staging: rtl8188eu: rename HalSetBrateCfg() - style
[linux/fpc-iii.git] / fs / btrfs / transaction.c
blob3b84f50150299d6ddf7ce57617cde98282bf8214
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "locking.h"
17 #include "tree-log.h"
18 #include "inode-map.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
23 #define BTRFS_ROOT_TRANS_TAG 0
25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
26 [TRANS_STATE_RUNNING] = 0U,
27 [TRANS_STATE_BLOCKED] = __TRANS_START,
28 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
29 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
30 __TRANS_ATTACH |
31 __TRANS_JOIN),
32 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
33 __TRANS_ATTACH |
34 __TRANS_JOIN |
35 __TRANS_JOIN_NOLOCK),
36 [TRANS_STATE_COMPLETED] = (__TRANS_START |
37 __TRANS_ATTACH |
38 __TRANS_JOIN |
39 __TRANS_JOIN_NOLOCK),
42 void btrfs_put_transaction(struct btrfs_transaction *transaction)
44 WARN_ON(refcount_read(&transaction->use_count) == 0);
45 if (refcount_dec_and_test(&transaction->use_count)) {
46 BUG_ON(!list_empty(&transaction->list));
47 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
48 if (transaction->delayed_refs.pending_csums)
49 btrfs_err(transaction->fs_info,
50 "pending csums is %llu",
51 transaction->delayed_refs.pending_csums);
52 while (!list_empty(&transaction->pending_chunks)) {
53 struct extent_map *em;
55 em = list_first_entry(&transaction->pending_chunks,
56 struct extent_map, list);
57 list_del_init(&em->list);
58 free_extent_map(em);
61 * If any block groups are found in ->deleted_bgs then it's
62 * because the transaction was aborted and a commit did not
63 * happen (things failed before writing the new superblock
64 * and calling btrfs_finish_extent_commit()), so we can not
65 * discard the physical locations of the block groups.
67 while (!list_empty(&transaction->deleted_bgs)) {
68 struct btrfs_block_group_cache *cache;
70 cache = list_first_entry(&transaction->deleted_bgs,
71 struct btrfs_block_group_cache,
72 bg_list);
73 list_del_init(&cache->bg_list);
74 btrfs_put_block_group_trimming(cache);
75 btrfs_put_block_group(cache);
77 kfree(transaction);
81 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 spin_lock(&tree->lock);
85 * Do a single barrier for the waitqueue_active check here, the state
86 * of the waitqueue should not change once clear_btree_io_tree is
87 * called.
89 smp_mb();
90 while (!RB_EMPTY_ROOT(&tree->state)) {
91 struct rb_node *node;
92 struct extent_state *state;
94 node = rb_first(&tree->state);
95 state = rb_entry(node, struct extent_state, rb_node);
96 rb_erase(&state->rb_node, &tree->state);
97 RB_CLEAR_NODE(&state->rb_node);
99 * btree io trees aren't supposed to have tasks waiting for
100 * changes in the flags of extent states ever.
102 ASSERT(!waitqueue_active(&state->wq));
103 free_extent_state(state);
105 cond_resched_lock(&tree->lock);
107 spin_unlock(&tree->lock);
110 static noinline void switch_commit_roots(struct btrfs_transaction *trans)
112 struct btrfs_fs_info *fs_info = trans->fs_info;
113 struct btrfs_root *root, *tmp;
115 down_write(&fs_info->commit_root_sem);
116 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
117 dirty_list) {
118 list_del_init(&root->dirty_list);
119 free_extent_buffer(root->commit_root);
120 root->commit_root = btrfs_root_node(root);
121 if (is_fstree(root->objectid))
122 btrfs_unpin_free_ino(root);
123 clear_btree_io_tree(&root->dirty_log_pages);
126 /* We can free old roots now. */
127 spin_lock(&trans->dropped_roots_lock);
128 while (!list_empty(&trans->dropped_roots)) {
129 root = list_first_entry(&trans->dropped_roots,
130 struct btrfs_root, root_list);
131 list_del_init(&root->root_list);
132 spin_unlock(&trans->dropped_roots_lock);
133 btrfs_drop_and_free_fs_root(fs_info, root);
134 spin_lock(&trans->dropped_roots_lock);
136 spin_unlock(&trans->dropped_roots_lock);
137 up_write(&fs_info->commit_root_sem);
140 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
141 unsigned int type)
143 if (type & TRANS_EXTWRITERS)
144 atomic_inc(&trans->num_extwriters);
147 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
148 unsigned int type)
150 if (type & TRANS_EXTWRITERS)
151 atomic_dec(&trans->num_extwriters);
154 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
155 unsigned int type)
157 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
160 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
162 return atomic_read(&trans->num_extwriters);
166 * either allocate a new transaction or hop into the existing one
168 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
169 unsigned int type)
171 struct btrfs_transaction *cur_trans;
173 spin_lock(&fs_info->trans_lock);
174 loop:
175 /* The file system has been taken offline. No new transactions. */
176 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
177 spin_unlock(&fs_info->trans_lock);
178 return -EROFS;
181 cur_trans = fs_info->running_transaction;
182 if (cur_trans) {
183 if (cur_trans->aborted) {
184 spin_unlock(&fs_info->trans_lock);
185 return cur_trans->aborted;
187 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
188 spin_unlock(&fs_info->trans_lock);
189 return -EBUSY;
191 refcount_inc(&cur_trans->use_count);
192 atomic_inc(&cur_trans->num_writers);
193 extwriter_counter_inc(cur_trans, type);
194 spin_unlock(&fs_info->trans_lock);
195 return 0;
197 spin_unlock(&fs_info->trans_lock);
200 * If we are ATTACH, we just want to catch the current transaction,
201 * and commit it. If there is no transaction, just return ENOENT.
203 if (type == TRANS_ATTACH)
204 return -ENOENT;
207 * JOIN_NOLOCK only happens during the transaction commit, so
208 * it is impossible that ->running_transaction is NULL
210 BUG_ON(type == TRANS_JOIN_NOLOCK);
212 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
213 if (!cur_trans)
214 return -ENOMEM;
216 spin_lock(&fs_info->trans_lock);
217 if (fs_info->running_transaction) {
219 * someone started a transaction after we unlocked. Make sure
220 * to redo the checks above
222 kfree(cur_trans);
223 goto loop;
224 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
225 spin_unlock(&fs_info->trans_lock);
226 kfree(cur_trans);
227 return -EROFS;
230 cur_trans->fs_info = fs_info;
231 atomic_set(&cur_trans->num_writers, 1);
232 extwriter_counter_init(cur_trans, type);
233 init_waitqueue_head(&cur_trans->writer_wait);
234 init_waitqueue_head(&cur_trans->commit_wait);
235 init_waitqueue_head(&cur_trans->pending_wait);
236 cur_trans->state = TRANS_STATE_RUNNING;
238 * One for this trans handle, one so it will live on until we
239 * commit the transaction.
241 refcount_set(&cur_trans->use_count, 2);
242 atomic_set(&cur_trans->pending_ordered, 0);
243 cur_trans->flags = 0;
244 cur_trans->start_time = ktime_get_seconds();
246 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
248 cur_trans->delayed_refs.href_root = RB_ROOT;
249 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
250 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
253 * although the tree mod log is per file system and not per transaction,
254 * the log must never go across transaction boundaries.
256 smp_mb();
257 if (!list_empty(&fs_info->tree_mod_seq_list))
258 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
259 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
260 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
261 atomic64_set(&fs_info->tree_mod_seq, 0);
263 spin_lock_init(&cur_trans->delayed_refs.lock);
265 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
266 INIT_LIST_HEAD(&cur_trans->pending_chunks);
267 INIT_LIST_HEAD(&cur_trans->switch_commits);
268 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
269 INIT_LIST_HEAD(&cur_trans->io_bgs);
270 INIT_LIST_HEAD(&cur_trans->dropped_roots);
271 mutex_init(&cur_trans->cache_write_mutex);
272 cur_trans->num_dirty_bgs = 0;
273 spin_lock_init(&cur_trans->dirty_bgs_lock);
274 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
275 spin_lock_init(&cur_trans->dropped_roots_lock);
276 list_add_tail(&cur_trans->list, &fs_info->trans_list);
277 extent_io_tree_init(&cur_trans->dirty_pages,
278 fs_info->btree_inode);
279 fs_info->generation++;
280 cur_trans->transid = fs_info->generation;
281 fs_info->running_transaction = cur_trans;
282 cur_trans->aborted = 0;
283 spin_unlock(&fs_info->trans_lock);
285 return 0;
289 * this does all the record keeping required to make sure that a reference
290 * counted root is properly recorded in a given transaction. This is required
291 * to make sure the old root from before we joined the transaction is deleted
292 * when the transaction commits
294 static int record_root_in_trans(struct btrfs_trans_handle *trans,
295 struct btrfs_root *root,
296 int force)
298 struct btrfs_fs_info *fs_info = root->fs_info;
300 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
301 root->last_trans < trans->transid) || force) {
302 WARN_ON(root == fs_info->extent_root);
303 WARN_ON(!force && root->commit_root != root->node);
306 * see below for IN_TRANS_SETUP usage rules
307 * we have the reloc mutex held now, so there
308 * is only one writer in this function
310 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
312 /* make sure readers find IN_TRANS_SETUP before
313 * they find our root->last_trans update
315 smp_wmb();
317 spin_lock(&fs_info->fs_roots_radix_lock);
318 if (root->last_trans == trans->transid && !force) {
319 spin_unlock(&fs_info->fs_roots_radix_lock);
320 return 0;
322 radix_tree_tag_set(&fs_info->fs_roots_radix,
323 (unsigned long)root->root_key.objectid,
324 BTRFS_ROOT_TRANS_TAG);
325 spin_unlock(&fs_info->fs_roots_radix_lock);
326 root->last_trans = trans->transid;
328 /* this is pretty tricky. We don't want to
329 * take the relocation lock in btrfs_record_root_in_trans
330 * unless we're really doing the first setup for this root in
331 * this transaction.
333 * Normally we'd use root->last_trans as a flag to decide
334 * if we want to take the expensive mutex.
336 * But, we have to set root->last_trans before we
337 * init the relocation root, otherwise, we trip over warnings
338 * in ctree.c. The solution used here is to flag ourselves
339 * with root IN_TRANS_SETUP. When this is 1, we're still
340 * fixing up the reloc trees and everyone must wait.
342 * When this is zero, they can trust root->last_trans and fly
343 * through btrfs_record_root_in_trans without having to take the
344 * lock. smp_wmb() makes sure that all the writes above are
345 * done before we pop in the zero below
347 btrfs_init_reloc_root(trans, root);
348 smp_mb__before_atomic();
349 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
351 return 0;
355 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
356 struct btrfs_root *root)
358 struct btrfs_fs_info *fs_info = root->fs_info;
359 struct btrfs_transaction *cur_trans = trans->transaction;
361 /* Add ourselves to the transaction dropped list */
362 spin_lock(&cur_trans->dropped_roots_lock);
363 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
364 spin_unlock(&cur_trans->dropped_roots_lock);
366 /* Make sure we don't try to update the root at commit time */
367 spin_lock(&fs_info->fs_roots_radix_lock);
368 radix_tree_tag_clear(&fs_info->fs_roots_radix,
369 (unsigned long)root->root_key.objectid,
370 BTRFS_ROOT_TRANS_TAG);
371 spin_unlock(&fs_info->fs_roots_radix_lock);
374 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
375 struct btrfs_root *root)
377 struct btrfs_fs_info *fs_info = root->fs_info;
379 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
380 return 0;
383 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
384 * and barriers
386 smp_rmb();
387 if (root->last_trans == trans->transid &&
388 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
389 return 0;
391 mutex_lock(&fs_info->reloc_mutex);
392 record_root_in_trans(trans, root, 0);
393 mutex_unlock(&fs_info->reloc_mutex);
395 return 0;
398 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
400 return (trans->state >= TRANS_STATE_BLOCKED &&
401 trans->state < TRANS_STATE_UNBLOCKED &&
402 !trans->aborted);
405 /* wait for commit against the current transaction to become unblocked
406 * when this is done, it is safe to start a new transaction, but the current
407 * transaction might not be fully on disk.
409 static void wait_current_trans(struct btrfs_fs_info *fs_info)
411 struct btrfs_transaction *cur_trans;
413 spin_lock(&fs_info->trans_lock);
414 cur_trans = fs_info->running_transaction;
415 if (cur_trans && is_transaction_blocked(cur_trans)) {
416 refcount_inc(&cur_trans->use_count);
417 spin_unlock(&fs_info->trans_lock);
419 wait_event(fs_info->transaction_wait,
420 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
421 cur_trans->aborted);
422 btrfs_put_transaction(cur_trans);
423 } else {
424 spin_unlock(&fs_info->trans_lock);
428 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
430 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
431 return 0;
433 if (type == TRANS_START)
434 return 1;
436 return 0;
439 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
441 struct btrfs_fs_info *fs_info = root->fs_info;
443 if (!fs_info->reloc_ctl ||
444 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
445 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
446 root->reloc_root)
447 return false;
449 return true;
452 static struct btrfs_trans_handle *
453 start_transaction(struct btrfs_root *root, unsigned int num_items,
454 unsigned int type, enum btrfs_reserve_flush_enum flush,
455 bool enforce_qgroups)
457 struct btrfs_fs_info *fs_info = root->fs_info;
459 struct btrfs_trans_handle *h;
460 struct btrfs_transaction *cur_trans;
461 u64 num_bytes = 0;
462 u64 qgroup_reserved = 0;
463 bool reloc_reserved = false;
464 int ret;
466 /* Send isn't supposed to start transactions. */
467 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
469 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
470 return ERR_PTR(-EROFS);
472 if (current->journal_info) {
473 WARN_ON(type & TRANS_EXTWRITERS);
474 h = current->journal_info;
475 refcount_inc(&h->use_count);
476 WARN_ON(refcount_read(&h->use_count) > 2);
477 h->orig_rsv = h->block_rsv;
478 h->block_rsv = NULL;
479 goto got_it;
483 * Do the reservation before we join the transaction so we can do all
484 * the appropriate flushing if need be.
486 if (num_items && root != fs_info->chunk_root) {
487 qgroup_reserved = num_items * fs_info->nodesize;
488 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
489 enforce_qgroups);
490 if (ret)
491 return ERR_PTR(ret);
493 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
495 * Do the reservation for the relocation root creation
497 if (need_reserve_reloc_root(root)) {
498 num_bytes += fs_info->nodesize;
499 reloc_reserved = true;
502 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
503 num_bytes, flush);
504 if (ret)
505 goto reserve_fail;
507 again:
508 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
509 if (!h) {
510 ret = -ENOMEM;
511 goto alloc_fail;
515 * If we are JOIN_NOLOCK we're already committing a transaction and
516 * waiting on this guy, so we don't need to do the sb_start_intwrite
517 * because we're already holding a ref. We need this because we could
518 * have raced in and did an fsync() on a file which can kick a commit
519 * and then we deadlock with somebody doing a freeze.
521 * If we are ATTACH, it means we just want to catch the current
522 * transaction and commit it, so we needn't do sb_start_intwrite().
524 if (type & __TRANS_FREEZABLE)
525 sb_start_intwrite(fs_info->sb);
527 if (may_wait_transaction(fs_info, type))
528 wait_current_trans(fs_info);
530 do {
531 ret = join_transaction(fs_info, type);
532 if (ret == -EBUSY) {
533 wait_current_trans(fs_info);
534 if (unlikely(type == TRANS_ATTACH))
535 ret = -ENOENT;
537 } while (ret == -EBUSY);
539 if (ret < 0)
540 goto join_fail;
542 cur_trans = fs_info->running_transaction;
544 h->transid = cur_trans->transid;
545 h->transaction = cur_trans;
546 h->root = root;
547 refcount_set(&h->use_count, 1);
548 h->fs_info = root->fs_info;
550 h->type = type;
551 h->can_flush_pending_bgs = true;
552 INIT_LIST_HEAD(&h->new_bgs);
554 smp_mb();
555 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
556 may_wait_transaction(fs_info, type)) {
557 current->journal_info = h;
558 btrfs_commit_transaction(h);
559 goto again;
562 if (num_bytes) {
563 trace_btrfs_space_reservation(fs_info, "transaction",
564 h->transid, num_bytes, 1);
565 h->block_rsv = &fs_info->trans_block_rsv;
566 h->bytes_reserved = num_bytes;
567 h->reloc_reserved = reloc_reserved;
570 got_it:
571 btrfs_record_root_in_trans(h, root);
573 if (!current->journal_info)
574 current->journal_info = h;
575 return h;
577 join_fail:
578 if (type & __TRANS_FREEZABLE)
579 sb_end_intwrite(fs_info->sb);
580 kmem_cache_free(btrfs_trans_handle_cachep, h);
581 alloc_fail:
582 if (num_bytes)
583 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
584 num_bytes);
585 reserve_fail:
586 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
587 return ERR_PTR(ret);
590 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
591 unsigned int num_items)
593 return start_transaction(root, num_items, TRANS_START,
594 BTRFS_RESERVE_FLUSH_ALL, true);
597 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
598 struct btrfs_root *root,
599 unsigned int num_items,
600 int min_factor)
602 struct btrfs_fs_info *fs_info = root->fs_info;
603 struct btrfs_trans_handle *trans;
604 u64 num_bytes;
605 int ret;
608 * We have two callers: unlink and block group removal. The
609 * former should succeed even if we will temporarily exceed
610 * quota and the latter operates on the extent root so
611 * qgroup enforcement is ignored anyway.
613 trans = start_transaction(root, num_items, TRANS_START,
614 BTRFS_RESERVE_FLUSH_ALL, false);
615 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
616 return trans;
618 trans = btrfs_start_transaction(root, 0);
619 if (IS_ERR(trans))
620 return trans;
622 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
623 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
624 num_bytes, min_factor);
625 if (ret) {
626 btrfs_end_transaction(trans);
627 return ERR_PTR(ret);
630 trans->block_rsv = &fs_info->trans_block_rsv;
631 trans->bytes_reserved = num_bytes;
632 trace_btrfs_space_reservation(fs_info, "transaction",
633 trans->transid, num_bytes, 1);
635 return trans;
638 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
640 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
641 true);
644 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
646 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
647 BTRFS_RESERVE_NO_FLUSH, true);
651 * btrfs_attach_transaction() - catch the running transaction
653 * It is used when we want to commit the current the transaction, but
654 * don't want to start a new one.
656 * Note: If this function return -ENOENT, it just means there is no
657 * running transaction. But it is possible that the inactive transaction
658 * is still in the memory, not fully on disk. If you hope there is no
659 * inactive transaction in the fs when -ENOENT is returned, you should
660 * invoke
661 * btrfs_attach_transaction_barrier()
663 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
665 return start_transaction(root, 0, TRANS_ATTACH,
666 BTRFS_RESERVE_NO_FLUSH, true);
670 * btrfs_attach_transaction_barrier() - catch the running transaction
672 * It is similar to the above function, the differentia is this one
673 * will wait for all the inactive transactions until they fully
674 * complete.
676 struct btrfs_trans_handle *
677 btrfs_attach_transaction_barrier(struct btrfs_root *root)
679 struct btrfs_trans_handle *trans;
681 trans = start_transaction(root, 0, TRANS_ATTACH,
682 BTRFS_RESERVE_NO_FLUSH, true);
683 if (trans == ERR_PTR(-ENOENT))
684 btrfs_wait_for_commit(root->fs_info, 0);
686 return trans;
689 /* wait for a transaction commit to be fully complete */
690 static noinline void wait_for_commit(struct btrfs_transaction *commit)
692 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
695 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
697 struct btrfs_transaction *cur_trans = NULL, *t;
698 int ret = 0;
700 if (transid) {
701 if (transid <= fs_info->last_trans_committed)
702 goto out;
704 /* find specified transaction */
705 spin_lock(&fs_info->trans_lock);
706 list_for_each_entry(t, &fs_info->trans_list, list) {
707 if (t->transid == transid) {
708 cur_trans = t;
709 refcount_inc(&cur_trans->use_count);
710 ret = 0;
711 break;
713 if (t->transid > transid) {
714 ret = 0;
715 break;
718 spin_unlock(&fs_info->trans_lock);
721 * The specified transaction doesn't exist, or we
722 * raced with btrfs_commit_transaction
724 if (!cur_trans) {
725 if (transid > fs_info->last_trans_committed)
726 ret = -EINVAL;
727 goto out;
729 } else {
730 /* find newest transaction that is committing | committed */
731 spin_lock(&fs_info->trans_lock);
732 list_for_each_entry_reverse(t, &fs_info->trans_list,
733 list) {
734 if (t->state >= TRANS_STATE_COMMIT_START) {
735 if (t->state == TRANS_STATE_COMPLETED)
736 break;
737 cur_trans = t;
738 refcount_inc(&cur_trans->use_count);
739 break;
742 spin_unlock(&fs_info->trans_lock);
743 if (!cur_trans)
744 goto out; /* nothing committing|committed */
747 wait_for_commit(cur_trans);
748 btrfs_put_transaction(cur_trans);
749 out:
750 return ret;
753 void btrfs_throttle(struct btrfs_fs_info *fs_info)
755 wait_current_trans(fs_info);
758 static int should_end_transaction(struct btrfs_trans_handle *trans)
760 struct btrfs_fs_info *fs_info = trans->fs_info;
762 if (btrfs_check_space_for_delayed_refs(trans, fs_info))
763 return 1;
765 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
768 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
770 struct btrfs_transaction *cur_trans = trans->transaction;
771 int updates;
772 int err;
774 smp_mb();
775 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
776 cur_trans->delayed_refs.flushing)
777 return 1;
779 updates = trans->delayed_ref_updates;
780 trans->delayed_ref_updates = 0;
781 if (updates) {
782 err = btrfs_run_delayed_refs(trans, updates * 2);
783 if (err) /* Error code will also eval true */
784 return err;
787 return should_end_transaction(trans);
790 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
793 struct btrfs_fs_info *fs_info = trans->fs_info;
795 if (!trans->block_rsv) {
796 ASSERT(!trans->bytes_reserved);
797 return;
800 if (!trans->bytes_reserved)
801 return;
803 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
804 trace_btrfs_space_reservation(fs_info, "transaction",
805 trans->transid, trans->bytes_reserved, 0);
806 btrfs_block_rsv_release(fs_info, trans->block_rsv,
807 trans->bytes_reserved);
808 trans->bytes_reserved = 0;
811 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
812 int throttle)
814 struct btrfs_fs_info *info = trans->fs_info;
815 struct btrfs_transaction *cur_trans = trans->transaction;
816 u64 transid = trans->transid;
817 unsigned long cur = trans->delayed_ref_updates;
818 int lock = (trans->type != TRANS_JOIN_NOLOCK);
819 int err = 0;
820 int must_run_delayed_refs = 0;
822 if (refcount_read(&trans->use_count) > 1) {
823 refcount_dec(&trans->use_count);
824 trans->block_rsv = trans->orig_rsv;
825 return 0;
828 btrfs_trans_release_metadata(trans);
829 trans->block_rsv = NULL;
831 if (!list_empty(&trans->new_bgs))
832 btrfs_create_pending_block_groups(trans);
834 trans->delayed_ref_updates = 0;
835 if (!trans->sync) {
836 must_run_delayed_refs =
837 btrfs_should_throttle_delayed_refs(trans, info);
838 cur = max_t(unsigned long, cur, 32);
841 * don't make the caller wait if they are from a NOLOCK
842 * or ATTACH transaction, it will deadlock with commit
844 if (must_run_delayed_refs == 1 &&
845 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
846 must_run_delayed_refs = 2;
849 btrfs_trans_release_metadata(trans);
850 trans->block_rsv = NULL;
852 if (!list_empty(&trans->new_bgs))
853 btrfs_create_pending_block_groups(trans);
855 btrfs_trans_release_chunk_metadata(trans);
857 if (lock && should_end_transaction(trans) &&
858 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
859 spin_lock(&info->trans_lock);
860 if (cur_trans->state == TRANS_STATE_RUNNING)
861 cur_trans->state = TRANS_STATE_BLOCKED;
862 spin_unlock(&info->trans_lock);
865 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
866 if (throttle)
867 return btrfs_commit_transaction(trans);
868 else
869 wake_up_process(info->transaction_kthread);
872 if (trans->type & __TRANS_FREEZABLE)
873 sb_end_intwrite(info->sb);
875 WARN_ON(cur_trans != info->running_transaction);
876 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
877 atomic_dec(&cur_trans->num_writers);
878 extwriter_counter_dec(cur_trans, trans->type);
880 cond_wake_up(&cur_trans->writer_wait);
881 btrfs_put_transaction(cur_trans);
883 if (current->journal_info == trans)
884 current->journal_info = NULL;
886 if (throttle)
887 btrfs_run_delayed_iputs(info);
889 if (trans->aborted ||
890 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
891 wake_up_process(info->transaction_kthread);
892 err = -EIO;
895 kmem_cache_free(btrfs_trans_handle_cachep, trans);
896 if (must_run_delayed_refs) {
897 btrfs_async_run_delayed_refs(info, cur, transid,
898 must_run_delayed_refs == 1);
900 return err;
903 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
905 return __btrfs_end_transaction(trans, 0);
908 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
910 return __btrfs_end_transaction(trans, 1);
914 * when btree blocks are allocated, they have some corresponding bits set for
915 * them in one of two extent_io trees. This is used to make sure all of
916 * those extents are sent to disk but does not wait on them
918 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
919 struct extent_io_tree *dirty_pages, int mark)
921 int err = 0;
922 int werr = 0;
923 struct address_space *mapping = fs_info->btree_inode->i_mapping;
924 struct extent_state *cached_state = NULL;
925 u64 start = 0;
926 u64 end;
928 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
929 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
930 mark, &cached_state)) {
931 bool wait_writeback = false;
933 err = convert_extent_bit(dirty_pages, start, end,
934 EXTENT_NEED_WAIT,
935 mark, &cached_state);
937 * convert_extent_bit can return -ENOMEM, which is most of the
938 * time a temporary error. So when it happens, ignore the error
939 * and wait for writeback of this range to finish - because we
940 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
941 * to __btrfs_wait_marked_extents() would not know that
942 * writeback for this range started and therefore wouldn't
943 * wait for it to finish - we don't want to commit a
944 * superblock that points to btree nodes/leafs for which
945 * writeback hasn't finished yet (and without errors).
946 * We cleanup any entries left in the io tree when committing
947 * the transaction (through clear_btree_io_tree()).
949 if (err == -ENOMEM) {
950 err = 0;
951 wait_writeback = true;
953 if (!err)
954 err = filemap_fdatawrite_range(mapping, start, end);
955 if (err)
956 werr = err;
957 else if (wait_writeback)
958 werr = filemap_fdatawait_range(mapping, start, end);
959 free_extent_state(cached_state);
960 cached_state = NULL;
961 cond_resched();
962 start = end + 1;
964 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
965 return werr;
969 * when btree blocks are allocated, they have some corresponding bits set for
970 * them in one of two extent_io trees. This is used to make sure all of
971 * those extents are on disk for transaction or log commit. We wait
972 * on all the pages and clear them from the dirty pages state tree
974 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
975 struct extent_io_tree *dirty_pages)
977 int err = 0;
978 int werr = 0;
979 struct address_space *mapping = fs_info->btree_inode->i_mapping;
980 struct extent_state *cached_state = NULL;
981 u64 start = 0;
982 u64 end;
984 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
985 EXTENT_NEED_WAIT, &cached_state)) {
987 * Ignore -ENOMEM errors returned by clear_extent_bit().
988 * When committing the transaction, we'll remove any entries
989 * left in the io tree. For a log commit, we don't remove them
990 * after committing the log because the tree can be accessed
991 * concurrently - we do it only at transaction commit time when
992 * it's safe to do it (through clear_btree_io_tree()).
994 err = clear_extent_bit(dirty_pages, start, end,
995 EXTENT_NEED_WAIT, 0, 0, &cached_state);
996 if (err == -ENOMEM)
997 err = 0;
998 if (!err)
999 err = filemap_fdatawait_range(mapping, start, end);
1000 if (err)
1001 werr = err;
1002 free_extent_state(cached_state);
1003 cached_state = NULL;
1004 cond_resched();
1005 start = end + 1;
1007 if (err)
1008 werr = err;
1009 return werr;
1012 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1013 struct extent_io_tree *dirty_pages)
1015 bool errors = false;
1016 int err;
1018 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1019 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1020 errors = true;
1022 if (errors && !err)
1023 err = -EIO;
1024 return err;
1027 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1029 struct btrfs_fs_info *fs_info = log_root->fs_info;
1030 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1031 bool errors = false;
1032 int err;
1034 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1036 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1037 if ((mark & EXTENT_DIRTY) &&
1038 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1039 errors = true;
1041 if ((mark & EXTENT_NEW) &&
1042 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1043 errors = true;
1045 if (errors && !err)
1046 err = -EIO;
1047 return err;
1051 * When btree blocks are allocated the corresponding extents are marked dirty.
1052 * This function ensures such extents are persisted on disk for transaction or
1053 * log commit.
1055 * @trans: transaction whose dirty pages we'd like to write
1057 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1059 int ret;
1060 int ret2;
1061 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1062 struct btrfs_fs_info *fs_info = trans->fs_info;
1063 struct blk_plug plug;
1065 blk_start_plug(&plug);
1066 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1067 blk_finish_plug(&plug);
1068 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1070 clear_btree_io_tree(&trans->transaction->dirty_pages);
1072 if (ret)
1073 return ret;
1074 else if (ret2)
1075 return ret2;
1076 else
1077 return 0;
1081 * this is used to update the root pointer in the tree of tree roots.
1083 * But, in the case of the extent allocation tree, updating the root
1084 * pointer may allocate blocks which may change the root of the extent
1085 * allocation tree.
1087 * So, this loops and repeats and makes sure the cowonly root didn't
1088 * change while the root pointer was being updated in the metadata.
1090 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1091 struct btrfs_root *root)
1093 int ret;
1094 u64 old_root_bytenr;
1095 u64 old_root_used;
1096 struct btrfs_fs_info *fs_info = root->fs_info;
1097 struct btrfs_root *tree_root = fs_info->tree_root;
1099 old_root_used = btrfs_root_used(&root->root_item);
1101 while (1) {
1102 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1103 if (old_root_bytenr == root->node->start &&
1104 old_root_used == btrfs_root_used(&root->root_item))
1105 break;
1107 btrfs_set_root_node(&root->root_item, root->node);
1108 ret = btrfs_update_root(trans, tree_root,
1109 &root->root_key,
1110 &root->root_item);
1111 if (ret)
1112 return ret;
1114 old_root_used = btrfs_root_used(&root->root_item);
1117 return 0;
1121 * update all the cowonly tree roots on disk
1123 * The error handling in this function may not be obvious. Any of the
1124 * failures will cause the file system to go offline. We still need
1125 * to clean up the delayed refs.
1127 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1129 struct btrfs_fs_info *fs_info = trans->fs_info;
1130 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1131 struct list_head *io_bgs = &trans->transaction->io_bgs;
1132 struct list_head *next;
1133 struct extent_buffer *eb;
1134 int ret;
1136 eb = btrfs_lock_root_node(fs_info->tree_root);
1137 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1138 0, &eb);
1139 btrfs_tree_unlock(eb);
1140 free_extent_buffer(eb);
1142 if (ret)
1143 return ret;
1145 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1146 if (ret)
1147 return ret;
1149 ret = btrfs_run_dev_stats(trans, fs_info);
1150 if (ret)
1151 return ret;
1152 ret = btrfs_run_dev_replace(trans, fs_info);
1153 if (ret)
1154 return ret;
1155 ret = btrfs_run_qgroups(trans);
1156 if (ret)
1157 return ret;
1159 ret = btrfs_setup_space_cache(trans, fs_info);
1160 if (ret)
1161 return ret;
1163 /* run_qgroups might have added some more refs */
1164 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1165 if (ret)
1166 return ret;
1167 again:
1168 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1169 struct btrfs_root *root;
1170 next = fs_info->dirty_cowonly_roots.next;
1171 list_del_init(next);
1172 root = list_entry(next, struct btrfs_root, dirty_list);
1173 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1175 if (root != fs_info->extent_root)
1176 list_add_tail(&root->dirty_list,
1177 &trans->transaction->switch_commits);
1178 ret = update_cowonly_root(trans, root);
1179 if (ret)
1180 return ret;
1181 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1182 if (ret)
1183 return ret;
1186 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1187 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1188 if (ret)
1189 return ret;
1190 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1191 if (ret)
1192 return ret;
1195 if (!list_empty(&fs_info->dirty_cowonly_roots))
1196 goto again;
1198 list_add_tail(&fs_info->extent_root->dirty_list,
1199 &trans->transaction->switch_commits);
1200 btrfs_after_dev_replace_commit(fs_info);
1202 return 0;
1206 * dead roots are old snapshots that need to be deleted. This allocates
1207 * a dirty root struct and adds it into the list of dead roots that need to
1208 * be deleted
1210 void btrfs_add_dead_root(struct btrfs_root *root)
1212 struct btrfs_fs_info *fs_info = root->fs_info;
1214 spin_lock(&fs_info->trans_lock);
1215 if (list_empty(&root->root_list))
1216 list_add_tail(&root->root_list, &fs_info->dead_roots);
1217 spin_unlock(&fs_info->trans_lock);
1221 * update all the cowonly tree roots on disk
1223 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1225 struct btrfs_fs_info *fs_info = trans->fs_info;
1226 struct btrfs_root *gang[8];
1227 int i;
1228 int ret;
1229 int err = 0;
1231 spin_lock(&fs_info->fs_roots_radix_lock);
1232 while (1) {
1233 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1234 (void **)gang, 0,
1235 ARRAY_SIZE(gang),
1236 BTRFS_ROOT_TRANS_TAG);
1237 if (ret == 0)
1238 break;
1239 for (i = 0; i < ret; i++) {
1240 struct btrfs_root *root = gang[i];
1241 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1242 (unsigned long)root->root_key.objectid,
1243 BTRFS_ROOT_TRANS_TAG);
1244 spin_unlock(&fs_info->fs_roots_radix_lock);
1246 btrfs_free_log(trans, root);
1247 btrfs_update_reloc_root(trans, root);
1249 btrfs_save_ino_cache(root, trans);
1251 /* see comments in should_cow_block() */
1252 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1253 smp_mb__after_atomic();
1255 if (root->commit_root != root->node) {
1256 list_add_tail(&root->dirty_list,
1257 &trans->transaction->switch_commits);
1258 btrfs_set_root_node(&root->root_item,
1259 root->node);
1262 err = btrfs_update_root(trans, fs_info->tree_root,
1263 &root->root_key,
1264 &root->root_item);
1265 spin_lock(&fs_info->fs_roots_radix_lock);
1266 if (err)
1267 break;
1268 btrfs_qgroup_free_meta_all_pertrans(root);
1271 spin_unlock(&fs_info->fs_roots_radix_lock);
1272 return err;
1276 * defrag a given btree.
1277 * Every leaf in the btree is read and defragged.
1279 int btrfs_defrag_root(struct btrfs_root *root)
1281 struct btrfs_fs_info *info = root->fs_info;
1282 struct btrfs_trans_handle *trans;
1283 int ret;
1285 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1286 return 0;
1288 while (1) {
1289 trans = btrfs_start_transaction(root, 0);
1290 if (IS_ERR(trans))
1291 return PTR_ERR(trans);
1293 ret = btrfs_defrag_leaves(trans, root);
1295 btrfs_end_transaction(trans);
1296 btrfs_btree_balance_dirty(info);
1297 cond_resched();
1299 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1300 break;
1302 if (btrfs_defrag_cancelled(info)) {
1303 btrfs_debug(info, "defrag_root cancelled");
1304 ret = -EAGAIN;
1305 break;
1308 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1309 return ret;
1313 * Do all special snapshot related qgroup dirty hack.
1315 * Will do all needed qgroup inherit and dirty hack like switch commit
1316 * roots inside one transaction and write all btree into disk, to make
1317 * qgroup works.
1319 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1320 struct btrfs_root *src,
1321 struct btrfs_root *parent,
1322 struct btrfs_qgroup_inherit *inherit,
1323 u64 dst_objectid)
1325 struct btrfs_fs_info *fs_info = src->fs_info;
1326 int ret;
1329 * Save some performance in the case that qgroups are not
1330 * enabled. If this check races with the ioctl, rescan will
1331 * kick in anyway.
1333 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1334 return 0;
1337 * Ensure dirty @src will be commited. Or, after comming
1338 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1339 * recorded root will never be updated again, causing an outdated root
1340 * item.
1342 record_root_in_trans(trans, src, 1);
1345 * We are going to commit transaction, see btrfs_commit_transaction()
1346 * comment for reason locking tree_log_mutex
1348 mutex_lock(&fs_info->tree_log_mutex);
1350 ret = commit_fs_roots(trans);
1351 if (ret)
1352 goto out;
1353 ret = btrfs_qgroup_account_extents(trans);
1354 if (ret < 0)
1355 goto out;
1357 /* Now qgroup are all updated, we can inherit it to new qgroups */
1358 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1359 inherit);
1360 if (ret < 0)
1361 goto out;
1364 * Now we do a simplified commit transaction, which will:
1365 * 1) commit all subvolume and extent tree
1366 * To ensure all subvolume and extent tree have a valid
1367 * commit_root to accounting later insert_dir_item()
1368 * 2) write all btree blocks onto disk
1369 * This is to make sure later btree modification will be cowed
1370 * Or commit_root can be populated and cause wrong qgroup numbers
1371 * In this simplified commit, we don't really care about other trees
1372 * like chunk and root tree, as they won't affect qgroup.
1373 * And we don't write super to avoid half committed status.
1375 ret = commit_cowonly_roots(trans);
1376 if (ret)
1377 goto out;
1378 switch_commit_roots(trans->transaction);
1379 ret = btrfs_write_and_wait_transaction(trans);
1380 if (ret)
1381 btrfs_handle_fs_error(fs_info, ret,
1382 "Error while writing out transaction for qgroup");
1384 out:
1385 mutex_unlock(&fs_info->tree_log_mutex);
1388 * Force parent root to be updated, as we recorded it before so its
1389 * last_trans == cur_transid.
1390 * Or it won't be committed again onto disk after later
1391 * insert_dir_item()
1393 if (!ret)
1394 record_root_in_trans(trans, parent, 1);
1395 return ret;
1399 * new snapshots need to be created at a very specific time in the
1400 * transaction commit. This does the actual creation.
1402 * Note:
1403 * If the error which may affect the commitment of the current transaction
1404 * happens, we should return the error number. If the error which just affect
1405 * the creation of the pending snapshots, just return 0.
1407 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1408 struct btrfs_pending_snapshot *pending)
1411 struct btrfs_fs_info *fs_info = trans->fs_info;
1412 struct btrfs_key key;
1413 struct btrfs_root_item *new_root_item;
1414 struct btrfs_root *tree_root = fs_info->tree_root;
1415 struct btrfs_root *root = pending->root;
1416 struct btrfs_root *parent_root;
1417 struct btrfs_block_rsv *rsv;
1418 struct inode *parent_inode;
1419 struct btrfs_path *path;
1420 struct btrfs_dir_item *dir_item;
1421 struct dentry *dentry;
1422 struct extent_buffer *tmp;
1423 struct extent_buffer *old;
1424 struct timespec64 cur_time;
1425 int ret = 0;
1426 u64 to_reserve = 0;
1427 u64 index = 0;
1428 u64 objectid;
1429 u64 root_flags;
1430 uuid_le new_uuid;
1432 ASSERT(pending->path);
1433 path = pending->path;
1435 ASSERT(pending->root_item);
1436 new_root_item = pending->root_item;
1438 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1439 if (pending->error)
1440 goto no_free_objectid;
1443 * Make qgroup to skip current new snapshot's qgroupid, as it is
1444 * accounted by later btrfs_qgroup_inherit().
1446 btrfs_set_skip_qgroup(trans, objectid);
1448 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1450 if (to_reserve > 0) {
1451 pending->error = btrfs_block_rsv_add(root,
1452 &pending->block_rsv,
1453 to_reserve,
1454 BTRFS_RESERVE_NO_FLUSH);
1455 if (pending->error)
1456 goto clear_skip_qgroup;
1459 key.objectid = objectid;
1460 key.offset = (u64)-1;
1461 key.type = BTRFS_ROOT_ITEM_KEY;
1463 rsv = trans->block_rsv;
1464 trans->block_rsv = &pending->block_rsv;
1465 trans->bytes_reserved = trans->block_rsv->reserved;
1466 trace_btrfs_space_reservation(fs_info, "transaction",
1467 trans->transid,
1468 trans->bytes_reserved, 1);
1469 dentry = pending->dentry;
1470 parent_inode = pending->dir;
1471 parent_root = BTRFS_I(parent_inode)->root;
1472 record_root_in_trans(trans, parent_root, 0);
1474 cur_time = current_time(parent_inode);
1477 * insert the directory item
1479 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1480 BUG_ON(ret); /* -ENOMEM */
1482 /* check if there is a file/dir which has the same name. */
1483 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1484 btrfs_ino(BTRFS_I(parent_inode)),
1485 dentry->d_name.name,
1486 dentry->d_name.len, 0);
1487 if (dir_item != NULL && !IS_ERR(dir_item)) {
1488 pending->error = -EEXIST;
1489 goto dir_item_existed;
1490 } else if (IS_ERR(dir_item)) {
1491 ret = PTR_ERR(dir_item);
1492 btrfs_abort_transaction(trans, ret);
1493 goto fail;
1495 btrfs_release_path(path);
1498 * pull in the delayed directory update
1499 * and the delayed inode item
1500 * otherwise we corrupt the FS during
1501 * snapshot
1503 ret = btrfs_run_delayed_items(trans);
1504 if (ret) { /* Transaction aborted */
1505 btrfs_abort_transaction(trans, ret);
1506 goto fail;
1509 record_root_in_trans(trans, root, 0);
1510 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1511 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1512 btrfs_check_and_init_root_item(new_root_item);
1514 root_flags = btrfs_root_flags(new_root_item);
1515 if (pending->readonly)
1516 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1517 else
1518 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1519 btrfs_set_root_flags(new_root_item, root_flags);
1521 btrfs_set_root_generation_v2(new_root_item,
1522 trans->transid);
1523 uuid_le_gen(&new_uuid);
1524 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1525 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1526 BTRFS_UUID_SIZE);
1527 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1528 memset(new_root_item->received_uuid, 0,
1529 sizeof(new_root_item->received_uuid));
1530 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1531 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1532 btrfs_set_root_stransid(new_root_item, 0);
1533 btrfs_set_root_rtransid(new_root_item, 0);
1535 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1536 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1537 btrfs_set_root_otransid(new_root_item, trans->transid);
1539 old = btrfs_lock_root_node(root);
1540 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1541 if (ret) {
1542 btrfs_tree_unlock(old);
1543 free_extent_buffer(old);
1544 btrfs_abort_transaction(trans, ret);
1545 goto fail;
1548 btrfs_set_lock_blocking(old);
1550 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1551 /* clean up in any case */
1552 btrfs_tree_unlock(old);
1553 free_extent_buffer(old);
1554 if (ret) {
1555 btrfs_abort_transaction(trans, ret);
1556 goto fail;
1558 /* see comments in should_cow_block() */
1559 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1560 smp_wmb();
1562 btrfs_set_root_node(new_root_item, tmp);
1563 /* record when the snapshot was created in key.offset */
1564 key.offset = trans->transid;
1565 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1566 btrfs_tree_unlock(tmp);
1567 free_extent_buffer(tmp);
1568 if (ret) {
1569 btrfs_abort_transaction(trans, ret);
1570 goto fail;
1574 * insert root back/forward references
1576 ret = btrfs_add_root_ref(trans, objectid,
1577 parent_root->root_key.objectid,
1578 btrfs_ino(BTRFS_I(parent_inode)), index,
1579 dentry->d_name.name, dentry->d_name.len);
1580 if (ret) {
1581 btrfs_abort_transaction(trans, ret);
1582 goto fail;
1585 key.offset = (u64)-1;
1586 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1587 if (IS_ERR(pending->snap)) {
1588 ret = PTR_ERR(pending->snap);
1589 btrfs_abort_transaction(trans, ret);
1590 goto fail;
1593 ret = btrfs_reloc_post_snapshot(trans, pending);
1594 if (ret) {
1595 btrfs_abort_transaction(trans, ret);
1596 goto fail;
1599 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1600 if (ret) {
1601 btrfs_abort_transaction(trans, ret);
1602 goto fail;
1606 * Do special qgroup accounting for snapshot, as we do some qgroup
1607 * snapshot hack to do fast snapshot.
1608 * To co-operate with that hack, we do hack again.
1609 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1611 ret = qgroup_account_snapshot(trans, root, parent_root,
1612 pending->inherit, objectid);
1613 if (ret < 0)
1614 goto fail;
1616 ret = btrfs_insert_dir_item(trans, parent_root,
1617 dentry->d_name.name, dentry->d_name.len,
1618 BTRFS_I(parent_inode), &key,
1619 BTRFS_FT_DIR, index);
1620 /* We have check then name at the beginning, so it is impossible. */
1621 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1622 if (ret) {
1623 btrfs_abort_transaction(trans, ret);
1624 goto fail;
1627 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1628 dentry->d_name.len * 2);
1629 parent_inode->i_mtime = parent_inode->i_ctime =
1630 current_time(parent_inode);
1631 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1632 if (ret) {
1633 btrfs_abort_transaction(trans, ret);
1634 goto fail;
1636 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1637 objectid);
1638 if (ret) {
1639 btrfs_abort_transaction(trans, ret);
1640 goto fail;
1642 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1643 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1644 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1645 objectid);
1646 if (ret && ret != -EEXIST) {
1647 btrfs_abort_transaction(trans, ret);
1648 goto fail;
1652 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1653 if (ret) {
1654 btrfs_abort_transaction(trans, ret);
1655 goto fail;
1658 fail:
1659 pending->error = ret;
1660 dir_item_existed:
1661 trans->block_rsv = rsv;
1662 trans->bytes_reserved = 0;
1663 clear_skip_qgroup:
1664 btrfs_clear_skip_qgroup(trans);
1665 no_free_objectid:
1666 kfree(new_root_item);
1667 pending->root_item = NULL;
1668 btrfs_free_path(path);
1669 pending->path = NULL;
1671 return ret;
1675 * create all the snapshots we've scheduled for creation
1677 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1679 struct btrfs_pending_snapshot *pending, *next;
1680 struct list_head *head = &trans->transaction->pending_snapshots;
1681 int ret = 0;
1683 list_for_each_entry_safe(pending, next, head, list) {
1684 list_del(&pending->list);
1685 ret = create_pending_snapshot(trans, pending);
1686 if (ret)
1687 break;
1689 return ret;
1692 static void update_super_roots(struct btrfs_fs_info *fs_info)
1694 struct btrfs_root_item *root_item;
1695 struct btrfs_super_block *super;
1697 super = fs_info->super_copy;
1699 root_item = &fs_info->chunk_root->root_item;
1700 super->chunk_root = root_item->bytenr;
1701 super->chunk_root_generation = root_item->generation;
1702 super->chunk_root_level = root_item->level;
1704 root_item = &fs_info->tree_root->root_item;
1705 super->root = root_item->bytenr;
1706 super->generation = root_item->generation;
1707 super->root_level = root_item->level;
1708 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1709 super->cache_generation = root_item->generation;
1710 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1711 super->uuid_tree_generation = root_item->generation;
1714 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1716 struct btrfs_transaction *trans;
1717 int ret = 0;
1719 spin_lock(&info->trans_lock);
1720 trans = info->running_transaction;
1721 if (trans)
1722 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1723 spin_unlock(&info->trans_lock);
1724 return ret;
1727 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1729 struct btrfs_transaction *trans;
1730 int ret = 0;
1732 spin_lock(&info->trans_lock);
1733 trans = info->running_transaction;
1734 if (trans)
1735 ret = is_transaction_blocked(trans);
1736 spin_unlock(&info->trans_lock);
1737 return ret;
1741 * wait for the current transaction commit to start and block subsequent
1742 * transaction joins
1744 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1745 struct btrfs_transaction *trans)
1747 wait_event(fs_info->transaction_blocked_wait,
1748 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1752 * wait for the current transaction to start and then become unblocked.
1753 * caller holds ref.
1755 static void wait_current_trans_commit_start_and_unblock(
1756 struct btrfs_fs_info *fs_info,
1757 struct btrfs_transaction *trans)
1759 wait_event(fs_info->transaction_wait,
1760 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1764 * commit transactions asynchronously. once btrfs_commit_transaction_async
1765 * returns, any subsequent transaction will not be allowed to join.
1767 struct btrfs_async_commit {
1768 struct btrfs_trans_handle *newtrans;
1769 struct work_struct work;
1772 static void do_async_commit(struct work_struct *work)
1774 struct btrfs_async_commit *ac =
1775 container_of(work, struct btrfs_async_commit, work);
1778 * We've got freeze protection passed with the transaction.
1779 * Tell lockdep about it.
1781 if (ac->newtrans->type & __TRANS_FREEZABLE)
1782 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1784 current->journal_info = ac->newtrans;
1786 btrfs_commit_transaction(ac->newtrans);
1787 kfree(ac);
1790 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1791 int wait_for_unblock)
1793 struct btrfs_fs_info *fs_info = trans->fs_info;
1794 struct btrfs_async_commit *ac;
1795 struct btrfs_transaction *cur_trans;
1797 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1798 if (!ac)
1799 return -ENOMEM;
1801 INIT_WORK(&ac->work, do_async_commit);
1802 ac->newtrans = btrfs_join_transaction(trans->root);
1803 if (IS_ERR(ac->newtrans)) {
1804 int err = PTR_ERR(ac->newtrans);
1805 kfree(ac);
1806 return err;
1809 /* take transaction reference */
1810 cur_trans = trans->transaction;
1811 refcount_inc(&cur_trans->use_count);
1813 btrfs_end_transaction(trans);
1816 * Tell lockdep we've released the freeze rwsem, since the
1817 * async commit thread will be the one to unlock it.
1819 if (ac->newtrans->type & __TRANS_FREEZABLE)
1820 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1822 schedule_work(&ac->work);
1824 /* wait for transaction to start and unblock */
1825 if (wait_for_unblock)
1826 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1827 else
1828 wait_current_trans_commit_start(fs_info, cur_trans);
1830 if (current->journal_info == trans)
1831 current->journal_info = NULL;
1833 btrfs_put_transaction(cur_trans);
1834 return 0;
1838 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1840 struct btrfs_fs_info *fs_info = trans->fs_info;
1841 struct btrfs_transaction *cur_trans = trans->transaction;
1842 DEFINE_WAIT(wait);
1844 WARN_ON(refcount_read(&trans->use_count) > 1);
1846 btrfs_abort_transaction(trans, err);
1848 spin_lock(&fs_info->trans_lock);
1851 * If the transaction is removed from the list, it means this
1852 * transaction has been committed successfully, so it is impossible
1853 * to call the cleanup function.
1855 BUG_ON(list_empty(&cur_trans->list));
1857 list_del_init(&cur_trans->list);
1858 if (cur_trans == fs_info->running_transaction) {
1859 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1860 spin_unlock(&fs_info->trans_lock);
1861 wait_event(cur_trans->writer_wait,
1862 atomic_read(&cur_trans->num_writers) == 1);
1864 spin_lock(&fs_info->trans_lock);
1866 spin_unlock(&fs_info->trans_lock);
1868 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1870 spin_lock(&fs_info->trans_lock);
1871 if (cur_trans == fs_info->running_transaction)
1872 fs_info->running_transaction = NULL;
1873 spin_unlock(&fs_info->trans_lock);
1875 if (trans->type & __TRANS_FREEZABLE)
1876 sb_end_intwrite(fs_info->sb);
1877 btrfs_put_transaction(cur_trans);
1878 btrfs_put_transaction(cur_trans);
1880 trace_btrfs_transaction_commit(trans->root);
1882 if (current->journal_info == trans)
1883 current->journal_info = NULL;
1884 btrfs_scrub_cancel(fs_info);
1886 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1889 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1892 * We use writeback_inodes_sb here because if we used
1893 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1894 * Currently are holding the fs freeze lock, if we do an async flush
1895 * we'll do btrfs_join_transaction() and deadlock because we need to
1896 * wait for the fs freeze lock. Using the direct flushing we benefit
1897 * from already being in a transaction and our join_transaction doesn't
1898 * have to re-take the fs freeze lock.
1900 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1901 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1902 return 0;
1905 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1907 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1908 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1911 static inline void
1912 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1914 wait_event(cur_trans->pending_wait,
1915 atomic_read(&cur_trans->pending_ordered) == 0);
1918 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1920 struct btrfs_fs_info *fs_info = trans->fs_info;
1921 struct btrfs_transaction *cur_trans = trans->transaction;
1922 struct btrfs_transaction *prev_trans = NULL;
1923 int ret;
1925 /* Stop the commit early if ->aborted is set */
1926 if (unlikely(READ_ONCE(cur_trans->aborted))) {
1927 ret = cur_trans->aborted;
1928 btrfs_end_transaction(trans);
1929 return ret;
1932 /* make a pass through all the delayed refs we have so far
1933 * any runnings procs may add more while we are here
1935 ret = btrfs_run_delayed_refs(trans, 0);
1936 if (ret) {
1937 btrfs_end_transaction(trans);
1938 return ret;
1941 btrfs_trans_release_metadata(trans);
1942 trans->block_rsv = NULL;
1944 cur_trans = trans->transaction;
1947 * set the flushing flag so procs in this transaction have to
1948 * start sending their work down.
1950 cur_trans->delayed_refs.flushing = 1;
1951 smp_wmb();
1953 if (!list_empty(&trans->new_bgs))
1954 btrfs_create_pending_block_groups(trans);
1956 ret = btrfs_run_delayed_refs(trans, 0);
1957 if (ret) {
1958 btrfs_end_transaction(trans);
1959 return ret;
1962 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1963 int run_it = 0;
1965 /* this mutex is also taken before trying to set
1966 * block groups readonly. We need to make sure
1967 * that nobody has set a block group readonly
1968 * after a extents from that block group have been
1969 * allocated for cache files. btrfs_set_block_group_ro
1970 * will wait for the transaction to commit if it
1971 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1973 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1974 * only one process starts all the block group IO. It wouldn't
1975 * hurt to have more than one go through, but there's no
1976 * real advantage to it either.
1978 mutex_lock(&fs_info->ro_block_group_mutex);
1979 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1980 &cur_trans->flags))
1981 run_it = 1;
1982 mutex_unlock(&fs_info->ro_block_group_mutex);
1984 if (run_it) {
1985 ret = btrfs_start_dirty_block_groups(trans);
1986 if (ret) {
1987 btrfs_end_transaction(trans);
1988 return ret;
1993 spin_lock(&fs_info->trans_lock);
1994 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1995 spin_unlock(&fs_info->trans_lock);
1996 refcount_inc(&cur_trans->use_count);
1997 ret = btrfs_end_transaction(trans);
1999 wait_for_commit(cur_trans);
2001 if (unlikely(cur_trans->aborted))
2002 ret = cur_trans->aborted;
2004 btrfs_put_transaction(cur_trans);
2006 return ret;
2009 cur_trans->state = TRANS_STATE_COMMIT_START;
2010 wake_up(&fs_info->transaction_blocked_wait);
2012 if (cur_trans->list.prev != &fs_info->trans_list) {
2013 prev_trans = list_entry(cur_trans->list.prev,
2014 struct btrfs_transaction, list);
2015 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2016 refcount_inc(&prev_trans->use_count);
2017 spin_unlock(&fs_info->trans_lock);
2019 wait_for_commit(prev_trans);
2020 ret = prev_trans->aborted;
2022 btrfs_put_transaction(prev_trans);
2023 if (ret)
2024 goto cleanup_transaction;
2025 } else {
2026 spin_unlock(&fs_info->trans_lock);
2028 } else {
2029 spin_unlock(&fs_info->trans_lock);
2032 extwriter_counter_dec(cur_trans, trans->type);
2034 ret = btrfs_start_delalloc_flush(fs_info);
2035 if (ret)
2036 goto cleanup_transaction;
2038 ret = btrfs_run_delayed_items(trans);
2039 if (ret)
2040 goto cleanup_transaction;
2042 wait_event(cur_trans->writer_wait,
2043 extwriter_counter_read(cur_trans) == 0);
2045 /* some pending stuffs might be added after the previous flush. */
2046 ret = btrfs_run_delayed_items(trans);
2047 if (ret)
2048 goto cleanup_transaction;
2050 btrfs_wait_delalloc_flush(fs_info);
2052 btrfs_wait_pending_ordered(cur_trans);
2054 btrfs_scrub_pause(fs_info);
2056 * Ok now we need to make sure to block out any other joins while we
2057 * commit the transaction. We could have started a join before setting
2058 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2060 spin_lock(&fs_info->trans_lock);
2061 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2062 spin_unlock(&fs_info->trans_lock);
2063 wait_event(cur_trans->writer_wait,
2064 atomic_read(&cur_trans->num_writers) == 1);
2066 /* ->aborted might be set after the previous check, so check it */
2067 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2068 ret = cur_trans->aborted;
2069 goto scrub_continue;
2072 * the reloc mutex makes sure that we stop
2073 * the balancing code from coming in and moving
2074 * extents around in the middle of the commit
2076 mutex_lock(&fs_info->reloc_mutex);
2079 * We needn't worry about the delayed items because we will
2080 * deal with them in create_pending_snapshot(), which is the
2081 * core function of the snapshot creation.
2083 ret = create_pending_snapshots(trans);
2084 if (ret) {
2085 mutex_unlock(&fs_info->reloc_mutex);
2086 goto scrub_continue;
2090 * We insert the dir indexes of the snapshots and update the inode
2091 * of the snapshots' parents after the snapshot creation, so there
2092 * are some delayed items which are not dealt with. Now deal with
2093 * them.
2095 * We needn't worry that this operation will corrupt the snapshots,
2096 * because all the tree which are snapshoted will be forced to COW
2097 * the nodes and leaves.
2099 ret = btrfs_run_delayed_items(trans);
2100 if (ret) {
2101 mutex_unlock(&fs_info->reloc_mutex);
2102 goto scrub_continue;
2105 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2106 if (ret) {
2107 mutex_unlock(&fs_info->reloc_mutex);
2108 goto scrub_continue;
2112 * make sure none of the code above managed to slip in a
2113 * delayed item
2115 btrfs_assert_delayed_root_empty(fs_info);
2117 WARN_ON(cur_trans != trans->transaction);
2119 /* btrfs_commit_tree_roots is responsible for getting the
2120 * various roots consistent with each other. Every pointer
2121 * in the tree of tree roots has to point to the most up to date
2122 * root for every subvolume and other tree. So, we have to keep
2123 * the tree logging code from jumping in and changing any
2124 * of the trees.
2126 * At this point in the commit, there can't be any tree-log
2127 * writers, but a little lower down we drop the trans mutex
2128 * and let new people in. By holding the tree_log_mutex
2129 * from now until after the super is written, we avoid races
2130 * with the tree-log code.
2132 mutex_lock(&fs_info->tree_log_mutex);
2134 ret = commit_fs_roots(trans);
2135 if (ret) {
2136 mutex_unlock(&fs_info->tree_log_mutex);
2137 mutex_unlock(&fs_info->reloc_mutex);
2138 goto scrub_continue;
2142 * Since the transaction is done, we can apply the pending changes
2143 * before the next transaction.
2145 btrfs_apply_pending_changes(fs_info);
2147 /* commit_fs_roots gets rid of all the tree log roots, it is now
2148 * safe to free the root of tree log roots
2150 btrfs_free_log_root_tree(trans, fs_info);
2153 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2154 * new delayed refs. Must handle them or qgroup can be wrong.
2156 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2157 if (ret) {
2158 mutex_unlock(&fs_info->tree_log_mutex);
2159 mutex_unlock(&fs_info->reloc_mutex);
2160 goto scrub_continue;
2164 * Since fs roots are all committed, we can get a quite accurate
2165 * new_roots. So let's do quota accounting.
2167 ret = btrfs_qgroup_account_extents(trans);
2168 if (ret < 0) {
2169 mutex_unlock(&fs_info->tree_log_mutex);
2170 mutex_unlock(&fs_info->reloc_mutex);
2171 goto scrub_continue;
2174 ret = commit_cowonly_roots(trans);
2175 if (ret) {
2176 mutex_unlock(&fs_info->tree_log_mutex);
2177 mutex_unlock(&fs_info->reloc_mutex);
2178 goto scrub_continue;
2182 * The tasks which save the space cache and inode cache may also
2183 * update ->aborted, check it.
2185 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2186 ret = cur_trans->aborted;
2187 mutex_unlock(&fs_info->tree_log_mutex);
2188 mutex_unlock(&fs_info->reloc_mutex);
2189 goto scrub_continue;
2192 btrfs_prepare_extent_commit(fs_info);
2194 cur_trans = fs_info->running_transaction;
2196 btrfs_set_root_node(&fs_info->tree_root->root_item,
2197 fs_info->tree_root->node);
2198 list_add_tail(&fs_info->tree_root->dirty_list,
2199 &cur_trans->switch_commits);
2201 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2202 fs_info->chunk_root->node);
2203 list_add_tail(&fs_info->chunk_root->dirty_list,
2204 &cur_trans->switch_commits);
2206 switch_commit_roots(cur_trans);
2208 ASSERT(list_empty(&cur_trans->dirty_bgs));
2209 ASSERT(list_empty(&cur_trans->io_bgs));
2210 update_super_roots(fs_info);
2212 btrfs_set_super_log_root(fs_info->super_copy, 0);
2213 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2214 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2215 sizeof(*fs_info->super_copy));
2217 btrfs_update_commit_device_size(fs_info);
2218 btrfs_update_commit_device_bytes_used(cur_trans);
2220 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2221 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2223 btrfs_trans_release_chunk_metadata(trans);
2225 spin_lock(&fs_info->trans_lock);
2226 cur_trans->state = TRANS_STATE_UNBLOCKED;
2227 fs_info->running_transaction = NULL;
2228 spin_unlock(&fs_info->trans_lock);
2229 mutex_unlock(&fs_info->reloc_mutex);
2231 wake_up(&fs_info->transaction_wait);
2233 ret = btrfs_write_and_wait_transaction(trans);
2234 if (ret) {
2235 btrfs_handle_fs_error(fs_info, ret,
2236 "Error while writing out transaction");
2237 mutex_unlock(&fs_info->tree_log_mutex);
2238 goto scrub_continue;
2241 ret = write_all_supers(fs_info, 0);
2243 * the super is written, we can safely allow the tree-loggers
2244 * to go about their business
2246 mutex_unlock(&fs_info->tree_log_mutex);
2247 if (ret)
2248 goto scrub_continue;
2250 btrfs_finish_extent_commit(trans);
2252 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2253 btrfs_clear_space_info_full(fs_info);
2255 fs_info->last_trans_committed = cur_trans->transid;
2257 * We needn't acquire the lock here because there is no other task
2258 * which can change it.
2260 cur_trans->state = TRANS_STATE_COMPLETED;
2261 wake_up(&cur_trans->commit_wait);
2262 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2264 spin_lock(&fs_info->trans_lock);
2265 list_del_init(&cur_trans->list);
2266 spin_unlock(&fs_info->trans_lock);
2268 btrfs_put_transaction(cur_trans);
2269 btrfs_put_transaction(cur_trans);
2271 if (trans->type & __TRANS_FREEZABLE)
2272 sb_end_intwrite(fs_info->sb);
2274 trace_btrfs_transaction_commit(trans->root);
2276 btrfs_scrub_continue(fs_info);
2278 if (current->journal_info == trans)
2279 current->journal_info = NULL;
2281 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2284 * If fs has been frozen, we can not handle delayed iputs, otherwise
2285 * it'll result in deadlock about SB_FREEZE_FS.
2287 if (current != fs_info->transaction_kthread &&
2288 current != fs_info->cleaner_kthread &&
2289 !test_bit(BTRFS_FS_FROZEN, &fs_info->flags))
2290 btrfs_run_delayed_iputs(fs_info);
2292 return ret;
2294 scrub_continue:
2295 btrfs_scrub_continue(fs_info);
2296 cleanup_transaction:
2297 btrfs_trans_release_metadata(trans);
2298 btrfs_trans_release_chunk_metadata(trans);
2299 trans->block_rsv = NULL;
2300 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2301 if (current->journal_info == trans)
2302 current->journal_info = NULL;
2303 cleanup_transaction(trans, ret);
2305 return ret;
2309 * return < 0 if error
2310 * 0 if there are no more dead_roots at the time of call
2311 * 1 there are more to be processed, call me again
2313 * The return value indicates there are certainly more snapshots to delete, but
2314 * if there comes a new one during processing, it may return 0. We don't mind,
2315 * because btrfs_commit_super will poke cleaner thread and it will process it a
2316 * few seconds later.
2318 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2320 int ret;
2321 struct btrfs_fs_info *fs_info = root->fs_info;
2323 spin_lock(&fs_info->trans_lock);
2324 if (list_empty(&fs_info->dead_roots)) {
2325 spin_unlock(&fs_info->trans_lock);
2326 return 0;
2328 root = list_first_entry(&fs_info->dead_roots,
2329 struct btrfs_root, root_list);
2330 list_del_init(&root->root_list);
2331 spin_unlock(&fs_info->trans_lock);
2333 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2335 btrfs_kill_all_delayed_nodes(root);
2337 if (btrfs_header_backref_rev(root->node) <
2338 BTRFS_MIXED_BACKREF_REV)
2339 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2340 else
2341 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2343 return (ret < 0) ? 0 : 1;
2346 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2348 unsigned long prev;
2349 unsigned long bit;
2351 prev = xchg(&fs_info->pending_changes, 0);
2352 if (!prev)
2353 return;
2355 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2356 if (prev & bit)
2357 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2358 prev &= ~bit;
2360 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2361 if (prev & bit)
2362 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2363 prev &= ~bit;
2365 bit = 1 << BTRFS_PENDING_COMMIT;
2366 if (prev & bit)
2367 btrfs_debug(fs_info, "pending commit done");
2368 prev &= ~bit;
2370 if (prev)
2371 btrfs_warn(fs_info,
2372 "unknown pending changes left 0x%lx, ignoring", prev);