dm writecache: fix incorrect flush sequence when doing SSD mode commit
[linux/fpc-iii.git] / arch / powerpc / perf / core-fsl-emb.c
blobe0e7e276bfd25aeecf709ee49399ec87692bcb16
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Performance event support - Freescale Embedded Performance Monitor
5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * Copyright 2010 Freescale Semiconductor, Inc.
7 */
8 #include <linux/kernel.h>
9 #include <linux/sched.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <asm/reg_fsl_emb.h>
14 #include <asm/pmc.h>
15 #include <asm/machdep.h>
16 #include <asm/firmware.h>
17 #include <asm/ptrace.h>
19 struct cpu_hw_events {
20 int n_events;
21 int disabled;
22 u8 pmcs_enabled;
23 struct perf_event *event[MAX_HWEVENTS];
25 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
27 static struct fsl_emb_pmu *ppmu;
29 /* Number of perf_events counting hardware events */
30 static atomic_t num_events;
31 /* Used to avoid races in calling reserve/release_pmc_hardware */
32 static DEFINE_MUTEX(pmc_reserve_mutex);
35 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
36 * it as an NMI.
38 static inline int perf_intr_is_nmi(struct pt_regs *regs)
40 #ifdef __powerpc64__
41 return (regs->softe & IRQS_DISABLED);
42 #else
43 return 0;
44 #endif
47 static void perf_event_interrupt(struct pt_regs *regs);
50 * Read one performance monitor counter (PMC).
52 static unsigned long read_pmc(int idx)
54 unsigned long val;
56 switch (idx) {
57 case 0:
58 val = mfpmr(PMRN_PMC0);
59 break;
60 case 1:
61 val = mfpmr(PMRN_PMC1);
62 break;
63 case 2:
64 val = mfpmr(PMRN_PMC2);
65 break;
66 case 3:
67 val = mfpmr(PMRN_PMC3);
68 break;
69 case 4:
70 val = mfpmr(PMRN_PMC4);
71 break;
72 case 5:
73 val = mfpmr(PMRN_PMC5);
74 break;
75 default:
76 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
77 val = 0;
79 return val;
83 * Write one PMC.
85 static void write_pmc(int idx, unsigned long val)
87 switch (idx) {
88 case 0:
89 mtpmr(PMRN_PMC0, val);
90 break;
91 case 1:
92 mtpmr(PMRN_PMC1, val);
93 break;
94 case 2:
95 mtpmr(PMRN_PMC2, val);
96 break;
97 case 3:
98 mtpmr(PMRN_PMC3, val);
99 break;
100 case 4:
101 mtpmr(PMRN_PMC4, val);
102 break;
103 case 5:
104 mtpmr(PMRN_PMC5, val);
105 break;
106 default:
107 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
110 isync();
114 * Write one local control A register
116 static void write_pmlca(int idx, unsigned long val)
118 switch (idx) {
119 case 0:
120 mtpmr(PMRN_PMLCA0, val);
121 break;
122 case 1:
123 mtpmr(PMRN_PMLCA1, val);
124 break;
125 case 2:
126 mtpmr(PMRN_PMLCA2, val);
127 break;
128 case 3:
129 mtpmr(PMRN_PMLCA3, val);
130 break;
131 case 4:
132 mtpmr(PMRN_PMLCA4, val);
133 break;
134 case 5:
135 mtpmr(PMRN_PMLCA5, val);
136 break;
137 default:
138 printk(KERN_ERR "oops trying to write PMLCA%d\n", idx);
141 isync();
145 * Write one local control B register
147 static void write_pmlcb(int idx, unsigned long val)
149 switch (idx) {
150 case 0:
151 mtpmr(PMRN_PMLCB0, val);
152 break;
153 case 1:
154 mtpmr(PMRN_PMLCB1, val);
155 break;
156 case 2:
157 mtpmr(PMRN_PMLCB2, val);
158 break;
159 case 3:
160 mtpmr(PMRN_PMLCB3, val);
161 break;
162 case 4:
163 mtpmr(PMRN_PMLCB4, val);
164 break;
165 case 5:
166 mtpmr(PMRN_PMLCB5, val);
167 break;
168 default:
169 printk(KERN_ERR "oops trying to write PMLCB%d\n", idx);
172 isync();
175 static void fsl_emb_pmu_read(struct perf_event *event)
177 s64 val, delta, prev;
179 if (event->hw.state & PERF_HES_STOPPED)
180 return;
183 * Performance monitor interrupts come even when interrupts
184 * are soft-disabled, as long as interrupts are hard-enabled.
185 * Therefore we treat them like NMIs.
187 do {
188 prev = local64_read(&event->hw.prev_count);
189 barrier();
190 val = read_pmc(event->hw.idx);
191 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
193 /* The counters are only 32 bits wide */
194 delta = (val - prev) & 0xfffffffful;
195 local64_add(delta, &event->count);
196 local64_sub(delta, &event->hw.period_left);
200 * Disable all events to prevent PMU interrupts and to allow
201 * events to be added or removed.
203 static void fsl_emb_pmu_disable(struct pmu *pmu)
205 struct cpu_hw_events *cpuhw;
206 unsigned long flags;
208 local_irq_save(flags);
209 cpuhw = this_cpu_ptr(&cpu_hw_events);
211 if (!cpuhw->disabled) {
212 cpuhw->disabled = 1;
215 * Check if we ever enabled the PMU on this cpu.
217 if (!cpuhw->pmcs_enabled) {
218 ppc_enable_pmcs();
219 cpuhw->pmcs_enabled = 1;
222 if (atomic_read(&num_events)) {
224 * Set the 'freeze all counters' bit, and disable
225 * interrupts. The barrier is to make sure the
226 * mtpmr has been executed and the PMU has frozen
227 * the events before we return.
230 mtpmr(PMRN_PMGC0, PMGC0_FAC);
231 isync();
234 local_irq_restore(flags);
238 * Re-enable all events if disable == 0.
239 * If we were previously disabled and events were added, then
240 * put the new config on the PMU.
242 static void fsl_emb_pmu_enable(struct pmu *pmu)
244 struct cpu_hw_events *cpuhw;
245 unsigned long flags;
247 local_irq_save(flags);
248 cpuhw = this_cpu_ptr(&cpu_hw_events);
249 if (!cpuhw->disabled)
250 goto out;
252 cpuhw->disabled = 0;
253 ppc_set_pmu_inuse(cpuhw->n_events != 0);
255 if (cpuhw->n_events > 0) {
256 mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
257 isync();
260 out:
261 local_irq_restore(flags);
264 static int collect_events(struct perf_event *group, int max_count,
265 struct perf_event *ctrs[])
267 int n = 0;
268 struct perf_event *event;
270 if (!is_software_event(group)) {
271 if (n >= max_count)
272 return -1;
273 ctrs[n] = group;
274 n++;
276 for_each_sibling_event(event, group) {
277 if (!is_software_event(event) &&
278 event->state != PERF_EVENT_STATE_OFF) {
279 if (n >= max_count)
280 return -1;
281 ctrs[n] = event;
282 n++;
285 return n;
288 /* context locked on entry */
289 static int fsl_emb_pmu_add(struct perf_event *event, int flags)
291 struct cpu_hw_events *cpuhw;
292 int ret = -EAGAIN;
293 int num_counters = ppmu->n_counter;
294 u64 val;
295 int i;
297 perf_pmu_disable(event->pmu);
298 cpuhw = &get_cpu_var(cpu_hw_events);
300 if (event->hw.config & FSL_EMB_EVENT_RESTRICTED)
301 num_counters = ppmu->n_restricted;
304 * Allocate counters from top-down, so that restricted-capable
305 * counters are kept free as long as possible.
307 for (i = num_counters - 1; i >= 0; i--) {
308 if (cpuhw->event[i])
309 continue;
311 break;
314 if (i < 0)
315 goto out;
317 event->hw.idx = i;
318 cpuhw->event[i] = event;
319 ++cpuhw->n_events;
321 val = 0;
322 if (event->hw.sample_period) {
323 s64 left = local64_read(&event->hw.period_left);
324 if (left < 0x80000000L)
325 val = 0x80000000L - left;
327 local64_set(&event->hw.prev_count, val);
329 if (unlikely(!(flags & PERF_EF_START))) {
330 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
331 val = 0;
332 } else {
333 event->hw.state &= ~(PERF_HES_STOPPED | PERF_HES_UPTODATE);
336 write_pmc(i, val);
337 perf_event_update_userpage(event);
339 write_pmlcb(i, event->hw.config >> 32);
340 write_pmlca(i, event->hw.config_base);
342 ret = 0;
343 out:
344 put_cpu_var(cpu_hw_events);
345 perf_pmu_enable(event->pmu);
346 return ret;
349 /* context locked on entry */
350 static void fsl_emb_pmu_del(struct perf_event *event, int flags)
352 struct cpu_hw_events *cpuhw;
353 int i = event->hw.idx;
355 perf_pmu_disable(event->pmu);
356 if (i < 0)
357 goto out;
359 fsl_emb_pmu_read(event);
361 cpuhw = &get_cpu_var(cpu_hw_events);
363 WARN_ON(event != cpuhw->event[event->hw.idx]);
365 write_pmlca(i, 0);
366 write_pmlcb(i, 0);
367 write_pmc(i, 0);
369 cpuhw->event[i] = NULL;
370 event->hw.idx = -1;
373 * TODO: if at least one restricted event exists, and we
374 * just freed up a non-restricted-capable counter, and
375 * there is a restricted-capable counter occupied by
376 * a non-restricted event, migrate that event to the
377 * vacated counter.
380 cpuhw->n_events--;
382 out:
383 perf_pmu_enable(event->pmu);
384 put_cpu_var(cpu_hw_events);
387 static void fsl_emb_pmu_start(struct perf_event *event, int ef_flags)
389 unsigned long flags;
390 unsigned long val;
391 s64 left;
393 if (event->hw.idx < 0 || !event->hw.sample_period)
394 return;
396 if (!(event->hw.state & PERF_HES_STOPPED))
397 return;
399 if (ef_flags & PERF_EF_RELOAD)
400 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
402 local_irq_save(flags);
403 perf_pmu_disable(event->pmu);
405 event->hw.state = 0;
406 left = local64_read(&event->hw.period_left);
407 val = 0;
408 if (left < 0x80000000L)
409 val = 0x80000000L - left;
410 write_pmc(event->hw.idx, val);
412 perf_event_update_userpage(event);
413 perf_pmu_enable(event->pmu);
414 local_irq_restore(flags);
417 static void fsl_emb_pmu_stop(struct perf_event *event, int ef_flags)
419 unsigned long flags;
421 if (event->hw.idx < 0 || !event->hw.sample_period)
422 return;
424 if (event->hw.state & PERF_HES_STOPPED)
425 return;
427 local_irq_save(flags);
428 perf_pmu_disable(event->pmu);
430 fsl_emb_pmu_read(event);
431 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
432 write_pmc(event->hw.idx, 0);
434 perf_event_update_userpage(event);
435 perf_pmu_enable(event->pmu);
436 local_irq_restore(flags);
440 * Release the PMU if this is the last perf_event.
442 static void hw_perf_event_destroy(struct perf_event *event)
444 if (!atomic_add_unless(&num_events, -1, 1)) {
445 mutex_lock(&pmc_reserve_mutex);
446 if (atomic_dec_return(&num_events) == 0)
447 release_pmc_hardware();
448 mutex_unlock(&pmc_reserve_mutex);
453 * Translate a generic cache event_id config to a raw event_id code.
455 static int hw_perf_cache_event(u64 config, u64 *eventp)
457 unsigned long type, op, result;
458 int ev;
460 if (!ppmu->cache_events)
461 return -EINVAL;
463 /* unpack config */
464 type = config & 0xff;
465 op = (config >> 8) & 0xff;
466 result = (config >> 16) & 0xff;
468 if (type >= PERF_COUNT_HW_CACHE_MAX ||
469 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
470 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
471 return -EINVAL;
473 ev = (*ppmu->cache_events)[type][op][result];
474 if (ev == 0)
475 return -EOPNOTSUPP;
476 if (ev == -1)
477 return -EINVAL;
478 *eventp = ev;
479 return 0;
482 static int fsl_emb_pmu_event_init(struct perf_event *event)
484 u64 ev;
485 struct perf_event *events[MAX_HWEVENTS];
486 int n;
487 int err;
488 int num_restricted;
489 int i;
491 if (ppmu->n_counter > MAX_HWEVENTS) {
492 WARN(1, "No. of perf counters (%d) is higher than max array size(%d)\n",
493 ppmu->n_counter, MAX_HWEVENTS);
494 ppmu->n_counter = MAX_HWEVENTS;
497 switch (event->attr.type) {
498 case PERF_TYPE_HARDWARE:
499 ev = event->attr.config;
500 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
501 return -EOPNOTSUPP;
502 ev = ppmu->generic_events[ev];
503 break;
505 case PERF_TYPE_HW_CACHE:
506 err = hw_perf_cache_event(event->attr.config, &ev);
507 if (err)
508 return err;
509 break;
511 case PERF_TYPE_RAW:
512 ev = event->attr.config;
513 break;
515 default:
516 return -ENOENT;
519 event->hw.config = ppmu->xlate_event(ev);
520 if (!(event->hw.config & FSL_EMB_EVENT_VALID))
521 return -EINVAL;
524 * If this is in a group, check if it can go on with all the
525 * other hardware events in the group. We assume the event
526 * hasn't been linked into its leader's sibling list at this point.
528 n = 0;
529 if (event->group_leader != event) {
530 n = collect_events(event->group_leader,
531 ppmu->n_counter - 1, events);
532 if (n < 0)
533 return -EINVAL;
536 if (event->hw.config & FSL_EMB_EVENT_RESTRICTED) {
537 num_restricted = 0;
538 for (i = 0; i < n; i++) {
539 if (events[i]->hw.config & FSL_EMB_EVENT_RESTRICTED)
540 num_restricted++;
543 if (num_restricted >= ppmu->n_restricted)
544 return -EINVAL;
547 event->hw.idx = -1;
549 event->hw.config_base = PMLCA_CE | PMLCA_FCM1 |
550 (u32)((ev << 16) & PMLCA_EVENT_MASK);
552 if (event->attr.exclude_user)
553 event->hw.config_base |= PMLCA_FCU;
554 if (event->attr.exclude_kernel)
555 event->hw.config_base |= PMLCA_FCS;
556 if (event->attr.exclude_idle)
557 return -ENOTSUPP;
559 event->hw.last_period = event->hw.sample_period;
560 local64_set(&event->hw.period_left, event->hw.last_period);
563 * See if we need to reserve the PMU.
564 * If no events are currently in use, then we have to take a
565 * mutex to ensure that we don't race with another task doing
566 * reserve_pmc_hardware or release_pmc_hardware.
568 err = 0;
569 if (!atomic_inc_not_zero(&num_events)) {
570 mutex_lock(&pmc_reserve_mutex);
571 if (atomic_read(&num_events) == 0 &&
572 reserve_pmc_hardware(perf_event_interrupt))
573 err = -EBUSY;
574 else
575 atomic_inc(&num_events);
576 mutex_unlock(&pmc_reserve_mutex);
578 mtpmr(PMRN_PMGC0, PMGC0_FAC);
579 isync();
581 event->destroy = hw_perf_event_destroy;
583 return err;
586 static struct pmu fsl_emb_pmu = {
587 .pmu_enable = fsl_emb_pmu_enable,
588 .pmu_disable = fsl_emb_pmu_disable,
589 .event_init = fsl_emb_pmu_event_init,
590 .add = fsl_emb_pmu_add,
591 .del = fsl_emb_pmu_del,
592 .start = fsl_emb_pmu_start,
593 .stop = fsl_emb_pmu_stop,
594 .read = fsl_emb_pmu_read,
598 * A counter has overflowed; update its count and record
599 * things if requested. Note that interrupts are hard-disabled
600 * here so there is no possibility of being interrupted.
602 static void record_and_restart(struct perf_event *event, unsigned long val,
603 struct pt_regs *regs)
605 u64 period = event->hw.sample_period;
606 s64 prev, delta, left;
607 int record = 0;
609 if (event->hw.state & PERF_HES_STOPPED) {
610 write_pmc(event->hw.idx, 0);
611 return;
614 /* we don't have to worry about interrupts here */
615 prev = local64_read(&event->hw.prev_count);
616 delta = (val - prev) & 0xfffffffful;
617 local64_add(delta, &event->count);
620 * See if the total period for this event has expired,
621 * and update for the next period.
623 val = 0;
624 left = local64_read(&event->hw.period_left) - delta;
625 if (period) {
626 if (left <= 0) {
627 left += period;
628 if (left <= 0)
629 left = period;
630 record = 1;
631 event->hw.last_period = event->hw.sample_period;
633 if (left < 0x80000000LL)
634 val = 0x80000000LL - left;
637 write_pmc(event->hw.idx, val);
638 local64_set(&event->hw.prev_count, val);
639 local64_set(&event->hw.period_left, left);
640 perf_event_update_userpage(event);
643 * Finally record data if requested.
645 if (record) {
646 struct perf_sample_data data;
648 perf_sample_data_init(&data, 0, event->hw.last_period);
650 if (perf_event_overflow(event, &data, regs))
651 fsl_emb_pmu_stop(event, 0);
655 static void perf_event_interrupt(struct pt_regs *regs)
657 int i;
658 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
659 struct perf_event *event;
660 unsigned long val;
661 int found = 0;
662 int nmi;
664 nmi = perf_intr_is_nmi(regs);
665 if (nmi)
666 nmi_enter();
667 else
668 irq_enter();
670 for (i = 0; i < ppmu->n_counter; ++i) {
671 event = cpuhw->event[i];
673 val = read_pmc(i);
674 if ((int)val < 0) {
675 if (event) {
676 /* event has overflowed */
677 found = 1;
678 record_and_restart(event, val, regs);
679 } else {
681 * Disabled counter is negative,
682 * reset it just in case.
684 write_pmc(i, 0);
689 /* PMM will keep counters frozen until we return from the interrupt. */
690 mtmsr(mfmsr() | MSR_PMM);
691 mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
692 isync();
694 if (nmi)
695 nmi_exit();
696 else
697 irq_exit();
700 void hw_perf_event_setup(int cpu)
702 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
704 memset(cpuhw, 0, sizeof(*cpuhw));
707 int register_fsl_emb_pmu(struct fsl_emb_pmu *pmu)
709 if (ppmu)
710 return -EBUSY; /* something's already registered */
712 ppmu = pmu;
713 pr_info("%s performance monitor hardware support registered\n",
714 pmu->name);
716 perf_pmu_register(&fsl_emb_pmu, "cpu", PERF_TYPE_RAW);
718 return 0;