1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
28 #include "compression.h"
30 static struct kmem_cache
*btrfs_inode_defrag_cachep
;
32 * when auto defrag is enabled we
33 * queue up these defrag structs to remember which
34 * inodes need defragging passes
37 struct rb_node rb_node
;
41 * transid where the defrag was added, we search for
42 * extents newer than this
49 /* last offset we were able to defrag */
52 /* if we've wrapped around back to zero once already */
56 static int __compare_inode_defrag(struct inode_defrag
*defrag1
,
57 struct inode_defrag
*defrag2
)
59 if (defrag1
->root
> defrag2
->root
)
61 else if (defrag1
->root
< defrag2
->root
)
63 else if (defrag1
->ino
> defrag2
->ino
)
65 else if (defrag1
->ino
< defrag2
->ino
)
71 /* pop a record for an inode into the defrag tree. The lock
72 * must be held already
74 * If you're inserting a record for an older transid than an
75 * existing record, the transid already in the tree is lowered
77 * If an existing record is found the defrag item you
80 static int __btrfs_add_inode_defrag(struct btrfs_inode
*inode
,
81 struct inode_defrag
*defrag
)
83 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
84 struct inode_defrag
*entry
;
86 struct rb_node
*parent
= NULL
;
89 p
= &fs_info
->defrag_inodes
.rb_node
;
92 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
94 ret
= __compare_inode_defrag(defrag
, entry
);
98 p
= &parent
->rb_right
;
100 /* if we're reinserting an entry for
101 * an old defrag run, make sure to
102 * lower the transid of our existing record
104 if (defrag
->transid
< entry
->transid
)
105 entry
->transid
= defrag
->transid
;
106 if (defrag
->last_offset
> entry
->last_offset
)
107 entry
->last_offset
= defrag
->last_offset
;
111 set_bit(BTRFS_INODE_IN_DEFRAG
, &inode
->runtime_flags
);
112 rb_link_node(&defrag
->rb_node
, parent
, p
);
113 rb_insert_color(&defrag
->rb_node
, &fs_info
->defrag_inodes
);
117 static inline int __need_auto_defrag(struct btrfs_fs_info
*fs_info
)
119 if (!btrfs_test_opt(fs_info
, AUTO_DEFRAG
))
122 if (btrfs_fs_closing(fs_info
))
129 * insert a defrag record for this inode if auto defrag is
132 int btrfs_add_inode_defrag(struct btrfs_trans_handle
*trans
,
133 struct btrfs_inode
*inode
)
135 struct btrfs_root
*root
= inode
->root
;
136 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
137 struct inode_defrag
*defrag
;
141 if (!__need_auto_defrag(fs_info
))
144 if (test_bit(BTRFS_INODE_IN_DEFRAG
, &inode
->runtime_flags
))
148 transid
= trans
->transid
;
150 transid
= inode
->root
->last_trans
;
152 defrag
= kmem_cache_zalloc(btrfs_inode_defrag_cachep
, GFP_NOFS
);
156 defrag
->ino
= btrfs_ino(inode
);
157 defrag
->transid
= transid
;
158 defrag
->root
= root
->root_key
.objectid
;
160 spin_lock(&fs_info
->defrag_inodes_lock
);
161 if (!test_bit(BTRFS_INODE_IN_DEFRAG
, &inode
->runtime_flags
)) {
163 * If we set IN_DEFRAG flag and evict the inode from memory,
164 * and then re-read this inode, this new inode doesn't have
165 * IN_DEFRAG flag. At the case, we may find the existed defrag.
167 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
169 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
171 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
173 spin_unlock(&fs_info
->defrag_inodes_lock
);
178 * Requeue the defrag object. If there is a defrag object that points to
179 * the same inode in the tree, we will merge them together (by
180 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
182 static void btrfs_requeue_inode_defrag(struct btrfs_inode
*inode
,
183 struct inode_defrag
*defrag
)
185 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
188 if (!__need_auto_defrag(fs_info
))
192 * Here we don't check the IN_DEFRAG flag, because we need merge
195 spin_lock(&fs_info
->defrag_inodes_lock
);
196 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
197 spin_unlock(&fs_info
->defrag_inodes_lock
);
202 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
206 * pick the defragable inode that we want, if it doesn't exist, we will get
209 static struct inode_defrag
*
210 btrfs_pick_defrag_inode(struct btrfs_fs_info
*fs_info
, u64 root
, u64 ino
)
212 struct inode_defrag
*entry
= NULL
;
213 struct inode_defrag tmp
;
215 struct rb_node
*parent
= NULL
;
221 spin_lock(&fs_info
->defrag_inodes_lock
);
222 p
= fs_info
->defrag_inodes
.rb_node
;
225 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
227 ret
= __compare_inode_defrag(&tmp
, entry
);
231 p
= parent
->rb_right
;
236 if (parent
&& __compare_inode_defrag(&tmp
, entry
) > 0) {
237 parent
= rb_next(parent
);
239 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
245 rb_erase(parent
, &fs_info
->defrag_inodes
);
246 spin_unlock(&fs_info
->defrag_inodes_lock
);
250 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info
*fs_info
)
252 struct inode_defrag
*defrag
;
253 struct rb_node
*node
;
255 spin_lock(&fs_info
->defrag_inodes_lock
);
256 node
= rb_first(&fs_info
->defrag_inodes
);
258 rb_erase(node
, &fs_info
->defrag_inodes
);
259 defrag
= rb_entry(node
, struct inode_defrag
, rb_node
);
260 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
262 cond_resched_lock(&fs_info
->defrag_inodes_lock
);
264 node
= rb_first(&fs_info
->defrag_inodes
);
266 spin_unlock(&fs_info
->defrag_inodes_lock
);
269 #define BTRFS_DEFRAG_BATCH 1024
271 static int __btrfs_run_defrag_inode(struct btrfs_fs_info
*fs_info
,
272 struct inode_defrag
*defrag
)
274 struct btrfs_root
*inode_root
;
276 struct btrfs_key key
;
277 struct btrfs_ioctl_defrag_range_args range
;
283 key
.objectid
= defrag
->root
;
284 key
.type
= BTRFS_ROOT_ITEM_KEY
;
285 key
.offset
= (u64
)-1;
287 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
289 inode_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
290 if (IS_ERR(inode_root
)) {
291 ret
= PTR_ERR(inode_root
);
295 key
.objectid
= defrag
->ino
;
296 key
.type
= BTRFS_INODE_ITEM_KEY
;
298 inode
= btrfs_iget(fs_info
->sb
, &key
, inode_root
, NULL
);
300 ret
= PTR_ERR(inode
);
303 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
305 /* do a chunk of defrag */
306 clear_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
);
307 memset(&range
, 0, sizeof(range
));
309 range
.start
= defrag
->last_offset
;
311 sb_start_write(fs_info
->sb
);
312 num_defrag
= btrfs_defrag_file(inode
, NULL
, &range
, defrag
->transid
,
314 sb_end_write(fs_info
->sb
);
316 * if we filled the whole defrag batch, there
317 * must be more work to do. Queue this defrag
320 if (num_defrag
== BTRFS_DEFRAG_BATCH
) {
321 defrag
->last_offset
= range
.start
;
322 btrfs_requeue_inode_defrag(BTRFS_I(inode
), defrag
);
323 } else if (defrag
->last_offset
&& !defrag
->cycled
) {
325 * we didn't fill our defrag batch, but
326 * we didn't start at zero. Make sure we loop
327 * around to the start of the file.
329 defrag
->last_offset
= 0;
331 btrfs_requeue_inode_defrag(BTRFS_I(inode
), defrag
);
333 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
339 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
340 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
345 * run through the list of inodes in the FS that need
348 int btrfs_run_defrag_inodes(struct btrfs_fs_info
*fs_info
)
350 struct inode_defrag
*defrag
;
352 u64 root_objectid
= 0;
354 atomic_inc(&fs_info
->defrag_running
);
356 /* Pause the auto defragger. */
357 if (test_bit(BTRFS_FS_STATE_REMOUNTING
,
361 if (!__need_auto_defrag(fs_info
))
364 /* find an inode to defrag */
365 defrag
= btrfs_pick_defrag_inode(fs_info
, root_objectid
,
368 if (root_objectid
|| first_ino
) {
377 first_ino
= defrag
->ino
+ 1;
378 root_objectid
= defrag
->root
;
380 __btrfs_run_defrag_inode(fs_info
, defrag
);
382 atomic_dec(&fs_info
->defrag_running
);
385 * during unmount, we use the transaction_wait queue to
386 * wait for the defragger to stop
388 wake_up(&fs_info
->transaction_wait
);
392 /* simple helper to fault in pages and copy. This should go away
393 * and be replaced with calls into generic code.
395 static noinline
int btrfs_copy_from_user(loff_t pos
, size_t write_bytes
,
396 struct page
**prepared_pages
,
400 size_t total_copied
= 0;
402 int offset
= pos
& (PAGE_SIZE
- 1);
404 while (write_bytes
> 0) {
405 size_t count
= min_t(size_t,
406 PAGE_SIZE
- offset
, write_bytes
);
407 struct page
*page
= prepared_pages
[pg
];
409 * Copy data from userspace to the current page
411 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, count
);
413 /* Flush processor's dcache for this page */
414 flush_dcache_page(page
);
417 * if we get a partial write, we can end up with
418 * partially up to date pages. These add
419 * a lot of complexity, so make sure they don't
420 * happen by forcing this copy to be retried.
422 * The rest of the btrfs_file_write code will fall
423 * back to page at a time copies after we return 0.
425 if (!PageUptodate(page
) && copied
< count
)
428 iov_iter_advance(i
, copied
);
429 write_bytes
-= copied
;
430 total_copied
+= copied
;
432 /* Return to btrfs_file_write_iter to fault page */
433 if (unlikely(copied
== 0))
436 if (copied
< PAGE_SIZE
- offset
) {
447 * unlocks pages after btrfs_file_write is done with them
449 static void btrfs_drop_pages(struct page
**pages
, size_t num_pages
)
452 for (i
= 0; i
< num_pages
; i
++) {
453 /* page checked is some magic around finding pages that
454 * have been modified without going through btrfs_set_page_dirty
455 * clear it here. There should be no need to mark the pages
456 * accessed as prepare_pages should have marked them accessed
457 * in prepare_pages via find_or_create_page()
459 ClearPageChecked(pages
[i
]);
460 unlock_page(pages
[i
]);
465 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode
*inode
,
468 struct extent_state
**cached_state
)
470 u64 search_start
= start
;
471 const u64 end
= start
+ len
- 1;
473 while (search_start
< end
) {
474 const u64 search_len
= end
- search_start
+ 1;
475 struct extent_map
*em
;
479 em
= btrfs_get_extent(inode
, NULL
, 0, search_start
,
484 if (em
->block_start
!= EXTENT_MAP_HOLE
)
488 if (em
->start
< search_start
)
489 em_len
-= search_start
- em
->start
;
490 if (em_len
> search_len
)
493 ret
= set_extent_bit(&inode
->io_tree
, search_start
,
494 search_start
+ em_len
- 1,
496 NULL
, cached_state
, GFP_NOFS
);
498 search_start
= extent_map_end(em
);
507 * after copy_from_user, pages need to be dirtied and we need to make
508 * sure holes are created between the current EOF and the start of
509 * any next extents (if required).
511 * this also makes the decision about creating an inline extent vs
512 * doing real data extents, marking pages dirty and delalloc as required.
514 int btrfs_dirty_pages(struct inode
*inode
, struct page
**pages
,
515 size_t num_pages
, loff_t pos
, size_t write_bytes
,
516 struct extent_state
**cached
)
518 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
523 u64 end_of_last_block
;
524 u64 end_pos
= pos
+ write_bytes
;
525 loff_t isize
= i_size_read(inode
);
526 unsigned int extra_bits
= 0;
528 start_pos
= pos
& ~((u64
) fs_info
->sectorsize
- 1);
529 num_bytes
= round_up(write_bytes
+ pos
- start_pos
,
530 fs_info
->sectorsize
);
532 end_of_last_block
= start_pos
+ num_bytes
- 1;
534 if (!btrfs_is_free_space_inode(BTRFS_I(inode
))) {
535 if (start_pos
>= isize
&&
536 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)) {
538 * There can't be any extents following eof in this case
539 * so just set the delalloc new bit for the range
542 extra_bits
|= EXTENT_DELALLOC_NEW
;
544 err
= btrfs_find_new_delalloc_bytes(BTRFS_I(inode
),
552 err
= btrfs_set_extent_delalloc(inode
, start_pos
, end_of_last_block
,
553 extra_bits
, cached
, 0);
557 for (i
= 0; i
< num_pages
; i
++) {
558 struct page
*p
= pages
[i
];
565 * we've only changed i_size in ram, and we haven't updated
566 * the disk i_size. There is no need to log the inode
570 i_size_write(inode
, end_pos
);
575 * this drops all the extents in the cache that intersect the range
576 * [start, end]. Existing extents are split as required.
578 void btrfs_drop_extent_cache(struct btrfs_inode
*inode
, u64 start
, u64 end
,
581 struct extent_map
*em
;
582 struct extent_map
*split
= NULL
;
583 struct extent_map
*split2
= NULL
;
584 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
585 u64 len
= end
- start
+ 1;
593 WARN_ON(end
< start
);
594 if (end
== (u64
)-1) {
603 split
= alloc_extent_map();
605 split2
= alloc_extent_map();
606 if (!split
|| !split2
)
609 write_lock(&em_tree
->lock
);
610 em
= lookup_extent_mapping(em_tree
, start
, len
);
612 write_unlock(&em_tree
->lock
);
616 gen
= em
->generation
;
617 if (skip_pinned
&& test_bit(EXTENT_FLAG_PINNED
, &em
->flags
)) {
618 if (testend
&& em
->start
+ em
->len
>= start
+ len
) {
620 write_unlock(&em_tree
->lock
);
623 start
= em
->start
+ em
->len
;
625 len
= start
+ len
- (em
->start
+ em
->len
);
627 write_unlock(&em_tree
->lock
);
630 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
631 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
632 clear_bit(EXTENT_FLAG_LOGGING
, &flags
);
633 modified
= !list_empty(&em
->list
);
637 if (em
->start
< start
) {
638 split
->start
= em
->start
;
639 split
->len
= start
- em
->start
;
641 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
642 split
->orig_start
= em
->orig_start
;
643 split
->block_start
= em
->block_start
;
646 split
->block_len
= em
->block_len
;
648 split
->block_len
= split
->len
;
649 split
->orig_block_len
= max(split
->block_len
,
651 split
->ram_bytes
= em
->ram_bytes
;
653 split
->orig_start
= split
->start
;
654 split
->block_len
= 0;
655 split
->block_start
= em
->block_start
;
656 split
->orig_block_len
= 0;
657 split
->ram_bytes
= split
->len
;
660 split
->generation
= gen
;
661 split
->bdev
= em
->bdev
;
662 split
->flags
= flags
;
663 split
->compress_type
= em
->compress_type
;
664 replace_extent_mapping(em_tree
, em
, split
, modified
);
665 free_extent_map(split
);
669 if (testend
&& em
->start
+ em
->len
> start
+ len
) {
670 u64 diff
= start
+ len
- em
->start
;
672 split
->start
= start
+ len
;
673 split
->len
= em
->start
+ em
->len
- (start
+ len
);
674 split
->bdev
= em
->bdev
;
675 split
->flags
= flags
;
676 split
->compress_type
= em
->compress_type
;
677 split
->generation
= gen
;
679 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
680 split
->orig_block_len
= max(em
->block_len
,
683 split
->ram_bytes
= em
->ram_bytes
;
685 split
->block_len
= em
->block_len
;
686 split
->block_start
= em
->block_start
;
687 split
->orig_start
= em
->orig_start
;
689 split
->block_len
= split
->len
;
690 split
->block_start
= em
->block_start
692 split
->orig_start
= em
->orig_start
;
695 split
->ram_bytes
= split
->len
;
696 split
->orig_start
= split
->start
;
697 split
->block_len
= 0;
698 split
->block_start
= em
->block_start
;
699 split
->orig_block_len
= 0;
702 if (extent_map_in_tree(em
)) {
703 replace_extent_mapping(em_tree
, em
, split
,
706 ret
= add_extent_mapping(em_tree
, split
,
708 ASSERT(ret
== 0); /* Logic error */
710 free_extent_map(split
);
714 if (extent_map_in_tree(em
))
715 remove_extent_mapping(em_tree
, em
);
716 write_unlock(&em_tree
->lock
);
720 /* once for the tree*/
724 free_extent_map(split
);
726 free_extent_map(split2
);
730 * this is very complex, but the basic idea is to drop all extents
731 * in the range start - end. hint_block is filled in with a block number
732 * that would be a good hint to the block allocator for this file.
734 * If an extent intersects the range but is not entirely inside the range
735 * it is either truncated or split. Anything entirely inside the range
736 * is deleted from the tree.
738 int __btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
739 struct btrfs_root
*root
, struct inode
*inode
,
740 struct btrfs_path
*path
, u64 start
, u64 end
,
741 u64
*drop_end
, int drop_cache
,
743 u32 extent_item_size
,
746 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
747 struct extent_buffer
*leaf
;
748 struct btrfs_file_extent_item
*fi
;
749 struct btrfs_key key
;
750 struct btrfs_key new_key
;
751 u64 ino
= btrfs_ino(BTRFS_I(inode
));
752 u64 search_start
= start
;
755 u64 extent_offset
= 0;
757 u64 last_end
= start
;
763 int modify_tree
= -1;
766 int leafs_visited
= 0;
769 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
- 1, 0);
771 if (start
>= BTRFS_I(inode
)->disk_i_size
&& !replace_extent
)
774 update_refs
= (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
775 root
== fs_info
->tree_root
);
778 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
779 search_start
, modify_tree
);
782 if (ret
> 0 && path
->slots
[0] > 0 && search_start
== start
) {
783 leaf
= path
->nodes
[0];
784 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0] - 1);
785 if (key
.objectid
== ino
&&
786 key
.type
== BTRFS_EXTENT_DATA_KEY
)
792 leaf
= path
->nodes
[0];
793 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
795 ret
= btrfs_next_leaf(root
, path
);
803 leaf
= path
->nodes
[0];
807 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
809 if (key
.objectid
> ino
)
811 if (WARN_ON_ONCE(key
.objectid
< ino
) ||
812 key
.type
< BTRFS_EXTENT_DATA_KEY
) {
817 if (key
.type
> BTRFS_EXTENT_DATA_KEY
|| key
.offset
>= end
)
820 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
821 struct btrfs_file_extent_item
);
822 extent_type
= btrfs_file_extent_type(leaf
, fi
);
824 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
825 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
826 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
827 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
828 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
829 extent_end
= key
.offset
+
830 btrfs_file_extent_num_bytes(leaf
, fi
);
831 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
832 extent_end
= key
.offset
+
833 btrfs_file_extent_ram_bytes(leaf
, fi
);
840 * Don't skip extent items representing 0 byte lengths. They
841 * used to be created (bug) if while punching holes we hit
842 * -ENOSPC condition. So if we find one here, just ensure we
843 * delete it, otherwise we would insert a new file extent item
844 * with the same key (offset) as that 0 bytes length file
845 * extent item in the call to setup_items_for_insert() later
848 if (extent_end
== key
.offset
&& extent_end
>= search_start
) {
849 last_end
= extent_end
;
850 goto delete_extent_item
;
853 if (extent_end
<= search_start
) {
859 search_start
= max(key
.offset
, start
);
860 if (recow
|| !modify_tree
) {
862 btrfs_release_path(path
);
867 * | - range to drop - |
868 * | -------- extent -------- |
870 if (start
> key
.offset
&& end
< extent_end
) {
872 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
877 memcpy(&new_key
, &key
, sizeof(new_key
));
878 new_key
.offset
= start
;
879 ret
= btrfs_duplicate_item(trans
, root
, path
,
881 if (ret
== -EAGAIN
) {
882 btrfs_release_path(path
);
888 leaf
= path
->nodes
[0];
889 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
890 struct btrfs_file_extent_item
);
891 btrfs_set_file_extent_num_bytes(leaf
, fi
,
894 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
895 struct btrfs_file_extent_item
);
897 extent_offset
+= start
- key
.offset
;
898 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
899 btrfs_set_file_extent_num_bytes(leaf
, fi
,
901 btrfs_mark_buffer_dirty(leaf
);
903 if (update_refs
&& disk_bytenr
> 0) {
904 ret
= btrfs_inc_extent_ref(trans
, root
,
905 disk_bytenr
, num_bytes
, 0,
906 root
->root_key
.objectid
,
908 start
- extent_offset
);
909 BUG_ON(ret
); /* -ENOMEM */
914 * From here on out we will have actually dropped something, so
915 * last_end can be updated.
917 last_end
= extent_end
;
920 * | ---- range to drop ----- |
921 * | -------- extent -------- |
923 if (start
<= key
.offset
&& end
< extent_end
) {
924 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
929 memcpy(&new_key
, &key
, sizeof(new_key
));
930 new_key
.offset
= end
;
931 btrfs_set_item_key_safe(fs_info
, path
, &new_key
);
933 extent_offset
+= end
- key
.offset
;
934 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
935 btrfs_set_file_extent_num_bytes(leaf
, fi
,
937 btrfs_mark_buffer_dirty(leaf
);
938 if (update_refs
&& disk_bytenr
> 0)
939 inode_sub_bytes(inode
, end
- key
.offset
);
943 search_start
= extent_end
;
945 * | ---- range to drop ----- |
946 * | -------- extent -------- |
948 if (start
> key
.offset
&& end
>= extent_end
) {
950 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
955 btrfs_set_file_extent_num_bytes(leaf
, fi
,
957 btrfs_mark_buffer_dirty(leaf
);
958 if (update_refs
&& disk_bytenr
> 0)
959 inode_sub_bytes(inode
, extent_end
- start
);
960 if (end
== extent_end
)
968 * | ---- range to drop ----- |
969 * | ------ extent ------ |
971 if (start
<= key
.offset
&& end
>= extent_end
) {
974 del_slot
= path
->slots
[0];
977 BUG_ON(del_slot
+ del_nr
!= path
->slots
[0]);
982 extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
983 inode_sub_bytes(inode
,
984 extent_end
- key
.offset
);
985 extent_end
= ALIGN(extent_end
,
986 fs_info
->sectorsize
);
987 } else if (update_refs
&& disk_bytenr
> 0) {
988 ret
= btrfs_free_extent(trans
, root
,
989 disk_bytenr
, num_bytes
, 0,
990 root
->root_key
.objectid
,
991 key
.objectid
, key
.offset
-
993 BUG_ON(ret
); /* -ENOMEM */
994 inode_sub_bytes(inode
,
995 extent_end
- key
.offset
);
998 if (end
== extent_end
)
1001 if (path
->slots
[0] + 1 < btrfs_header_nritems(leaf
)) {
1006 ret
= btrfs_del_items(trans
, root
, path
, del_slot
,
1009 btrfs_abort_transaction(trans
, ret
);
1016 btrfs_release_path(path
);
1023 if (!ret
&& del_nr
> 0) {
1025 * Set path->slots[0] to first slot, so that after the delete
1026 * if items are move off from our leaf to its immediate left or
1027 * right neighbor leafs, we end up with a correct and adjusted
1028 * path->slots[0] for our insertion (if replace_extent != 0).
1030 path
->slots
[0] = del_slot
;
1031 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
1033 btrfs_abort_transaction(trans
, ret
);
1036 leaf
= path
->nodes
[0];
1038 * If btrfs_del_items() was called, it might have deleted a leaf, in
1039 * which case it unlocked our path, so check path->locks[0] matches a
1042 if (!ret
&& replace_extent
&& leafs_visited
== 1 &&
1043 (path
->locks
[0] == BTRFS_WRITE_LOCK_BLOCKING
||
1044 path
->locks
[0] == BTRFS_WRITE_LOCK
) &&
1045 btrfs_leaf_free_space(fs_info
, leaf
) >=
1046 sizeof(struct btrfs_item
) + extent_item_size
) {
1049 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1051 if (!del_nr
&& path
->slots
[0] < btrfs_header_nritems(leaf
)) {
1052 struct btrfs_key slot_key
;
1054 btrfs_item_key_to_cpu(leaf
, &slot_key
, path
->slots
[0]);
1055 if (btrfs_comp_cpu_keys(&key
, &slot_key
) > 0)
1058 setup_items_for_insert(root
, path
, &key
,
1061 sizeof(struct btrfs_item
) +
1062 extent_item_size
, 1);
1066 if (!replace_extent
|| !(*key_inserted
))
1067 btrfs_release_path(path
);
1069 *drop_end
= found
? min(end
, last_end
) : end
;
1073 int btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
1074 struct btrfs_root
*root
, struct inode
*inode
, u64 start
,
1075 u64 end
, int drop_cache
)
1077 struct btrfs_path
*path
;
1080 path
= btrfs_alloc_path();
1083 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, start
, end
, NULL
,
1084 drop_cache
, 0, 0, NULL
);
1085 btrfs_free_path(path
);
1089 static int extent_mergeable(struct extent_buffer
*leaf
, int slot
,
1090 u64 objectid
, u64 bytenr
, u64 orig_offset
,
1091 u64
*start
, u64
*end
)
1093 struct btrfs_file_extent_item
*fi
;
1094 struct btrfs_key key
;
1097 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
1100 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1101 if (key
.objectid
!= objectid
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
1104 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
1105 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
||
1106 btrfs_file_extent_disk_bytenr(leaf
, fi
) != bytenr
||
1107 btrfs_file_extent_offset(leaf
, fi
) != key
.offset
- orig_offset
||
1108 btrfs_file_extent_compression(leaf
, fi
) ||
1109 btrfs_file_extent_encryption(leaf
, fi
) ||
1110 btrfs_file_extent_other_encoding(leaf
, fi
))
1113 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
1114 if ((*start
&& *start
!= key
.offset
) || (*end
&& *end
!= extent_end
))
1117 *start
= key
.offset
;
1123 * Mark extent in the range start - end as written.
1125 * This changes extent type from 'pre-allocated' to 'regular'. If only
1126 * part of extent is marked as written, the extent will be split into
1129 int btrfs_mark_extent_written(struct btrfs_trans_handle
*trans
,
1130 struct btrfs_inode
*inode
, u64 start
, u64 end
)
1132 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1133 struct btrfs_root
*root
= inode
->root
;
1134 struct extent_buffer
*leaf
;
1135 struct btrfs_path
*path
;
1136 struct btrfs_file_extent_item
*fi
;
1137 struct btrfs_key key
;
1138 struct btrfs_key new_key
;
1150 u64 ino
= btrfs_ino(inode
);
1152 path
= btrfs_alloc_path();
1159 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1162 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1165 if (ret
> 0 && path
->slots
[0] > 0)
1168 leaf
= path
->nodes
[0];
1169 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1170 if (key
.objectid
!= ino
||
1171 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
1173 btrfs_abort_transaction(trans
, ret
);
1176 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1177 struct btrfs_file_extent_item
);
1178 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_PREALLOC
) {
1180 btrfs_abort_transaction(trans
, ret
);
1183 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
1184 if (key
.offset
> start
|| extent_end
< end
) {
1186 btrfs_abort_transaction(trans
, ret
);
1190 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1191 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1192 orig_offset
= key
.offset
- btrfs_file_extent_offset(leaf
, fi
);
1193 memcpy(&new_key
, &key
, sizeof(new_key
));
1195 if (start
== key
.offset
&& end
< extent_end
) {
1198 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1199 ino
, bytenr
, orig_offset
,
1200 &other_start
, &other_end
)) {
1201 new_key
.offset
= end
;
1202 btrfs_set_item_key_safe(fs_info
, path
, &new_key
);
1203 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1204 struct btrfs_file_extent_item
);
1205 btrfs_set_file_extent_generation(leaf
, fi
,
1207 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1209 btrfs_set_file_extent_offset(leaf
, fi
,
1211 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1212 struct btrfs_file_extent_item
);
1213 btrfs_set_file_extent_generation(leaf
, fi
,
1215 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1217 btrfs_mark_buffer_dirty(leaf
);
1222 if (start
> key
.offset
&& end
== extent_end
) {
1225 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1226 ino
, bytenr
, orig_offset
,
1227 &other_start
, &other_end
)) {
1228 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1229 struct btrfs_file_extent_item
);
1230 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1231 start
- key
.offset
);
1232 btrfs_set_file_extent_generation(leaf
, fi
,
1235 new_key
.offset
= start
;
1236 btrfs_set_item_key_safe(fs_info
, path
, &new_key
);
1238 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1239 struct btrfs_file_extent_item
);
1240 btrfs_set_file_extent_generation(leaf
, fi
,
1242 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1244 btrfs_set_file_extent_offset(leaf
, fi
,
1245 start
- orig_offset
);
1246 btrfs_mark_buffer_dirty(leaf
);
1251 while (start
> key
.offset
|| end
< extent_end
) {
1252 if (key
.offset
== start
)
1255 new_key
.offset
= split
;
1256 ret
= btrfs_duplicate_item(trans
, root
, path
, &new_key
);
1257 if (ret
== -EAGAIN
) {
1258 btrfs_release_path(path
);
1262 btrfs_abort_transaction(trans
, ret
);
1266 leaf
= path
->nodes
[0];
1267 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1268 struct btrfs_file_extent_item
);
1269 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1270 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1271 split
- key
.offset
);
1273 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1274 struct btrfs_file_extent_item
);
1276 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1277 btrfs_set_file_extent_offset(leaf
, fi
, split
- orig_offset
);
1278 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1279 extent_end
- split
);
1280 btrfs_mark_buffer_dirty(leaf
);
1282 ret
= btrfs_inc_extent_ref(trans
, root
, bytenr
, num_bytes
,
1283 0, root
->root_key
.objectid
,
1286 btrfs_abort_transaction(trans
, ret
);
1290 if (split
== start
) {
1293 if (start
!= key
.offset
) {
1295 btrfs_abort_transaction(trans
, ret
);
1306 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1307 ino
, bytenr
, orig_offset
,
1308 &other_start
, &other_end
)) {
1310 btrfs_release_path(path
);
1313 extent_end
= other_end
;
1314 del_slot
= path
->slots
[0] + 1;
1316 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1317 0, root
->root_key
.objectid
,
1320 btrfs_abort_transaction(trans
, ret
);
1326 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1327 ino
, bytenr
, orig_offset
,
1328 &other_start
, &other_end
)) {
1330 btrfs_release_path(path
);
1333 key
.offset
= other_start
;
1334 del_slot
= path
->slots
[0];
1336 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1337 0, root
->root_key
.objectid
,
1340 btrfs_abort_transaction(trans
, ret
);
1345 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1346 struct btrfs_file_extent_item
);
1347 btrfs_set_file_extent_type(leaf
, fi
,
1348 BTRFS_FILE_EXTENT_REG
);
1349 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1350 btrfs_mark_buffer_dirty(leaf
);
1352 fi
= btrfs_item_ptr(leaf
, del_slot
- 1,
1353 struct btrfs_file_extent_item
);
1354 btrfs_set_file_extent_type(leaf
, fi
,
1355 BTRFS_FILE_EXTENT_REG
);
1356 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1357 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1358 extent_end
- key
.offset
);
1359 btrfs_mark_buffer_dirty(leaf
);
1361 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
1363 btrfs_abort_transaction(trans
, ret
);
1368 btrfs_free_path(path
);
1373 * on error we return an unlocked page and the error value
1374 * on success we return a locked page and 0
1376 static int prepare_uptodate_page(struct inode
*inode
,
1377 struct page
*page
, u64 pos
,
1378 bool force_uptodate
)
1382 if (((pos
& (PAGE_SIZE
- 1)) || force_uptodate
) &&
1383 !PageUptodate(page
)) {
1384 ret
= btrfs_readpage(NULL
, page
);
1388 if (!PageUptodate(page
)) {
1392 if (page
->mapping
!= inode
->i_mapping
) {
1401 * this just gets pages into the page cache and locks them down.
1403 static noinline
int prepare_pages(struct inode
*inode
, struct page
**pages
,
1404 size_t num_pages
, loff_t pos
,
1405 size_t write_bytes
, bool force_uptodate
)
1408 unsigned long index
= pos
>> PAGE_SHIFT
;
1409 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1413 for (i
= 0; i
< num_pages
; i
++) {
1415 pages
[i
] = find_or_create_page(inode
->i_mapping
, index
+ i
,
1416 mask
| __GFP_WRITE
);
1424 err
= prepare_uptodate_page(inode
, pages
[i
], pos
,
1426 if (!err
&& i
== num_pages
- 1)
1427 err
= prepare_uptodate_page(inode
, pages
[i
],
1428 pos
+ write_bytes
, false);
1431 if (err
== -EAGAIN
) {
1438 wait_on_page_writeback(pages
[i
]);
1443 while (faili
>= 0) {
1444 unlock_page(pages
[faili
]);
1445 put_page(pages
[faili
]);
1453 * This function locks the extent and properly waits for data=ordered extents
1454 * to finish before allowing the pages to be modified if need.
1457 * 1 - the extent is locked
1458 * 0 - the extent is not locked, and everything is OK
1459 * -EAGAIN - need re-prepare the pages
1460 * the other < 0 number - Something wrong happens
1463 lock_and_cleanup_extent_if_need(struct btrfs_inode
*inode
, struct page
**pages
,
1464 size_t num_pages
, loff_t pos
,
1466 u64
*lockstart
, u64
*lockend
,
1467 struct extent_state
**cached_state
)
1469 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
1475 start_pos
= round_down(pos
, fs_info
->sectorsize
);
1476 last_pos
= start_pos
1477 + round_up(pos
+ write_bytes
- start_pos
,
1478 fs_info
->sectorsize
) - 1;
1480 if (start_pos
< inode
->vfs_inode
.i_size
) {
1481 struct btrfs_ordered_extent
*ordered
;
1483 lock_extent_bits(&inode
->io_tree
, start_pos
, last_pos
,
1485 ordered
= btrfs_lookup_ordered_range(inode
, start_pos
,
1486 last_pos
- start_pos
+ 1);
1488 ordered
->file_offset
+ ordered
->len
> start_pos
&&
1489 ordered
->file_offset
<= last_pos
) {
1490 unlock_extent_cached(&inode
->io_tree
, start_pos
,
1491 last_pos
, cached_state
);
1492 for (i
= 0; i
< num_pages
; i
++) {
1493 unlock_page(pages
[i
]);
1496 btrfs_start_ordered_extent(&inode
->vfs_inode
,
1498 btrfs_put_ordered_extent(ordered
);
1502 btrfs_put_ordered_extent(ordered
);
1503 clear_extent_bit(&inode
->io_tree
, start_pos
, last_pos
,
1504 EXTENT_DIRTY
| EXTENT_DELALLOC
|
1505 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
1506 0, 0, cached_state
);
1507 *lockstart
= start_pos
;
1508 *lockend
= last_pos
;
1512 for (i
= 0; i
< num_pages
; i
++) {
1513 if (clear_page_dirty_for_io(pages
[i
]))
1514 account_page_redirty(pages
[i
]);
1515 set_page_extent_mapped(pages
[i
]);
1516 WARN_ON(!PageLocked(pages
[i
]));
1522 static noinline
int check_can_nocow(struct btrfs_inode
*inode
, loff_t pos
,
1523 size_t *write_bytes
)
1525 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
1526 struct btrfs_root
*root
= inode
->root
;
1527 struct btrfs_ordered_extent
*ordered
;
1528 u64 lockstart
, lockend
;
1532 ret
= btrfs_start_write_no_snapshotting(root
);
1536 lockstart
= round_down(pos
, fs_info
->sectorsize
);
1537 lockend
= round_up(pos
+ *write_bytes
,
1538 fs_info
->sectorsize
) - 1;
1541 lock_extent(&inode
->io_tree
, lockstart
, lockend
);
1542 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
1543 lockend
- lockstart
+ 1);
1547 unlock_extent(&inode
->io_tree
, lockstart
, lockend
);
1548 btrfs_start_ordered_extent(&inode
->vfs_inode
, ordered
, 1);
1549 btrfs_put_ordered_extent(ordered
);
1552 num_bytes
= lockend
- lockstart
+ 1;
1553 ret
= can_nocow_extent(&inode
->vfs_inode
, lockstart
, &num_bytes
,
1557 btrfs_end_write_no_snapshotting(root
);
1559 *write_bytes
= min_t(size_t, *write_bytes
,
1560 num_bytes
- pos
+ lockstart
);
1563 unlock_extent(&inode
->io_tree
, lockstart
, lockend
);
1568 static noinline ssize_t
btrfs_buffered_write(struct kiocb
*iocb
,
1571 struct file
*file
= iocb
->ki_filp
;
1572 loff_t pos
= iocb
->ki_pos
;
1573 struct inode
*inode
= file_inode(file
);
1574 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1575 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1576 struct page
**pages
= NULL
;
1577 struct extent_state
*cached_state
= NULL
;
1578 struct extent_changeset
*data_reserved
= NULL
;
1579 u64 release_bytes
= 0;
1582 size_t num_written
= 0;
1585 bool only_release_metadata
= false;
1586 bool force_page_uptodate
= false;
1588 nrptrs
= min(DIV_ROUND_UP(iov_iter_count(i
), PAGE_SIZE
),
1589 PAGE_SIZE
/ (sizeof(struct page
*)));
1590 nrptrs
= min(nrptrs
, current
->nr_dirtied_pause
- current
->nr_dirtied
);
1591 nrptrs
= max(nrptrs
, 8);
1592 pages
= kmalloc_array(nrptrs
, sizeof(struct page
*), GFP_KERNEL
);
1596 while (iov_iter_count(i
) > 0) {
1597 size_t offset
= pos
& (PAGE_SIZE
- 1);
1598 size_t sector_offset
;
1599 size_t write_bytes
= min(iov_iter_count(i
),
1600 nrptrs
* (size_t)PAGE_SIZE
-
1602 size_t num_pages
= DIV_ROUND_UP(write_bytes
+ offset
,
1604 size_t reserve_bytes
;
1607 size_t dirty_sectors
;
1611 WARN_ON(num_pages
> nrptrs
);
1614 * Fault pages before locking them in prepare_pages
1615 * to avoid recursive lock
1617 if (unlikely(iov_iter_fault_in_readable(i
, write_bytes
))) {
1622 sector_offset
= pos
& (fs_info
->sectorsize
- 1);
1623 reserve_bytes
= round_up(write_bytes
+ sector_offset
,
1624 fs_info
->sectorsize
);
1626 extent_changeset_release(data_reserved
);
1627 ret
= btrfs_check_data_free_space(inode
, &data_reserved
, pos
,
1630 if ((BTRFS_I(inode
)->flags
& (BTRFS_INODE_NODATACOW
|
1631 BTRFS_INODE_PREALLOC
)) &&
1632 check_can_nocow(BTRFS_I(inode
), pos
,
1633 &write_bytes
) > 0) {
1635 * For nodata cow case, no need to reserve
1638 only_release_metadata
= true;
1640 * our prealloc extent may be smaller than
1641 * write_bytes, so scale down.
1643 num_pages
= DIV_ROUND_UP(write_bytes
+ offset
,
1645 reserve_bytes
= round_up(write_bytes
+
1647 fs_info
->sectorsize
);
1653 WARN_ON(reserve_bytes
== 0);
1654 ret
= btrfs_delalloc_reserve_metadata(BTRFS_I(inode
),
1657 if (!only_release_metadata
)
1658 btrfs_free_reserved_data_space(inode
,
1662 btrfs_end_write_no_snapshotting(root
);
1666 release_bytes
= reserve_bytes
;
1669 * This is going to setup the pages array with the number of
1670 * pages we want, so we don't really need to worry about the
1671 * contents of pages from loop to loop
1673 ret
= prepare_pages(inode
, pages
, num_pages
,
1675 force_page_uptodate
);
1677 btrfs_delalloc_release_extents(BTRFS_I(inode
),
1678 reserve_bytes
, true);
1682 extents_locked
= lock_and_cleanup_extent_if_need(
1683 BTRFS_I(inode
), pages
,
1684 num_pages
, pos
, write_bytes
, &lockstart
,
1685 &lockend
, &cached_state
);
1686 if (extents_locked
< 0) {
1687 if (extents_locked
== -EAGAIN
)
1689 btrfs_delalloc_release_extents(BTRFS_I(inode
),
1690 reserve_bytes
, true);
1691 ret
= extents_locked
;
1695 copied
= btrfs_copy_from_user(pos
, write_bytes
, pages
, i
);
1697 num_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, reserve_bytes
);
1698 dirty_sectors
= round_up(copied
+ sector_offset
,
1699 fs_info
->sectorsize
);
1700 dirty_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, dirty_sectors
);
1703 * if we have trouble faulting in the pages, fall
1704 * back to one page at a time
1706 if (copied
< write_bytes
)
1710 force_page_uptodate
= true;
1714 force_page_uptodate
= false;
1715 dirty_pages
= DIV_ROUND_UP(copied
+ offset
,
1719 if (num_sectors
> dirty_sectors
) {
1720 /* release everything except the sectors we dirtied */
1721 release_bytes
-= dirty_sectors
<<
1722 fs_info
->sb
->s_blocksize_bits
;
1723 if (only_release_metadata
) {
1724 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
1725 release_bytes
, true);
1729 __pos
= round_down(pos
,
1730 fs_info
->sectorsize
) +
1731 (dirty_pages
<< PAGE_SHIFT
);
1732 btrfs_delalloc_release_space(inode
,
1733 data_reserved
, __pos
,
1734 release_bytes
, true);
1738 release_bytes
= round_up(copied
+ sector_offset
,
1739 fs_info
->sectorsize
);
1742 ret
= btrfs_dirty_pages(inode
, pages
, dirty_pages
,
1743 pos
, copied
, &cached_state
);
1745 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1746 lockstart
, lockend
, &cached_state
);
1747 btrfs_delalloc_release_extents(BTRFS_I(inode
), reserve_bytes
,
1750 btrfs_drop_pages(pages
, num_pages
);
1755 if (only_release_metadata
)
1756 btrfs_end_write_no_snapshotting(root
);
1758 if (only_release_metadata
&& copied
> 0) {
1759 lockstart
= round_down(pos
,
1760 fs_info
->sectorsize
);
1761 lockend
= round_up(pos
+ copied
,
1762 fs_info
->sectorsize
) - 1;
1764 set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
1765 lockend
, EXTENT_NORESERVE
, NULL
,
1767 only_release_metadata
= false;
1770 btrfs_drop_pages(pages
, num_pages
);
1774 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1775 if (dirty_pages
< (fs_info
->nodesize
>> PAGE_SHIFT
) + 1)
1776 btrfs_btree_balance_dirty(fs_info
);
1779 num_written
+= copied
;
1784 if (release_bytes
) {
1785 if (only_release_metadata
) {
1786 btrfs_end_write_no_snapshotting(root
);
1787 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
1788 release_bytes
, true);
1790 btrfs_delalloc_release_space(inode
, data_reserved
,
1791 round_down(pos
, fs_info
->sectorsize
),
1792 release_bytes
, true);
1796 extent_changeset_free(data_reserved
);
1797 return num_written
? num_written
: ret
;
1800 static ssize_t
__btrfs_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
)
1802 struct file
*file
= iocb
->ki_filp
;
1803 struct inode
*inode
= file_inode(file
);
1806 ssize_t written_buffered
;
1810 written
= generic_file_direct_write(iocb
, from
);
1812 if (written
< 0 || !iov_iter_count(from
))
1816 written_buffered
= btrfs_buffered_write(iocb
, from
);
1817 if (written_buffered
< 0) {
1818 err
= written_buffered
;
1822 * Ensure all data is persisted. We want the next direct IO read to be
1823 * able to read what was just written.
1825 endbyte
= pos
+ written_buffered
- 1;
1826 err
= btrfs_fdatawrite_range(inode
, pos
, endbyte
);
1829 err
= filemap_fdatawait_range(inode
->i_mapping
, pos
, endbyte
);
1832 written
+= written_buffered
;
1833 iocb
->ki_pos
= pos
+ written_buffered
;
1834 invalidate_mapping_pages(file
->f_mapping
, pos
>> PAGE_SHIFT
,
1835 endbyte
>> PAGE_SHIFT
);
1837 return written
? written
: err
;
1840 static void update_time_for_write(struct inode
*inode
)
1842 struct timespec64 now
;
1844 if (IS_NOCMTIME(inode
))
1847 now
= current_time(inode
);
1848 if (!timespec64_equal(&inode
->i_mtime
, &now
))
1849 inode
->i_mtime
= now
;
1851 if (!timespec64_equal(&inode
->i_ctime
, &now
))
1852 inode
->i_ctime
= now
;
1854 if (IS_I_VERSION(inode
))
1855 inode_inc_iversion(inode
);
1858 static ssize_t
btrfs_file_write_iter(struct kiocb
*iocb
,
1859 struct iov_iter
*from
)
1861 struct file
*file
= iocb
->ki_filp
;
1862 struct inode
*inode
= file_inode(file
);
1863 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1864 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1867 ssize_t num_written
= 0;
1868 bool sync
= (file
->f_flags
& O_DSYNC
) || IS_SYNC(file
->f_mapping
->host
);
1871 size_t count
= iov_iter_count(from
);
1875 if (!(iocb
->ki_flags
& IOCB_DIRECT
) &&
1876 (iocb
->ki_flags
& IOCB_NOWAIT
))
1879 if (!inode_trylock(inode
)) {
1880 if (iocb
->ki_flags
& IOCB_NOWAIT
)
1885 err
= generic_write_checks(iocb
, from
);
1887 inode_unlock(inode
);
1892 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
1894 * We will allocate space in case nodatacow is not set,
1897 if (!(BTRFS_I(inode
)->flags
& (BTRFS_INODE_NODATACOW
|
1898 BTRFS_INODE_PREALLOC
)) ||
1899 check_can_nocow(BTRFS_I(inode
), pos
, &count
) <= 0) {
1900 inode_unlock(inode
);
1905 current
->backing_dev_info
= inode_to_bdi(inode
);
1906 err
= file_remove_privs(file
);
1908 inode_unlock(inode
);
1913 * If BTRFS flips readonly due to some impossible error
1914 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1915 * although we have opened a file as writable, we have
1916 * to stop this write operation to ensure FS consistency.
1918 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
1919 inode_unlock(inode
);
1925 * We reserve space for updating the inode when we reserve space for the
1926 * extent we are going to write, so we will enospc out there. We don't
1927 * need to start yet another transaction to update the inode as we will
1928 * update the inode when we finish writing whatever data we write.
1930 update_time_for_write(inode
);
1932 start_pos
= round_down(pos
, fs_info
->sectorsize
);
1933 oldsize
= i_size_read(inode
);
1934 if (start_pos
> oldsize
) {
1935 /* Expand hole size to cover write data, preventing empty gap */
1936 end_pos
= round_up(pos
+ count
,
1937 fs_info
->sectorsize
);
1938 err
= btrfs_cont_expand(inode
, oldsize
, end_pos
);
1940 inode_unlock(inode
);
1943 if (start_pos
> round_up(oldsize
, fs_info
->sectorsize
))
1948 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
1950 if (iocb
->ki_flags
& IOCB_DIRECT
) {
1951 num_written
= __btrfs_direct_write(iocb
, from
);
1953 num_written
= btrfs_buffered_write(iocb
, from
);
1954 if (num_written
> 0)
1955 iocb
->ki_pos
= pos
+ num_written
;
1957 pagecache_isize_extended(inode
, oldsize
,
1958 i_size_read(inode
));
1961 inode_unlock(inode
);
1964 * We also have to set last_sub_trans to the current log transid,
1965 * otherwise subsequent syncs to a file that's been synced in this
1966 * transaction will appear to have already occurred.
1968 spin_lock(&BTRFS_I(inode
)->lock
);
1969 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
1970 spin_unlock(&BTRFS_I(inode
)->lock
);
1971 if (num_written
> 0)
1972 num_written
= generic_write_sync(iocb
, num_written
);
1975 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
1977 current
->backing_dev_info
= NULL
;
1978 return num_written
? num_written
: err
;
1981 int btrfs_release_file(struct inode
*inode
, struct file
*filp
)
1983 struct btrfs_file_private
*private = filp
->private_data
;
1985 if (private && private->filldir_buf
)
1986 kfree(private->filldir_buf
);
1988 filp
->private_data
= NULL
;
1991 * ordered_data_close is set by settattr when we are about to truncate
1992 * a file from a non-zero size to a zero size. This tries to
1993 * flush down new bytes that may have been written if the
1994 * application were using truncate to replace a file in place.
1996 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
1997 &BTRFS_I(inode
)->runtime_flags
))
1998 filemap_flush(inode
->i_mapping
);
2002 static int start_ordered_ops(struct inode
*inode
, loff_t start
, loff_t end
)
2005 struct blk_plug plug
;
2008 * This is only called in fsync, which would do synchronous writes, so
2009 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2010 * multiple disks using raid profile, a large IO can be split to
2011 * several segments of stripe length (currently 64K).
2013 blk_start_plug(&plug
);
2014 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
2015 ret
= btrfs_fdatawrite_range(inode
, start
, end
);
2016 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
2017 blk_finish_plug(&plug
);
2023 * fsync call for both files and directories. This logs the inode into
2024 * the tree log instead of forcing full commits whenever possible.
2026 * It needs to call filemap_fdatawait so that all ordered extent updates are
2027 * in the metadata btree are up to date for copying to the log.
2029 * It drops the inode mutex before doing the tree log commit. This is an
2030 * important optimization for directories because holding the mutex prevents
2031 * new operations on the dir while we write to disk.
2033 int btrfs_sync_file(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
2035 struct dentry
*dentry
= file_dentry(file
);
2036 struct inode
*inode
= d_inode(dentry
);
2037 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2038 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2039 struct btrfs_trans_handle
*trans
;
2040 struct btrfs_log_ctx ctx
;
2045 * The range length can be represented by u64, we have to do the typecasts
2046 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2048 len
= (u64
)end
- (u64
)start
+ 1;
2049 trace_btrfs_sync_file(file
, datasync
);
2051 btrfs_init_log_ctx(&ctx
, inode
);
2054 * We write the dirty pages in the range and wait until they complete
2055 * out of the ->i_mutex. If so, we can flush the dirty pages by
2056 * multi-task, and make the performance up. See
2057 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2059 ret
= start_ordered_ops(inode
, start
, end
);
2064 atomic_inc(&root
->log_batch
);
2067 * We have to do this here to avoid the priority inversion of waiting on
2068 * IO of a lower priority task while holding a transaciton open.
2070 ret
= btrfs_wait_ordered_range(inode
, start
, len
);
2072 inode_unlock(inode
);
2075 atomic_inc(&root
->log_batch
);
2078 if (btrfs_inode_in_log(BTRFS_I(inode
), fs_info
->generation
) ||
2079 BTRFS_I(inode
)->last_trans
<= fs_info
->last_trans_committed
) {
2081 * We've had everything committed since the last time we were
2082 * modified so clear this flag in case it was set for whatever
2083 * reason, it's no longer relevant.
2085 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2086 &BTRFS_I(inode
)->runtime_flags
);
2088 * An ordered extent might have started before and completed
2089 * already with io errors, in which case the inode was not
2090 * updated and we end up here. So check the inode's mapping
2091 * for any errors that might have happened since we last
2092 * checked called fsync.
2094 ret
= filemap_check_wb_err(inode
->i_mapping
, file
->f_wb_err
);
2095 inode_unlock(inode
);
2100 * We use start here because we will need to wait on the IO to complete
2101 * in btrfs_sync_log, which could require joining a transaction (for
2102 * example checking cross references in the nocow path). If we use join
2103 * here we could get into a situation where we're waiting on IO to
2104 * happen that is blocked on a transaction trying to commit. With start
2105 * we inc the extwriter counter, so we wait for all extwriters to exit
2106 * before we start blocking join'ers. This comment is to keep somebody
2107 * from thinking they are super smart and changing this to
2108 * btrfs_join_transaction *cough*Josef*cough*.
2110 trans
= btrfs_start_transaction(root
, 0);
2111 if (IS_ERR(trans
)) {
2112 ret
= PTR_ERR(trans
);
2113 inode_unlock(inode
);
2118 ret
= btrfs_log_dentry_safe(trans
, dentry
, start
, end
, &ctx
);
2120 /* Fallthrough and commit/free transaction. */
2124 /* we've logged all the items and now have a consistent
2125 * version of the file in the log. It is possible that
2126 * someone will come in and modify the file, but that's
2127 * fine because the log is consistent on disk, and we
2128 * have references to all of the file's extents
2130 * It is possible that someone will come in and log the
2131 * file again, but that will end up using the synchronization
2132 * inside btrfs_sync_log to keep things safe.
2134 inode_unlock(inode
);
2137 * If any of the ordered extents had an error, just return it to user
2138 * space, so that the application knows some writes didn't succeed and
2139 * can take proper action (retry for e.g.). Blindly committing the
2140 * transaction in this case, would fool userspace that everything was
2141 * successful. And we also want to make sure our log doesn't contain
2142 * file extent items pointing to extents that weren't fully written to -
2143 * just like in the non fast fsync path, where we check for the ordered
2144 * operation's error flag before writing to the log tree and return -EIO
2145 * if any of them had this flag set (btrfs_wait_ordered_range) -
2146 * therefore we need to check for errors in the ordered operations,
2147 * which are indicated by ctx.io_err.
2150 btrfs_end_transaction(trans
);
2155 if (ret
!= BTRFS_NO_LOG_SYNC
) {
2157 ret
= btrfs_sync_log(trans
, root
, &ctx
);
2159 ret
= btrfs_end_transaction(trans
);
2163 ret
= btrfs_commit_transaction(trans
);
2165 ret
= btrfs_end_transaction(trans
);
2168 ASSERT(list_empty(&ctx
.list
));
2169 err
= file_check_and_advance_wb_err(file
);
2172 return ret
> 0 ? -EIO
: ret
;
2175 static const struct vm_operations_struct btrfs_file_vm_ops
= {
2176 .fault
= filemap_fault
,
2177 .map_pages
= filemap_map_pages
,
2178 .page_mkwrite
= btrfs_page_mkwrite
,
2181 static int btrfs_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
2183 struct address_space
*mapping
= filp
->f_mapping
;
2185 if (!mapping
->a_ops
->readpage
)
2188 file_accessed(filp
);
2189 vma
->vm_ops
= &btrfs_file_vm_ops
;
2194 static int hole_mergeable(struct btrfs_inode
*inode
, struct extent_buffer
*leaf
,
2195 int slot
, u64 start
, u64 end
)
2197 struct btrfs_file_extent_item
*fi
;
2198 struct btrfs_key key
;
2200 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
2203 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2204 if (key
.objectid
!= btrfs_ino(inode
) ||
2205 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2208 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
2210 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2213 if (btrfs_file_extent_disk_bytenr(leaf
, fi
))
2216 if (key
.offset
== end
)
2218 if (key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
) == start
)
2223 static int fill_holes(struct btrfs_trans_handle
*trans
,
2224 struct btrfs_inode
*inode
,
2225 struct btrfs_path
*path
, u64 offset
, u64 end
)
2227 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2228 struct btrfs_root
*root
= inode
->root
;
2229 struct extent_buffer
*leaf
;
2230 struct btrfs_file_extent_item
*fi
;
2231 struct extent_map
*hole_em
;
2232 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
2233 struct btrfs_key key
;
2236 if (btrfs_fs_incompat(fs_info
, NO_HOLES
))
2239 key
.objectid
= btrfs_ino(inode
);
2240 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2241 key
.offset
= offset
;
2243 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2246 * We should have dropped this offset, so if we find it then
2247 * something has gone horribly wrong.
2254 leaf
= path
->nodes
[0];
2255 if (hole_mergeable(inode
, leaf
, path
->slots
[0] - 1, offset
, end
)) {
2259 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2260 struct btrfs_file_extent_item
);
2261 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) +
2263 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2264 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
2265 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2266 btrfs_mark_buffer_dirty(leaf
);
2270 if (hole_mergeable(inode
, leaf
, path
->slots
[0], offset
, end
)) {
2273 key
.offset
= offset
;
2274 btrfs_set_item_key_safe(fs_info
, path
, &key
);
2275 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2276 struct btrfs_file_extent_item
);
2277 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) + end
-
2279 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2280 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
2281 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2282 btrfs_mark_buffer_dirty(leaf
);
2285 btrfs_release_path(path
);
2287 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(inode
),
2288 offset
, 0, 0, end
- offset
, 0, end
- offset
, 0, 0, 0);
2293 btrfs_release_path(path
);
2295 hole_em
= alloc_extent_map();
2297 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
2298 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
);
2300 hole_em
->start
= offset
;
2301 hole_em
->len
= end
- offset
;
2302 hole_em
->ram_bytes
= hole_em
->len
;
2303 hole_em
->orig_start
= offset
;
2305 hole_em
->block_start
= EXTENT_MAP_HOLE
;
2306 hole_em
->block_len
= 0;
2307 hole_em
->orig_block_len
= 0;
2308 hole_em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
2309 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
2310 hole_em
->generation
= trans
->transid
;
2313 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
2314 write_lock(&em_tree
->lock
);
2315 ret
= add_extent_mapping(em_tree
, hole_em
, 1);
2316 write_unlock(&em_tree
->lock
);
2317 } while (ret
== -EEXIST
);
2318 free_extent_map(hole_em
);
2320 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2321 &inode
->runtime_flags
);
2328 * Find a hole extent on given inode and change start/len to the end of hole
2329 * extent.(hole/vacuum extent whose em->start <= start &&
2330 * em->start + em->len > start)
2331 * When a hole extent is found, return 1 and modify start/len.
2333 static int find_first_non_hole(struct inode
*inode
, u64
*start
, u64
*len
)
2335 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2336 struct extent_map
*em
;
2339 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0,
2340 round_down(*start
, fs_info
->sectorsize
),
2341 round_up(*len
, fs_info
->sectorsize
), 0);
2345 /* Hole or vacuum extent(only exists in no-hole mode) */
2346 if (em
->block_start
== EXTENT_MAP_HOLE
) {
2348 *len
= em
->start
+ em
->len
> *start
+ *len
?
2349 0 : *start
+ *len
- em
->start
- em
->len
;
2350 *start
= em
->start
+ em
->len
;
2352 free_extent_map(em
);
2356 static int btrfs_punch_hole_lock_range(struct inode
*inode
,
2357 const u64 lockstart
,
2359 struct extent_state
**cached_state
)
2362 struct btrfs_ordered_extent
*ordered
;
2365 truncate_pagecache_range(inode
, lockstart
, lockend
);
2367 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2369 ordered
= btrfs_lookup_first_ordered_extent(inode
, lockend
);
2372 * We need to make sure we have no ordered extents in this range
2373 * and nobody raced in and read a page in this range, if we did
2374 * we need to try again.
2377 (ordered
->file_offset
+ ordered
->len
<= lockstart
||
2378 ordered
->file_offset
> lockend
)) &&
2379 !filemap_range_has_page(inode
->i_mapping
,
2380 lockstart
, lockend
)) {
2382 btrfs_put_ordered_extent(ordered
);
2386 btrfs_put_ordered_extent(ordered
);
2387 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
,
2388 lockend
, cached_state
);
2389 ret
= btrfs_wait_ordered_range(inode
, lockstart
,
2390 lockend
- lockstart
+ 1);
2397 static int btrfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
2399 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2400 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2401 struct extent_state
*cached_state
= NULL
;
2402 struct btrfs_path
*path
;
2403 struct btrfs_block_rsv
*rsv
;
2404 struct btrfs_trans_handle
*trans
;
2409 u64 orig_start
= offset
;
2411 u64 min_size
= btrfs_calc_trans_metadata_size(fs_info
, 1);
2415 unsigned int rsv_count
;
2417 bool no_holes
= btrfs_fs_incompat(fs_info
, NO_HOLES
);
2419 bool truncated_block
= false;
2420 bool updated_inode
= false;
2422 ret
= btrfs_wait_ordered_range(inode
, offset
, len
);
2427 ino_size
= round_up(inode
->i_size
, fs_info
->sectorsize
);
2428 ret
= find_first_non_hole(inode
, &offset
, &len
);
2430 goto out_only_mutex
;
2432 /* Already in a large hole */
2434 goto out_only_mutex
;
2437 lockstart
= round_up(offset
, btrfs_inode_sectorsize(inode
));
2438 lockend
= round_down(offset
+ len
,
2439 btrfs_inode_sectorsize(inode
)) - 1;
2440 same_block
= (BTRFS_BYTES_TO_BLKS(fs_info
, offset
))
2441 == (BTRFS_BYTES_TO_BLKS(fs_info
, offset
+ len
- 1));
2443 * We needn't truncate any block which is beyond the end of the file
2444 * because we are sure there is no data there.
2447 * Only do this if we are in the same block and we aren't doing the
2450 if (same_block
&& len
< fs_info
->sectorsize
) {
2451 if (offset
< ino_size
) {
2452 truncated_block
= true;
2453 ret
= btrfs_truncate_block(inode
, offset
, len
, 0);
2457 goto out_only_mutex
;
2460 /* zero back part of the first block */
2461 if (offset
< ino_size
) {
2462 truncated_block
= true;
2463 ret
= btrfs_truncate_block(inode
, offset
, 0, 0);
2465 inode_unlock(inode
);
2470 /* Check the aligned pages after the first unaligned page,
2471 * if offset != orig_start, which means the first unaligned page
2472 * including several following pages are already in holes,
2473 * the extra check can be skipped */
2474 if (offset
== orig_start
) {
2475 /* after truncate page, check hole again */
2476 len
= offset
+ len
- lockstart
;
2478 ret
= find_first_non_hole(inode
, &offset
, &len
);
2480 goto out_only_mutex
;
2483 goto out_only_mutex
;
2488 /* Check the tail unaligned part is in a hole */
2489 tail_start
= lockend
+ 1;
2490 tail_len
= offset
+ len
- tail_start
;
2492 ret
= find_first_non_hole(inode
, &tail_start
, &tail_len
);
2493 if (unlikely(ret
< 0))
2494 goto out_only_mutex
;
2496 /* zero the front end of the last page */
2497 if (tail_start
+ tail_len
< ino_size
) {
2498 truncated_block
= true;
2499 ret
= btrfs_truncate_block(inode
,
2500 tail_start
+ tail_len
,
2503 goto out_only_mutex
;
2508 if (lockend
< lockstart
) {
2510 goto out_only_mutex
;
2513 ret
= btrfs_punch_hole_lock_range(inode
, lockstart
, lockend
,
2516 inode_unlock(inode
);
2517 goto out_only_mutex
;
2520 path
= btrfs_alloc_path();
2526 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
2531 rsv
->size
= btrfs_calc_trans_metadata_size(fs_info
, 1);
2535 * 1 - update the inode
2536 * 1 - removing the extents in the range
2537 * 1 - adding the hole extent if no_holes isn't set
2539 rsv_count
= no_holes
? 2 : 3;
2540 trans
= btrfs_start_transaction(root
, rsv_count
);
2541 if (IS_ERR(trans
)) {
2542 err
= PTR_ERR(trans
);
2546 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
2549 trans
->block_rsv
= rsv
;
2551 cur_offset
= lockstart
;
2552 len
= lockend
- cur_offset
;
2553 while (cur_offset
< lockend
) {
2554 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
2555 cur_offset
, lockend
+ 1,
2556 &drop_end
, 1, 0, 0, NULL
);
2560 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
2562 if (cur_offset
< drop_end
&& cur_offset
< ino_size
) {
2563 ret
= fill_holes(trans
, BTRFS_I(inode
), path
,
2564 cur_offset
, drop_end
);
2567 * If we failed then we didn't insert our hole
2568 * entries for the area we dropped, so now the
2569 * fs is corrupted, so we must abort the
2572 btrfs_abort_transaction(trans
, ret
);
2578 cur_offset
= drop_end
;
2580 ret
= btrfs_update_inode(trans
, root
, inode
);
2586 btrfs_end_transaction(trans
);
2587 btrfs_btree_balance_dirty(fs_info
);
2589 trans
= btrfs_start_transaction(root
, rsv_count
);
2590 if (IS_ERR(trans
)) {
2591 ret
= PTR_ERR(trans
);
2596 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
2598 BUG_ON(ret
); /* shouldn't happen */
2599 trans
->block_rsv
= rsv
;
2601 ret
= find_first_non_hole(inode
, &cur_offset
, &len
);
2602 if (unlikely(ret
< 0))
2615 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
2617 * If we are using the NO_HOLES feature we might have had already an
2618 * hole that overlaps a part of the region [lockstart, lockend] and
2619 * ends at (or beyond) lockend. Since we have no file extent items to
2620 * represent holes, drop_end can be less than lockend and so we must
2621 * make sure we have an extent map representing the existing hole (the
2622 * call to __btrfs_drop_extents() might have dropped the existing extent
2623 * map representing the existing hole), otherwise the fast fsync path
2624 * will not record the existence of the hole region
2625 * [existing_hole_start, lockend].
2627 if (drop_end
<= lockend
)
2628 drop_end
= lockend
+ 1;
2630 * Don't insert file hole extent item if it's for a range beyond eof
2631 * (because it's useless) or if it represents a 0 bytes range (when
2632 * cur_offset == drop_end).
2634 if (cur_offset
< ino_size
&& cur_offset
< drop_end
) {
2635 ret
= fill_holes(trans
, BTRFS_I(inode
), path
,
2636 cur_offset
, drop_end
);
2638 /* Same comment as above. */
2639 btrfs_abort_transaction(trans
, ret
);
2649 inode_inc_iversion(inode
);
2650 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2652 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
2653 ret
= btrfs_update_inode(trans
, root
, inode
);
2654 updated_inode
= true;
2655 btrfs_end_transaction(trans
);
2656 btrfs_btree_balance_dirty(fs_info
);
2658 btrfs_free_path(path
);
2659 btrfs_free_block_rsv(fs_info
, rsv
);
2661 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2664 if (!updated_inode
&& truncated_block
&& !ret
&& !err
) {
2666 * If we only end up zeroing part of a page, we still need to
2667 * update the inode item, so that all the time fields are
2668 * updated as well as the necessary btrfs inode in memory fields
2669 * for detecting, at fsync time, if the inode isn't yet in the
2670 * log tree or it's there but not up to date.
2672 trans
= btrfs_start_transaction(root
, 1);
2673 if (IS_ERR(trans
)) {
2674 err
= PTR_ERR(trans
);
2676 err
= btrfs_update_inode(trans
, root
, inode
);
2677 ret
= btrfs_end_transaction(trans
);
2680 inode_unlock(inode
);
2686 /* Helper structure to record which range is already reserved */
2687 struct falloc_range
{
2688 struct list_head list
;
2694 * Helper function to add falloc range
2696 * Caller should have locked the larger range of extent containing
2699 static int add_falloc_range(struct list_head
*head
, u64 start
, u64 len
)
2701 struct falloc_range
*prev
= NULL
;
2702 struct falloc_range
*range
= NULL
;
2704 if (list_empty(head
))
2708 * As fallocate iterate by bytenr order, we only need to check
2711 prev
= list_entry(head
->prev
, struct falloc_range
, list
);
2712 if (prev
->start
+ prev
->len
== start
) {
2717 range
= kmalloc(sizeof(*range
), GFP_KERNEL
);
2720 range
->start
= start
;
2722 list_add_tail(&range
->list
, head
);
2726 static int btrfs_fallocate_update_isize(struct inode
*inode
,
2730 struct btrfs_trans_handle
*trans
;
2731 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2735 if (mode
& FALLOC_FL_KEEP_SIZE
|| end
<= i_size_read(inode
))
2738 trans
= btrfs_start_transaction(root
, 1);
2740 return PTR_ERR(trans
);
2742 inode
->i_ctime
= current_time(inode
);
2743 i_size_write(inode
, end
);
2744 btrfs_ordered_update_i_size(inode
, end
, NULL
);
2745 ret
= btrfs_update_inode(trans
, root
, inode
);
2746 ret2
= btrfs_end_transaction(trans
);
2748 return ret
? ret
: ret2
;
2752 RANGE_BOUNDARY_WRITTEN_EXTENT
= 0,
2753 RANGE_BOUNDARY_PREALLOC_EXTENT
= 1,
2754 RANGE_BOUNDARY_HOLE
= 2,
2757 static int btrfs_zero_range_check_range_boundary(struct inode
*inode
,
2760 const u64 sectorsize
= btrfs_inode_sectorsize(inode
);
2761 struct extent_map
*em
;
2764 offset
= round_down(offset
, sectorsize
);
2765 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, offset
, sectorsize
, 0);
2769 if (em
->block_start
== EXTENT_MAP_HOLE
)
2770 ret
= RANGE_BOUNDARY_HOLE
;
2771 else if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
2772 ret
= RANGE_BOUNDARY_PREALLOC_EXTENT
;
2774 ret
= RANGE_BOUNDARY_WRITTEN_EXTENT
;
2776 free_extent_map(em
);
2780 static int btrfs_zero_range(struct inode
*inode
,
2785 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2786 struct extent_map
*em
;
2787 struct extent_changeset
*data_reserved
= NULL
;
2790 const u64 sectorsize
= btrfs_inode_sectorsize(inode
);
2791 u64 alloc_start
= round_down(offset
, sectorsize
);
2792 u64 alloc_end
= round_up(offset
+ len
, sectorsize
);
2793 u64 bytes_to_reserve
= 0;
2794 bool space_reserved
= false;
2796 inode_dio_wait(inode
);
2798 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0,
2799 alloc_start
, alloc_end
- alloc_start
, 0);
2806 * Avoid hole punching and extent allocation for some cases. More cases
2807 * could be considered, but these are unlikely common and we keep things
2808 * as simple as possible for now. Also, intentionally, if the target
2809 * range contains one or more prealloc extents together with regular
2810 * extents and holes, we drop all the existing extents and allocate a
2811 * new prealloc extent, so that we get a larger contiguous disk extent.
2813 if (em
->start
<= alloc_start
&&
2814 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
2815 const u64 em_end
= em
->start
+ em
->len
;
2817 if (em_end
>= offset
+ len
) {
2819 * The whole range is already a prealloc extent,
2820 * do nothing except updating the inode's i_size if
2823 free_extent_map(em
);
2824 ret
= btrfs_fallocate_update_isize(inode
, offset
+ len
,
2829 * Part of the range is already a prealloc extent, so operate
2830 * only on the remaining part of the range.
2832 alloc_start
= em_end
;
2833 ASSERT(IS_ALIGNED(alloc_start
, sectorsize
));
2834 len
= offset
+ len
- alloc_start
;
2835 offset
= alloc_start
;
2836 alloc_hint
= em
->block_start
+ em
->len
;
2838 free_extent_map(em
);
2840 if (BTRFS_BYTES_TO_BLKS(fs_info
, offset
) ==
2841 BTRFS_BYTES_TO_BLKS(fs_info
, offset
+ len
- 1)) {
2842 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0,
2843 alloc_start
, sectorsize
, 0);
2849 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
2850 free_extent_map(em
);
2851 ret
= btrfs_fallocate_update_isize(inode
, offset
+ len
,
2855 if (len
< sectorsize
&& em
->block_start
!= EXTENT_MAP_HOLE
) {
2856 free_extent_map(em
);
2857 ret
= btrfs_truncate_block(inode
, offset
, len
, 0);
2859 ret
= btrfs_fallocate_update_isize(inode
,
2864 free_extent_map(em
);
2865 alloc_start
= round_down(offset
, sectorsize
);
2866 alloc_end
= alloc_start
+ sectorsize
;
2870 alloc_start
= round_up(offset
, sectorsize
);
2871 alloc_end
= round_down(offset
+ len
, sectorsize
);
2874 * For unaligned ranges, check the pages at the boundaries, they might
2875 * map to an extent, in which case we need to partially zero them, or
2876 * they might map to a hole, in which case we need our allocation range
2879 if (!IS_ALIGNED(offset
, sectorsize
)) {
2880 ret
= btrfs_zero_range_check_range_boundary(inode
, offset
);
2883 if (ret
== RANGE_BOUNDARY_HOLE
) {
2884 alloc_start
= round_down(offset
, sectorsize
);
2886 } else if (ret
== RANGE_BOUNDARY_WRITTEN_EXTENT
) {
2887 ret
= btrfs_truncate_block(inode
, offset
, 0, 0);
2895 if (!IS_ALIGNED(offset
+ len
, sectorsize
)) {
2896 ret
= btrfs_zero_range_check_range_boundary(inode
,
2900 if (ret
== RANGE_BOUNDARY_HOLE
) {
2901 alloc_end
= round_up(offset
+ len
, sectorsize
);
2903 } else if (ret
== RANGE_BOUNDARY_WRITTEN_EXTENT
) {
2904 ret
= btrfs_truncate_block(inode
, offset
+ len
, 0, 1);
2913 if (alloc_start
< alloc_end
) {
2914 struct extent_state
*cached_state
= NULL
;
2915 const u64 lockstart
= alloc_start
;
2916 const u64 lockend
= alloc_end
- 1;
2918 bytes_to_reserve
= alloc_end
- alloc_start
;
2919 ret
= btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode
),
2923 space_reserved
= true;
2924 ret
= btrfs_qgroup_reserve_data(inode
, &data_reserved
,
2925 alloc_start
, bytes_to_reserve
);
2928 ret
= btrfs_punch_hole_lock_range(inode
, lockstart
, lockend
,
2932 ret
= btrfs_prealloc_file_range(inode
, mode
, alloc_start
,
2933 alloc_end
- alloc_start
,
2935 offset
+ len
, &alloc_hint
);
2936 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
,
2937 lockend
, &cached_state
);
2938 /* btrfs_prealloc_file_range releases reserved space on error */
2940 space_reserved
= false;
2944 ret
= btrfs_fallocate_update_isize(inode
, offset
+ len
, mode
);
2946 if (ret
&& space_reserved
)
2947 btrfs_free_reserved_data_space(inode
, data_reserved
,
2948 alloc_start
, bytes_to_reserve
);
2949 extent_changeset_free(data_reserved
);
2954 static long btrfs_fallocate(struct file
*file
, int mode
,
2955 loff_t offset
, loff_t len
)
2957 struct inode
*inode
= file_inode(file
);
2958 struct extent_state
*cached_state
= NULL
;
2959 struct extent_changeset
*data_reserved
= NULL
;
2960 struct falloc_range
*range
;
2961 struct falloc_range
*tmp
;
2962 struct list_head reserve_list
;
2970 struct extent_map
*em
;
2971 int blocksize
= btrfs_inode_sectorsize(inode
);
2974 alloc_start
= round_down(offset
, blocksize
);
2975 alloc_end
= round_up(offset
+ len
, blocksize
);
2976 cur_offset
= alloc_start
;
2978 /* Make sure we aren't being give some crap mode */
2979 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
|
2980 FALLOC_FL_ZERO_RANGE
))
2983 if (mode
& FALLOC_FL_PUNCH_HOLE
)
2984 return btrfs_punch_hole(inode
, offset
, len
);
2987 * Only trigger disk allocation, don't trigger qgroup reserve
2989 * For qgroup space, it will be checked later.
2991 if (!(mode
& FALLOC_FL_ZERO_RANGE
)) {
2992 ret
= btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode
),
2993 alloc_end
- alloc_start
);
3000 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
) {
3001 ret
= inode_newsize_ok(inode
, offset
+ len
);
3007 * TODO: Move these two operations after we have checked
3008 * accurate reserved space, or fallocate can still fail but
3009 * with page truncated or size expanded.
3011 * But that's a minor problem and won't do much harm BTW.
3013 if (alloc_start
> inode
->i_size
) {
3014 ret
= btrfs_cont_expand(inode
, i_size_read(inode
),
3018 } else if (offset
+ len
> inode
->i_size
) {
3020 * If we are fallocating from the end of the file onward we
3021 * need to zero out the end of the block if i_size lands in the
3022 * middle of a block.
3024 ret
= btrfs_truncate_block(inode
, inode
->i_size
, 0, 0);
3030 * wait for ordered IO before we have any locks. We'll loop again
3031 * below with the locks held.
3033 ret
= btrfs_wait_ordered_range(inode
, alloc_start
,
3034 alloc_end
- alloc_start
);
3038 if (mode
& FALLOC_FL_ZERO_RANGE
) {
3039 ret
= btrfs_zero_range(inode
, offset
, len
, mode
);
3040 inode_unlock(inode
);
3044 locked_end
= alloc_end
- 1;
3046 struct btrfs_ordered_extent
*ordered
;
3048 /* the extent lock is ordered inside the running
3051 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, alloc_start
,
3052 locked_end
, &cached_state
);
3053 ordered
= btrfs_lookup_first_ordered_extent(inode
, locked_end
);
3056 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
3057 ordered
->file_offset
< alloc_end
) {
3058 btrfs_put_ordered_extent(ordered
);
3059 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
3060 alloc_start
, locked_end
,
3063 * we can't wait on the range with the transaction
3064 * running or with the extent lock held
3066 ret
= btrfs_wait_ordered_range(inode
, alloc_start
,
3067 alloc_end
- alloc_start
);
3072 btrfs_put_ordered_extent(ordered
);
3077 /* First, check if we exceed the qgroup limit */
3078 INIT_LIST_HEAD(&reserve_list
);
3079 while (cur_offset
< alloc_end
) {
3080 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, cur_offset
,
3081 alloc_end
- cur_offset
, 0);
3086 last_byte
= min(extent_map_end(em
), alloc_end
);
3087 actual_end
= min_t(u64
, extent_map_end(em
), offset
+ len
);
3088 last_byte
= ALIGN(last_byte
, blocksize
);
3089 if (em
->block_start
== EXTENT_MAP_HOLE
||
3090 (cur_offset
>= inode
->i_size
&&
3091 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
3092 ret
= add_falloc_range(&reserve_list
, cur_offset
,
3093 last_byte
- cur_offset
);
3095 free_extent_map(em
);
3098 ret
= btrfs_qgroup_reserve_data(inode
, &data_reserved
,
3099 cur_offset
, last_byte
- cur_offset
);
3101 free_extent_map(em
);
3106 * Do not need to reserve unwritten extent for this
3107 * range, free reserved data space first, otherwise
3108 * it'll result in false ENOSPC error.
3110 btrfs_free_reserved_data_space(inode
, data_reserved
,
3111 cur_offset
, last_byte
- cur_offset
);
3113 free_extent_map(em
);
3114 cur_offset
= last_byte
;
3118 * If ret is still 0, means we're OK to fallocate.
3119 * Or just cleanup the list and exit.
3121 list_for_each_entry_safe(range
, tmp
, &reserve_list
, list
) {
3123 ret
= btrfs_prealloc_file_range(inode
, mode
,
3125 range
->len
, i_blocksize(inode
),
3126 offset
+ len
, &alloc_hint
);
3128 btrfs_free_reserved_data_space(inode
,
3129 data_reserved
, range
->start
,
3131 list_del(&range
->list
);
3138 * We didn't need to allocate any more space, but we still extended the
3139 * size of the file so we need to update i_size and the inode item.
3141 ret
= btrfs_fallocate_update_isize(inode
, actual_end
, mode
);
3143 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
3146 inode_unlock(inode
);
3147 /* Let go of our reservation. */
3148 if (ret
!= 0 && !(mode
& FALLOC_FL_ZERO_RANGE
))
3149 btrfs_free_reserved_data_space(inode
, data_reserved
,
3150 alloc_start
, alloc_end
- cur_offset
);
3151 extent_changeset_free(data_reserved
);
3155 static int find_desired_extent(struct inode
*inode
, loff_t
*offset
, int whence
)
3157 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3158 struct extent_map
*em
= NULL
;
3159 struct extent_state
*cached_state
= NULL
;
3166 if (inode
->i_size
== 0)
3170 * *offset can be negative, in this case we start finding DATA/HOLE from
3171 * the very start of the file.
3173 start
= max_t(loff_t
, 0, *offset
);
3175 lockstart
= round_down(start
, fs_info
->sectorsize
);
3176 lockend
= round_up(i_size_read(inode
),
3177 fs_info
->sectorsize
);
3178 if (lockend
<= lockstart
)
3179 lockend
= lockstart
+ fs_info
->sectorsize
;
3181 len
= lockend
- lockstart
+ 1;
3183 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
3186 while (start
< inode
->i_size
) {
3187 em
= btrfs_get_extent_fiemap(BTRFS_I(inode
), NULL
, 0,
3195 if (whence
== SEEK_HOLE
&&
3196 (em
->block_start
== EXTENT_MAP_HOLE
||
3197 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)))
3199 else if (whence
== SEEK_DATA
&&
3200 (em
->block_start
!= EXTENT_MAP_HOLE
&&
3201 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)))
3204 start
= em
->start
+ em
->len
;
3205 free_extent_map(em
);
3209 free_extent_map(em
);
3211 if (whence
== SEEK_DATA
&& start
>= inode
->i_size
)
3214 *offset
= min_t(loff_t
, start
, inode
->i_size
);
3216 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
3221 static loff_t
btrfs_file_llseek(struct file
*file
, loff_t offset
, int whence
)
3223 struct inode
*inode
= file
->f_mapping
->host
;
3230 offset
= generic_file_llseek(file
, offset
, whence
);
3234 if (offset
>= i_size_read(inode
)) {
3235 inode_unlock(inode
);
3239 ret
= find_desired_extent(inode
, &offset
, whence
);
3241 inode_unlock(inode
);
3246 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
3248 inode_unlock(inode
);
3252 static int btrfs_file_open(struct inode
*inode
, struct file
*filp
)
3254 filp
->f_mode
|= FMODE_NOWAIT
;
3255 return generic_file_open(inode
, filp
);
3258 const struct file_operations btrfs_file_operations
= {
3259 .llseek
= btrfs_file_llseek
,
3260 .read_iter
= generic_file_read_iter
,
3261 .splice_read
= generic_file_splice_read
,
3262 .write_iter
= btrfs_file_write_iter
,
3263 .mmap
= btrfs_file_mmap
,
3264 .open
= btrfs_file_open
,
3265 .release
= btrfs_release_file
,
3266 .fsync
= btrfs_sync_file
,
3267 .fallocate
= btrfs_fallocate
,
3268 .unlocked_ioctl
= btrfs_ioctl
,
3269 #ifdef CONFIG_COMPAT
3270 .compat_ioctl
= btrfs_compat_ioctl
,
3272 .clone_file_range
= btrfs_clone_file_range
,
3273 .dedupe_file_range
= btrfs_dedupe_file_range
,
3276 void __cold
btrfs_auto_defrag_exit(void)
3278 kmem_cache_destroy(btrfs_inode_defrag_cachep
);
3281 int __init
btrfs_auto_defrag_init(void)
3283 btrfs_inode_defrag_cachep
= kmem_cache_create("btrfs_inode_defrag",
3284 sizeof(struct inode_defrag
), 0,
3287 if (!btrfs_inode_defrag_cachep
)
3293 int btrfs_fdatawrite_range(struct inode
*inode
, loff_t start
, loff_t end
)
3298 * So with compression we will find and lock a dirty page and clear the
3299 * first one as dirty, setup an async extent, and immediately return
3300 * with the entire range locked but with nobody actually marked with
3301 * writeback. So we can't just filemap_write_and_wait_range() and
3302 * expect it to work since it will just kick off a thread to do the
3303 * actual work. So we need to call filemap_fdatawrite_range _again_
3304 * since it will wait on the page lock, which won't be unlocked until
3305 * after the pages have been marked as writeback and so we're good to go
3306 * from there. We have to do this otherwise we'll miss the ordered
3307 * extents and that results in badness. Please Josef, do not think you
3308 * know better and pull this out at some point in the future, it is
3309 * right and you are wrong.
3311 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
3312 if (!ret
&& test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
3313 &BTRFS_I(inode
)->runtime_flags
))
3314 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);