1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2010,2015 Broadcom
4 * Copyright (C) 2012 Stephen Warren
8 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
10 * The clock tree on the 2835 has several levels. There's a root
11 * oscillator running at 19.2Mhz. After the oscillator there are 5
12 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13 * and "HDMI displays". Those 5 PLLs each can divide their output to
14 * produce up to 4 channels. Finally, there is the level of clocks to
15 * be consumed by other hardware components (like "H264" or "HDMI
16 * state machine"), which divide off of some subset of the PLL
19 * All of the clocks in the tree are exposed in the DT, because the DT
20 * may want to make assignments of the final layer of clocks to the
21 * PLL channels, and some components of the hardware will actually
22 * skip layers of the tree (for example, the pixel clock comes
23 * directly from the PLLH PIX channel without using a CM_*CTL clock
27 #include <linux/clk-provider.h>
28 #include <linux/clkdev.h>
29 #include <linux/clk.h>
30 #include <linux/debugfs.h>
31 #include <linux/delay.h>
33 #include <linux/module.h>
34 #include <linux/of_device.h>
35 #include <linux/platform_device.h>
36 #include <linux/slab.h>
37 #include <dt-bindings/clock/bcm2835.h>
39 #define CM_PASSWORD 0x5a000000
41 #define CM_GNRICCTL 0x000
42 #define CM_GNRICDIV 0x004
43 # define CM_DIV_FRAC_BITS 12
44 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
46 #define CM_VPUCTL 0x008
47 #define CM_VPUDIV 0x00c
48 #define CM_SYSCTL 0x010
49 #define CM_SYSDIV 0x014
50 #define CM_PERIACTL 0x018
51 #define CM_PERIADIV 0x01c
52 #define CM_PERIICTL 0x020
53 #define CM_PERIIDIV 0x024
54 #define CM_H264CTL 0x028
55 #define CM_H264DIV 0x02c
56 #define CM_ISPCTL 0x030
57 #define CM_ISPDIV 0x034
58 #define CM_V3DCTL 0x038
59 #define CM_V3DDIV 0x03c
60 #define CM_CAM0CTL 0x040
61 #define CM_CAM0DIV 0x044
62 #define CM_CAM1CTL 0x048
63 #define CM_CAM1DIV 0x04c
64 #define CM_CCP2CTL 0x050
65 #define CM_CCP2DIV 0x054
66 #define CM_DSI0ECTL 0x058
67 #define CM_DSI0EDIV 0x05c
68 #define CM_DSI0PCTL 0x060
69 #define CM_DSI0PDIV 0x064
70 #define CM_DPICTL 0x068
71 #define CM_DPIDIV 0x06c
72 #define CM_GP0CTL 0x070
73 #define CM_GP0DIV 0x074
74 #define CM_GP1CTL 0x078
75 #define CM_GP1DIV 0x07c
76 #define CM_GP2CTL 0x080
77 #define CM_GP2DIV 0x084
78 #define CM_HSMCTL 0x088
79 #define CM_HSMDIV 0x08c
80 #define CM_OTPCTL 0x090
81 #define CM_OTPDIV 0x094
82 #define CM_PCMCTL 0x098
83 #define CM_PCMDIV 0x09c
84 #define CM_PWMCTL 0x0a0
85 #define CM_PWMDIV 0x0a4
86 #define CM_SLIMCTL 0x0a8
87 #define CM_SLIMDIV 0x0ac
88 #define CM_SMICTL 0x0b0
89 #define CM_SMIDIV 0x0b4
90 /* no definition for 0x0b8 and 0x0bc */
91 #define CM_TCNTCTL 0x0c0
92 # define CM_TCNT_SRC1_SHIFT 12
93 #define CM_TCNTCNT 0x0c4
94 #define CM_TECCTL 0x0c8
95 #define CM_TECDIV 0x0cc
96 #define CM_TD0CTL 0x0d0
97 #define CM_TD0DIV 0x0d4
98 #define CM_TD1CTL 0x0d8
99 #define CM_TD1DIV 0x0dc
100 #define CM_TSENSCTL 0x0e0
101 #define CM_TSENSDIV 0x0e4
102 #define CM_TIMERCTL 0x0e8
103 #define CM_TIMERDIV 0x0ec
104 #define CM_UARTCTL 0x0f0
105 #define CM_UARTDIV 0x0f4
106 #define CM_VECCTL 0x0f8
107 #define CM_VECDIV 0x0fc
108 #define CM_PULSECTL 0x190
109 #define CM_PULSEDIV 0x194
110 #define CM_SDCCTL 0x1a8
111 #define CM_SDCDIV 0x1ac
112 #define CM_ARMCTL 0x1b0
113 #define CM_AVEOCTL 0x1b8
114 #define CM_AVEODIV 0x1bc
115 #define CM_EMMCCTL 0x1c0
116 #define CM_EMMCDIV 0x1c4
117 #define CM_EMMC2CTL 0x1d0
118 #define CM_EMMC2DIV 0x1d4
120 /* General bits for the CM_*CTL regs */
121 # define CM_ENABLE BIT(4)
122 # define CM_KILL BIT(5)
123 # define CM_GATE_BIT 6
124 # define CM_GATE BIT(CM_GATE_BIT)
125 # define CM_BUSY BIT(7)
126 # define CM_BUSYD BIT(8)
127 # define CM_FRAC BIT(9)
128 # define CM_SRC_SHIFT 0
129 # define CM_SRC_BITS 4
130 # define CM_SRC_MASK 0xf
131 # define CM_SRC_GND 0
132 # define CM_SRC_OSC 1
133 # define CM_SRC_TESTDEBUG0 2
134 # define CM_SRC_TESTDEBUG1 3
135 # define CM_SRC_PLLA_CORE 4
136 # define CM_SRC_PLLA_PER 4
137 # define CM_SRC_PLLC_CORE0 5
138 # define CM_SRC_PLLC_PER 5
139 # define CM_SRC_PLLC_CORE1 8
140 # define CM_SRC_PLLD_CORE 6
141 # define CM_SRC_PLLD_PER 6
142 # define CM_SRC_PLLH_AUX 7
143 # define CM_SRC_PLLC_CORE1 8
144 # define CM_SRC_PLLC_CORE2 9
146 #define CM_OSCCOUNT 0x100
148 #define CM_PLLA 0x104
149 # define CM_PLL_ANARST BIT(8)
150 # define CM_PLLA_HOLDPER BIT(7)
151 # define CM_PLLA_LOADPER BIT(6)
152 # define CM_PLLA_HOLDCORE BIT(5)
153 # define CM_PLLA_LOADCORE BIT(4)
154 # define CM_PLLA_HOLDCCP2 BIT(3)
155 # define CM_PLLA_LOADCCP2 BIT(2)
156 # define CM_PLLA_HOLDDSI0 BIT(1)
157 # define CM_PLLA_LOADDSI0 BIT(0)
159 #define CM_PLLC 0x108
160 # define CM_PLLC_HOLDPER BIT(7)
161 # define CM_PLLC_LOADPER BIT(6)
162 # define CM_PLLC_HOLDCORE2 BIT(5)
163 # define CM_PLLC_LOADCORE2 BIT(4)
164 # define CM_PLLC_HOLDCORE1 BIT(3)
165 # define CM_PLLC_LOADCORE1 BIT(2)
166 # define CM_PLLC_HOLDCORE0 BIT(1)
167 # define CM_PLLC_LOADCORE0 BIT(0)
169 #define CM_PLLD 0x10c
170 # define CM_PLLD_HOLDPER BIT(7)
171 # define CM_PLLD_LOADPER BIT(6)
172 # define CM_PLLD_HOLDCORE BIT(5)
173 # define CM_PLLD_LOADCORE BIT(4)
174 # define CM_PLLD_HOLDDSI1 BIT(3)
175 # define CM_PLLD_LOADDSI1 BIT(2)
176 # define CM_PLLD_HOLDDSI0 BIT(1)
177 # define CM_PLLD_LOADDSI0 BIT(0)
179 #define CM_PLLH 0x110
180 # define CM_PLLH_LOADRCAL BIT(2)
181 # define CM_PLLH_LOADAUX BIT(1)
182 # define CM_PLLH_LOADPIX BIT(0)
184 #define CM_LOCK 0x114
185 # define CM_LOCK_FLOCKH BIT(12)
186 # define CM_LOCK_FLOCKD BIT(11)
187 # define CM_LOCK_FLOCKC BIT(10)
188 # define CM_LOCK_FLOCKB BIT(9)
189 # define CM_LOCK_FLOCKA BIT(8)
191 #define CM_EVENT 0x118
192 #define CM_DSI1ECTL 0x158
193 #define CM_DSI1EDIV 0x15c
194 #define CM_DSI1PCTL 0x160
195 #define CM_DSI1PDIV 0x164
196 #define CM_DFTCTL 0x168
197 #define CM_DFTDIV 0x16c
199 #define CM_PLLB 0x170
200 # define CM_PLLB_HOLDARM BIT(1)
201 # define CM_PLLB_LOADARM BIT(0)
203 #define A2W_PLLA_CTRL 0x1100
204 #define A2W_PLLC_CTRL 0x1120
205 #define A2W_PLLD_CTRL 0x1140
206 #define A2W_PLLH_CTRL 0x1160
207 #define A2W_PLLB_CTRL 0x11e0
208 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
209 # define A2W_PLL_CTRL_PWRDN BIT(16)
210 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
211 # define A2W_PLL_CTRL_PDIV_SHIFT 12
212 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
213 # define A2W_PLL_CTRL_NDIV_SHIFT 0
215 #define A2W_PLLA_ANA0 0x1010
216 #define A2W_PLLC_ANA0 0x1030
217 #define A2W_PLLD_ANA0 0x1050
218 #define A2W_PLLH_ANA0 0x1070
219 #define A2W_PLLB_ANA0 0x10f0
221 #define A2W_PLL_KA_SHIFT 7
222 #define A2W_PLL_KA_MASK GENMASK(9, 7)
223 #define A2W_PLL_KI_SHIFT 19
224 #define A2W_PLL_KI_MASK GENMASK(21, 19)
225 #define A2W_PLL_KP_SHIFT 15
226 #define A2W_PLL_KP_MASK GENMASK(18, 15)
228 #define A2W_PLLH_KA_SHIFT 19
229 #define A2W_PLLH_KA_MASK GENMASK(21, 19)
230 #define A2W_PLLH_KI_LOW_SHIFT 22
231 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
232 #define A2W_PLLH_KI_HIGH_SHIFT 0
233 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
234 #define A2W_PLLH_KP_SHIFT 1
235 #define A2W_PLLH_KP_MASK GENMASK(4, 1)
237 #define A2W_XOSC_CTRL 0x1190
238 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
239 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
240 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
241 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
242 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
243 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
244 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
245 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
247 #define A2W_PLLA_FRAC 0x1200
248 #define A2W_PLLC_FRAC 0x1220
249 #define A2W_PLLD_FRAC 0x1240
250 #define A2W_PLLH_FRAC 0x1260
251 #define A2W_PLLB_FRAC 0x12e0
252 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
253 # define A2W_PLL_FRAC_BITS 20
255 #define A2W_PLL_CHANNEL_DISABLE BIT(8)
256 #define A2W_PLL_DIV_BITS 8
257 #define A2W_PLL_DIV_SHIFT 0
259 #define A2W_PLLA_DSI0 0x1300
260 #define A2W_PLLA_CORE 0x1400
261 #define A2W_PLLA_PER 0x1500
262 #define A2W_PLLA_CCP2 0x1600
264 #define A2W_PLLC_CORE2 0x1320
265 #define A2W_PLLC_CORE1 0x1420
266 #define A2W_PLLC_PER 0x1520
267 #define A2W_PLLC_CORE0 0x1620
269 #define A2W_PLLD_DSI0 0x1340
270 #define A2W_PLLD_CORE 0x1440
271 #define A2W_PLLD_PER 0x1540
272 #define A2W_PLLD_DSI1 0x1640
274 #define A2W_PLLH_AUX 0x1360
275 #define A2W_PLLH_RCAL 0x1460
276 #define A2W_PLLH_PIX 0x1560
277 #define A2W_PLLH_STS 0x1660
279 #define A2W_PLLH_CTRLR 0x1960
280 #define A2W_PLLH_FRACR 0x1a60
281 #define A2W_PLLH_AUXR 0x1b60
282 #define A2W_PLLH_RCALR 0x1c60
283 #define A2W_PLLH_PIXR 0x1d60
284 #define A2W_PLLH_STSR 0x1e60
286 #define A2W_PLLB_ARM 0x13e0
287 #define A2W_PLLB_SP0 0x14e0
288 #define A2W_PLLB_SP1 0x15e0
289 #define A2W_PLLB_SP2 0x16e0
291 #define LOCK_TIMEOUT_NS 100000000
292 #define BCM2835_MAX_FB_RATE 1750000000u
294 #define SOC_BCM2835 BIT(0)
295 #define SOC_BCM2711 BIT(1)
296 #define SOC_ALL (SOC_BCM2835 | SOC_BCM2711)
299 * Names of clocks used within the driver that need to be replaced
300 * with an external parent's name. This array is in the order that
301 * the clocks node in the DT references external clocks.
303 static const char *const cprman_parent_names
[] = {
313 struct bcm2835_cprman
{
316 spinlock_t regs_lock
; /* spinlock for all clocks */
319 * Real names of cprman clock parents looked up through
320 * of_clk_get_parent_name(), which will be used in the
321 * parent_names[] arrays for clock registration.
323 const char *real_parent_names
[ARRAY_SIZE(cprman_parent_names
)];
326 struct clk_hw_onecell_data onecell
;
329 struct cprman_plat_data
{
333 static inline void cprman_write(struct bcm2835_cprman
*cprman
, u32 reg
, u32 val
)
335 writel(CM_PASSWORD
| val
, cprman
->regs
+ reg
);
338 static inline u32
cprman_read(struct bcm2835_cprman
*cprman
, u32 reg
)
340 return readl(cprman
->regs
+ reg
);
343 /* Does a cycle of measuring a clock through the TCNT clock, which may
344 * source from many other clocks in the system.
346 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman
*cprman
,
349 u32 osccount
= 19200; /* 1ms */
353 spin_lock(&cprman
->regs_lock
);
355 cprman_write(cprman
, CM_TCNTCTL
, CM_KILL
);
357 cprman_write(cprman
, CM_TCNTCTL
,
358 (tcnt_mux
& CM_SRC_MASK
) |
359 (tcnt_mux
>> CM_SRC_BITS
) << CM_TCNT_SRC1_SHIFT
);
361 cprman_write(cprman
, CM_OSCCOUNT
, osccount
);
363 /* do a kind delay at the start */
366 /* Finish off whatever is left of OSCCOUNT */
367 timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
368 while (cprman_read(cprman
, CM_OSCCOUNT
)) {
369 if (ktime_after(ktime_get(), timeout
)) {
370 dev_err(cprman
->dev
, "timeout waiting for OSCCOUNT\n");
377 /* Wait for BUSY to clear. */
378 timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
379 while (cprman_read(cprman
, CM_TCNTCTL
) & CM_BUSY
) {
380 if (ktime_after(ktime_get(), timeout
)) {
381 dev_err(cprman
->dev
, "timeout waiting for !BUSY\n");
388 count
= cprman_read(cprman
, CM_TCNTCNT
);
390 cprman_write(cprman
, CM_TCNTCTL
, 0);
393 spin_unlock(&cprman
->regs_lock
);
398 static void bcm2835_debugfs_regset(struct bcm2835_cprman
*cprman
, u32 base
,
399 struct debugfs_reg32
*regs
, size_t nregs
,
400 struct dentry
*dentry
)
402 struct debugfs_regset32
*regset
;
404 regset
= devm_kzalloc(cprman
->dev
, sizeof(*regset
), GFP_KERNEL
);
409 regset
->nregs
= nregs
;
410 regset
->base
= cprman
->regs
+ base
;
412 debugfs_create_regset32("regdump", S_IRUGO
, dentry
, regset
);
415 struct bcm2835_pll_data
{
421 u32 reference_enable_mask
;
422 /* Bit in CM_LOCK to indicate when the PLL has locked. */
425 const struct bcm2835_pll_ana_bits
*ana
;
427 unsigned long min_rate
;
428 unsigned long max_rate
;
430 * Highest rate for the VCO before we have to use the
433 unsigned long max_fb_rate
;
436 struct bcm2835_pll_ana_bits
{
446 static const struct bcm2835_pll_ana_bits bcm2835_ana_default
= {
449 .mask1
= A2W_PLL_KI_MASK
| A2W_PLL_KP_MASK
,
450 .set1
= (2 << A2W_PLL_KI_SHIFT
) | (8 << A2W_PLL_KP_SHIFT
),
451 .mask3
= A2W_PLL_KA_MASK
,
452 .set3
= (2 << A2W_PLL_KA_SHIFT
),
453 .fb_prediv_mask
= BIT(14),
456 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh
= {
457 .mask0
= A2W_PLLH_KA_MASK
| A2W_PLLH_KI_LOW_MASK
,
458 .set0
= (2 << A2W_PLLH_KA_SHIFT
) | (2 << A2W_PLLH_KI_LOW_SHIFT
),
459 .mask1
= A2W_PLLH_KI_HIGH_MASK
| A2W_PLLH_KP_MASK
,
460 .set1
= (6 << A2W_PLLH_KP_SHIFT
),
463 .fb_prediv_mask
= BIT(11),
466 struct bcm2835_pll_divider_data
{
468 const char *source_pll
;
479 struct bcm2835_clock_data
{
482 const char *const *parents
;
485 /* Bitmap encoding which parents accept rate change propagation. */
486 unsigned int set_rate_parent
;
491 /* Number of integer bits in the divider */
493 /* Number of fractional bits in the divider */
505 struct bcm2835_gate_data
{
514 struct bcm2835_cprman
*cprman
;
515 const struct bcm2835_pll_data
*data
;
518 static int bcm2835_pll_is_on(struct clk_hw
*hw
)
520 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
521 struct bcm2835_cprman
*cprman
= pll
->cprman
;
522 const struct bcm2835_pll_data
*data
= pll
->data
;
524 return cprman_read(cprman
, data
->a2w_ctrl_reg
) &
525 A2W_PLL_CTRL_PRST_DISABLE
;
528 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate
,
529 unsigned long parent_rate
,
530 u32
*ndiv
, u32
*fdiv
)
534 div
= (u64
)rate
<< A2W_PLL_FRAC_BITS
;
535 do_div(div
, parent_rate
);
537 *ndiv
= div
>> A2W_PLL_FRAC_BITS
;
538 *fdiv
= div
& ((1 << A2W_PLL_FRAC_BITS
) - 1);
541 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate
,
542 u32 ndiv
, u32 fdiv
, u32 pdiv
)
549 rate
= (u64
)parent_rate
* ((ndiv
<< A2W_PLL_FRAC_BITS
) + fdiv
);
551 return rate
>> A2W_PLL_FRAC_BITS
;
554 static long bcm2835_pll_round_rate(struct clk_hw
*hw
, unsigned long rate
,
555 unsigned long *parent_rate
)
557 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
558 const struct bcm2835_pll_data
*data
= pll
->data
;
561 rate
= clamp(rate
, data
->min_rate
, data
->max_rate
);
563 bcm2835_pll_choose_ndiv_and_fdiv(rate
, *parent_rate
, &ndiv
, &fdiv
);
565 return bcm2835_pll_rate_from_divisors(*parent_rate
, ndiv
, fdiv
, 1);
568 static unsigned long bcm2835_pll_get_rate(struct clk_hw
*hw
,
569 unsigned long parent_rate
)
571 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
572 struct bcm2835_cprman
*cprman
= pll
->cprman
;
573 const struct bcm2835_pll_data
*data
= pll
->data
;
574 u32 a2wctrl
= cprman_read(cprman
, data
->a2w_ctrl_reg
);
575 u32 ndiv
, pdiv
, fdiv
;
578 if (parent_rate
== 0)
581 fdiv
= cprman_read(cprman
, data
->frac_reg
) & A2W_PLL_FRAC_MASK
;
582 ndiv
= (a2wctrl
& A2W_PLL_CTRL_NDIV_MASK
) >> A2W_PLL_CTRL_NDIV_SHIFT
;
583 pdiv
= (a2wctrl
& A2W_PLL_CTRL_PDIV_MASK
) >> A2W_PLL_CTRL_PDIV_SHIFT
;
584 using_prediv
= cprman_read(cprman
, data
->ana_reg_base
+ 4) &
585 data
->ana
->fb_prediv_mask
;
592 return bcm2835_pll_rate_from_divisors(parent_rate
, ndiv
, fdiv
, pdiv
);
595 static void bcm2835_pll_off(struct clk_hw
*hw
)
597 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
598 struct bcm2835_cprman
*cprman
= pll
->cprman
;
599 const struct bcm2835_pll_data
*data
= pll
->data
;
601 spin_lock(&cprman
->regs_lock
);
602 cprman_write(cprman
, data
->cm_ctrl_reg
, CM_PLL_ANARST
);
603 cprman_write(cprman
, data
->a2w_ctrl_reg
,
604 cprman_read(cprman
, data
->a2w_ctrl_reg
) |
606 spin_unlock(&cprman
->regs_lock
);
609 static int bcm2835_pll_on(struct clk_hw
*hw
)
611 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
612 struct bcm2835_cprman
*cprman
= pll
->cprman
;
613 const struct bcm2835_pll_data
*data
= pll
->data
;
616 cprman_write(cprman
, data
->a2w_ctrl_reg
,
617 cprman_read(cprman
, data
->a2w_ctrl_reg
) &
618 ~A2W_PLL_CTRL_PWRDN
);
620 /* Take the PLL out of reset. */
621 spin_lock(&cprman
->regs_lock
);
622 cprman_write(cprman
, data
->cm_ctrl_reg
,
623 cprman_read(cprman
, data
->cm_ctrl_reg
) & ~CM_PLL_ANARST
);
624 spin_unlock(&cprman
->regs_lock
);
626 /* Wait for the PLL to lock. */
627 timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
628 while (!(cprman_read(cprman
, CM_LOCK
) & data
->lock_mask
)) {
629 if (ktime_after(ktime_get(), timeout
)) {
630 dev_err(cprman
->dev
, "%s: couldn't lock PLL\n",
631 clk_hw_get_name(hw
));
638 cprman_write(cprman
, data
->a2w_ctrl_reg
,
639 cprman_read(cprman
, data
->a2w_ctrl_reg
) |
640 A2W_PLL_CTRL_PRST_DISABLE
);
646 bcm2835_pll_write_ana(struct bcm2835_cprman
*cprman
, u32 ana_reg_base
, u32
*ana
)
651 * ANA register setup is done as a series of writes to
652 * ANA3-ANA0, in that order. This lets us write all 4
653 * registers as a single cycle of the serdes interface (taking
654 * 100 xosc clocks), whereas if we were to update ana0, 1, and
655 * 3 individually through their partial-write registers, each
656 * would be their own serdes cycle.
658 for (i
= 3; i
>= 0; i
--)
659 cprman_write(cprman
, ana_reg_base
+ i
* 4, ana
[i
]);
662 static int bcm2835_pll_set_rate(struct clk_hw
*hw
,
663 unsigned long rate
, unsigned long parent_rate
)
665 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
666 struct bcm2835_cprman
*cprman
= pll
->cprman
;
667 const struct bcm2835_pll_data
*data
= pll
->data
;
668 bool was_using_prediv
, use_fb_prediv
, do_ana_setup_first
;
669 u32 ndiv
, fdiv
, a2w_ctl
;
673 if (rate
> data
->max_fb_rate
) {
674 use_fb_prediv
= true;
677 use_fb_prediv
= false;
680 bcm2835_pll_choose_ndiv_and_fdiv(rate
, parent_rate
, &ndiv
, &fdiv
);
682 for (i
= 3; i
>= 0; i
--)
683 ana
[i
] = cprman_read(cprman
, data
->ana_reg_base
+ i
* 4);
685 was_using_prediv
= ana
[1] & data
->ana
->fb_prediv_mask
;
687 ana
[0] &= ~data
->ana
->mask0
;
688 ana
[0] |= data
->ana
->set0
;
689 ana
[1] &= ~data
->ana
->mask1
;
690 ana
[1] |= data
->ana
->set1
;
691 ana
[3] &= ~data
->ana
->mask3
;
692 ana
[3] |= data
->ana
->set3
;
694 if (was_using_prediv
&& !use_fb_prediv
) {
695 ana
[1] &= ~data
->ana
->fb_prediv_mask
;
696 do_ana_setup_first
= true;
697 } else if (!was_using_prediv
&& use_fb_prediv
) {
698 ana
[1] |= data
->ana
->fb_prediv_mask
;
699 do_ana_setup_first
= false;
701 do_ana_setup_first
= true;
704 /* Unmask the reference clock from the oscillator. */
705 spin_lock(&cprman
->regs_lock
);
706 cprman_write(cprman
, A2W_XOSC_CTRL
,
707 cprman_read(cprman
, A2W_XOSC_CTRL
) |
708 data
->reference_enable_mask
);
709 spin_unlock(&cprman
->regs_lock
);
711 if (do_ana_setup_first
)
712 bcm2835_pll_write_ana(cprman
, data
->ana_reg_base
, ana
);
714 /* Set the PLL multiplier from the oscillator. */
715 cprman_write(cprman
, data
->frac_reg
, fdiv
);
717 a2w_ctl
= cprman_read(cprman
, data
->a2w_ctrl_reg
);
718 a2w_ctl
&= ~A2W_PLL_CTRL_NDIV_MASK
;
719 a2w_ctl
|= ndiv
<< A2W_PLL_CTRL_NDIV_SHIFT
;
720 a2w_ctl
&= ~A2W_PLL_CTRL_PDIV_MASK
;
721 a2w_ctl
|= 1 << A2W_PLL_CTRL_PDIV_SHIFT
;
722 cprman_write(cprman
, data
->a2w_ctrl_reg
, a2w_ctl
);
724 if (!do_ana_setup_first
)
725 bcm2835_pll_write_ana(cprman
, data
->ana_reg_base
, ana
);
730 static void bcm2835_pll_debug_init(struct clk_hw
*hw
,
731 struct dentry
*dentry
)
733 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
734 struct bcm2835_cprman
*cprman
= pll
->cprman
;
735 const struct bcm2835_pll_data
*data
= pll
->data
;
736 struct debugfs_reg32
*regs
;
738 regs
= devm_kcalloc(cprman
->dev
, 7, sizeof(*regs
), GFP_KERNEL
);
742 regs
[0].name
= "cm_ctrl";
743 regs
[0].offset
= data
->cm_ctrl_reg
;
744 regs
[1].name
= "a2w_ctrl";
745 regs
[1].offset
= data
->a2w_ctrl_reg
;
746 regs
[2].name
= "frac";
747 regs
[2].offset
= data
->frac_reg
;
748 regs
[3].name
= "ana0";
749 regs
[3].offset
= data
->ana_reg_base
+ 0 * 4;
750 regs
[4].name
= "ana1";
751 regs
[4].offset
= data
->ana_reg_base
+ 1 * 4;
752 regs
[5].name
= "ana2";
753 regs
[5].offset
= data
->ana_reg_base
+ 2 * 4;
754 regs
[6].name
= "ana3";
755 regs
[6].offset
= data
->ana_reg_base
+ 3 * 4;
757 bcm2835_debugfs_regset(cprman
, 0, regs
, 7, dentry
);
760 static const struct clk_ops bcm2835_pll_clk_ops
= {
761 .is_prepared
= bcm2835_pll_is_on
,
762 .prepare
= bcm2835_pll_on
,
763 .unprepare
= bcm2835_pll_off
,
764 .recalc_rate
= bcm2835_pll_get_rate
,
765 .set_rate
= bcm2835_pll_set_rate
,
766 .round_rate
= bcm2835_pll_round_rate
,
767 .debug_init
= bcm2835_pll_debug_init
,
770 struct bcm2835_pll_divider
{
771 struct clk_divider div
;
772 struct bcm2835_cprman
*cprman
;
773 const struct bcm2835_pll_divider_data
*data
;
776 static struct bcm2835_pll_divider
*
777 bcm2835_pll_divider_from_hw(struct clk_hw
*hw
)
779 return container_of(hw
, struct bcm2835_pll_divider
, div
.hw
);
782 static int bcm2835_pll_divider_is_on(struct clk_hw
*hw
)
784 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
785 struct bcm2835_cprman
*cprman
= divider
->cprman
;
786 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
788 return !(cprman_read(cprman
, data
->a2w_reg
) & A2W_PLL_CHANNEL_DISABLE
);
791 static long bcm2835_pll_divider_round_rate(struct clk_hw
*hw
,
793 unsigned long *parent_rate
)
795 return clk_divider_ops
.round_rate(hw
, rate
, parent_rate
);
798 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw
*hw
,
799 unsigned long parent_rate
)
801 return clk_divider_ops
.recalc_rate(hw
, parent_rate
);
804 static void bcm2835_pll_divider_off(struct clk_hw
*hw
)
806 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
807 struct bcm2835_cprman
*cprman
= divider
->cprman
;
808 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
810 spin_lock(&cprman
->regs_lock
);
811 cprman_write(cprman
, data
->cm_reg
,
812 (cprman_read(cprman
, data
->cm_reg
) &
813 ~data
->load_mask
) | data
->hold_mask
);
814 cprman_write(cprman
, data
->a2w_reg
,
815 cprman_read(cprman
, data
->a2w_reg
) |
816 A2W_PLL_CHANNEL_DISABLE
);
817 spin_unlock(&cprman
->regs_lock
);
820 static int bcm2835_pll_divider_on(struct clk_hw
*hw
)
822 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
823 struct bcm2835_cprman
*cprman
= divider
->cprman
;
824 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
826 spin_lock(&cprman
->regs_lock
);
827 cprman_write(cprman
, data
->a2w_reg
,
828 cprman_read(cprman
, data
->a2w_reg
) &
829 ~A2W_PLL_CHANNEL_DISABLE
);
831 cprman_write(cprman
, data
->cm_reg
,
832 cprman_read(cprman
, data
->cm_reg
) & ~data
->hold_mask
);
833 spin_unlock(&cprman
->regs_lock
);
838 static int bcm2835_pll_divider_set_rate(struct clk_hw
*hw
,
840 unsigned long parent_rate
)
842 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
843 struct bcm2835_cprman
*cprman
= divider
->cprman
;
844 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
845 u32 cm
, div
, max_div
= 1 << A2W_PLL_DIV_BITS
;
847 div
= DIV_ROUND_UP_ULL(parent_rate
, rate
);
849 div
= min(div
, max_div
);
853 cprman_write(cprman
, data
->a2w_reg
, div
);
854 cm
= cprman_read(cprman
, data
->cm_reg
);
855 cprman_write(cprman
, data
->cm_reg
, cm
| data
->load_mask
);
856 cprman_write(cprman
, data
->cm_reg
, cm
& ~data
->load_mask
);
861 static void bcm2835_pll_divider_debug_init(struct clk_hw
*hw
,
862 struct dentry
*dentry
)
864 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
865 struct bcm2835_cprman
*cprman
= divider
->cprman
;
866 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
867 struct debugfs_reg32
*regs
;
869 regs
= devm_kcalloc(cprman
->dev
, 7, sizeof(*regs
), GFP_KERNEL
);
874 regs
[0].offset
= data
->cm_reg
;
875 regs
[1].name
= "a2w";
876 regs
[1].offset
= data
->a2w_reg
;
878 bcm2835_debugfs_regset(cprman
, 0, regs
, 2, dentry
);
881 static const struct clk_ops bcm2835_pll_divider_clk_ops
= {
882 .is_prepared
= bcm2835_pll_divider_is_on
,
883 .prepare
= bcm2835_pll_divider_on
,
884 .unprepare
= bcm2835_pll_divider_off
,
885 .recalc_rate
= bcm2835_pll_divider_get_rate
,
886 .set_rate
= bcm2835_pll_divider_set_rate
,
887 .round_rate
= bcm2835_pll_divider_round_rate
,
888 .debug_init
= bcm2835_pll_divider_debug_init
,
892 * The CM dividers do fixed-point division, so we can't use the
893 * generic integer divider code like the PLL dividers do (and we can't
894 * fake it by having some fixed shifts preceding it in the clock tree,
895 * because we'd run out of bits in a 32-bit unsigned long).
897 struct bcm2835_clock
{
899 struct bcm2835_cprman
*cprman
;
900 const struct bcm2835_clock_data
*data
;
903 static struct bcm2835_clock
*bcm2835_clock_from_hw(struct clk_hw
*hw
)
905 return container_of(hw
, struct bcm2835_clock
, hw
);
908 static int bcm2835_clock_is_on(struct clk_hw
*hw
)
910 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
911 struct bcm2835_cprman
*cprman
= clock
->cprman
;
912 const struct bcm2835_clock_data
*data
= clock
->data
;
914 return (cprman_read(cprman
, data
->ctl_reg
) & CM_ENABLE
) != 0;
917 static u32
bcm2835_clock_choose_div(struct clk_hw
*hw
,
919 unsigned long parent_rate
,
922 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
923 const struct bcm2835_clock_data
*data
= clock
->data
;
924 u32 unused_frac_mask
=
925 GENMASK(CM_DIV_FRAC_BITS
- data
->frac_bits
, 0) >> 1;
926 u64 temp
= (u64
)parent_rate
<< CM_DIV_FRAC_BITS
;
928 u32 div
, mindiv
, maxdiv
;
930 rem
= do_div(temp
, rate
);
933 /* Round up and mask off the unused bits */
934 if (round_up
&& ((div
& unused_frac_mask
) != 0 || rem
!= 0))
935 div
+= unused_frac_mask
+ 1;
936 div
&= ~unused_frac_mask
;
938 /* different clamping limits apply for a mash clock */
939 if (data
->is_mash_clock
) {
940 /* clamp to min divider of 2 */
941 mindiv
= 2 << CM_DIV_FRAC_BITS
;
942 /* clamp to the highest possible integer divider */
943 maxdiv
= (BIT(data
->int_bits
) - 1) << CM_DIV_FRAC_BITS
;
945 /* clamp to min divider of 1 */
946 mindiv
= 1 << CM_DIV_FRAC_BITS
;
947 /* clamp to the highest possible fractional divider */
948 maxdiv
= GENMASK(data
->int_bits
+ CM_DIV_FRAC_BITS
- 1,
949 CM_DIV_FRAC_BITS
- data
->frac_bits
);
952 /* apply the clamping limits */
953 div
= max_t(u32
, div
, mindiv
);
954 div
= min_t(u32
, div
, maxdiv
);
959 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock
*clock
,
960 unsigned long parent_rate
,
963 const struct bcm2835_clock_data
*data
= clock
->data
;
966 if (data
->int_bits
== 0 && data
->frac_bits
== 0)
970 * The divisor is a 12.12 fixed point field, but only some of
971 * the bits are populated in any given clock.
973 div
>>= CM_DIV_FRAC_BITS
- data
->frac_bits
;
974 div
&= (1 << (data
->int_bits
+ data
->frac_bits
)) - 1;
979 temp
= (u64
)parent_rate
<< data
->frac_bits
;
986 static unsigned long bcm2835_clock_get_rate(struct clk_hw
*hw
,
987 unsigned long parent_rate
)
989 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
990 struct bcm2835_cprman
*cprman
= clock
->cprman
;
991 const struct bcm2835_clock_data
*data
= clock
->data
;
994 if (data
->int_bits
== 0 && data
->frac_bits
== 0)
997 div
= cprman_read(cprman
, data
->div_reg
);
999 return bcm2835_clock_rate_from_divisor(clock
, parent_rate
, div
);
1002 static void bcm2835_clock_wait_busy(struct bcm2835_clock
*clock
)
1004 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1005 const struct bcm2835_clock_data
*data
= clock
->data
;
1006 ktime_t timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
1008 while (cprman_read(cprman
, data
->ctl_reg
) & CM_BUSY
) {
1009 if (ktime_after(ktime_get(), timeout
)) {
1010 dev_err(cprman
->dev
, "%s: couldn't lock PLL\n",
1011 clk_hw_get_name(&clock
->hw
));
1018 static void bcm2835_clock_off(struct clk_hw
*hw
)
1020 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1021 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1022 const struct bcm2835_clock_data
*data
= clock
->data
;
1024 spin_lock(&cprman
->regs_lock
);
1025 cprman_write(cprman
, data
->ctl_reg
,
1026 cprman_read(cprman
, data
->ctl_reg
) & ~CM_ENABLE
);
1027 spin_unlock(&cprman
->regs_lock
);
1029 /* BUSY will remain high until the divider completes its cycle. */
1030 bcm2835_clock_wait_busy(clock
);
1033 static int bcm2835_clock_on(struct clk_hw
*hw
)
1035 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1036 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1037 const struct bcm2835_clock_data
*data
= clock
->data
;
1039 spin_lock(&cprman
->regs_lock
);
1040 cprman_write(cprman
, data
->ctl_reg
,
1041 cprman_read(cprman
, data
->ctl_reg
) |
1044 spin_unlock(&cprman
->regs_lock
);
1046 /* Debug code to measure the clock once it's turned on to see
1047 * if it's ticking at the rate we expect.
1049 if (data
->tcnt_mux
&& false) {
1050 dev_info(cprman
->dev
,
1051 "clk %s: rate %ld, measure %ld\n",
1053 clk_hw_get_rate(hw
),
1054 bcm2835_measure_tcnt_mux(cprman
, data
->tcnt_mux
));
1060 static int bcm2835_clock_set_rate(struct clk_hw
*hw
,
1061 unsigned long rate
, unsigned long parent_rate
)
1063 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1064 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1065 const struct bcm2835_clock_data
*data
= clock
->data
;
1066 u32 div
= bcm2835_clock_choose_div(hw
, rate
, parent_rate
, false);
1069 spin_lock(&cprman
->regs_lock
);
1072 * Setting up frac support
1074 * In principle it is recommended to stop/start the clock first,
1075 * but as we set CLK_SET_RATE_GATE during registration of the
1076 * clock this requirement should be take care of by the
1079 ctl
= cprman_read(cprman
, data
->ctl_reg
) & ~CM_FRAC
;
1080 ctl
|= (div
& CM_DIV_FRAC_MASK
) ? CM_FRAC
: 0;
1081 cprman_write(cprman
, data
->ctl_reg
, ctl
);
1083 cprman_write(cprman
, data
->div_reg
, div
);
1085 spin_unlock(&cprman
->regs_lock
);
1091 bcm2835_clk_is_pllc(struct clk_hw
*hw
)
1096 return strncmp(clk_hw_get_name(hw
), "pllc", 4) == 0;
1099 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw
*hw
,
1103 unsigned long *prate
,
1104 unsigned long *avgrate
)
1106 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1107 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1108 const struct bcm2835_clock_data
*data
= clock
->data
;
1109 unsigned long best_rate
= 0;
1110 u32 curdiv
, mindiv
, maxdiv
;
1111 struct clk_hw
*parent
;
1113 parent
= clk_hw_get_parent_by_index(hw
, parent_idx
);
1115 if (!(BIT(parent_idx
) & data
->set_rate_parent
)) {
1116 *prate
= clk_hw_get_rate(parent
);
1117 *div
= bcm2835_clock_choose_div(hw
, rate
, *prate
, true);
1119 *avgrate
= bcm2835_clock_rate_from_divisor(clock
, *prate
, *div
);
1121 if (data
->low_jitter
&& (*div
& CM_DIV_FRAC_MASK
)) {
1122 unsigned long high
, low
;
1123 u32 int_div
= *div
& ~CM_DIV_FRAC_MASK
;
1125 high
= bcm2835_clock_rate_from_divisor(clock
, *prate
,
1127 int_div
+= CM_DIV_FRAC_MASK
+ 1;
1128 low
= bcm2835_clock_rate_from_divisor(clock
, *prate
,
1132 * Return a value which is the maximum deviation
1133 * below the ideal rate, for use as a metric.
1135 return *avgrate
- max(*avgrate
- low
, high
- *avgrate
);
1140 if (data
->frac_bits
)
1141 dev_warn(cprman
->dev
,
1142 "frac bits are not used when propagating rate change");
1144 /* clamp to min divider of 2 if we're dealing with a mash clock */
1145 mindiv
= data
->is_mash_clock
? 2 : 1;
1146 maxdiv
= BIT(data
->int_bits
) - 1;
1148 /* TODO: Be smart, and only test a subset of the available divisors. */
1149 for (curdiv
= mindiv
; curdiv
<= maxdiv
; curdiv
++) {
1150 unsigned long tmp_rate
;
1152 tmp_rate
= clk_hw_round_rate(parent
, rate
* curdiv
);
1154 if (curdiv
== mindiv
||
1155 (tmp_rate
> best_rate
&& tmp_rate
<= rate
))
1156 best_rate
= tmp_rate
;
1158 if (best_rate
== rate
)
1162 *div
= curdiv
<< CM_DIV_FRAC_BITS
;
1163 *prate
= curdiv
* best_rate
;
1164 *avgrate
= best_rate
;
1169 static int bcm2835_clock_determine_rate(struct clk_hw
*hw
,
1170 struct clk_rate_request
*req
)
1172 struct clk_hw
*parent
, *best_parent
= NULL
;
1173 bool current_parent_is_pllc
;
1174 unsigned long rate
, best_rate
= 0;
1175 unsigned long prate
, best_prate
= 0;
1176 unsigned long avgrate
, best_avgrate
= 0;
1180 current_parent_is_pllc
= bcm2835_clk_is_pllc(clk_hw_get_parent(hw
));
1183 * Select parent clock that results in the closest but lower rate
1185 for (i
= 0; i
< clk_hw_get_num_parents(hw
); ++i
) {
1186 parent
= clk_hw_get_parent_by_index(hw
, i
);
1191 * Don't choose a PLLC-derived clock as our parent
1192 * unless it had been manually set that way. PLLC's
1193 * frequency gets adjusted by the firmware due to
1194 * over-temp or under-voltage conditions, without
1195 * prior notification to our clock consumer.
1197 if (bcm2835_clk_is_pllc(parent
) && !current_parent_is_pllc
)
1200 rate
= bcm2835_clock_choose_div_and_prate(hw
, i
, req
->rate
,
1203 if (rate
> best_rate
&& rate
<= req
->rate
) {
1204 best_parent
= parent
;
1207 best_avgrate
= avgrate
;
1214 req
->best_parent_hw
= best_parent
;
1215 req
->best_parent_rate
= best_prate
;
1217 req
->rate
= best_avgrate
;
1222 static int bcm2835_clock_set_parent(struct clk_hw
*hw
, u8 index
)
1224 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1225 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1226 const struct bcm2835_clock_data
*data
= clock
->data
;
1227 u8 src
= (index
<< CM_SRC_SHIFT
) & CM_SRC_MASK
;
1229 cprman_write(cprman
, data
->ctl_reg
, src
);
1233 static u8
bcm2835_clock_get_parent(struct clk_hw
*hw
)
1235 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1236 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1237 const struct bcm2835_clock_data
*data
= clock
->data
;
1238 u32 src
= cprman_read(cprman
, data
->ctl_reg
);
1240 return (src
& CM_SRC_MASK
) >> CM_SRC_SHIFT
;
1243 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32
[] = {
1254 static void bcm2835_clock_debug_init(struct clk_hw
*hw
,
1255 struct dentry
*dentry
)
1257 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1258 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1259 const struct bcm2835_clock_data
*data
= clock
->data
;
1261 bcm2835_debugfs_regset(cprman
, data
->ctl_reg
,
1262 bcm2835_debugfs_clock_reg32
,
1263 ARRAY_SIZE(bcm2835_debugfs_clock_reg32
),
1267 static const struct clk_ops bcm2835_clock_clk_ops
= {
1268 .is_prepared
= bcm2835_clock_is_on
,
1269 .prepare
= bcm2835_clock_on
,
1270 .unprepare
= bcm2835_clock_off
,
1271 .recalc_rate
= bcm2835_clock_get_rate
,
1272 .set_rate
= bcm2835_clock_set_rate
,
1273 .determine_rate
= bcm2835_clock_determine_rate
,
1274 .set_parent
= bcm2835_clock_set_parent
,
1275 .get_parent
= bcm2835_clock_get_parent
,
1276 .debug_init
= bcm2835_clock_debug_init
,
1279 static int bcm2835_vpu_clock_is_on(struct clk_hw
*hw
)
1285 * The VPU clock can never be disabled (it doesn't have an ENABLE
1286 * bit), so it gets its own set of clock ops.
1288 static const struct clk_ops bcm2835_vpu_clock_clk_ops
= {
1289 .is_prepared
= bcm2835_vpu_clock_is_on
,
1290 .recalc_rate
= bcm2835_clock_get_rate
,
1291 .set_rate
= bcm2835_clock_set_rate
,
1292 .determine_rate
= bcm2835_clock_determine_rate
,
1293 .set_parent
= bcm2835_clock_set_parent
,
1294 .get_parent
= bcm2835_clock_get_parent
,
1295 .debug_init
= bcm2835_clock_debug_init
,
1298 static struct clk_hw
*bcm2835_register_pll(struct bcm2835_cprman
*cprman
,
1299 const struct bcm2835_pll_data
*data
)
1301 struct bcm2835_pll
*pll
;
1302 struct clk_init_data init
;
1305 memset(&init
, 0, sizeof(init
));
1307 /* All of the PLLs derive from the external oscillator. */
1308 init
.parent_names
= &cprman
->real_parent_names
[0];
1309 init
.num_parents
= 1;
1310 init
.name
= data
->name
;
1311 init
.ops
= &bcm2835_pll_clk_ops
;
1312 init
.flags
= CLK_IGNORE_UNUSED
;
1314 pll
= kzalloc(sizeof(*pll
), GFP_KERNEL
);
1318 pll
->cprman
= cprman
;
1320 pll
->hw
.init
= &init
;
1322 ret
= devm_clk_hw_register(cprman
->dev
, &pll
->hw
);
1328 static struct clk_hw
*
1329 bcm2835_register_pll_divider(struct bcm2835_cprman
*cprman
,
1330 const struct bcm2835_pll_divider_data
*data
)
1332 struct bcm2835_pll_divider
*divider
;
1333 struct clk_init_data init
;
1334 const char *divider_name
;
1337 if (data
->fixed_divider
!= 1) {
1338 divider_name
= devm_kasprintf(cprman
->dev
, GFP_KERNEL
,
1339 "%s_prediv", data
->name
);
1343 divider_name
= data
->name
;
1346 memset(&init
, 0, sizeof(init
));
1348 init
.parent_names
= &data
->source_pll
;
1349 init
.num_parents
= 1;
1350 init
.name
= divider_name
;
1351 init
.ops
= &bcm2835_pll_divider_clk_ops
;
1352 init
.flags
= data
->flags
| CLK_IGNORE_UNUSED
;
1354 divider
= devm_kzalloc(cprman
->dev
, sizeof(*divider
), GFP_KERNEL
);
1358 divider
->div
.reg
= cprman
->regs
+ data
->a2w_reg
;
1359 divider
->div
.shift
= A2W_PLL_DIV_SHIFT
;
1360 divider
->div
.width
= A2W_PLL_DIV_BITS
;
1361 divider
->div
.flags
= CLK_DIVIDER_MAX_AT_ZERO
;
1362 divider
->div
.lock
= &cprman
->regs_lock
;
1363 divider
->div
.hw
.init
= &init
;
1364 divider
->div
.table
= NULL
;
1366 divider
->cprman
= cprman
;
1367 divider
->data
= data
;
1369 ret
= devm_clk_hw_register(cprman
->dev
, ÷r
->div
.hw
);
1371 return ERR_PTR(ret
);
1374 * PLLH's channels have a fixed divide by 10 afterwards, which
1375 * is what our consumers are actually using.
1377 if (data
->fixed_divider
!= 1) {
1378 return clk_hw_register_fixed_factor(cprman
->dev
, data
->name
,
1380 CLK_SET_RATE_PARENT
,
1382 data
->fixed_divider
);
1385 return ÷r
->div
.hw
;
1388 static struct clk_hw
*bcm2835_register_clock(struct bcm2835_cprman
*cprman
,
1389 const struct bcm2835_clock_data
*data
)
1391 struct bcm2835_clock
*clock
;
1392 struct clk_init_data init
;
1393 const char *parents
[1 << CM_SRC_BITS
];
1398 * Replace our strings referencing parent clocks with the
1399 * actual clock-output-name of the parent.
1401 for (i
= 0; i
< data
->num_mux_parents
; i
++) {
1402 parents
[i
] = data
->parents
[i
];
1404 ret
= match_string(cprman_parent_names
,
1405 ARRAY_SIZE(cprman_parent_names
),
1408 parents
[i
] = cprman
->real_parent_names
[ret
];
1411 memset(&init
, 0, sizeof(init
));
1412 init
.parent_names
= parents
;
1413 init
.num_parents
= data
->num_mux_parents
;
1414 init
.name
= data
->name
;
1415 init
.flags
= data
->flags
| CLK_IGNORE_UNUSED
;
1418 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1419 * rate changes on at least of the parents.
1421 if (data
->set_rate_parent
)
1422 init
.flags
|= CLK_SET_RATE_PARENT
;
1424 if (data
->is_vpu_clock
) {
1425 init
.ops
= &bcm2835_vpu_clock_clk_ops
;
1427 init
.ops
= &bcm2835_clock_clk_ops
;
1428 init
.flags
|= CLK_SET_RATE_GATE
| CLK_SET_PARENT_GATE
;
1430 /* If the clock wasn't actually enabled at boot, it's not
1433 if (!(cprman_read(cprman
, data
->ctl_reg
) & CM_ENABLE
))
1434 init
.flags
&= ~CLK_IS_CRITICAL
;
1437 clock
= devm_kzalloc(cprman
->dev
, sizeof(*clock
), GFP_KERNEL
);
1441 clock
->cprman
= cprman
;
1443 clock
->hw
.init
= &init
;
1445 ret
= devm_clk_hw_register(cprman
->dev
, &clock
->hw
);
1447 return ERR_PTR(ret
);
1451 static struct clk
*bcm2835_register_gate(struct bcm2835_cprman
*cprman
,
1452 const struct bcm2835_gate_data
*data
)
1454 return clk_register_gate(cprman
->dev
, data
->name
, data
->parent
,
1455 CLK_IGNORE_UNUSED
| CLK_SET_RATE_GATE
,
1456 cprman
->regs
+ data
->ctl_reg
,
1457 CM_GATE_BIT
, 0, &cprman
->regs_lock
);
1460 typedef struct clk_hw
*(*bcm2835_clk_register
)(struct bcm2835_cprman
*cprman
,
1462 struct bcm2835_clk_desc
{
1463 bcm2835_clk_register clk_register
;
1464 unsigned int supported
;
1468 /* assignment helper macros for different clock types */
1469 #define _REGISTER(f, s, ...) { .clk_register = (bcm2835_clk_register)f, \
1471 .data = __VA_ARGS__ }
1472 #define REGISTER_PLL(s, ...) _REGISTER(&bcm2835_register_pll, \
1474 &(struct bcm2835_pll_data) \
1476 #define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1478 &(struct bcm2835_pll_divider_data) \
1480 #define REGISTER_CLK(s, ...) _REGISTER(&bcm2835_register_clock, \
1482 &(struct bcm2835_clock_data) \
1484 #define REGISTER_GATE(s, ...) _REGISTER(&bcm2835_register_gate, \
1486 &(struct bcm2835_gate_data) \
1489 /* parent mux arrays plus helper macros */
1491 /* main oscillator parent mux */
1492 static const char *const bcm2835_clock_osc_parents
[] = {
1499 #define REGISTER_OSC_CLK(s, ...) REGISTER_CLK( \
1501 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1502 .parents = bcm2835_clock_osc_parents, \
1505 /* main peripherial parent mux */
1506 static const char *const bcm2835_clock_per_parents
[] = {
1517 #define REGISTER_PER_CLK(s, ...) REGISTER_CLK( \
1519 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1520 .parents = bcm2835_clock_per_parents, \
1524 * Restrict clock sources for the PCM peripheral to the oscillator and
1525 * PLLD_PER because other source may have varying rates or be switched
1528 * Prevent other sources from being selected by replacing their names in
1529 * the list of potential parents with dummy entries (entry index is
1532 static const char *const bcm2835_pcm_per_parents
[] = {
1543 #define REGISTER_PCM_CLK(s, ...) REGISTER_CLK( \
1545 .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \
1546 .parents = bcm2835_pcm_per_parents, \
1549 /* main vpu parent mux */
1550 static const char *const bcm2835_clock_vpu_parents
[] = {
1563 #define REGISTER_VPU_CLK(s, ...) REGISTER_CLK( \
1565 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1566 .parents = bcm2835_clock_vpu_parents, \
1570 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
1571 * analog PHY. The _inv variants are generated internally to cprman,
1572 * but we don't use them so they aren't hooked up.
1574 static const char *const bcm2835_clock_dsi0_parents
[] = {
1587 static const char *const bcm2835_clock_dsi1_parents
[] = {
1600 #define REGISTER_DSI0_CLK(s, ...) REGISTER_CLK( \
1602 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
1603 .parents = bcm2835_clock_dsi0_parents, \
1606 #define REGISTER_DSI1_CLK(s, ...) REGISTER_CLK( \
1608 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
1609 .parents = bcm2835_clock_dsi1_parents, \
1613 * the real definition of all the pll, pll_dividers and clocks
1614 * these make use of the above REGISTER_* macros
1616 static const struct bcm2835_clk_desc clk_desc_array
[] = {
1617 /* the PLL + PLL dividers */
1620 * PLLA is the auxiliary PLL, used to drive the CCP2
1621 * (Compact Camera Port 2) transmitter clock.
1623 * It is in the PX LDO power domain, which is on when the
1624 * AUDIO domain is on.
1626 [BCM2835_PLLA
] = REGISTER_PLL(
1629 .cm_ctrl_reg
= CM_PLLA
,
1630 .a2w_ctrl_reg
= A2W_PLLA_CTRL
,
1631 .frac_reg
= A2W_PLLA_FRAC
,
1632 .ana_reg_base
= A2W_PLLA_ANA0
,
1633 .reference_enable_mask
= A2W_XOSC_CTRL_PLLA_ENABLE
,
1634 .lock_mask
= CM_LOCK_FLOCKA
,
1636 .ana
= &bcm2835_ana_default
,
1638 .min_rate
= 600000000u,
1639 .max_rate
= 2400000000u,
1640 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1641 [BCM2835_PLLA_CORE
] = REGISTER_PLL_DIV(
1643 .name
= "plla_core",
1644 .source_pll
= "plla",
1646 .a2w_reg
= A2W_PLLA_CORE
,
1647 .load_mask
= CM_PLLA_LOADCORE
,
1648 .hold_mask
= CM_PLLA_HOLDCORE
,
1650 .flags
= CLK_SET_RATE_PARENT
),
1651 [BCM2835_PLLA_PER
] = REGISTER_PLL_DIV(
1654 .source_pll
= "plla",
1656 .a2w_reg
= A2W_PLLA_PER
,
1657 .load_mask
= CM_PLLA_LOADPER
,
1658 .hold_mask
= CM_PLLA_HOLDPER
,
1660 .flags
= CLK_SET_RATE_PARENT
),
1661 [BCM2835_PLLA_DSI0
] = REGISTER_PLL_DIV(
1663 .name
= "plla_dsi0",
1664 .source_pll
= "plla",
1666 .a2w_reg
= A2W_PLLA_DSI0
,
1667 .load_mask
= CM_PLLA_LOADDSI0
,
1668 .hold_mask
= CM_PLLA_HOLDDSI0
,
1669 .fixed_divider
= 1),
1670 [BCM2835_PLLA_CCP2
] = REGISTER_PLL_DIV(
1672 .name
= "plla_ccp2",
1673 .source_pll
= "plla",
1675 .a2w_reg
= A2W_PLLA_CCP2
,
1676 .load_mask
= CM_PLLA_LOADCCP2
,
1677 .hold_mask
= CM_PLLA_HOLDCCP2
,
1679 .flags
= CLK_SET_RATE_PARENT
),
1682 * PLLB is used for the ARM's clock. Controlled by firmware, see
1683 * clk-raspberrypi.c.
1687 * PLLC is the core PLL, used to drive the core VPU clock.
1689 * It is in the PX LDO power domain, which is on when the
1690 * AUDIO domain is on.
1692 [BCM2835_PLLC
] = REGISTER_PLL(
1695 .cm_ctrl_reg
= CM_PLLC
,
1696 .a2w_ctrl_reg
= A2W_PLLC_CTRL
,
1697 .frac_reg
= A2W_PLLC_FRAC
,
1698 .ana_reg_base
= A2W_PLLC_ANA0
,
1699 .reference_enable_mask
= A2W_XOSC_CTRL_PLLC_ENABLE
,
1700 .lock_mask
= CM_LOCK_FLOCKC
,
1702 .ana
= &bcm2835_ana_default
,
1704 .min_rate
= 600000000u,
1705 .max_rate
= 3000000000u,
1706 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1707 [BCM2835_PLLC_CORE0
] = REGISTER_PLL_DIV(
1709 .name
= "pllc_core0",
1710 .source_pll
= "pllc",
1712 .a2w_reg
= A2W_PLLC_CORE0
,
1713 .load_mask
= CM_PLLC_LOADCORE0
,
1714 .hold_mask
= CM_PLLC_HOLDCORE0
,
1716 .flags
= CLK_SET_RATE_PARENT
),
1717 [BCM2835_PLLC_CORE1
] = REGISTER_PLL_DIV(
1719 .name
= "pllc_core1",
1720 .source_pll
= "pllc",
1722 .a2w_reg
= A2W_PLLC_CORE1
,
1723 .load_mask
= CM_PLLC_LOADCORE1
,
1724 .hold_mask
= CM_PLLC_HOLDCORE1
,
1726 .flags
= CLK_SET_RATE_PARENT
),
1727 [BCM2835_PLLC_CORE2
] = REGISTER_PLL_DIV(
1729 .name
= "pllc_core2",
1730 .source_pll
= "pllc",
1732 .a2w_reg
= A2W_PLLC_CORE2
,
1733 .load_mask
= CM_PLLC_LOADCORE2
,
1734 .hold_mask
= CM_PLLC_HOLDCORE2
,
1736 .flags
= CLK_SET_RATE_PARENT
),
1737 [BCM2835_PLLC_PER
] = REGISTER_PLL_DIV(
1740 .source_pll
= "pllc",
1742 .a2w_reg
= A2W_PLLC_PER
,
1743 .load_mask
= CM_PLLC_LOADPER
,
1744 .hold_mask
= CM_PLLC_HOLDPER
,
1746 .flags
= CLK_SET_RATE_PARENT
),
1749 * PLLD is the display PLL, used to drive DSI display panels.
1751 * It is in the PX LDO power domain, which is on when the
1752 * AUDIO domain is on.
1754 [BCM2835_PLLD
] = REGISTER_PLL(
1757 .cm_ctrl_reg
= CM_PLLD
,
1758 .a2w_ctrl_reg
= A2W_PLLD_CTRL
,
1759 .frac_reg
= A2W_PLLD_FRAC
,
1760 .ana_reg_base
= A2W_PLLD_ANA0
,
1761 .reference_enable_mask
= A2W_XOSC_CTRL_DDR_ENABLE
,
1762 .lock_mask
= CM_LOCK_FLOCKD
,
1764 .ana
= &bcm2835_ana_default
,
1766 .min_rate
= 600000000u,
1767 .max_rate
= 2400000000u,
1768 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1769 [BCM2835_PLLD_CORE
] = REGISTER_PLL_DIV(
1771 .name
= "plld_core",
1772 .source_pll
= "plld",
1774 .a2w_reg
= A2W_PLLD_CORE
,
1775 .load_mask
= CM_PLLD_LOADCORE
,
1776 .hold_mask
= CM_PLLD_HOLDCORE
,
1778 .flags
= CLK_SET_RATE_PARENT
),
1780 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1781 * Otherwise this could cause firmware lookups. That's why we mark
1784 [BCM2835_PLLD_PER
] = REGISTER_PLL_DIV(
1787 .source_pll
= "plld",
1789 .a2w_reg
= A2W_PLLD_PER
,
1790 .load_mask
= CM_PLLD_LOADPER
,
1791 .hold_mask
= CM_PLLD_HOLDPER
,
1793 .flags
= CLK_IS_CRITICAL
| CLK_SET_RATE_PARENT
),
1794 [BCM2835_PLLD_DSI0
] = REGISTER_PLL_DIV(
1796 .name
= "plld_dsi0",
1797 .source_pll
= "plld",
1799 .a2w_reg
= A2W_PLLD_DSI0
,
1800 .load_mask
= CM_PLLD_LOADDSI0
,
1801 .hold_mask
= CM_PLLD_HOLDDSI0
,
1802 .fixed_divider
= 1),
1803 [BCM2835_PLLD_DSI1
] = REGISTER_PLL_DIV(
1805 .name
= "plld_dsi1",
1806 .source_pll
= "plld",
1808 .a2w_reg
= A2W_PLLD_DSI1
,
1809 .load_mask
= CM_PLLD_LOADDSI1
,
1810 .hold_mask
= CM_PLLD_HOLDDSI1
,
1811 .fixed_divider
= 1),
1814 * PLLH is used to supply the pixel clock or the AUX clock for the
1817 * It is in the HDMI power domain.
1819 [BCM2835_PLLH
] = REGISTER_PLL(
1822 .cm_ctrl_reg
= CM_PLLH
,
1823 .a2w_ctrl_reg
= A2W_PLLH_CTRL
,
1824 .frac_reg
= A2W_PLLH_FRAC
,
1825 .ana_reg_base
= A2W_PLLH_ANA0
,
1826 .reference_enable_mask
= A2W_XOSC_CTRL_PLLC_ENABLE
,
1827 .lock_mask
= CM_LOCK_FLOCKH
,
1829 .ana
= &bcm2835_ana_pllh
,
1831 .min_rate
= 600000000u,
1832 .max_rate
= 3000000000u,
1833 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1834 [BCM2835_PLLH_RCAL
] = REGISTER_PLL_DIV(
1836 .name
= "pllh_rcal",
1837 .source_pll
= "pllh",
1839 .a2w_reg
= A2W_PLLH_RCAL
,
1840 .load_mask
= CM_PLLH_LOADRCAL
,
1842 .fixed_divider
= 10,
1843 .flags
= CLK_SET_RATE_PARENT
),
1844 [BCM2835_PLLH_AUX
] = REGISTER_PLL_DIV(
1847 .source_pll
= "pllh",
1849 .a2w_reg
= A2W_PLLH_AUX
,
1850 .load_mask
= CM_PLLH_LOADAUX
,
1853 .flags
= CLK_SET_RATE_PARENT
),
1854 [BCM2835_PLLH_PIX
] = REGISTER_PLL_DIV(
1857 .source_pll
= "pllh",
1859 .a2w_reg
= A2W_PLLH_PIX
,
1860 .load_mask
= CM_PLLH_LOADPIX
,
1862 .fixed_divider
= 10,
1863 .flags
= CLK_SET_RATE_PARENT
),
1867 /* clocks with oscillator parent mux */
1869 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1870 [BCM2835_CLOCK_OTP
] = REGISTER_OSC_CLK(
1873 .ctl_reg
= CM_OTPCTL
,
1874 .div_reg
= CM_OTPDIV
,
1879 * Used for a 1Mhz clock for the system clocksource, and also used
1880 * bythe watchdog timer and the camera pulse generator.
1882 [BCM2835_CLOCK_TIMER
] = REGISTER_OSC_CLK(
1885 .ctl_reg
= CM_TIMERCTL
,
1886 .div_reg
= CM_TIMERDIV
,
1890 * Clock for the temperature sensor.
1891 * Generally run at 2Mhz, max 5Mhz.
1893 [BCM2835_CLOCK_TSENS
] = REGISTER_OSC_CLK(
1896 .ctl_reg
= CM_TSENSCTL
,
1897 .div_reg
= CM_TSENSDIV
,
1900 [BCM2835_CLOCK_TEC
] = REGISTER_OSC_CLK(
1903 .ctl_reg
= CM_TECCTL
,
1904 .div_reg
= CM_TECDIV
,
1908 /* clocks with vpu parent mux */
1909 [BCM2835_CLOCK_H264
] = REGISTER_VPU_CLK(
1912 .ctl_reg
= CM_H264CTL
,
1913 .div_reg
= CM_H264DIV
,
1917 [BCM2835_CLOCK_ISP
] = REGISTER_VPU_CLK(
1920 .ctl_reg
= CM_ISPCTL
,
1921 .div_reg
= CM_ISPDIV
,
1927 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1928 * in the SDRAM controller can't be used.
1930 [BCM2835_CLOCK_SDRAM
] = REGISTER_VPU_CLK(
1933 .ctl_reg
= CM_SDCCTL
,
1934 .div_reg
= CM_SDCDIV
,
1938 [BCM2835_CLOCK_V3D
] = REGISTER_VPU_CLK(
1941 .ctl_reg
= CM_V3DCTL
,
1942 .div_reg
= CM_V3DDIV
,
1947 * VPU clock. This doesn't have an enable bit, since it drives
1948 * the bus for everything else, and is special so it doesn't need
1949 * to be gated for rate changes. It is also known as "clk_audio"
1950 * in various hardware documentation.
1952 [BCM2835_CLOCK_VPU
] = REGISTER_VPU_CLK(
1955 .ctl_reg
= CM_VPUCTL
,
1956 .div_reg
= CM_VPUDIV
,
1959 .flags
= CLK_IS_CRITICAL
,
1960 .is_vpu_clock
= true,
1963 /* clocks with per parent mux */
1964 [BCM2835_CLOCK_AVEO
] = REGISTER_PER_CLK(
1967 .ctl_reg
= CM_AVEOCTL
,
1968 .div_reg
= CM_AVEODIV
,
1972 [BCM2835_CLOCK_CAM0
] = REGISTER_PER_CLK(
1975 .ctl_reg
= CM_CAM0CTL
,
1976 .div_reg
= CM_CAM0DIV
,
1980 [BCM2835_CLOCK_CAM1
] = REGISTER_PER_CLK(
1983 .ctl_reg
= CM_CAM1CTL
,
1984 .div_reg
= CM_CAM1DIV
,
1988 [BCM2835_CLOCK_DFT
] = REGISTER_PER_CLK(
1991 .ctl_reg
= CM_DFTCTL
,
1992 .div_reg
= CM_DFTDIV
,
1995 [BCM2835_CLOCK_DPI
] = REGISTER_PER_CLK(
1998 .ctl_reg
= CM_DPICTL
,
1999 .div_reg
= CM_DPIDIV
,
2004 /* Arasan EMMC clock */
2005 [BCM2835_CLOCK_EMMC
] = REGISTER_PER_CLK(
2008 .ctl_reg
= CM_EMMCCTL
,
2009 .div_reg
= CM_EMMCDIV
,
2014 /* EMMC2 clock (only available for BCM2711) */
2015 [BCM2711_CLOCK_EMMC2
] = REGISTER_PER_CLK(
2018 .ctl_reg
= CM_EMMC2CTL
,
2019 .div_reg
= CM_EMMC2DIV
,
2024 /* General purpose (GPIO) clocks */
2025 [BCM2835_CLOCK_GP0
] = REGISTER_PER_CLK(
2028 .ctl_reg
= CM_GP0CTL
,
2029 .div_reg
= CM_GP0DIV
,
2032 .is_mash_clock
= true,
2034 [BCM2835_CLOCK_GP1
] = REGISTER_PER_CLK(
2037 .ctl_reg
= CM_GP1CTL
,
2038 .div_reg
= CM_GP1DIV
,
2041 .flags
= CLK_IS_CRITICAL
,
2042 .is_mash_clock
= true,
2044 [BCM2835_CLOCK_GP2
] = REGISTER_PER_CLK(
2047 .ctl_reg
= CM_GP2CTL
,
2048 .div_reg
= CM_GP2DIV
,
2051 .flags
= CLK_IS_CRITICAL
),
2053 /* HDMI state machine */
2054 [BCM2835_CLOCK_HSM
] = REGISTER_PER_CLK(
2057 .ctl_reg
= CM_HSMCTL
,
2058 .div_reg
= CM_HSMDIV
,
2062 [BCM2835_CLOCK_PCM
] = REGISTER_PCM_CLK(
2065 .ctl_reg
= CM_PCMCTL
,
2066 .div_reg
= CM_PCMDIV
,
2069 .is_mash_clock
= true,
2072 [BCM2835_CLOCK_PWM
] = REGISTER_PER_CLK(
2075 .ctl_reg
= CM_PWMCTL
,
2076 .div_reg
= CM_PWMDIV
,
2079 .is_mash_clock
= true,
2081 [BCM2835_CLOCK_SLIM
] = REGISTER_PER_CLK(
2084 .ctl_reg
= CM_SLIMCTL
,
2085 .div_reg
= CM_SLIMDIV
,
2088 .is_mash_clock
= true,
2090 [BCM2835_CLOCK_SMI
] = REGISTER_PER_CLK(
2093 .ctl_reg
= CM_SMICTL
,
2094 .div_reg
= CM_SMIDIV
,
2098 [BCM2835_CLOCK_UART
] = REGISTER_PER_CLK(
2101 .ctl_reg
= CM_UARTCTL
,
2102 .div_reg
= CM_UARTDIV
,
2107 /* TV encoder clock. Only operating frequency is 108Mhz. */
2108 [BCM2835_CLOCK_VEC
] = REGISTER_PER_CLK(
2111 .ctl_reg
= CM_VECCTL
,
2112 .div_reg
= CM_VECDIV
,
2116 * Allow rate change propagation only on PLLH_AUX which is
2117 * assigned index 7 in the parent array.
2119 .set_rate_parent
= BIT(7),
2123 [BCM2835_CLOCK_DSI0E
] = REGISTER_PER_CLK(
2126 .ctl_reg
= CM_DSI0ECTL
,
2127 .div_reg
= CM_DSI0EDIV
,
2131 [BCM2835_CLOCK_DSI1E
] = REGISTER_PER_CLK(
2134 .ctl_reg
= CM_DSI1ECTL
,
2135 .div_reg
= CM_DSI1EDIV
,
2139 [BCM2835_CLOCK_DSI0P
] = REGISTER_DSI0_CLK(
2142 .ctl_reg
= CM_DSI0PCTL
,
2143 .div_reg
= CM_DSI0PDIV
,
2147 [BCM2835_CLOCK_DSI1P
] = REGISTER_DSI1_CLK(
2150 .ctl_reg
= CM_DSI1PCTL
,
2151 .div_reg
= CM_DSI1PDIV
,
2159 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2160 * you have the debug bit set in the power manager, which we
2161 * don't bother exposing) are individual gates off of the
2162 * non-stop vpu clock.
2164 [BCM2835_CLOCK_PERI_IMAGE
] = REGISTER_GATE(
2166 .name
= "peri_image",
2168 .ctl_reg
= CM_PERIICTL
),
2172 * Permanently take a reference on the parent of the SDRAM clock.
2174 * While the SDRAM is being driven by its dedicated PLL most of the
2175 * time, there is a little loop running in the firmware that
2176 * periodically switches the SDRAM to using our CM clock to do PVT
2177 * recalibration, with the assumption that the previously configured
2178 * SDRAM parent is still enabled and running.
2180 static int bcm2835_mark_sdc_parent_critical(struct clk
*sdc
)
2182 struct clk
*parent
= clk_get_parent(sdc
);
2185 return PTR_ERR(parent
);
2187 return clk_prepare_enable(parent
);
2190 static int bcm2835_clk_probe(struct platform_device
*pdev
)
2192 struct device
*dev
= &pdev
->dev
;
2193 struct clk_hw
**hws
;
2194 struct bcm2835_cprman
*cprman
;
2195 const struct bcm2835_clk_desc
*desc
;
2196 const size_t asize
= ARRAY_SIZE(clk_desc_array
);
2197 const struct cprman_plat_data
*pdata
;
2201 pdata
= of_device_get_match_data(&pdev
->dev
);
2205 cprman
= devm_kzalloc(dev
,
2206 struct_size(cprman
, onecell
.hws
, asize
),
2211 spin_lock_init(&cprman
->regs_lock
);
2213 cprman
->regs
= devm_platform_ioremap_resource(pdev
, 0);
2214 if (IS_ERR(cprman
->regs
))
2215 return PTR_ERR(cprman
->regs
);
2217 memcpy(cprman
->real_parent_names
, cprman_parent_names
,
2218 sizeof(cprman_parent_names
));
2219 of_clk_parent_fill(dev
->of_node
, cprman
->real_parent_names
,
2220 ARRAY_SIZE(cprman_parent_names
));
2223 * Make sure the external oscillator has been registered.
2225 * The other (DSI) clocks are not present on older device
2226 * trees, which we still need to support for backwards
2229 if (!cprman
->real_parent_names
[0])
2232 platform_set_drvdata(pdev
, cprman
);
2234 cprman
->onecell
.num
= asize
;
2235 hws
= cprman
->onecell
.hws
;
2237 for (i
= 0; i
< asize
; i
++) {
2238 desc
= &clk_desc_array
[i
];
2239 if (desc
->clk_register
&& desc
->data
&&
2240 (desc
->supported
& pdata
->soc
)) {
2241 hws
[i
] = desc
->clk_register(cprman
, desc
->data
);
2245 ret
= bcm2835_mark_sdc_parent_critical(hws
[BCM2835_CLOCK_SDRAM
]->clk
);
2249 return of_clk_add_hw_provider(dev
->of_node
, of_clk_hw_onecell_get
,
2253 static const struct cprman_plat_data cprman_bcm2835_plat_data
= {
2257 static const struct cprman_plat_data cprman_bcm2711_plat_data
= {
2261 static const struct of_device_id bcm2835_clk_of_match
[] = {
2262 { .compatible
= "brcm,bcm2835-cprman", .data
= &cprman_bcm2835_plat_data
},
2263 { .compatible
= "brcm,bcm2711-cprman", .data
= &cprman_bcm2711_plat_data
},
2266 MODULE_DEVICE_TABLE(of
, bcm2835_clk_of_match
);
2268 static struct platform_driver bcm2835_clk_driver
= {
2270 .name
= "bcm2835-clk",
2271 .of_match_table
= bcm2835_clk_of_match
,
2273 .probe
= bcm2835_clk_probe
,
2276 builtin_platform_driver(bcm2835_clk_driver
);
2278 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2279 MODULE_DESCRIPTION("BCM2835 clock driver");
2280 MODULE_LICENSE("GPL");