staging: rtl8188eu: rename HalSetBrateCfg() - style
[linux/fpc-iii.git] / drivers / rtc / rtc-stm32.c
blobc5908cfea2340ff3233322e1786aac63b74ec8b8
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) STMicroelectronics 2017
4 * Author: Amelie Delaunay <amelie.delaunay@st.com>
5 */
7 #include <linux/bcd.h>
8 #include <linux/clk.h>
9 #include <linux/iopoll.h>
10 #include <linux/ioport.h>
11 #include <linux/mfd/syscon.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/pm_wakeirq.h>
15 #include <linux/regmap.h>
16 #include <linux/rtc.h>
18 #define DRIVER_NAME "stm32_rtc"
20 /* STM32_RTC_TR bit fields */
21 #define STM32_RTC_TR_SEC_SHIFT 0
22 #define STM32_RTC_TR_SEC GENMASK(6, 0)
23 #define STM32_RTC_TR_MIN_SHIFT 8
24 #define STM32_RTC_TR_MIN GENMASK(14, 8)
25 #define STM32_RTC_TR_HOUR_SHIFT 16
26 #define STM32_RTC_TR_HOUR GENMASK(21, 16)
28 /* STM32_RTC_DR bit fields */
29 #define STM32_RTC_DR_DATE_SHIFT 0
30 #define STM32_RTC_DR_DATE GENMASK(5, 0)
31 #define STM32_RTC_DR_MONTH_SHIFT 8
32 #define STM32_RTC_DR_MONTH GENMASK(12, 8)
33 #define STM32_RTC_DR_WDAY_SHIFT 13
34 #define STM32_RTC_DR_WDAY GENMASK(15, 13)
35 #define STM32_RTC_DR_YEAR_SHIFT 16
36 #define STM32_RTC_DR_YEAR GENMASK(23, 16)
38 /* STM32_RTC_CR bit fields */
39 #define STM32_RTC_CR_FMT BIT(6)
40 #define STM32_RTC_CR_ALRAE BIT(8)
41 #define STM32_RTC_CR_ALRAIE BIT(12)
43 /* STM32_RTC_ISR/STM32_RTC_ICSR bit fields */
44 #define STM32_RTC_ISR_ALRAWF BIT(0)
45 #define STM32_RTC_ISR_INITS BIT(4)
46 #define STM32_RTC_ISR_RSF BIT(5)
47 #define STM32_RTC_ISR_INITF BIT(6)
48 #define STM32_RTC_ISR_INIT BIT(7)
49 #define STM32_RTC_ISR_ALRAF BIT(8)
51 /* STM32_RTC_PRER bit fields */
52 #define STM32_RTC_PRER_PRED_S_SHIFT 0
53 #define STM32_RTC_PRER_PRED_S GENMASK(14, 0)
54 #define STM32_RTC_PRER_PRED_A_SHIFT 16
55 #define STM32_RTC_PRER_PRED_A GENMASK(22, 16)
57 /* STM32_RTC_ALRMAR and STM32_RTC_ALRMBR bit fields */
58 #define STM32_RTC_ALRMXR_SEC_SHIFT 0
59 #define STM32_RTC_ALRMXR_SEC GENMASK(6, 0)
60 #define STM32_RTC_ALRMXR_SEC_MASK BIT(7)
61 #define STM32_RTC_ALRMXR_MIN_SHIFT 8
62 #define STM32_RTC_ALRMXR_MIN GENMASK(14, 8)
63 #define STM32_RTC_ALRMXR_MIN_MASK BIT(15)
64 #define STM32_RTC_ALRMXR_HOUR_SHIFT 16
65 #define STM32_RTC_ALRMXR_HOUR GENMASK(21, 16)
66 #define STM32_RTC_ALRMXR_PM BIT(22)
67 #define STM32_RTC_ALRMXR_HOUR_MASK BIT(23)
68 #define STM32_RTC_ALRMXR_DATE_SHIFT 24
69 #define STM32_RTC_ALRMXR_DATE GENMASK(29, 24)
70 #define STM32_RTC_ALRMXR_WDSEL BIT(30)
71 #define STM32_RTC_ALRMXR_WDAY_SHIFT 24
72 #define STM32_RTC_ALRMXR_WDAY GENMASK(27, 24)
73 #define STM32_RTC_ALRMXR_DATE_MASK BIT(31)
75 /* STM32_RTC_SR/_SCR bit fields */
76 #define STM32_RTC_SR_ALRA BIT(0)
78 /* STM32_RTC_VERR bit fields */
79 #define STM32_RTC_VERR_MINREV_SHIFT 0
80 #define STM32_RTC_VERR_MINREV GENMASK(3, 0)
81 #define STM32_RTC_VERR_MAJREV_SHIFT 4
82 #define STM32_RTC_VERR_MAJREV GENMASK(7, 4)
84 /* STM32_RTC_WPR key constants */
85 #define RTC_WPR_1ST_KEY 0xCA
86 #define RTC_WPR_2ND_KEY 0x53
87 #define RTC_WPR_WRONG_KEY 0xFF
89 /* Max STM32 RTC register offset is 0x3FC */
90 #define UNDEF_REG 0xFFFF
92 struct stm32_rtc;
94 struct stm32_rtc_registers {
95 u16 tr;
96 u16 dr;
97 u16 cr;
98 u16 isr;
99 u16 prer;
100 u16 alrmar;
101 u16 wpr;
102 u16 sr;
103 u16 scr;
104 u16 verr;
107 struct stm32_rtc_events {
108 u32 alra;
111 struct stm32_rtc_data {
112 const struct stm32_rtc_registers regs;
113 const struct stm32_rtc_events events;
114 void (*clear_events)(struct stm32_rtc *rtc, unsigned int flags);
115 bool has_pclk;
116 bool need_dbp;
117 bool has_wakeirq;
120 struct stm32_rtc {
121 struct rtc_device *rtc_dev;
122 void __iomem *base;
123 struct regmap *dbp;
124 unsigned int dbp_reg;
125 unsigned int dbp_mask;
126 struct clk *pclk;
127 struct clk *rtc_ck;
128 const struct stm32_rtc_data *data;
129 int irq_alarm;
130 int wakeirq_alarm;
133 static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc)
135 const struct stm32_rtc_registers *regs = &rtc->data->regs;
137 writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + regs->wpr);
138 writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + regs->wpr);
141 static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc)
143 const struct stm32_rtc_registers *regs = &rtc->data->regs;
145 writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + regs->wpr);
148 static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc)
150 const struct stm32_rtc_registers *regs = &rtc->data->regs;
151 unsigned int isr = readl_relaxed(rtc->base + regs->isr);
153 if (!(isr & STM32_RTC_ISR_INITF)) {
154 isr |= STM32_RTC_ISR_INIT;
155 writel_relaxed(isr, rtc->base + regs->isr);
158 * It takes around 2 rtc_ck clock cycles to enter in
159 * initialization phase mode (and have INITF flag set). As
160 * slowest rtc_ck frequency may be 32kHz and highest should be
161 * 1MHz, we poll every 10 us with a timeout of 100ms.
163 return readl_relaxed_poll_timeout_atomic(
164 rtc->base + regs->isr,
165 isr, (isr & STM32_RTC_ISR_INITF),
166 10, 100000);
169 return 0;
172 static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc)
174 const struct stm32_rtc_registers *regs = &rtc->data->regs;
175 unsigned int isr = readl_relaxed(rtc->base + regs->isr);
177 isr &= ~STM32_RTC_ISR_INIT;
178 writel_relaxed(isr, rtc->base + regs->isr);
181 static int stm32_rtc_wait_sync(struct stm32_rtc *rtc)
183 const struct stm32_rtc_registers *regs = &rtc->data->regs;
184 unsigned int isr = readl_relaxed(rtc->base + regs->isr);
186 isr &= ~STM32_RTC_ISR_RSF;
187 writel_relaxed(isr, rtc->base + regs->isr);
190 * Wait for RSF to be set to ensure the calendar registers are
191 * synchronised, it takes around 2 rtc_ck clock cycles
193 return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
194 isr,
195 (isr & STM32_RTC_ISR_RSF),
196 10, 100000);
199 static void stm32_rtc_clear_event_flags(struct stm32_rtc *rtc,
200 unsigned int flags)
202 rtc->data->clear_events(rtc, flags);
205 static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id)
207 struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id;
208 const struct stm32_rtc_registers *regs = &rtc->data->regs;
209 const struct stm32_rtc_events *evts = &rtc->data->events;
210 unsigned int status, cr;
212 mutex_lock(&rtc->rtc_dev->ops_lock);
214 status = readl_relaxed(rtc->base + regs->sr);
215 cr = readl_relaxed(rtc->base + regs->cr);
217 if ((status & evts->alra) &&
218 (cr & STM32_RTC_CR_ALRAIE)) {
219 /* Alarm A flag - Alarm interrupt */
220 dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n");
222 /* Pass event to the kernel */
223 rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
225 /* Clear event flags, otherwise new events won't be received */
226 stm32_rtc_clear_event_flags(rtc, evts->alra);
229 mutex_unlock(&rtc->rtc_dev->ops_lock);
231 return IRQ_HANDLED;
234 /* Convert rtc_time structure from bin to bcd format */
235 static void tm2bcd(struct rtc_time *tm)
237 tm->tm_sec = bin2bcd(tm->tm_sec);
238 tm->tm_min = bin2bcd(tm->tm_min);
239 tm->tm_hour = bin2bcd(tm->tm_hour);
241 tm->tm_mday = bin2bcd(tm->tm_mday);
242 tm->tm_mon = bin2bcd(tm->tm_mon + 1);
243 tm->tm_year = bin2bcd(tm->tm_year - 100);
245 * Number of days since Sunday
246 * - on kernel side, 0=Sunday...6=Saturday
247 * - on rtc side, 0=invalid,1=Monday...7=Sunday
249 tm->tm_wday = (!tm->tm_wday) ? 7 : tm->tm_wday;
252 /* Convert rtc_time structure from bcd to bin format */
253 static void bcd2tm(struct rtc_time *tm)
255 tm->tm_sec = bcd2bin(tm->tm_sec);
256 tm->tm_min = bcd2bin(tm->tm_min);
257 tm->tm_hour = bcd2bin(tm->tm_hour);
259 tm->tm_mday = bcd2bin(tm->tm_mday);
260 tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
261 tm->tm_year = bcd2bin(tm->tm_year) + 100;
263 * Number of days since Sunday
264 * - on kernel side, 0=Sunday...6=Saturday
265 * - on rtc side, 0=invalid,1=Monday...7=Sunday
267 tm->tm_wday %= 7;
270 static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm)
272 struct stm32_rtc *rtc = dev_get_drvdata(dev);
273 const struct stm32_rtc_registers *regs = &rtc->data->regs;
274 unsigned int tr, dr;
276 /* Time and Date in BCD format */
277 tr = readl_relaxed(rtc->base + regs->tr);
278 dr = readl_relaxed(rtc->base + regs->dr);
280 tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
281 tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
282 tm->tm_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
284 tm->tm_mday = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
285 tm->tm_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
286 tm->tm_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
287 tm->tm_wday = (dr & STM32_RTC_DR_WDAY) >> STM32_RTC_DR_WDAY_SHIFT;
289 /* We don't report tm_yday and tm_isdst */
291 bcd2tm(tm);
293 return 0;
296 static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm)
298 struct stm32_rtc *rtc = dev_get_drvdata(dev);
299 const struct stm32_rtc_registers *regs = &rtc->data->regs;
300 unsigned int tr, dr;
301 int ret = 0;
303 tm2bcd(tm);
305 /* Time in BCD format */
306 tr = ((tm->tm_sec << STM32_RTC_TR_SEC_SHIFT) & STM32_RTC_TR_SEC) |
307 ((tm->tm_min << STM32_RTC_TR_MIN_SHIFT) & STM32_RTC_TR_MIN) |
308 ((tm->tm_hour << STM32_RTC_TR_HOUR_SHIFT) & STM32_RTC_TR_HOUR);
310 /* Date in BCD format */
311 dr = ((tm->tm_mday << STM32_RTC_DR_DATE_SHIFT) & STM32_RTC_DR_DATE) |
312 ((tm->tm_mon << STM32_RTC_DR_MONTH_SHIFT) & STM32_RTC_DR_MONTH) |
313 ((tm->tm_year << STM32_RTC_DR_YEAR_SHIFT) & STM32_RTC_DR_YEAR) |
314 ((tm->tm_wday << STM32_RTC_DR_WDAY_SHIFT) & STM32_RTC_DR_WDAY);
316 stm32_rtc_wpr_unlock(rtc);
318 ret = stm32_rtc_enter_init_mode(rtc);
319 if (ret) {
320 dev_err(dev, "Can't enter in init mode. Set time aborted.\n");
321 goto end;
324 writel_relaxed(tr, rtc->base + regs->tr);
325 writel_relaxed(dr, rtc->base + regs->dr);
327 stm32_rtc_exit_init_mode(rtc);
329 ret = stm32_rtc_wait_sync(rtc);
330 end:
331 stm32_rtc_wpr_lock(rtc);
333 return ret;
336 static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
338 struct stm32_rtc *rtc = dev_get_drvdata(dev);
339 const struct stm32_rtc_registers *regs = &rtc->data->regs;
340 const struct stm32_rtc_events *evts = &rtc->data->events;
341 struct rtc_time *tm = &alrm->time;
342 unsigned int alrmar, cr, status;
344 alrmar = readl_relaxed(rtc->base + regs->alrmar);
345 cr = readl_relaxed(rtc->base + regs->cr);
346 status = readl_relaxed(rtc->base + regs->sr);
348 if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) {
350 * Date/day doesn't matter in Alarm comparison so alarm
351 * triggers every day
353 tm->tm_mday = -1;
354 tm->tm_wday = -1;
355 } else {
356 if (alrmar & STM32_RTC_ALRMXR_WDSEL) {
357 /* Alarm is set to a day of week */
358 tm->tm_mday = -1;
359 tm->tm_wday = (alrmar & STM32_RTC_ALRMXR_WDAY) >>
360 STM32_RTC_ALRMXR_WDAY_SHIFT;
361 tm->tm_wday %= 7;
362 } else {
363 /* Alarm is set to a day of month */
364 tm->tm_wday = -1;
365 tm->tm_mday = (alrmar & STM32_RTC_ALRMXR_DATE) >>
366 STM32_RTC_ALRMXR_DATE_SHIFT;
370 if (alrmar & STM32_RTC_ALRMXR_HOUR_MASK) {
371 /* Hours don't matter in Alarm comparison */
372 tm->tm_hour = -1;
373 } else {
374 tm->tm_hour = (alrmar & STM32_RTC_ALRMXR_HOUR) >>
375 STM32_RTC_ALRMXR_HOUR_SHIFT;
376 if (alrmar & STM32_RTC_ALRMXR_PM)
377 tm->tm_hour += 12;
380 if (alrmar & STM32_RTC_ALRMXR_MIN_MASK) {
381 /* Minutes don't matter in Alarm comparison */
382 tm->tm_min = -1;
383 } else {
384 tm->tm_min = (alrmar & STM32_RTC_ALRMXR_MIN) >>
385 STM32_RTC_ALRMXR_MIN_SHIFT;
388 if (alrmar & STM32_RTC_ALRMXR_SEC_MASK) {
389 /* Seconds don't matter in Alarm comparison */
390 tm->tm_sec = -1;
391 } else {
392 tm->tm_sec = (alrmar & STM32_RTC_ALRMXR_SEC) >>
393 STM32_RTC_ALRMXR_SEC_SHIFT;
396 bcd2tm(tm);
398 alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0;
399 alrm->pending = (status & evts->alra) ? 1 : 0;
401 return 0;
404 static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
406 struct stm32_rtc *rtc = dev_get_drvdata(dev);
407 const struct stm32_rtc_registers *regs = &rtc->data->regs;
408 const struct stm32_rtc_events *evts = &rtc->data->events;
409 unsigned int cr;
411 cr = readl_relaxed(rtc->base + regs->cr);
413 stm32_rtc_wpr_unlock(rtc);
415 /* We expose Alarm A to the kernel */
416 if (enabled)
417 cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
418 else
419 cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
420 writel_relaxed(cr, rtc->base + regs->cr);
422 /* Clear event flags, otherwise new events won't be received */
423 stm32_rtc_clear_event_flags(rtc, evts->alra);
425 stm32_rtc_wpr_lock(rtc);
427 return 0;
430 static int stm32_rtc_valid_alrm(struct stm32_rtc *rtc, struct rtc_time *tm)
432 const struct stm32_rtc_registers *regs = &rtc->data->regs;
433 int cur_day, cur_mon, cur_year, cur_hour, cur_min, cur_sec;
434 unsigned int dr = readl_relaxed(rtc->base + regs->dr);
435 unsigned int tr = readl_relaxed(rtc->base + regs->tr);
437 cur_day = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
438 cur_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
439 cur_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
440 cur_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
441 cur_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
442 cur_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
445 * Assuming current date is M-D-Y H:M:S.
446 * RTC alarm can't be set on a specific month and year.
447 * So the valid alarm range is:
448 * M-D-Y H:M:S < alarm <= (M+1)-D-Y H:M:S
449 * with a specific case for December...
451 if ((((tm->tm_year > cur_year) &&
452 (tm->tm_mon == 0x1) && (cur_mon == 0x12)) ||
453 ((tm->tm_year == cur_year) &&
454 (tm->tm_mon <= cur_mon + 1))) &&
455 ((tm->tm_mday > cur_day) ||
456 ((tm->tm_mday == cur_day) &&
457 ((tm->tm_hour > cur_hour) ||
458 ((tm->tm_hour == cur_hour) && (tm->tm_min > cur_min)) ||
459 ((tm->tm_hour == cur_hour) && (tm->tm_min == cur_min) &&
460 (tm->tm_sec >= cur_sec))))))
461 return 0;
463 return -EINVAL;
466 static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
468 struct stm32_rtc *rtc = dev_get_drvdata(dev);
469 const struct stm32_rtc_registers *regs = &rtc->data->regs;
470 struct rtc_time *tm = &alrm->time;
471 unsigned int cr, isr, alrmar;
472 int ret = 0;
474 tm2bcd(tm);
477 * RTC alarm can't be set on a specific date, unless this date is
478 * up to the same day of month next month.
480 if (stm32_rtc_valid_alrm(rtc, tm) < 0) {
481 dev_err(dev, "Alarm can be set only on upcoming month.\n");
482 return -EINVAL;
485 alrmar = 0;
486 /* tm_year and tm_mon are not used because not supported by RTC */
487 alrmar |= (tm->tm_mday << STM32_RTC_ALRMXR_DATE_SHIFT) &
488 STM32_RTC_ALRMXR_DATE;
489 /* 24-hour format */
490 alrmar &= ~STM32_RTC_ALRMXR_PM;
491 alrmar |= (tm->tm_hour << STM32_RTC_ALRMXR_HOUR_SHIFT) &
492 STM32_RTC_ALRMXR_HOUR;
493 alrmar |= (tm->tm_min << STM32_RTC_ALRMXR_MIN_SHIFT) &
494 STM32_RTC_ALRMXR_MIN;
495 alrmar |= (tm->tm_sec << STM32_RTC_ALRMXR_SEC_SHIFT) &
496 STM32_RTC_ALRMXR_SEC;
498 stm32_rtc_wpr_unlock(rtc);
500 /* Disable Alarm */
501 cr = readl_relaxed(rtc->base + regs->cr);
502 cr &= ~STM32_RTC_CR_ALRAE;
503 writel_relaxed(cr, rtc->base + regs->cr);
506 * Poll Alarm write flag to be sure that Alarm update is allowed: it
507 * takes around 2 rtc_ck clock cycles
509 ret = readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
510 isr,
511 (isr & STM32_RTC_ISR_ALRAWF),
512 10, 100000);
514 if (ret) {
515 dev_err(dev, "Alarm update not allowed\n");
516 goto end;
519 /* Write to Alarm register */
520 writel_relaxed(alrmar, rtc->base + regs->alrmar);
522 if (alrm->enabled)
523 stm32_rtc_alarm_irq_enable(dev, 1);
524 else
525 stm32_rtc_alarm_irq_enable(dev, 0);
527 end:
528 stm32_rtc_wpr_lock(rtc);
530 return ret;
533 static const struct rtc_class_ops stm32_rtc_ops = {
534 .read_time = stm32_rtc_read_time,
535 .set_time = stm32_rtc_set_time,
536 .read_alarm = stm32_rtc_read_alarm,
537 .set_alarm = stm32_rtc_set_alarm,
538 .alarm_irq_enable = stm32_rtc_alarm_irq_enable,
541 static void stm32_rtc_clear_events(struct stm32_rtc *rtc,
542 unsigned int flags)
544 const struct stm32_rtc_registers *regs = &rtc->data->regs;
546 /* Flags are cleared by writing 0 in RTC_ISR */
547 writel_relaxed(readl_relaxed(rtc->base + regs->isr) & ~flags,
548 rtc->base + regs->isr);
551 static const struct stm32_rtc_data stm32_rtc_data = {
552 .has_pclk = false,
553 .need_dbp = true,
554 .has_wakeirq = false,
555 .regs = {
556 .tr = 0x00,
557 .dr = 0x04,
558 .cr = 0x08,
559 .isr = 0x0C,
560 .prer = 0x10,
561 .alrmar = 0x1C,
562 .wpr = 0x24,
563 .sr = 0x0C, /* set to ISR offset to ease alarm management */
564 .scr = UNDEF_REG,
565 .verr = UNDEF_REG,
567 .events = {
568 .alra = STM32_RTC_ISR_ALRAF,
570 .clear_events = stm32_rtc_clear_events,
573 static const struct stm32_rtc_data stm32h7_rtc_data = {
574 .has_pclk = true,
575 .need_dbp = true,
576 .has_wakeirq = false,
577 .regs = {
578 .tr = 0x00,
579 .dr = 0x04,
580 .cr = 0x08,
581 .isr = 0x0C,
582 .prer = 0x10,
583 .alrmar = 0x1C,
584 .wpr = 0x24,
585 .sr = 0x0C, /* set to ISR offset to ease alarm management */
586 .scr = UNDEF_REG,
587 .verr = UNDEF_REG,
589 .events = {
590 .alra = STM32_RTC_ISR_ALRAF,
592 .clear_events = stm32_rtc_clear_events,
595 static void stm32mp1_rtc_clear_events(struct stm32_rtc *rtc,
596 unsigned int flags)
598 struct stm32_rtc_registers regs = rtc->data->regs;
600 /* Flags are cleared by writing 1 in RTC_SCR */
601 writel_relaxed(flags, rtc->base + regs.scr);
604 static const struct stm32_rtc_data stm32mp1_data = {
605 .has_pclk = true,
606 .need_dbp = false,
607 .has_wakeirq = true,
608 .regs = {
609 .tr = 0x00,
610 .dr = 0x04,
611 .cr = 0x18,
612 .isr = 0x0C, /* named RTC_ICSR on stm32mp1 */
613 .prer = 0x10,
614 .alrmar = 0x40,
615 .wpr = 0x24,
616 .sr = 0x50,
617 .scr = 0x5C,
618 .verr = 0x3F4,
620 .events = {
621 .alra = STM32_RTC_SR_ALRA,
623 .clear_events = stm32mp1_rtc_clear_events,
626 static const struct of_device_id stm32_rtc_of_match[] = {
627 { .compatible = "st,stm32-rtc", .data = &stm32_rtc_data },
628 { .compatible = "st,stm32h7-rtc", .data = &stm32h7_rtc_data },
629 { .compatible = "st,stm32mp1-rtc", .data = &stm32mp1_data },
632 MODULE_DEVICE_TABLE(of, stm32_rtc_of_match);
634 static int stm32_rtc_init(struct platform_device *pdev,
635 struct stm32_rtc *rtc)
637 const struct stm32_rtc_registers *regs = &rtc->data->regs;
638 unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
639 unsigned int rate;
640 int ret = 0;
642 rate = clk_get_rate(rtc->rtc_ck);
644 /* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
645 pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT;
646 pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT;
648 for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) {
649 pred_s = (rate / (pred_a + 1)) - 1;
651 if (((pred_s + 1) * (pred_a + 1)) == rate)
652 break;
656 * Can't find a 1Hz, so give priority to RTC power consumption
657 * by choosing the higher possible value for prediv_a
659 if ((pred_s > pred_s_max) || (pred_a > pred_a_max)) {
660 pred_a = pred_a_max;
661 pred_s = (rate / (pred_a + 1)) - 1;
663 dev_warn(&pdev->dev, "rtc_ck is %s\n",
664 (rate < ((pred_a + 1) * (pred_s + 1))) ?
665 "fast" : "slow");
668 stm32_rtc_wpr_unlock(rtc);
670 ret = stm32_rtc_enter_init_mode(rtc);
671 if (ret) {
672 dev_err(&pdev->dev,
673 "Can't enter in init mode. Prescaler config failed.\n");
674 goto end;
677 prer = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & STM32_RTC_PRER_PRED_S;
678 writel_relaxed(prer, rtc->base + regs->prer);
679 prer |= (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & STM32_RTC_PRER_PRED_A;
680 writel_relaxed(prer, rtc->base + regs->prer);
682 /* Force 24h time format */
683 cr = readl_relaxed(rtc->base + regs->cr);
684 cr &= ~STM32_RTC_CR_FMT;
685 writel_relaxed(cr, rtc->base + regs->cr);
687 stm32_rtc_exit_init_mode(rtc);
689 ret = stm32_rtc_wait_sync(rtc);
690 end:
691 stm32_rtc_wpr_lock(rtc);
693 return ret;
696 static int stm32_rtc_probe(struct platform_device *pdev)
698 struct stm32_rtc *rtc;
699 const struct stm32_rtc_registers *regs;
700 struct resource *res;
701 int ret;
703 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
704 if (!rtc)
705 return -ENOMEM;
707 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
708 rtc->base = devm_ioremap_resource(&pdev->dev, res);
709 if (IS_ERR(rtc->base))
710 return PTR_ERR(rtc->base);
712 rtc->data = (struct stm32_rtc_data *)
713 of_device_get_match_data(&pdev->dev);
714 regs = &rtc->data->regs;
716 if (rtc->data->need_dbp) {
717 rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
718 "st,syscfg");
719 if (IS_ERR(rtc->dbp)) {
720 dev_err(&pdev->dev, "no st,syscfg\n");
721 return PTR_ERR(rtc->dbp);
724 ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
725 1, &rtc->dbp_reg);
726 if (ret) {
727 dev_err(&pdev->dev, "can't read DBP register offset\n");
728 return ret;
731 ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
732 2, &rtc->dbp_mask);
733 if (ret) {
734 dev_err(&pdev->dev, "can't read DBP register mask\n");
735 return ret;
739 if (!rtc->data->has_pclk) {
740 rtc->pclk = NULL;
741 rtc->rtc_ck = devm_clk_get(&pdev->dev, NULL);
742 } else {
743 rtc->pclk = devm_clk_get(&pdev->dev, "pclk");
744 if (IS_ERR(rtc->pclk)) {
745 dev_err(&pdev->dev, "no pclk clock");
746 return PTR_ERR(rtc->pclk);
748 rtc->rtc_ck = devm_clk_get(&pdev->dev, "rtc_ck");
750 if (IS_ERR(rtc->rtc_ck)) {
751 dev_err(&pdev->dev, "no rtc_ck clock");
752 return PTR_ERR(rtc->rtc_ck);
755 if (rtc->data->has_pclk) {
756 ret = clk_prepare_enable(rtc->pclk);
757 if (ret)
758 return ret;
761 ret = clk_prepare_enable(rtc->rtc_ck);
762 if (ret)
763 goto err;
765 if (rtc->data->need_dbp)
766 regmap_update_bits(rtc->dbp, rtc->dbp_reg,
767 rtc->dbp_mask, rtc->dbp_mask);
770 * After a system reset, RTC_ISR.INITS flag can be read to check if
771 * the calendar has been initialized or not. INITS flag is reset by a
772 * power-on reset (no vbat, no power-supply). It is not reset if
773 * rtc_ck parent clock has changed (so RTC prescalers need to be
774 * changed). That's why we cannot rely on this flag to know if RTC
775 * init has to be done.
777 ret = stm32_rtc_init(pdev, rtc);
778 if (ret)
779 goto err;
781 rtc->irq_alarm = platform_get_irq(pdev, 0);
782 if (rtc->irq_alarm <= 0) {
783 dev_err(&pdev->dev, "no alarm irq\n");
784 ret = rtc->irq_alarm;
785 goto err;
788 ret = device_init_wakeup(&pdev->dev, true);
789 if (rtc->data->has_wakeirq) {
790 rtc->wakeirq_alarm = platform_get_irq(pdev, 1);
791 if (rtc->wakeirq_alarm <= 0)
792 ret = rtc->wakeirq_alarm;
793 else
794 ret = dev_pm_set_dedicated_wake_irq(&pdev->dev,
795 rtc->wakeirq_alarm);
797 if (ret)
798 dev_warn(&pdev->dev, "alarm can't wake up the system: %d", ret);
800 platform_set_drvdata(pdev, rtc);
802 rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name,
803 &stm32_rtc_ops, THIS_MODULE);
804 if (IS_ERR(rtc->rtc_dev)) {
805 ret = PTR_ERR(rtc->rtc_dev);
806 dev_err(&pdev->dev, "rtc device registration failed, err=%d\n",
807 ret);
808 goto err;
811 /* Handle RTC alarm interrupts */
812 ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_alarm, NULL,
813 stm32_rtc_alarm_irq, IRQF_ONESHOT,
814 pdev->name, rtc);
815 if (ret) {
816 dev_err(&pdev->dev, "IRQ%d (alarm interrupt) already claimed\n",
817 rtc->irq_alarm);
818 goto err;
822 * If INITS flag is reset (calendar year field set to 0x00), calendar
823 * must be initialized
825 if (!(readl_relaxed(rtc->base + regs->isr) & STM32_RTC_ISR_INITS))
826 dev_warn(&pdev->dev, "Date/Time must be initialized\n");
828 if (regs->verr != UNDEF_REG) {
829 u32 ver = readl_relaxed(rtc->base + regs->verr);
831 dev_info(&pdev->dev, "registered rev:%d.%d\n",
832 (ver >> STM32_RTC_VERR_MAJREV_SHIFT) & 0xF,
833 (ver >> STM32_RTC_VERR_MINREV_SHIFT) & 0xF);
836 return 0;
837 err:
838 if (rtc->data->has_pclk)
839 clk_disable_unprepare(rtc->pclk);
840 clk_disable_unprepare(rtc->rtc_ck);
842 if (rtc->data->need_dbp)
843 regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
845 dev_pm_clear_wake_irq(&pdev->dev);
846 device_init_wakeup(&pdev->dev, false);
848 return ret;
851 static int stm32_rtc_remove(struct platform_device *pdev)
853 struct stm32_rtc *rtc = platform_get_drvdata(pdev);
854 const struct stm32_rtc_registers *regs = &rtc->data->regs;
855 unsigned int cr;
857 /* Disable interrupts */
858 stm32_rtc_wpr_unlock(rtc);
859 cr = readl_relaxed(rtc->base + regs->cr);
860 cr &= ~STM32_RTC_CR_ALRAIE;
861 writel_relaxed(cr, rtc->base + regs->cr);
862 stm32_rtc_wpr_lock(rtc);
864 clk_disable_unprepare(rtc->rtc_ck);
865 if (rtc->data->has_pclk)
866 clk_disable_unprepare(rtc->pclk);
868 /* Enable backup domain write protection if needed */
869 if (rtc->data->need_dbp)
870 regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
872 dev_pm_clear_wake_irq(&pdev->dev);
873 device_init_wakeup(&pdev->dev, false);
875 return 0;
878 #ifdef CONFIG_PM_SLEEP
879 static int stm32_rtc_suspend(struct device *dev)
881 struct stm32_rtc *rtc = dev_get_drvdata(dev);
883 if (rtc->data->has_pclk)
884 clk_disable_unprepare(rtc->pclk);
886 if (device_may_wakeup(dev))
887 return enable_irq_wake(rtc->irq_alarm);
889 return 0;
892 static int stm32_rtc_resume(struct device *dev)
894 struct stm32_rtc *rtc = dev_get_drvdata(dev);
895 int ret = 0;
897 if (rtc->data->has_pclk) {
898 ret = clk_prepare_enable(rtc->pclk);
899 if (ret)
900 return ret;
903 ret = stm32_rtc_wait_sync(rtc);
904 if (ret < 0)
905 return ret;
907 if (device_may_wakeup(dev))
908 return disable_irq_wake(rtc->irq_alarm);
910 return ret;
912 #endif
914 static SIMPLE_DEV_PM_OPS(stm32_rtc_pm_ops,
915 stm32_rtc_suspend, stm32_rtc_resume);
917 static struct platform_driver stm32_rtc_driver = {
918 .probe = stm32_rtc_probe,
919 .remove = stm32_rtc_remove,
920 .driver = {
921 .name = DRIVER_NAME,
922 .pm = &stm32_rtc_pm_ops,
923 .of_match_table = stm32_rtc_of_match,
927 module_platform_driver(stm32_rtc_driver);
929 MODULE_ALIAS("platform:" DRIVER_NAME);
930 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
931 MODULE_DESCRIPTION("STMicroelectronics STM32 Real Time Clock driver");
932 MODULE_LICENSE("GPL v2");