
1598 * this reference.
1600 * Return: Internal representation of a PCI device
1602 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1603 u32 wslot)
1605 unsigned long flags;
1606 struct hv_pci_dev *iter, *hpdev = NULL;
1608 spin_lock_irqsave(&hbus->device_list_lock, flags);
1609 list_for_each_entry(iter, &hbus->children, list_entry) {
1610 if (iter->desc.win_slot.slot == wslot) {
1611 hpdev = iter;
1612 get_pcichild(hpdev);
1613 break;
1616 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1618 return hpdev;
1622 * pci_devices_present_work() - Handle new list of child devices
1623 * @work: Work struct embedded in struct hv_dr_work
1625 * "Bus Relations" is the Windows term for "children of this
1626 * bus." The terminology is preserved here for people trying to
1627 * debug the interaction between Hyper-V and Linux. This
1628 * function is called when the parent partition reports a list
1629 * of functions that should be observed under this PCI Express
1630 * port (bus).
1632 * This function updates the list, and must tolerate being
1633 * called multiple times with the same information. The typical
1634 * number of child devices is one, with very atypical cases
1635 * involving three or four, so the algorithms used here can be
1636 * simple and inefficient.
1638 * It must also treat the omission of a previously observed device as
1639 * notification that the device no longer exists.
1641 * Note that this function is serialized with hv_eject_device_work(),
1642 * because both are pushed to the ordered workqueue hbus->wq.
1644 static void pci_devices_present_work(struct work_struct *work)
1646 u32 child_no;
1647 bool found;
1648 struct pci_function_description *new_desc;
1649 struct hv_pci_dev *hpdev;
1650 struct hv_pcibus_device *hbus;
1651 struct list_head removed;
1652 struct hv_dr_work *dr_wrk;
1653 struct hv_dr_state *dr = NULL;
1654 unsigned long flags;
1656 dr_wrk = container_of(work, struct hv_dr_work, wrk);
1657 hbus = dr_wrk->bus;
1658 kfree(dr_wrk);
1660 INIT_LIST_HEAD(&removed);
1662 /* Pull this off the queue and process it if it was the last one. */
1663 spin_lock_irqsave(&hbus->device_list_lock, flags);
1664 while (!list_empty(&hbus->dr_list)) {
1665 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
1666 list_entry);
1667 list_del(&dr->list_entry);
1669 /* Throw this away if the list still has stuff in it. */
1670 if (!list_empty(&hbus->dr_list)) {
1671 kfree(dr);
1672 continue;
1675 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1677 if (!dr) {
1678 put_hvpcibus(hbus);
1679 return;
1682 /* First, mark all existing children as reported missing. */
1683 spin_lock_irqsave(&hbus->device_list_lock, flags);
1684 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1685 hpdev->reported_missing = true;
1687 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1689 /* Next, add back any reported devices. */
1690 for (child_no = 0; child_no < dr->device_count; child_no++) {
1691 found = false;
1692 new_desc = &dr->func[child_no];
1694 spin_lock_irqsave(&hbus->device_list_lock, flags);
1695 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1696 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
1697 (hpdev->desc.v_id == new_desc->v_id) &&
1698 (hpdev->desc.d_id == new_desc->d_id) &&
1699 (hpdev->desc.ser == new_desc->ser)) {
1700 hpdev->reported_missing = false;
1701 found = true;
1704 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1706 if (!found) {
1707 hpdev = new_pcichild_device(hbus, new_desc);
1708 if (!hpdev)
1709 dev_err(&hbus->hdev->device,
1710 "couldn't record a child device.\n");
1714 /* Move missing children to a list on the stack. */
1715 spin_lock_irqsave(&hbus->device_list_lock, flags);
1716 do {
1717 found = false;
1718 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1719 if (hpdev->reported_missing) {
1720 found = true;
1721 put_pcichild(hpdev);
1722 list_move_tail(&hpdev->list_entry, &removed);
1723 break;
1726 } while (found);
1727 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1729 /* Delete everything that should no longer exist. */
1730 while (!list_empty(&removed)) {
1731 hpdev = list_first_entry(&removed, struct hv_pci_dev,
1732 list_entry);
1733 list_del(&hpdev->list_entry);
1734 put_pcichild(hpdev);
1737 switch (hbus->state) {
1738 case hv_pcibus_installed:
1740 * Tell the core to rescan bus
1741 * because there may have been changes.
1743 pci_lock_rescan_remove();
1744 pci_scan_child_bus(hbus->pci_bus);
1745 pci_unlock_rescan_remove();
1746 break;
1748 case hv_pcibus_init:
1749 case hv_pcibus_probed:
1750 survey_child_resources(hbus);
1751 break;
1753 default:
1754 break;
1757 put_hvpcibus(hbus);
1758 kfree(dr);
1762 * hv_pci_devices_present() - Handles list of new children
1763 * @hbus: Root PCI bus, as understood by this driver
1764 * @relations: Packet from host listing children
1766 * This function is invoked whenever a new list of devices for
1767 * this bus appears.
1769 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
1770 struct pci_bus_relations *relations)
1772 struct hv_dr_state *dr;
1773 struct hv_dr_work *dr_wrk;
1774 unsigned long flags;
1775 bool pending_dr;
1777 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
1778 if (!dr_wrk)
1779 return;
1781 dr = kzalloc(offsetof(struct hv_dr_state, func) +
1782 (sizeof(struct pci_function_description) *
1783 (relations->device_count)), GFP_NOWAIT);
1784 if (!dr) {
1785 kfree(dr_wrk);
1786 return;
1789 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
1790 dr_wrk->bus = hbus;
1791 dr->device_count = relations->device_count;
1792 if (dr->device_count != 0) {
1793 memcpy(dr->func, relations->func,
1794 sizeof(struct pci_function_description) *
1795 dr->device_count);
1798 spin_lock_irqsave(&hbus->device_list_lock, flags);
1800 * If pending_dr is true, we have already queued a work,
1801 * which will see the new dr. Otherwise, we need to
1802 * queue a new work.
1804 pending_dr = !list_empty(&hbus->dr_list);
1805 list_add_tail(&dr->list_entry, &hbus->dr_list);
1806 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1808 if (pending_dr) {
1809 kfree(dr_wrk);
1810 } else {
1811 get_hvpcibus(hbus);
1812 queue_work(hbus->wq, &dr_wrk->wrk);
1817 * hv_eject_device_work() - Asynchronously handles ejection
1818 * @work: Work struct embedded in internal device struct
1820 * This function handles ejecting a device. Windows will
1821 * attempt to gracefully eject a device, waiting 60 seconds to
1822 * hear back from the guest OS that this completed successfully.
1823 * If this timer expires, the device will be forcibly removed.
1825 static void hv_eject_device_work(struct work_struct *work)
1827 struct pci_eject_response *ejct_pkt;
1828 struct hv_pci_dev *hpdev;
1829 struct pci_dev *pdev;
1830 unsigned long flags;
1831 int wslot;
1832 struct {
1833 struct pci_packet pkt;
1834 u8 buffer[sizeof(struct pci_eject_response)];
1835 } ctxt;
1837 hpdev = container_of(work, struct hv_pci_dev, wrk);
1839 WARN_ON(hpdev->state != hv_pcichild_ejecting);
1842 * Ejection can come before or after the PCI bus has been set up, so
1843 * attempt to find it and tear down the bus state, if it exists. This
1844 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
1845 * because hbus->pci_bus may not exist yet.
1847 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
1848 pdev = pci_get_domain_bus_and_slot(hpdev->hbus->sysdata.domain, 0,
1849 wslot);
1850 if (pdev) {
1851 pci_lock_rescan_remove();
1852 pci_stop_and_remove_bus_device(pdev);
1853 pci_dev_put(pdev);
1854 pci_unlock_rescan_remove();
1857 spin_lock_irqsave(&hpdev->hbus->device_list_lock, flags);
1858 list_del(&hpdev->list_entry);
1859 spin_unlock_irqrestore(&hpdev->hbus->device_list_lock, flags);
1861 memset(&ctxt, 0, sizeof(ctxt));
1862 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
1863 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
1864 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1865 vmbus_sendpacket(hpdev->hbus->hdev->channel, ejct_pkt,
1866 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
1867 VM_PKT_DATA_INBAND, 0);
1869 put_pcichild(hpdev);
1870 put_pcichild(hpdev);
1871 put_hvpcibus(hpdev->hbus);
1875 * hv_pci_eject_device() - Handles device ejection
1876 * @hpdev: Internal device tracking struct
1878 * This function is invoked when an ejection packet arrives. It
1879 * just schedules work so that we don't re-enter the packet
1880 * delivery code handling the ejection.
1882 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
1884 hpdev->state = hv_pcichild_ejecting;
1885 get_pcichild(hpdev);
1886 INIT_WORK(&hpdev->wrk, hv_eject_device_work);
1887 get_hvpcibus(hpdev->hbus);
1888 queue_work(hpdev->hbus->wq, &hpdev->wrk);
1892 * hv_pci_onchannelcallback() - Handles incoming packets
1893 * @context: Internal bus tracking struct
1895 * This function is invoked whenever the host sends a packet to
1896 * this channel (which is private to this root PCI bus).
1898 static void hv_pci_onchannelcallback(void *context)
1900 const int packet_size = 0x100;
1901 int ret;
1902 struct hv_pcibus_device *hbus = context;
1903 u32 bytes_recvd;
1904 u64 req_id;
1905 struct vmpacket_descriptor *desc;
1906 unsigned char *buffer;
1907 int bufferlen = packet_size;
1908 struct pci_packet *comp_packet;
1909 struct pci_response *response;
1910 struct pci_incoming_message *new_message;
1911 struct pci_bus_relations *bus_rel;
1912 struct pci_dev_incoming *dev_message;
1913 struct hv_pci_dev *hpdev;
1915 buffer = kmalloc(bufferlen, GFP_ATOMIC);
1916 if (!buffer)
1917 return;
1919 while (1) {
1920 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
1921 bufferlen, &bytes_recvd, &req_id);
1923 if (ret == -ENOBUFS) {
1924 kfree(buffer);
1925 /* Handle large packet */
1926 bufferlen = bytes_recvd;
1927 buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
1928 if (!buffer)
1929 return;
1930 continue;
1933 /* Zero length indicates there are no more packets. */
1934 if (ret || !bytes_recvd)
1935 break;
1938 * All incoming packets must be at least as large as a
1939 * response.
1941 if (bytes_recvd <= sizeof(struct pci_response))
1942 continue;
1943 desc = (struct vmpacket_descriptor *)buffer;
1945 switch (desc->type) {
1946 case VM_PKT_COMP:
1949 * The host is trusted, and thus it's safe to interpret
1950 * this transaction ID as a pointer.
1952 comp_packet = (struct pci_packet *)req_id;
1953 response = (struct pci_response *)buffer;
1954 comp_packet->completion_func(comp_packet->compl_ctxt,
1955 response,
1956 bytes_recvd);
1957 break;
1959 case VM_PKT_DATA_INBAND:
1961 new_message = (struct pci_incoming_message *)buffer;
1962 switch (new_message->message_type.type) {
1963 case PCI_BUS_RELATIONS:
1965 bus_rel = (struct pci_bus_relations *)buffer;
1966 if (bytes_recvd <
1967 offsetof(struct pci_bus_relations, func) +
1968 (sizeof(struct pci_function_description) *
1969 (bus_rel->device_count))) {
1970 dev_err(&hbus->hdev->device,
1971 "bus relations too small\n");
1972 break;
1975 hv_pci_devices_present(hbus, bus_rel);
1976 break;
1978 case PCI_EJECT:
1980 dev_message = (struct pci_dev_incoming *)buffer;
1981 hpdev = get_pcichild_wslot(hbus,
1982 dev_message->wslot.slot);
1983 if (hpdev) {
1984 hv_pci_eject_device(hpdev);
1985 put_pcichild(hpdev);
1987 break;
1989 default:
1990 dev_warn(&hbus->hdev->device,
1991 "Unimplemented protocol message %x\n",
1992 new_message->message_type.type);
1993 break;
1995 break;
1997 default:
1998 dev_err(&hbus->hdev->device,
1999 "unhandled packet type %d, tid %llx len %d\n",
2000 desc->type, req_id, bytes_recvd);
2001 break;
2005 kfree(buffer);
2009 * hv_pci_protocol_negotiation() - Set up protocol
2010 * @hdev: VMBus's tracking struct for this root PCI bus
2012 * This driver is intended to support running on Windows 10
2013 * (server) and later versions. It will not run on earlier
2014 * versions, as they assume that many of the operations which
2015 * Linux needs accomplished with a spinlock held were done via
2016 * asynchronous messaging via VMBus. Windows 10 increases the
2017 * surface area of PCI emulation so that these actions can take
2018 * place by suspending a virtual processor for their duration.
2020 * This function negotiates the channel protocol version,
2021 * failing if the host doesn't support the necessary protocol
2022 * level.
2024 static int hv_pci_protocol_negotiation(struct hv_device *hdev)
2026 struct pci_version_request *version_req;
2027 struct hv_pci_compl comp_pkt;
2028 struct pci_packet *pkt;
2029 int ret;
2030 int i;
2033 * Initiate the handshake with the host and negotiate
2034 * a version that the host can support. We start with the
2035 * highest version number and go down if the host cannot
2036 * support it.
2038 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2039 if (!pkt)
2040 return -ENOMEM;
2042 init_completion(&comp_pkt.host_event);
2043 pkt->completion_func = hv_pci_generic_compl;
2044 pkt->compl_ctxt = &comp_pkt;
2045 version_req = (struct pci_version_request *)&pkt->message;
2046 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2048 for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2049 version_req->protocol_version = pci_protocol_versions[i];
2050 ret = vmbus_sendpacket(hdev->channel, version_req,
2051 sizeof(struct pci_version_request),
2052 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2053 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2054 if (!ret)
2055 ret = wait_for_response(hdev, &comp_pkt.host_event);
2057 if (ret) {
2058 dev_err(&hdev->device,
2059 "PCI Pass-through VSP failed to request version: %d",
2060 ret);
2061 goto exit;
2064 if (comp_pkt.completion_status >= 0) {
2065 pci_protocol_version = pci_protocol_versions[i];
2066 dev_info(&hdev->device,
2067 "PCI VMBus probing: Using version %#x\n",
2068 pci_protocol_version);
2069 goto exit;
2072 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2073 dev_err(&hdev->device,
2074 "PCI Pass-through VSP failed version request: %#x",
2075 comp_pkt.completion_status);
2076 ret = -EPROTO;
2077 goto exit;
2080 reinit_completion(&comp_pkt.host_event);
2083 dev_err(&hdev->device,
2084 "PCI pass-through VSP failed to find supported version");
2085 ret = -EPROTO;
2087 exit:
2088 kfree(pkt);
2089 return ret;
2093 * hv_pci_free_bridge_windows() - Release memory regions for the
2094 * bus
2095 * @hbus: Root PCI bus, as understood by this driver
2097 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2100 * Set the resources back to the way they looked when they
2101 * were allocated by setting IORESOURCE_BUSY again.
2104 if (hbus->low_mmio_space && hbus->low_mmio_res) {
2105 hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2106 vmbus_free_mmio(hbus->low_mmio_res->start,
2107 resource_size(hbus->low_mmio_res));
2110 if (hbus->high_mmio_space && hbus->high_mmio_res) {
2111 hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2112 vmbus_free_mmio(hbus->high_mmio_res->start,
2113 resource_size(hbus->high_mmio_res));
2118 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2119 * for the bus
2120 * @hbus: Root PCI bus, as understood by this driver
2122 * This function calls vmbus_allocate_mmio(), which is itself a
2123 * bit of a compromise. Ideally, we might change the pnp layer
2124 * in the kernel such that it comprehends either PCI devices
2125 * which are "grandchildren of ACPI," with some intermediate bus
2126 * node (in this case, VMBus) or change it such that it
2127 * understands VMBus. The pnp layer, however, has been declared
2128 * deprecated, and not subject to change.
2130 * The workaround, implemented here, is to ask VMBus to allocate
2131 * MMIO space for this bus. VMBus itself knows which ranges are
2132 * appropriate by looking at its own ACPI objects. Then, after
2133 * these ranges are claimed, they're modified to look like they
2134 * would have looked if the ACPI and pnp code had allocated
2135 * bridge windows. These descriptors have to exist in this form
2136 * in order to satisfy the code which will get invoked when the
2137 * endpoint PCI function driver calls request_mem_region() or
2138 * request_mem_region_exclusive().
2140 * Return: 0 on success, -errno on failure
2142 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2144 resource_size_t align;
2145 int ret;
2147 if (hbus->low_mmio_space) {
2148 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2149 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2150 (u64)(u32)0xffffffff,
2151 hbus->low_mmio_space,
2152 align, false);
2153 if (ret) {
2154 dev_err(&hbus->hdev->device,
2155 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2156 hbus->low_mmio_space);
2157 return ret;
2160 /* Modify this resource to become a bridge window. */
2161 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2162 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2163 pci_add_resource(&hbus->resources_for_children,
2164 hbus->low_mmio_res);
2167 if (hbus->high_mmio_space) {
2168 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2169 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2170 0x100000000, -1,
2171 hbus->high_mmio_space, align,
2172 false);
2173 if (ret) {
2174 dev_err(&hbus->hdev->device,
2175 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2176 hbus->high_mmio_space);
2177 goto release_low_mmio;
2180 /* Modify this resource to become a bridge window. */
2181 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2182 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2183 pci_add_resource(&hbus->resources_for_children,
2184 hbus->high_mmio_res);
2187 return 0;
2189 release_low_mmio:
2190 if (hbus->low_mmio_res) {
2191 vmbus_free_mmio(hbus->low_mmio_res->start,
2192 resource_size(hbus->low_mmio_res));
2195 return ret;
2199 * hv_allocate_config_window() - Find MMIO space for PCI Config
2200 * @hbus: Root PCI bus, as understood by this driver
2202 * This function claims memory-mapped I/O space for accessing
2203 * configuration space for the functions on this bus.
2205 * Return: 0 on success, -errno on failure
2207 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2209 int ret;
2212 * Set up a region of MMIO space to use for accessing configuration
2213 * space.
2215 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2216 PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2217 if (ret)
2218 return ret;
2221 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2222 * resource claims (those which cannot be overlapped) and the ranges
2223 * which are valid for the children of this bus, which are intended
2224 * to be overlapped by those children. Set the flag on this claim
2225 * meaning that this region can't be overlapped.
2228 hbus->mem_config->flags |= IORESOURCE_BUSY;
2230 return 0;
2233 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2235 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2239 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2240 * @hdev: VMBus's tracking struct for this root PCI bus
2242 * Return: 0 on success, -errno on failure
2244 static int hv_pci_enter_d0(struct hv_device *hdev)
2246 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2247 struct pci_bus_d0_entry *d0_entry;
2248 struct hv_pci_compl comp_pkt;
2249 struct pci_packet *pkt;
2250 int ret;
2253 * Tell the host that the bus is ready to use, and moved into the
2254 * powered-on state. This includes telling the host which region
2255 * of memory-mapped I/O space has been chosen for configuration space
2256 * access.
2258 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2259 if (!pkt)
2260 return -ENOMEM;
2262 init_completion(&comp_pkt.host_event);
2263 pkt->completion_func = hv_pci_generic_compl;
2264 pkt->compl_ctxt = &comp_pkt;
2265 d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2266 d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2267 d0_entry->mmio_base = hbus->mem_config->start;
2269 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2270 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2271 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2272 if (!ret)
2273 ret = wait_for_response(hdev, &comp_pkt.host_event);
2275 if (ret)
2276 goto exit;
2278 if (comp_pkt.completion_status < 0) {
2279 dev_err(&hdev->device,
2280 "PCI Pass-through VSP failed D0 Entry with status %x\n",
2281 comp_pkt.completion_status);
2282 ret = -EPROTO;
2283 goto exit;
2286 ret = 0;
2288 exit:
2289 kfree(pkt);
2290 return ret;
2294 * hv_pci_query_relations() - Ask host to send list of child
2295 * devices
2296 * @hdev: VMBus's tracking struct for this root PCI bus
2298 * Return: 0 on success, -errno on failure
2300 static int hv_pci_query_relations(struct hv_device *hdev)
2302 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2303 struct pci_message message;
2304 struct completion comp;
2305 int ret;
2307 /* Ask the host to send along the list of child devices */
2308 init_completion(&comp);
2309 if (cmpxchg(&hbus->survey_event, NULL, &comp))
2310 return -ENOTEMPTY;
2312 memset(&message, 0, sizeof(message));
2313 message.type = PCI_QUERY_BUS_RELATIONS;
2315 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2316 0, VM_PKT_DATA_INBAND, 0);
2317 if (!ret)
2318 ret = wait_for_response(hdev, &comp);
2320 return ret;
2324 * hv_send_resources_allocated() - Report local resource choices
2325 * @hdev: VMBus's tracking struct for this root PCI bus
2327 * The host OS is expecting to be sent a request as a message
2328 * which contains all the resources that the device will use.
2329 * The response contains those same resources, "translated"
2330 * which is to say, the values which should be used by the
2331 * hardware, when it delivers an interrupt. (MMIO resources are
2332 * used in local terms.) This is nice for Windows, and lines up
2333 * with the FDO/PDO split, which doesn't exist in Linux. Linux
2334 * is deeply expecting to scan an emulated PCI configuration
2335 * space. So this message is sent here only to drive the state
2336 * machine on the host forward.
2338 * Return: 0 on success, -errno on failure
2340 static int hv_send_resources_allocated(struct hv_device *hdev)
2342 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2343 struct pci_resources_assigned *res_assigned;
2344 struct pci_resources_assigned2 *res_assigned2;
2345 struct hv_pci_compl comp_pkt;
2346 struct hv_pci_dev *hpdev;
2347 struct pci_packet *pkt;
2348 size_t size_res;
2349 u32 wslot;
2350 int ret;
2352 size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2353 ? sizeof(*res_assigned) : sizeof(*res_assigned2);
2355 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2356 if (!pkt)
2357 return -ENOMEM;
2359 ret = 0;
2361 for (wslot = 0; wslot < 256; wslot++) {
2362 hpdev = get_pcichild_wslot(hbus, wslot);
2363 if (!hpdev)
2364 continue;
2366 memset(pkt, 0, sizeof(*pkt) + size_res);
2367 init_completion(&comp_pkt.host_event);
2368 pkt->completion_func = hv_pci_generic_compl;
2369 pkt->compl_ctxt = &comp_pkt;
2371 if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2372 res_assigned =
2373 (struct pci_resources_assigned *)&pkt->message;
2374 res_assigned->message_type.type =
2375 PCI_RESOURCES_ASSIGNED;
2376 res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2377 } else {
2378 res_assigned2 =
2379 (struct pci_resources_assigned2 *)&pkt->message;
2380 res_assigned2->message_type.type =
2381 PCI_RESOURCES_ASSIGNED2;
2382 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2384 put_pcichild(hpdev);
2386 ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2387 size_res, (unsigned long)pkt,
2388 VM_PKT_DATA_INBAND,
2389 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2390 if (!ret)
2391 ret = wait_for_response(hdev, &comp_pkt.host_event);
2392 if (ret)
2393 break;
2395 if (comp_pkt.completion_status < 0) {
2396 ret = -EPROTO;
2397 dev_err(&hdev->device,
2398 "resource allocated returned 0x%x",
2399 comp_pkt.completion_status);
2400 break;
2404 kfree(pkt);
2405 return ret;
2409 * hv_send_resources_released() - Report local resources
2410 * released
2411 * @hdev: VMBus's tracking struct for this root PCI bus
2413 * Return: 0 on success, -errno on failure
2415 static int hv_send_resources_released(struct hv_device *hdev)
2417 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2418 struct pci_child_message pkt;
2419 struct hv_pci_dev *hpdev;
2420 u32 wslot;
2421 int ret;
2423 for (wslot = 0; wslot < 256; wslot++) {
2424 hpdev = get_pcichild_wslot(hbus, wslot);
2425 if (!hpdev)
2426 continue;
2428 memset(&pkt, 0, sizeof(pkt));
2429 pkt.message_type.type = PCI_RESOURCES_RELEASED;
2430 pkt.wslot.slot = hpdev->desc.win_slot.slot;
2432 put_pcichild(hpdev);
2434 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2435 VM_PKT_DATA_INBAND, 0);
2436 if (ret)
2437 return ret;
2440 return 0;
2443 static void get_hvpcibus(struct hv_pcibus_device *hbus)
2445 refcount_inc(&hbus->remove_lock);
2448 static void put_hvpcibus(struct hv_pcibus_device *hbus)
2450 if (refcount_dec_and_test(&hbus->remove_lock))
2451 complete(&hbus->remove_event);
2455 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2456 * @hdev: VMBus's tracking struct for this root PCI bus
2457 * @dev_id: Identifies the device itself
2459 * Return: 0 on success, -errno on failure
2461 static int hv_pci_probe(struct hv_device *hdev,
2462 const struct hv_vmbus_device_id *dev_id)
2464 struct hv_pcibus_device *hbus;
2465 int ret;
2468 * hv_pcibus_device contains the hypercall arguments for retargeting in
2469 * hv_irq_unmask(). Those must not cross a page boundary.
2471 BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2473 hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
2474 if (!hbus)
2475 return -ENOMEM;
2476 hbus->state = hv_pcibus_init;
2479 * The PCI bus "domain" is what is called "segment" in ACPI and
2480 * other specs. Pull it from the instance ID, to get something
2481 * unique. Bytes 8 and 9 are what is used in Windows guests, so
2482 * do the same thing for consistency. Note that, since this code
2483 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee
2484 * that (1) the only domain in use for something that looks like
2485 * a physical PCI bus (which is actually emulated by the
2486 * hypervisor) is domain 0 and (2) there will be no overlap
2487 * between domains derived from these instance IDs in the same
2488 * VM.
2490 hbus->sysdata.domain = hdev->dev_instance.b[9] |
2491 hdev->dev_instance.b[8] << 8;
2493 hbus->hdev = hdev;
2494 refcount_set(&hbus->remove_lock, 1);
2495 INIT_LIST_HEAD(&hbus->children);
2496 INIT_LIST_HEAD(&hbus->dr_list);
2497 INIT_LIST_HEAD(&hbus->resources_for_children);
2498 spin_lock_init(&hbus->config_lock);
2499 spin_lock_init(&hbus->device_list_lock);
2500 spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2501 init_completion(&hbus->remove_event);
2502 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
2503 hbus->sysdata.domain);
2504 if (!hbus->wq) {
2505 ret = -ENOMEM;
2506 goto free_bus;
2509 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2510 hv_pci_onchannelcallback, hbus);
2511 if (ret)
2512 goto destroy_wq;
2514 hv_set_drvdata(hdev, hbus);
2516 ret = hv_pci_protocol_negotiation(hdev);
2517 if (ret)
2518 goto close;
2520 ret = hv_allocate_config_window(hbus);
2521 if (ret)
2522 goto close;
2524 hbus->cfg_addr = ioremap(hbus->mem_config->start,
2525 PCI_CONFIG_MMIO_LENGTH);
2526 if (!hbus->cfg_addr) {
2527 dev_err(&hdev->device,
2528 "Unable to map a virtual address for config space\n");
2529 ret = -ENOMEM;
2530 goto free_config;
2533 hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus);
2534 if (!hbus->sysdata.fwnode) {
2535 ret = -ENOMEM;
2536 goto unmap;
2539 ret = hv_pcie_init_irq_domain(hbus);
2540 if (ret)
2541 goto free_fwnode;
2543 ret = hv_pci_query_relations(hdev);
2544 if (ret)
2545 goto free_irq_domain;
2547 ret = hv_pci_enter_d0(hdev);
2548 if (ret)
2549 goto free_irq_domain;
2551 ret = hv_pci_allocate_bridge_windows(hbus);
2552 if (ret)
2553 goto free_irq_domain;
2555 ret = hv_send_resources_allocated(hdev);
2556 if (ret)
2557 goto free_windows;
2559 prepopulate_bars(hbus);
2561 hbus->state = hv_pcibus_probed;
2563 ret = create_root_hv_pci_bus(hbus);
2564 if (ret)
2565 goto free_windows;
2567 return 0;
2569 free_windows:
2570 hv_pci_free_bridge_windows(hbus);
2571 free_irq_domain:
2572 irq_domain_remove(hbus->irq_domain);
2573 free_fwnode:
2574 irq_domain_free_fwnode(hbus->sysdata.fwnode);
2575 unmap:
2576 iounmap(hbus->cfg_addr);
2577 free_config:
2578 hv_free_config_window(hbus);
2579 close:
2580 vmbus_close(hdev->channel);
2581 destroy_wq:
2582 destroy_workqueue(hbus->wq);
2583 free_bus:
2584 free_page((unsigned long)hbus);
2585 return ret;
2588 static void hv_pci_bus_exit(struct hv_device *hdev)
2590 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2591 struct {
2592 struct pci_packet teardown_packet;
2593 u8 buffer[sizeof(struct pci_message)];
2594 } pkt;
2595 struct pci_bus_relations relations;
2596 struct hv_pci_compl comp_pkt;
2597 int ret;
2600 * After the host sends the RESCIND_CHANNEL message, it doesn't
2601 * access the per-channel ringbuffer any longer.
2603 if (hdev->channel->rescind)
2604 return;
2606 /* Delete any children which might still exist. */
2607 memset(&relations, 0, sizeof(relations));
2608 hv_pci_devices_present(hbus, &relations);
2610 ret = hv_send_resources_released(hdev);
2611 if (ret)
2612 dev_err(&hdev->device,
2613 "Couldn't send resources released packet(s)\n");
2615 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
2616 init_completion(&comp_pkt.host_event);
2617 pkt.teardown_packet.completion_func = hv_pci_generic_compl;
2618 pkt.teardown_packet.compl_ctxt = &comp_pkt;
2619 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
2621 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
2622 sizeof(struct pci_message),
2623 (unsigned long)&pkt.teardown_packet,
2624 VM_PKT_DATA_INBAND,
2625 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2626 if (!ret)
2627 wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
2631 * hv_pci_remove() - Remove routine for this VMBus channel
2632 * @hdev: VMBus's tracking struct for this root PCI bus
2634 * Return: 0 on success, -errno on failure
2636 static int hv_pci_remove(struct hv_device *hdev)
2638 struct hv_pcibus_device *hbus;
2640 hbus = hv_get_drvdata(hdev);
2641 if (hbus->state == hv_pcibus_installed) {
2642 /* Remove the bus from PCI's point of view. */
2643 pci_lock_rescan_remove();
2644 pci_stop_root_bus(hbus->pci_bus);
2645 pci_remove_root_bus(hbus->pci_bus);
2646 pci_unlock_rescan_remove();
2647 hbus->state = hv_pcibus_removed;
2650 hv_pci_bus_exit(hdev);
2652 vmbus_close(hdev->channel);
2654 iounmap(hbus->cfg_addr);
2655 hv_free_config_window(hbus);
2656 pci_free_resource_list(&hbus->resources_for_children);
2657 hv_pci_free_bridge_windows(hbus);
2658 irq_domain_remove(hbus->irq_domain);
2659 irq_domain_free_fwnode(hbus->sysdata.fwnode);
2660 put_hvpcibus(hbus);
2661 wait_for_completion(&hbus->remove_event);
2662 destroy_workqueue(hbus->wq);
2663 free_page((unsigned long)hbus);
2664 return 0;
2667 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
2668 /* PCI Pass-through Class ID */
2669 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
2670 { HV_PCIE_GUID, },
2671 { },
2674 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
2676 static struct hv_driver hv_pci_drv = {
2677 .name = "hv_pci",
2678 .id_table = hv_pci_id_table,
2679 .probe = hv_pci_probe,
2680 .remove = hv_pci_remove,
2683 static void __exit exit_hv_pci_drv(void)
2685 vmbus_driver_unregister(&hv_pci_drv);
2688 static int __init init_hv_pci_drv(void)
2690 return vmbus_driver_register(&hv_pci_drv);
2693 module_init(init_hv_pci_drv);
2694 module_exit(exit_hv_pci_drv);
2696 MODULE_DESCRIPTION("Hyper-V PCI");
2697 MODULE_LICENSE("GPL v2");