dm writecache: fix incorrect flush sequence when doing SSD mode commit
[linux/fpc-iii.git] / drivers / clk / clk.c
blob6a11239ccde311e3839824c7377bb5fb7d20ebe7
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst
7 */
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
25 #include "clk.h"
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
33 static int prepare_refcnt;
34 static int enable_refcnt;
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
40 static struct hlist_head *all_lists[] = {
41 &clk_root_list,
42 &clk_orphan_list,
43 NULL,
46 /*** private data structures ***/
48 struct clk_parent_map {
49 const struct clk_hw *hw;
50 struct clk_core *core;
51 const char *fw_name;
52 const char *name;
53 int index;
56 struct clk_core {
57 const char *name;
58 const struct clk_ops *ops;
59 struct clk_hw *hw;
60 struct module *owner;
61 struct device *dev;
62 struct device_node *of_node;
63 struct clk_core *parent;
64 struct clk_parent_map *parents;
65 u8 num_parents;
66 u8 new_parent_index;
67 unsigned long rate;
68 unsigned long req_rate;
69 unsigned long new_rate;
70 struct clk_core *new_parent;
71 struct clk_core *new_child;
72 unsigned long flags;
73 bool orphan;
74 bool rpm_enabled;
75 unsigned int enable_count;
76 unsigned int prepare_count;
77 unsigned int protect_count;
78 unsigned long min_rate;
79 unsigned long max_rate;
80 unsigned long accuracy;
81 int phase;
82 struct clk_duty duty;
83 struct hlist_head children;
84 struct hlist_node child_node;
85 struct hlist_head clks;
86 unsigned int notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 struct dentry *dentry;
89 struct hlist_node debug_node;
90 #endif
91 struct kref ref;
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
97 struct clk {
98 struct clk_core *core;
99 struct device *dev;
100 const char *dev_id;
101 const char *con_id;
102 unsigned long min_rate;
103 unsigned long max_rate;
104 unsigned int exclusive_count;
105 struct hlist_node clks_node;
108 /*** runtime pm ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
111 int ret;
113 if (!core->rpm_enabled)
114 return 0;
116 ret = pm_runtime_get_sync(core->dev);
117 return ret < 0 ? ret : 0;
120 static void clk_pm_runtime_put(struct clk_core *core)
122 if (!core->rpm_enabled)
123 return;
125 pm_runtime_put_sync(core->dev);
128 /*** locking ***/
129 static void clk_prepare_lock(void)
131 if (!mutex_trylock(&prepare_lock)) {
132 if (prepare_owner == current) {
133 prepare_refcnt++;
134 return;
136 mutex_lock(&prepare_lock);
138 WARN_ON_ONCE(prepare_owner != NULL);
139 WARN_ON_ONCE(prepare_refcnt != 0);
140 prepare_owner = current;
141 prepare_refcnt = 1;
144 static void clk_prepare_unlock(void)
146 WARN_ON_ONCE(prepare_owner != current);
147 WARN_ON_ONCE(prepare_refcnt == 0);
149 if (--prepare_refcnt)
150 return;
151 prepare_owner = NULL;
152 mutex_unlock(&prepare_lock);
155 static unsigned long clk_enable_lock(void)
156 __acquires(enable_lock)
158 unsigned long flags;
161 * On UP systems, spin_trylock_irqsave() always returns true, even if
162 * we already hold the lock. So, in that case, we rely only on
163 * reference counting.
165 if (!IS_ENABLED(CONFIG_SMP) ||
166 !spin_trylock_irqsave(&enable_lock, flags)) {
167 if (enable_owner == current) {
168 enable_refcnt++;
169 __acquire(enable_lock);
170 if (!IS_ENABLED(CONFIG_SMP))
171 local_save_flags(flags);
172 return flags;
174 spin_lock_irqsave(&enable_lock, flags);
176 WARN_ON_ONCE(enable_owner != NULL);
177 WARN_ON_ONCE(enable_refcnt != 0);
178 enable_owner = current;
179 enable_refcnt = 1;
180 return flags;
183 static void clk_enable_unlock(unsigned long flags)
184 __releases(enable_lock)
186 WARN_ON_ONCE(enable_owner != current);
187 WARN_ON_ONCE(enable_refcnt == 0);
189 if (--enable_refcnt) {
190 __release(enable_lock);
191 return;
193 enable_owner = NULL;
194 spin_unlock_irqrestore(&enable_lock, flags);
197 static bool clk_core_rate_is_protected(struct clk_core *core)
199 return core->protect_count;
202 static bool clk_core_is_prepared(struct clk_core *core)
204 bool ret = false;
207 * .is_prepared is optional for clocks that can prepare
208 * fall back to software usage counter if it is missing
210 if (!core->ops->is_prepared)
211 return core->prepare_count;
213 if (!clk_pm_runtime_get(core)) {
214 ret = core->ops->is_prepared(core->hw);
215 clk_pm_runtime_put(core);
218 return ret;
221 static bool clk_core_is_enabled(struct clk_core *core)
223 bool ret = false;
226 * .is_enabled is only mandatory for clocks that gate
227 * fall back to software usage counter if .is_enabled is missing
229 if (!core->ops->is_enabled)
230 return core->enable_count;
233 * Check if clock controller's device is runtime active before
234 * calling .is_enabled callback. If not, assume that clock is
235 * disabled, because we might be called from atomic context, from
236 * which pm_runtime_get() is not allowed.
237 * This function is called mainly from clk_disable_unused_subtree,
238 * which ensures proper runtime pm activation of controller before
239 * taking enable spinlock, but the below check is needed if one tries
240 * to call it from other places.
242 if (core->rpm_enabled) {
243 pm_runtime_get_noresume(core->dev);
244 if (!pm_runtime_active(core->dev)) {
245 ret = false;
246 goto done;
250 ret = core->ops->is_enabled(core->hw);
251 done:
252 if (core->rpm_enabled)
253 pm_runtime_put(core->dev);
255 return ret;
258 /*** helper functions ***/
260 const char *__clk_get_name(const struct clk *clk)
262 return !clk ? NULL : clk->core->name;
264 EXPORT_SYMBOL_GPL(__clk_get_name);
266 const char *clk_hw_get_name(const struct clk_hw *hw)
268 return hw->core->name;
270 EXPORT_SYMBOL_GPL(clk_hw_get_name);
272 struct clk_hw *__clk_get_hw(struct clk *clk)
274 return !clk ? NULL : clk->core->hw;
276 EXPORT_SYMBOL_GPL(__clk_get_hw);
278 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
280 return hw->core->num_parents;
282 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
284 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
286 return hw->core->parent ? hw->core->parent->hw : NULL;
288 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
290 static struct clk_core *__clk_lookup_subtree(const char *name,
291 struct clk_core *core)
293 struct clk_core *child;
294 struct clk_core *ret;
296 if (!strcmp(core->name, name))
297 return core;
299 hlist_for_each_entry(child, &core->children, child_node) {
300 ret = __clk_lookup_subtree(name, child);
301 if (ret)
302 return ret;
305 return NULL;
308 static struct clk_core *clk_core_lookup(const char *name)
310 struct clk_core *root_clk;
311 struct clk_core *ret;
313 if (!name)
314 return NULL;
316 /* search the 'proper' clk tree first */
317 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
318 ret = __clk_lookup_subtree(name, root_clk);
319 if (ret)
320 return ret;
323 /* if not found, then search the orphan tree */
324 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
325 ret = __clk_lookup_subtree(name, root_clk);
326 if (ret)
327 return ret;
330 return NULL;
333 #ifdef CONFIG_OF
334 static int of_parse_clkspec(const struct device_node *np, int index,
335 const char *name, struct of_phandle_args *out_args);
336 static struct clk_hw *
337 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
338 #else
339 static inline int of_parse_clkspec(const struct device_node *np, int index,
340 const char *name,
341 struct of_phandle_args *out_args)
343 return -ENOENT;
345 static inline struct clk_hw *
346 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
348 return ERR_PTR(-ENOENT);
350 #endif
353 * clk_core_get - Find the clk_core parent of a clk
354 * @core: clk to find parent of
355 * @p_index: parent index to search for
357 * This is the preferred method for clk providers to find the parent of a
358 * clk when that parent is external to the clk controller. The parent_names
359 * array is indexed and treated as a local name matching a string in the device
360 * node's 'clock-names' property or as the 'con_id' matching the device's
361 * dev_name() in a clk_lookup. This allows clk providers to use their own
362 * namespace instead of looking for a globally unique parent string.
364 * For example the following DT snippet would allow a clock registered by the
365 * clock-controller@c001 that has a clk_init_data::parent_data array
366 * with 'xtal' in the 'name' member to find the clock provided by the
367 * clock-controller@f00abcd without needing to get the globally unique name of
368 * the xtal clk.
370 * parent: clock-controller@f00abcd {
371 * reg = <0xf00abcd 0xabcd>;
372 * #clock-cells = <0>;
373 * };
375 * clock-controller@c001 {
376 * reg = <0xc001 0xf00d>;
377 * clocks = <&parent>;
378 * clock-names = "xtal";
379 * #clock-cells = <1>;
380 * };
382 * Returns: -ENOENT when the provider can't be found or the clk doesn't
383 * exist in the provider or the name can't be found in the DT node or
384 * in a clkdev lookup. NULL when the provider knows about the clk but it
385 * isn't provided on this system.
386 * A valid clk_core pointer when the clk can be found in the provider.
388 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
390 const char *name = core->parents[p_index].fw_name;
391 int index = core->parents[p_index].index;
392 struct clk_hw *hw = ERR_PTR(-ENOENT);
393 struct device *dev = core->dev;
394 const char *dev_id = dev ? dev_name(dev) : NULL;
395 struct device_node *np = core->of_node;
396 struct of_phandle_args clkspec;
398 if (np && (name || index >= 0) &&
399 !of_parse_clkspec(np, index, name, &clkspec)) {
400 hw = of_clk_get_hw_from_clkspec(&clkspec);
401 of_node_put(clkspec.np);
402 } else if (name) {
404 * If the DT search above couldn't find the provider fallback to
405 * looking up via clkdev based clk_lookups.
407 hw = clk_find_hw(dev_id, name);
410 if (IS_ERR(hw))
411 return ERR_CAST(hw);
413 return hw->core;
416 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
418 struct clk_parent_map *entry = &core->parents[index];
419 struct clk_core *parent = ERR_PTR(-ENOENT);
421 if (entry->hw) {
422 parent = entry->hw->core;
424 * We have a direct reference but it isn't registered yet?
425 * Orphan it and let clk_reparent() update the orphan status
426 * when the parent is registered.
428 if (!parent)
429 parent = ERR_PTR(-EPROBE_DEFER);
430 } else {
431 parent = clk_core_get(core, index);
432 if (IS_ERR(parent) && PTR_ERR(parent) == -ENOENT && entry->name)
433 parent = clk_core_lookup(entry->name);
436 /* Only cache it if it's not an error */
437 if (!IS_ERR(parent))
438 entry->core = parent;
441 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
442 u8 index)
444 if (!core || index >= core->num_parents || !core->parents)
445 return NULL;
447 if (!core->parents[index].core)
448 clk_core_fill_parent_index(core, index);
450 return core->parents[index].core;
453 struct clk_hw *
454 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
456 struct clk_core *parent;
458 parent = clk_core_get_parent_by_index(hw->core, index);
460 return !parent ? NULL : parent->hw;
462 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
464 unsigned int __clk_get_enable_count(struct clk *clk)
466 return !clk ? 0 : clk->core->enable_count;
469 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
471 if (!core)
472 return 0;
474 if (!core->num_parents || core->parent)
475 return core->rate;
478 * Clk must have a parent because num_parents > 0 but the parent isn't
479 * known yet. Best to return 0 as the rate of this clk until we can
480 * properly recalc the rate based on the parent's rate.
482 return 0;
485 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
487 return clk_core_get_rate_nolock(hw->core);
489 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
491 static unsigned long __clk_get_accuracy(struct clk_core *core)
493 if (!core)
494 return 0;
496 return core->accuracy;
499 unsigned long __clk_get_flags(struct clk *clk)
501 return !clk ? 0 : clk->core->flags;
503 EXPORT_SYMBOL_GPL(__clk_get_flags);
505 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
507 return hw->core->flags;
509 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
511 bool clk_hw_is_prepared(const struct clk_hw *hw)
513 return clk_core_is_prepared(hw->core);
515 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
517 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
519 return clk_core_rate_is_protected(hw->core);
521 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
523 bool clk_hw_is_enabled(const struct clk_hw *hw)
525 return clk_core_is_enabled(hw->core);
527 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
529 bool __clk_is_enabled(struct clk *clk)
531 if (!clk)
532 return false;
534 return clk_core_is_enabled(clk->core);
536 EXPORT_SYMBOL_GPL(__clk_is_enabled);
538 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
539 unsigned long best, unsigned long flags)
541 if (flags & CLK_MUX_ROUND_CLOSEST)
542 return abs(now - rate) < abs(best - rate);
544 return now <= rate && now > best;
547 int clk_mux_determine_rate_flags(struct clk_hw *hw,
548 struct clk_rate_request *req,
549 unsigned long flags)
551 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
552 int i, num_parents, ret;
553 unsigned long best = 0;
554 struct clk_rate_request parent_req = *req;
556 /* if NO_REPARENT flag set, pass through to current parent */
557 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
558 parent = core->parent;
559 if (core->flags & CLK_SET_RATE_PARENT) {
560 ret = __clk_determine_rate(parent ? parent->hw : NULL,
561 &parent_req);
562 if (ret)
563 return ret;
565 best = parent_req.rate;
566 } else if (parent) {
567 best = clk_core_get_rate_nolock(parent);
568 } else {
569 best = clk_core_get_rate_nolock(core);
572 goto out;
575 /* find the parent that can provide the fastest rate <= rate */
576 num_parents = core->num_parents;
577 for (i = 0; i < num_parents; i++) {
578 parent = clk_core_get_parent_by_index(core, i);
579 if (!parent)
580 continue;
582 if (core->flags & CLK_SET_RATE_PARENT) {
583 parent_req = *req;
584 ret = __clk_determine_rate(parent->hw, &parent_req);
585 if (ret)
586 continue;
587 } else {
588 parent_req.rate = clk_core_get_rate_nolock(parent);
591 if (mux_is_better_rate(req->rate, parent_req.rate,
592 best, flags)) {
593 best_parent = parent;
594 best = parent_req.rate;
598 if (!best_parent)
599 return -EINVAL;
601 out:
602 if (best_parent)
603 req->best_parent_hw = best_parent->hw;
604 req->best_parent_rate = best;
605 req->rate = best;
607 return 0;
609 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
611 struct clk *__clk_lookup(const char *name)
613 struct clk_core *core = clk_core_lookup(name);
615 return !core ? NULL : core->hw->clk;
618 static void clk_core_get_boundaries(struct clk_core *core,
619 unsigned long *min_rate,
620 unsigned long *max_rate)
622 struct clk *clk_user;
624 lockdep_assert_held(&prepare_lock);
626 *min_rate = core->min_rate;
627 *max_rate = core->max_rate;
629 hlist_for_each_entry(clk_user, &core->clks, clks_node)
630 *min_rate = max(*min_rate, clk_user->min_rate);
632 hlist_for_each_entry(clk_user, &core->clks, clks_node)
633 *max_rate = min(*max_rate, clk_user->max_rate);
636 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
637 unsigned long max_rate)
639 hw->core->min_rate = min_rate;
640 hw->core->max_rate = max_rate;
642 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
645 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
646 * @hw: mux type clk to determine rate on
647 * @req: rate request, also used to return preferred parent and frequencies
649 * Helper for finding best parent to provide a given frequency. This can be used
650 * directly as a determine_rate callback (e.g. for a mux), or from a more
651 * complex clock that may combine a mux with other operations.
653 * Returns: 0 on success, -EERROR value on error
655 int __clk_mux_determine_rate(struct clk_hw *hw,
656 struct clk_rate_request *req)
658 return clk_mux_determine_rate_flags(hw, req, 0);
660 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
662 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
663 struct clk_rate_request *req)
665 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
667 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
669 /*** clk api ***/
671 static void clk_core_rate_unprotect(struct clk_core *core)
673 lockdep_assert_held(&prepare_lock);
675 if (!core)
676 return;
678 if (WARN(core->protect_count == 0,
679 "%s already unprotected\n", core->name))
680 return;
682 if (--core->protect_count > 0)
683 return;
685 clk_core_rate_unprotect(core->parent);
688 static int clk_core_rate_nuke_protect(struct clk_core *core)
690 int ret;
692 lockdep_assert_held(&prepare_lock);
694 if (!core)
695 return -EINVAL;
697 if (core->protect_count == 0)
698 return 0;
700 ret = core->protect_count;
701 core->protect_count = 1;
702 clk_core_rate_unprotect(core);
704 return ret;
708 * clk_rate_exclusive_put - release exclusivity over clock rate control
709 * @clk: the clk over which the exclusivity is released
711 * clk_rate_exclusive_put() completes a critical section during which a clock
712 * consumer cannot tolerate any other consumer making any operation on the
713 * clock which could result in a rate change or rate glitch. Exclusive clocks
714 * cannot have their rate changed, either directly or indirectly due to changes
715 * further up the parent chain of clocks. As a result, clocks up parent chain
716 * also get under exclusive control of the calling consumer.
718 * If exlusivity is claimed more than once on clock, even by the same consumer,
719 * the rate effectively gets locked as exclusivity can't be preempted.
721 * Calls to clk_rate_exclusive_put() must be balanced with calls to
722 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
723 * error status.
725 void clk_rate_exclusive_put(struct clk *clk)
727 if (!clk)
728 return;
730 clk_prepare_lock();
733 * if there is something wrong with this consumer protect count, stop
734 * here before messing with the provider
736 if (WARN_ON(clk->exclusive_count <= 0))
737 goto out;
739 clk_core_rate_unprotect(clk->core);
740 clk->exclusive_count--;
741 out:
742 clk_prepare_unlock();
744 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
746 static void clk_core_rate_protect(struct clk_core *core)
748 lockdep_assert_held(&prepare_lock);
750 if (!core)
751 return;
753 if (core->protect_count == 0)
754 clk_core_rate_protect(core->parent);
756 core->protect_count++;
759 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
761 lockdep_assert_held(&prepare_lock);
763 if (!core)
764 return;
766 if (count == 0)
767 return;
769 clk_core_rate_protect(core);
770 core->protect_count = count;
774 * clk_rate_exclusive_get - get exclusivity over the clk rate control
775 * @clk: the clk over which the exclusity of rate control is requested
777 * clk_rate_exlusive_get() begins a critical section during which a clock
778 * consumer cannot tolerate any other consumer making any operation on the
779 * clock which could result in a rate change or rate glitch. Exclusive clocks
780 * cannot have their rate changed, either directly or indirectly due to changes
781 * further up the parent chain of clocks. As a result, clocks up parent chain
782 * also get under exclusive control of the calling consumer.
784 * If exlusivity is claimed more than once on clock, even by the same consumer,
785 * the rate effectively gets locked as exclusivity can't be preempted.
787 * Calls to clk_rate_exclusive_get() should be balanced with calls to
788 * clk_rate_exclusive_put(). Calls to this function may sleep.
789 * Returns 0 on success, -EERROR otherwise
791 int clk_rate_exclusive_get(struct clk *clk)
793 if (!clk)
794 return 0;
796 clk_prepare_lock();
797 clk_core_rate_protect(clk->core);
798 clk->exclusive_count++;
799 clk_prepare_unlock();
801 return 0;
803 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
805 static void clk_core_unprepare(struct clk_core *core)
807 lockdep_assert_held(&prepare_lock);
809 if (!core)
810 return;
812 if (WARN(core->prepare_count == 0,
813 "%s already unprepared\n", core->name))
814 return;
816 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
817 "Unpreparing critical %s\n", core->name))
818 return;
820 if (core->flags & CLK_SET_RATE_GATE)
821 clk_core_rate_unprotect(core);
823 if (--core->prepare_count > 0)
824 return;
826 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
828 trace_clk_unprepare(core);
830 if (core->ops->unprepare)
831 core->ops->unprepare(core->hw);
833 clk_pm_runtime_put(core);
835 trace_clk_unprepare_complete(core);
836 clk_core_unprepare(core->parent);
839 static void clk_core_unprepare_lock(struct clk_core *core)
841 clk_prepare_lock();
842 clk_core_unprepare(core);
843 clk_prepare_unlock();
847 * clk_unprepare - undo preparation of a clock source
848 * @clk: the clk being unprepared
850 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
851 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
852 * if the operation may sleep. One example is a clk which is accessed over
853 * I2c. In the complex case a clk gate operation may require a fast and a slow
854 * part. It is this reason that clk_unprepare and clk_disable are not mutually
855 * exclusive. In fact clk_disable must be called before clk_unprepare.
857 void clk_unprepare(struct clk *clk)
859 if (IS_ERR_OR_NULL(clk))
860 return;
862 clk_core_unprepare_lock(clk->core);
864 EXPORT_SYMBOL_GPL(clk_unprepare);
866 static int clk_core_prepare(struct clk_core *core)
868 int ret = 0;
870 lockdep_assert_held(&prepare_lock);
872 if (!core)
873 return 0;
875 if (core->prepare_count == 0) {
876 ret = clk_pm_runtime_get(core);
877 if (ret)
878 return ret;
880 ret = clk_core_prepare(core->parent);
881 if (ret)
882 goto runtime_put;
884 trace_clk_prepare(core);
886 if (core->ops->prepare)
887 ret = core->ops->prepare(core->hw);
889 trace_clk_prepare_complete(core);
891 if (ret)
892 goto unprepare;
895 core->prepare_count++;
898 * CLK_SET_RATE_GATE is a special case of clock protection
899 * Instead of a consumer claiming exclusive rate control, it is
900 * actually the provider which prevents any consumer from making any
901 * operation which could result in a rate change or rate glitch while
902 * the clock is prepared.
904 if (core->flags & CLK_SET_RATE_GATE)
905 clk_core_rate_protect(core);
907 return 0;
908 unprepare:
909 clk_core_unprepare(core->parent);
910 runtime_put:
911 clk_pm_runtime_put(core);
912 return ret;
915 static int clk_core_prepare_lock(struct clk_core *core)
917 int ret;
919 clk_prepare_lock();
920 ret = clk_core_prepare(core);
921 clk_prepare_unlock();
923 return ret;
927 * clk_prepare - prepare a clock source
928 * @clk: the clk being prepared
930 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
931 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
932 * operation may sleep. One example is a clk which is accessed over I2c. In
933 * the complex case a clk ungate operation may require a fast and a slow part.
934 * It is this reason that clk_prepare and clk_enable are not mutually
935 * exclusive. In fact clk_prepare must be called before clk_enable.
936 * Returns 0 on success, -EERROR otherwise.
938 int clk_prepare(struct clk *clk)
940 if (!clk)
941 return 0;
943 return clk_core_prepare_lock(clk->core);
945 EXPORT_SYMBOL_GPL(clk_prepare);
947 static void clk_core_disable(struct clk_core *core)
949 lockdep_assert_held(&enable_lock);
951 if (!core)
952 return;
954 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
955 return;
957 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
958 "Disabling critical %s\n", core->name))
959 return;
961 if (--core->enable_count > 0)
962 return;
964 trace_clk_disable_rcuidle(core);
966 if (core->ops->disable)
967 core->ops->disable(core->hw);
969 trace_clk_disable_complete_rcuidle(core);
971 clk_core_disable(core->parent);
974 static void clk_core_disable_lock(struct clk_core *core)
976 unsigned long flags;
978 flags = clk_enable_lock();
979 clk_core_disable(core);
980 clk_enable_unlock(flags);
984 * clk_disable - gate a clock
985 * @clk: the clk being gated
987 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
988 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
989 * clk if the operation is fast and will never sleep. One example is a
990 * SoC-internal clk which is controlled via simple register writes. In the
991 * complex case a clk gate operation may require a fast and a slow part. It is
992 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
993 * In fact clk_disable must be called before clk_unprepare.
995 void clk_disable(struct clk *clk)
997 if (IS_ERR_OR_NULL(clk))
998 return;
1000 clk_core_disable_lock(clk->core);
1002 EXPORT_SYMBOL_GPL(clk_disable);
1004 static int clk_core_enable(struct clk_core *core)
1006 int ret = 0;
1008 lockdep_assert_held(&enable_lock);
1010 if (!core)
1011 return 0;
1013 if (WARN(core->prepare_count == 0,
1014 "Enabling unprepared %s\n", core->name))
1015 return -ESHUTDOWN;
1017 if (core->enable_count == 0) {
1018 ret = clk_core_enable(core->parent);
1020 if (ret)
1021 return ret;
1023 trace_clk_enable_rcuidle(core);
1025 if (core->ops->enable)
1026 ret = core->ops->enable(core->hw);
1028 trace_clk_enable_complete_rcuidle(core);
1030 if (ret) {
1031 clk_core_disable(core->parent);
1032 return ret;
1036 core->enable_count++;
1037 return 0;
1040 static int clk_core_enable_lock(struct clk_core *core)
1042 unsigned long flags;
1043 int ret;
1045 flags = clk_enable_lock();
1046 ret = clk_core_enable(core);
1047 clk_enable_unlock(flags);
1049 return ret;
1053 * clk_gate_restore_context - restore context for poweroff
1054 * @hw: the clk_hw pointer of clock whose state is to be restored
1056 * The clock gate restore context function enables or disables
1057 * the gate clocks based on the enable_count. This is done in cases
1058 * where the clock context is lost and based on the enable_count
1059 * the clock either needs to be enabled/disabled. This
1060 * helps restore the state of gate clocks.
1062 void clk_gate_restore_context(struct clk_hw *hw)
1064 struct clk_core *core = hw->core;
1066 if (core->enable_count)
1067 core->ops->enable(hw);
1068 else
1069 core->ops->disable(hw);
1071 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1073 static int clk_core_save_context(struct clk_core *core)
1075 struct clk_core *child;
1076 int ret = 0;
1078 hlist_for_each_entry(child, &core->children, child_node) {
1079 ret = clk_core_save_context(child);
1080 if (ret < 0)
1081 return ret;
1084 if (core->ops && core->ops->save_context)
1085 ret = core->ops->save_context(core->hw);
1087 return ret;
1090 static void clk_core_restore_context(struct clk_core *core)
1092 struct clk_core *child;
1094 if (core->ops && core->ops->restore_context)
1095 core->ops->restore_context(core->hw);
1097 hlist_for_each_entry(child, &core->children, child_node)
1098 clk_core_restore_context(child);
1102 * clk_save_context - save clock context for poweroff
1104 * Saves the context of the clock register for powerstates in which the
1105 * contents of the registers will be lost. Occurs deep within the suspend
1106 * code. Returns 0 on success.
1108 int clk_save_context(void)
1110 struct clk_core *clk;
1111 int ret;
1113 hlist_for_each_entry(clk, &clk_root_list, child_node) {
1114 ret = clk_core_save_context(clk);
1115 if (ret < 0)
1116 return ret;
1119 hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1120 ret = clk_core_save_context(clk);
1121 if (ret < 0)
1122 return ret;
1125 return 0;
1127 EXPORT_SYMBOL_GPL(clk_save_context);
1130 * clk_restore_context - restore clock context after poweroff
1132 * Restore the saved clock context upon resume.
1135 void clk_restore_context(void)
1137 struct clk_core *core;
1139 hlist_for_each_entry(core, &clk_root_list, child_node)
1140 clk_core_restore_context(core);
1142 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1143 clk_core_restore_context(core);
1145 EXPORT_SYMBOL_GPL(clk_restore_context);
1148 * clk_enable - ungate a clock
1149 * @clk: the clk being ungated
1151 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
1152 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1153 * if the operation will never sleep. One example is a SoC-internal clk which
1154 * is controlled via simple register writes. In the complex case a clk ungate
1155 * operation may require a fast and a slow part. It is this reason that
1156 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
1157 * must be called before clk_enable. Returns 0 on success, -EERROR
1158 * otherwise.
1160 int clk_enable(struct clk *clk)
1162 if (!clk)
1163 return 0;
1165 return clk_core_enable_lock(clk->core);
1167 EXPORT_SYMBOL_GPL(clk_enable);
1169 static int clk_core_prepare_enable(struct clk_core *core)
1171 int ret;
1173 ret = clk_core_prepare_lock(core);
1174 if (ret)
1175 return ret;
1177 ret = clk_core_enable_lock(core);
1178 if (ret)
1179 clk_core_unprepare_lock(core);
1181 return ret;
1184 static void clk_core_disable_unprepare(struct clk_core *core)
1186 clk_core_disable_lock(core);
1187 clk_core_unprepare_lock(core);
1190 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1192 struct clk_core *child;
1194 lockdep_assert_held(&prepare_lock);
1196 hlist_for_each_entry(child, &core->children, child_node)
1197 clk_unprepare_unused_subtree(child);
1199 if (core->prepare_count)
1200 return;
1202 if (core->flags & CLK_IGNORE_UNUSED)
1203 return;
1205 if (clk_pm_runtime_get(core))
1206 return;
1208 if (clk_core_is_prepared(core)) {
1209 trace_clk_unprepare(core);
1210 if (core->ops->unprepare_unused)
1211 core->ops->unprepare_unused(core->hw);
1212 else if (core->ops->unprepare)
1213 core->ops->unprepare(core->hw);
1214 trace_clk_unprepare_complete(core);
1217 clk_pm_runtime_put(core);
1220 static void __init clk_disable_unused_subtree(struct clk_core *core)
1222 struct clk_core *child;
1223 unsigned long flags;
1225 lockdep_assert_held(&prepare_lock);
1227 hlist_for_each_entry(child, &core->children, child_node)
1228 clk_disable_unused_subtree(child);
1230 if (core->flags & CLK_OPS_PARENT_ENABLE)
1231 clk_core_prepare_enable(core->parent);
1233 if (clk_pm_runtime_get(core))
1234 goto unprepare_out;
1236 flags = clk_enable_lock();
1238 if (core->enable_count)
1239 goto unlock_out;
1241 if (core->flags & CLK_IGNORE_UNUSED)
1242 goto unlock_out;
1245 * some gate clocks have special needs during the disable-unused
1246 * sequence. call .disable_unused if available, otherwise fall
1247 * back to .disable
1249 if (clk_core_is_enabled(core)) {
1250 trace_clk_disable(core);
1251 if (core->ops->disable_unused)
1252 core->ops->disable_unused(core->hw);
1253 else if (core->ops->disable)
1254 core->ops->disable(core->hw);
1255 trace_clk_disable_complete(core);
1258 unlock_out:
1259 clk_enable_unlock(flags);
1260 clk_pm_runtime_put(core);
1261 unprepare_out:
1262 if (core->flags & CLK_OPS_PARENT_ENABLE)
1263 clk_core_disable_unprepare(core->parent);
1266 static bool clk_ignore_unused __initdata;
1267 static int __init clk_ignore_unused_setup(char *__unused)
1269 clk_ignore_unused = true;
1270 return 1;
1272 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1274 static int __init clk_disable_unused(void)
1276 struct clk_core *core;
1278 if (clk_ignore_unused) {
1279 pr_warn("clk: Not disabling unused clocks\n");
1280 return 0;
1283 clk_prepare_lock();
1285 hlist_for_each_entry(core, &clk_root_list, child_node)
1286 clk_disable_unused_subtree(core);
1288 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1289 clk_disable_unused_subtree(core);
1291 hlist_for_each_entry(core, &clk_root_list, child_node)
1292 clk_unprepare_unused_subtree(core);
1294 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1295 clk_unprepare_unused_subtree(core);
1297 clk_prepare_unlock();
1299 return 0;
1301 late_initcall_sync(clk_disable_unused);
1303 static int clk_core_determine_round_nolock(struct clk_core *core,
1304 struct clk_rate_request *req)
1306 long rate;
1308 lockdep_assert_held(&prepare_lock);
1310 if (!core)
1311 return 0;
1314 * At this point, core protection will be disabled if
1315 * - if the provider is not protected at all
1316 * - if the calling consumer is the only one which has exclusivity
1317 * over the provider
1319 if (clk_core_rate_is_protected(core)) {
1320 req->rate = core->rate;
1321 } else if (core->ops->determine_rate) {
1322 return core->ops->determine_rate(core->hw, req);
1323 } else if (core->ops->round_rate) {
1324 rate = core->ops->round_rate(core->hw, req->rate,
1325 &req->best_parent_rate);
1326 if (rate < 0)
1327 return rate;
1329 req->rate = rate;
1330 } else {
1331 return -EINVAL;
1334 return 0;
1337 static void clk_core_init_rate_req(struct clk_core * const core,
1338 struct clk_rate_request *req)
1340 struct clk_core *parent;
1342 if (WARN_ON(!core || !req))
1343 return;
1345 parent = core->parent;
1346 if (parent) {
1347 req->best_parent_hw = parent->hw;
1348 req->best_parent_rate = parent->rate;
1349 } else {
1350 req->best_parent_hw = NULL;
1351 req->best_parent_rate = 0;
1355 static bool clk_core_can_round(struct clk_core * const core)
1357 return core->ops->determine_rate || core->ops->round_rate;
1360 static int clk_core_round_rate_nolock(struct clk_core *core,
1361 struct clk_rate_request *req)
1363 lockdep_assert_held(&prepare_lock);
1365 if (!core) {
1366 req->rate = 0;
1367 return 0;
1370 clk_core_init_rate_req(core, req);
1372 if (clk_core_can_round(core))
1373 return clk_core_determine_round_nolock(core, req);
1374 else if (core->flags & CLK_SET_RATE_PARENT)
1375 return clk_core_round_rate_nolock(core->parent, req);
1377 req->rate = core->rate;
1378 return 0;
1382 * __clk_determine_rate - get the closest rate actually supported by a clock
1383 * @hw: determine the rate of this clock
1384 * @req: target rate request
1386 * Useful for clk_ops such as .set_rate and .determine_rate.
1388 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1390 if (!hw) {
1391 req->rate = 0;
1392 return 0;
1395 return clk_core_round_rate_nolock(hw->core, req);
1397 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1399 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1401 int ret;
1402 struct clk_rate_request req;
1404 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1405 req.rate = rate;
1407 ret = clk_core_round_rate_nolock(hw->core, &req);
1408 if (ret)
1409 return 0;
1411 return req.rate;
1413 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1416 * clk_round_rate - round the given rate for a clk
1417 * @clk: the clk for which we are rounding a rate
1418 * @rate: the rate which is to be rounded
1420 * Takes in a rate as input and rounds it to a rate that the clk can actually
1421 * use which is then returned. If clk doesn't support round_rate operation
1422 * then the parent rate is returned.
1424 long clk_round_rate(struct clk *clk, unsigned long rate)
1426 struct clk_rate_request req;
1427 int ret;
1429 if (!clk)
1430 return 0;
1432 clk_prepare_lock();
1434 if (clk->exclusive_count)
1435 clk_core_rate_unprotect(clk->core);
1437 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1438 req.rate = rate;
1440 ret = clk_core_round_rate_nolock(clk->core, &req);
1442 if (clk->exclusive_count)
1443 clk_core_rate_protect(clk->core);
1445 clk_prepare_unlock();
1447 if (ret)
1448 return ret;
1450 return req.rate;
1452 EXPORT_SYMBOL_GPL(clk_round_rate);
1455 * __clk_notify - call clk notifier chain
1456 * @core: clk that is changing rate
1457 * @msg: clk notifier type (see include/linux/clk.h)
1458 * @old_rate: old clk rate
1459 * @new_rate: new clk rate
1461 * Triggers a notifier call chain on the clk rate-change notification
1462 * for 'clk'. Passes a pointer to the struct clk and the previous
1463 * and current rates to the notifier callback. Intended to be called by
1464 * internal clock code only. Returns NOTIFY_DONE from the last driver
1465 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1466 * a driver returns that.
1468 static int __clk_notify(struct clk_core *core, unsigned long msg,
1469 unsigned long old_rate, unsigned long new_rate)
1471 struct clk_notifier *cn;
1472 struct clk_notifier_data cnd;
1473 int ret = NOTIFY_DONE;
1475 cnd.old_rate = old_rate;
1476 cnd.new_rate = new_rate;
1478 list_for_each_entry(cn, &clk_notifier_list, node) {
1479 if (cn->clk->core == core) {
1480 cnd.clk = cn->clk;
1481 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1482 &cnd);
1483 if (ret & NOTIFY_STOP_MASK)
1484 return ret;
1488 return ret;
1492 * __clk_recalc_accuracies
1493 * @core: first clk in the subtree
1495 * Walks the subtree of clks starting with clk and recalculates accuracies as
1496 * it goes. Note that if a clk does not implement the .recalc_accuracy
1497 * callback then it is assumed that the clock will take on the accuracy of its
1498 * parent.
1500 static void __clk_recalc_accuracies(struct clk_core *core)
1502 unsigned long parent_accuracy = 0;
1503 struct clk_core *child;
1505 lockdep_assert_held(&prepare_lock);
1507 if (core->parent)
1508 parent_accuracy = core->parent->accuracy;
1510 if (core->ops->recalc_accuracy)
1511 core->accuracy = core->ops->recalc_accuracy(core->hw,
1512 parent_accuracy);
1513 else
1514 core->accuracy = parent_accuracy;
1516 hlist_for_each_entry(child, &core->children, child_node)
1517 __clk_recalc_accuracies(child);
1520 static long clk_core_get_accuracy(struct clk_core *core)
1522 unsigned long accuracy;
1524 clk_prepare_lock();
1525 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1526 __clk_recalc_accuracies(core);
1528 accuracy = __clk_get_accuracy(core);
1529 clk_prepare_unlock();
1531 return accuracy;
1535 * clk_get_accuracy - return the accuracy of clk
1536 * @clk: the clk whose accuracy is being returned
1538 * Simply returns the cached accuracy of the clk, unless
1539 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1540 * issued.
1541 * If clk is NULL then returns 0.
1543 long clk_get_accuracy(struct clk *clk)
1545 if (!clk)
1546 return 0;
1548 return clk_core_get_accuracy(clk->core);
1550 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1552 static unsigned long clk_recalc(struct clk_core *core,
1553 unsigned long parent_rate)
1555 unsigned long rate = parent_rate;
1557 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1558 rate = core->ops->recalc_rate(core->hw, parent_rate);
1559 clk_pm_runtime_put(core);
1561 return rate;
1565 * __clk_recalc_rates
1566 * @core: first clk in the subtree
1567 * @msg: notification type (see include/linux/clk.h)
1569 * Walks the subtree of clks starting with clk and recalculates rates as it
1570 * goes. Note that if a clk does not implement the .recalc_rate callback then
1571 * it is assumed that the clock will take on the rate of its parent.
1573 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1574 * if necessary.
1576 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1578 unsigned long old_rate;
1579 unsigned long parent_rate = 0;
1580 struct clk_core *child;
1582 lockdep_assert_held(&prepare_lock);
1584 old_rate = core->rate;
1586 if (core->parent)
1587 parent_rate = core->parent->rate;
1589 core->rate = clk_recalc(core, parent_rate);
1592 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1593 * & ABORT_RATE_CHANGE notifiers
1595 if (core->notifier_count && msg)
1596 __clk_notify(core, msg, old_rate, core->rate);
1598 hlist_for_each_entry(child, &core->children, child_node)
1599 __clk_recalc_rates(child, msg);
1602 static unsigned long clk_core_get_rate(struct clk_core *core)
1604 unsigned long rate;
1606 clk_prepare_lock();
1608 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1609 __clk_recalc_rates(core, 0);
1611 rate = clk_core_get_rate_nolock(core);
1612 clk_prepare_unlock();
1614 return rate;
1618 * clk_get_rate - return the rate of clk
1619 * @clk: the clk whose rate is being returned
1621 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1622 * is set, which means a recalc_rate will be issued.
1623 * If clk is NULL then returns 0.
1625 unsigned long clk_get_rate(struct clk *clk)
1627 if (!clk)
1628 return 0;
1630 return clk_core_get_rate(clk->core);
1632 EXPORT_SYMBOL_GPL(clk_get_rate);
1634 static int clk_fetch_parent_index(struct clk_core *core,
1635 struct clk_core *parent)
1637 int i;
1639 if (!parent)
1640 return -EINVAL;
1642 for (i = 0; i < core->num_parents; i++) {
1643 /* Found it first try! */
1644 if (core->parents[i].core == parent)
1645 return i;
1647 /* Something else is here, so keep looking */
1648 if (core->parents[i].core)
1649 continue;
1651 /* Maybe core hasn't been cached but the hw is all we know? */
1652 if (core->parents[i].hw) {
1653 if (core->parents[i].hw == parent->hw)
1654 break;
1656 /* Didn't match, but we're expecting a clk_hw */
1657 continue;
1660 /* Maybe it hasn't been cached (clk_set_parent() path) */
1661 if (parent == clk_core_get(core, i))
1662 break;
1664 /* Fallback to comparing globally unique names */
1665 if (core->parents[i].name &&
1666 !strcmp(parent->name, core->parents[i].name))
1667 break;
1670 if (i == core->num_parents)
1671 return -EINVAL;
1673 core->parents[i].core = parent;
1674 return i;
1678 * clk_hw_get_parent_index - return the index of the parent clock
1679 * @hw: clk_hw associated with the clk being consumed
1681 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1682 * clock does not have a current parent.
1684 int clk_hw_get_parent_index(struct clk_hw *hw)
1686 struct clk_hw *parent = clk_hw_get_parent(hw);
1688 if (WARN_ON(parent == NULL))
1689 return -EINVAL;
1691 return clk_fetch_parent_index(hw->core, parent->core);
1693 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1696 * Update the orphan status of @core and all its children.
1698 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1700 struct clk_core *child;
1702 core->orphan = is_orphan;
1704 hlist_for_each_entry(child, &core->children, child_node)
1705 clk_core_update_orphan_status(child, is_orphan);
1708 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1710 bool was_orphan = core->orphan;
1712 hlist_del(&core->child_node);
1714 if (new_parent) {
1715 bool becomes_orphan = new_parent->orphan;
1717 /* avoid duplicate POST_RATE_CHANGE notifications */
1718 if (new_parent->new_child == core)
1719 new_parent->new_child = NULL;
1721 hlist_add_head(&core->child_node, &new_parent->children);
1723 if (was_orphan != becomes_orphan)
1724 clk_core_update_orphan_status(core, becomes_orphan);
1725 } else {
1726 hlist_add_head(&core->child_node, &clk_orphan_list);
1727 if (!was_orphan)
1728 clk_core_update_orphan_status(core, true);
1731 core->parent = new_parent;
1734 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1735 struct clk_core *parent)
1737 unsigned long flags;
1738 struct clk_core *old_parent = core->parent;
1741 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1743 * 2. Migrate prepare state between parents and prevent race with
1744 * clk_enable().
1746 * If the clock is not prepared, then a race with
1747 * clk_enable/disable() is impossible since we already have the
1748 * prepare lock (future calls to clk_enable() need to be preceded by
1749 * a clk_prepare()).
1751 * If the clock is prepared, migrate the prepared state to the new
1752 * parent and also protect against a race with clk_enable() by
1753 * forcing the clock and the new parent on. This ensures that all
1754 * future calls to clk_enable() are practically NOPs with respect to
1755 * hardware and software states.
1757 * See also: Comment for clk_set_parent() below.
1760 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1761 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1762 clk_core_prepare_enable(old_parent);
1763 clk_core_prepare_enable(parent);
1766 /* migrate prepare count if > 0 */
1767 if (core->prepare_count) {
1768 clk_core_prepare_enable(parent);
1769 clk_core_enable_lock(core);
1772 /* update the clk tree topology */
1773 flags = clk_enable_lock();
1774 clk_reparent(core, parent);
1775 clk_enable_unlock(flags);
1777 return old_parent;
1780 static void __clk_set_parent_after(struct clk_core *core,
1781 struct clk_core *parent,
1782 struct clk_core *old_parent)
1785 * Finish the migration of prepare state and undo the changes done
1786 * for preventing a race with clk_enable().
1788 if (core->prepare_count) {
1789 clk_core_disable_lock(core);
1790 clk_core_disable_unprepare(old_parent);
1793 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1794 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1795 clk_core_disable_unprepare(parent);
1796 clk_core_disable_unprepare(old_parent);
1800 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1801 u8 p_index)
1803 unsigned long flags;
1804 int ret = 0;
1805 struct clk_core *old_parent;
1807 old_parent = __clk_set_parent_before(core, parent);
1809 trace_clk_set_parent(core, parent);
1811 /* change clock input source */
1812 if (parent && core->ops->set_parent)
1813 ret = core->ops->set_parent(core->hw, p_index);
1815 trace_clk_set_parent_complete(core, parent);
1817 if (ret) {
1818 flags = clk_enable_lock();
1819 clk_reparent(core, old_parent);
1820 clk_enable_unlock(flags);
1821 __clk_set_parent_after(core, old_parent, parent);
1823 return ret;
1826 __clk_set_parent_after(core, parent, old_parent);
1828 return 0;
1832 * __clk_speculate_rates
1833 * @core: first clk in the subtree
1834 * @parent_rate: the "future" rate of clk's parent
1836 * Walks the subtree of clks starting with clk, speculating rates as it
1837 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1839 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1840 * pre-rate change notifications and returns early if no clks in the
1841 * subtree have subscribed to the notifications. Note that if a clk does not
1842 * implement the .recalc_rate callback then it is assumed that the clock will
1843 * take on the rate of its parent.
1845 static int __clk_speculate_rates(struct clk_core *core,
1846 unsigned long parent_rate)
1848 struct clk_core *child;
1849 unsigned long new_rate;
1850 int ret = NOTIFY_DONE;
1852 lockdep_assert_held(&prepare_lock);
1854 new_rate = clk_recalc(core, parent_rate);
1856 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1857 if (core->notifier_count)
1858 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1860 if (ret & NOTIFY_STOP_MASK) {
1861 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1862 __func__, core->name, ret);
1863 goto out;
1866 hlist_for_each_entry(child, &core->children, child_node) {
1867 ret = __clk_speculate_rates(child, new_rate);
1868 if (ret & NOTIFY_STOP_MASK)
1869 break;
1872 out:
1873 return ret;
1876 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1877 struct clk_core *new_parent, u8 p_index)
1879 struct clk_core *child;
1881 core->new_rate = new_rate;
1882 core->new_parent = new_parent;
1883 core->new_parent_index = p_index;
1884 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1885 core->new_child = NULL;
1886 if (new_parent && new_parent != core->parent)
1887 new_parent->new_child = core;
1889 hlist_for_each_entry(child, &core->children, child_node) {
1890 child->new_rate = clk_recalc(child, new_rate);
1891 clk_calc_subtree(child, child->new_rate, NULL, 0);
1896 * calculate the new rates returning the topmost clock that has to be
1897 * changed.
1899 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1900 unsigned long rate)
1902 struct clk_core *top = core;
1903 struct clk_core *old_parent, *parent;
1904 unsigned long best_parent_rate = 0;
1905 unsigned long new_rate;
1906 unsigned long min_rate;
1907 unsigned long max_rate;
1908 int p_index = 0;
1909 long ret;
1911 /* sanity */
1912 if (IS_ERR_OR_NULL(core))
1913 return NULL;
1915 /* save parent rate, if it exists */
1916 parent = old_parent = core->parent;
1917 if (parent)
1918 best_parent_rate = parent->rate;
1920 clk_core_get_boundaries(core, &min_rate, &max_rate);
1922 /* find the closest rate and parent clk/rate */
1923 if (clk_core_can_round(core)) {
1924 struct clk_rate_request req;
1926 req.rate = rate;
1927 req.min_rate = min_rate;
1928 req.max_rate = max_rate;
1930 clk_core_init_rate_req(core, &req);
1932 ret = clk_core_determine_round_nolock(core, &req);
1933 if (ret < 0)
1934 return NULL;
1936 best_parent_rate = req.best_parent_rate;
1937 new_rate = req.rate;
1938 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1940 if (new_rate < min_rate || new_rate > max_rate)
1941 return NULL;
1942 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1943 /* pass-through clock without adjustable parent */
1944 core->new_rate = core->rate;
1945 return NULL;
1946 } else {
1947 /* pass-through clock with adjustable parent */
1948 top = clk_calc_new_rates(parent, rate);
1949 new_rate = parent->new_rate;
1950 goto out;
1953 /* some clocks must be gated to change parent */
1954 if (parent != old_parent &&
1955 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1956 pr_debug("%s: %s not gated but wants to reparent\n",
1957 __func__, core->name);
1958 return NULL;
1961 /* try finding the new parent index */
1962 if (parent && core->num_parents > 1) {
1963 p_index = clk_fetch_parent_index(core, parent);
1964 if (p_index < 0) {
1965 pr_debug("%s: clk %s can not be parent of clk %s\n",
1966 __func__, parent->name, core->name);
1967 return NULL;
1971 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1972 best_parent_rate != parent->rate)
1973 top = clk_calc_new_rates(parent, best_parent_rate);
1975 out:
1976 clk_calc_subtree(core, new_rate, parent, p_index);
1978 return top;
1982 * Notify about rate changes in a subtree. Always walk down the whole tree
1983 * so that in case of an error we can walk down the whole tree again and
1984 * abort the change.
1986 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1987 unsigned long event)
1989 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1990 int ret = NOTIFY_DONE;
1992 if (core->rate == core->new_rate)
1993 return NULL;
1995 if (core->notifier_count) {
1996 ret = __clk_notify(core, event, core->rate, core->new_rate);
1997 if (ret & NOTIFY_STOP_MASK)
1998 fail_clk = core;
2001 hlist_for_each_entry(child, &core->children, child_node) {
2002 /* Skip children who will be reparented to another clock */
2003 if (child->new_parent && child->new_parent != core)
2004 continue;
2005 tmp_clk = clk_propagate_rate_change(child, event);
2006 if (tmp_clk)
2007 fail_clk = tmp_clk;
2010 /* handle the new child who might not be in core->children yet */
2011 if (core->new_child) {
2012 tmp_clk = clk_propagate_rate_change(core->new_child, event);
2013 if (tmp_clk)
2014 fail_clk = tmp_clk;
2017 return fail_clk;
2021 * walk down a subtree and set the new rates notifying the rate
2022 * change on the way
2024 static void clk_change_rate(struct clk_core *core)
2026 struct clk_core *child;
2027 struct hlist_node *tmp;
2028 unsigned long old_rate;
2029 unsigned long best_parent_rate = 0;
2030 bool skip_set_rate = false;
2031 struct clk_core *old_parent;
2032 struct clk_core *parent = NULL;
2034 old_rate = core->rate;
2036 if (core->new_parent) {
2037 parent = core->new_parent;
2038 best_parent_rate = core->new_parent->rate;
2039 } else if (core->parent) {
2040 parent = core->parent;
2041 best_parent_rate = core->parent->rate;
2044 if (clk_pm_runtime_get(core))
2045 return;
2047 if (core->flags & CLK_SET_RATE_UNGATE) {
2048 unsigned long flags;
2050 clk_core_prepare(core);
2051 flags = clk_enable_lock();
2052 clk_core_enable(core);
2053 clk_enable_unlock(flags);
2056 if (core->new_parent && core->new_parent != core->parent) {
2057 old_parent = __clk_set_parent_before(core, core->new_parent);
2058 trace_clk_set_parent(core, core->new_parent);
2060 if (core->ops->set_rate_and_parent) {
2061 skip_set_rate = true;
2062 core->ops->set_rate_and_parent(core->hw, core->new_rate,
2063 best_parent_rate,
2064 core->new_parent_index);
2065 } else if (core->ops->set_parent) {
2066 core->ops->set_parent(core->hw, core->new_parent_index);
2069 trace_clk_set_parent_complete(core, core->new_parent);
2070 __clk_set_parent_after(core, core->new_parent, old_parent);
2073 if (core->flags & CLK_OPS_PARENT_ENABLE)
2074 clk_core_prepare_enable(parent);
2076 trace_clk_set_rate(core, core->new_rate);
2078 if (!skip_set_rate && core->ops->set_rate)
2079 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2081 trace_clk_set_rate_complete(core, core->new_rate);
2083 core->rate = clk_recalc(core, best_parent_rate);
2085 if (core->flags & CLK_SET_RATE_UNGATE) {
2086 unsigned long flags;
2088 flags = clk_enable_lock();
2089 clk_core_disable(core);
2090 clk_enable_unlock(flags);
2091 clk_core_unprepare(core);
2094 if (core->flags & CLK_OPS_PARENT_ENABLE)
2095 clk_core_disable_unprepare(parent);
2097 if (core->notifier_count && old_rate != core->rate)
2098 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2100 if (core->flags & CLK_RECALC_NEW_RATES)
2101 (void)clk_calc_new_rates(core, core->new_rate);
2104 * Use safe iteration, as change_rate can actually swap parents
2105 * for certain clock types.
2107 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2108 /* Skip children who will be reparented to another clock */
2109 if (child->new_parent && child->new_parent != core)
2110 continue;
2111 clk_change_rate(child);
2114 /* handle the new child who might not be in core->children yet */
2115 if (core->new_child)
2116 clk_change_rate(core->new_child);
2118 clk_pm_runtime_put(core);
2121 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2122 unsigned long req_rate)
2124 int ret, cnt;
2125 struct clk_rate_request req;
2127 lockdep_assert_held(&prepare_lock);
2129 if (!core)
2130 return 0;
2132 /* simulate what the rate would be if it could be freely set */
2133 cnt = clk_core_rate_nuke_protect(core);
2134 if (cnt < 0)
2135 return cnt;
2137 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2138 req.rate = req_rate;
2140 ret = clk_core_round_rate_nolock(core, &req);
2142 /* restore the protection */
2143 clk_core_rate_restore_protect(core, cnt);
2145 return ret ? 0 : req.rate;
2148 static int clk_core_set_rate_nolock(struct clk_core *core,
2149 unsigned long req_rate)
2151 struct clk_core *top, *fail_clk;
2152 unsigned long rate;
2153 int ret = 0;
2155 if (!core)
2156 return 0;
2158 rate = clk_core_req_round_rate_nolock(core, req_rate);
2160 /* bail early if nothing to do */
2161 if (rate == clk_core_get_rate_nolock(core))
2162 return 0;
2164 /* fail on a direct rate set of a protected provider */
2165 if (clk_core_rate_is_protected(core))
2166 return -EBUSY;
2168 /* calculate new rates and get the topmost changed clock */
2169 top = clk_calc_new_rates(core, req_rate);
2170 if (!top)
2171 return -EINVAL;
2173 ret = clk_pm_runtime_get(core);
2174 if (ret)
2175 return ret;
2177 /* notify that we are about to change rates */
2178 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2179 if (fail_clk) {
2180 pr_debug("%s: failed to set %s rate\n", __func__,
2181 fail_clk->name);
2182 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2183 ret = -EBUSY;
2184 goto err;
2187 /* change the rates */
2188 clk_change_rate(top);
2190 core->req_rate = req_rate;
2191 err:
2192 clk_pm_runtime_put(core);
2194 return ret;
2198 * clk_set_rate - specify a new rate for clk
2199 * @clk: the clk whose rate is being changed
2200 * @rate: the new rate for clk
2202 * In the simplest case clk_set_rate will only adjust the rate of clk.
2204 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2205 * propagate up to clk's parent; whether or not this happens depends on the
2206 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
2207 * after calling .round_rate then upstream parent propagation is ignored. If
2208 * *parent_rate comes back with a new rate for clk's parent then we propagate
2209 * up to clk's parent and set its rate. Upward propagation will continue
2210 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2211 * .round_rate stops requesting changes to clk's parent_rate.
2213 * Rate changes are accomplished via tree traversal that also recalculates the
2214 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2216 * Returns 0 on success, -EERROR otherwise.
2218 int clk_set_rate(struct clk *clk, unsigned long rate)
2220 int ret;
2222 if (!clk)
2223 return 0;
2225 /* prevent racing with updates to the clock topology */
2226 clk_prepare_lock();
2228 if (clk->exclusive_count)
2229 clk_core_rate_unprotect(clk->core);
2231 ret = clk_core_set_rate_nolock(clk->core, rate);
2233 if (clk->exclusive_count)
2234 clk_core_rate_protect(clk->core);
2236 clk_prepare_unlock();
2238 return ret;
2240 EXPORT_SYMBOL_GPL(clk_set_rate);
2243 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2244 * @clk: the clk whose rate is being changed
2245 * @rate: the new rate for clk
2247 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2248 * within a critical section
2250 * This can be used initially to ensure that at least 1 consumer is
2251 * satisfied when several consumers are competing for exclusivity over the
2252 * same clock provider.
2254 * The exclusivity is not applied if setting the rate failed.
2256 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2257 * clk_rate_exclusive_put().
2259 * Returns 0 on success, -EERROR otherwise.
2261 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2263 int ret;
2265 if (!clk)
2266 return 0;
2268 /* prevent racing with updates to the clock topology */
2269 clk_prepare_lock();
2272 * The temporary protection removal is not here, on purpose
2273 * This function is meant to be used instead of clk_rate_protect,
2274 * so before the consumer code path protect the clock provider
2277 ret = clk_core_set_rate_nolock(clk->core, rate);
2278 if (!ret) {
2279 clk_core_rate_protect(clk->core);
2280 clk->exclusive_count++;
2283 clk_prepare_unlock();
2285 return ret;
2287 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2290 * clk_set_rate_range - set a rate range for a clock source
2291 * @clk: clock source
2292 * @min: desired minimum clock rate in Hz, inclusive
2293 * @max: desired maximum clock rate in Hz, inclusive
2295 * Returns success (0) or negative errno.
2297 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2299 int ret = 0;
2300 unsigned long old_min, old_max, rate;
2302 if (!clk)
2303 return 0;
2305 if (min > max) {
2306 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2307 __func__, clk->core->name, clk->dev_id, clk->con_id,
2308 min, max);
2309 return -EINVAL;
2312 clk_prepare_lock();
2314 if (clk->exclusive_count)
2315 clk_core_rate_unprotect(clk->core);
2317 /* Save the current values in case we need to rollback the change */
2318 old_min = clk->min_rate;
2319 old_max = clk->max_rate;
2320 clk->min_rate = min;
2321 clk->max_rate = max;
2323 rate = clk_core_get_rate_nolock(clk->core);
2324 if (rate < min || rate > max) {
2326 * FIXME:
2327 * We are in bit of trouble here, current rate is outside the
2328 * the requested range. We are going try to request appropriate
2329 * range boundary but there is a catch. It may fail for the
2330 * usual reason (clock broken, clock protected, etc) but also
2331 * because:
2332 * - round_rate() was not favorable and fell on the wrong
2333 * side of the boundary
2334 * - the determine_rate() callback does not really check for
2335 * this corner case when determining the rate
2338 if (rate < min)
2339 rate = min;
2340 else
2341 rate = max;
2343 ret = clk_core_set_rate_nolock(clk->core, rate);
2344 if (ret) {
2345 /* rollback the changes */
2346 clk->min_rate = old_min;
2347 clk->max_rate = old_max;
2351 if (clk->exclusive_count)
2352 clk_core_rate_protect(clk->core);
2354 clk_prepare_unlock();
2356 return ret;
2358 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2361 * clk_set_min_rate - set a minimum clock rate for a clock source
2362 * @clk: clock source
2363 * @rate: desired minimum clock rate in Hz, inclusive
2365 * Returns success (0) or negative errno.
2367 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2369 if (!clk)
2370 return 0;
2372 return clk_set_rate_range(clk, rate, clk->max_rate);
2374 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2377 * clk_set_max_rate - set a maximum clock rate for a clock source
2378 * @clk: clock source
2379 * @rate: desired maximum clock rate in Hz, inclusive
2381 * Returns success (0) or negative errno.
2383 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2385 if (!clk)
2386 return 0;
2388 return clk_set_rate_range(clk, clk->min_rate, rate);
2390 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2393 * clk_get_parent - return the parent of a clk
2394 * @clk: the clk whose parent gets returned
2396 * Simply returns clk->parent. Returns NULL if clk is NULL.
2398 struct clk *clk_get_parent(struct clk *clk)
2400 struct clk *parent;
2402 if (!clk)
2403 return NULL;
2405 clk_prepare_lock();
2406 /* TODO: Create a per-user clk and change callers to call clk_put */
2407 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2408 clk_prepare_unlock();
2410 return parent;
2412 EXPORT_SYMBOL_GPL(clk_get_parent);
2414 static struct clk_core *__clk_init_parent(struct clk_core *core)
2416 u8 index = 0;
2418 if (core->num_parents > 1 && core->ops->get_parent)
2419 index = core->ops->get_parent(core->hw);
2421 return clk_core_get_parent_by_index(core, index);
2424 static void clk_core_reparent(struct clk_core *core,
2425 struct clk_core *new_parent)
2427 clk_reparent(core, new_parent);
2428 __clk_recalc_accuracies(core);
2429 __clk_recalc_rates(core, POST_RATE_CHANGE);
2432 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2434 if (!hw)
2435 return;
2437 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2441 * clk_has_parent - check if a clock is a possible parent for another
2442 * @clk: clock source
2443 * @parent: parent clock source
2445 * This function can be used in drivers that need to check that a clock can be
2446 * the parent of another without actually changing the parent.
2448 * Returns true if @parent is a possible parent for @clk, false otherwise.
2450 bool clk_has_parent(struct clk *clk, struct clk *parent)
2452 struct clk_core *core, *parent_core;
2453 int i;
2455 /* NULL clocks should be nops, so return success if either is NULL. */
2456 if (!clk || !parent)
2457 return true;
2459 core = clk->core;
2460 parent_core = parent->core;
2462 /* Optimize for the case where the parent is already the parent. */
2463 if (core->parent == parent_core)
2464 return true;
2466 for (i = 0; i < core->num_parents; i++)
2467 if (!strcmp(core->parents[i].name, parent_core->name))
2468 return true;
2470 return false;
2472 EXPORT_SYMBOL_GPL(clk_has_parent);
2474 static int clk_core_set_parent_nolock(struct clk_core *core,
2475 struct clk_core *parent)
2477 int ret = 0;
2478 int p_index = 0;
2479 unsigned long p_rate = 0;
2481 lockdep_assert_held(&prepare_lock);
2483 if (!core)
2484 return 0;
2486 if (core->parent == parent)
2487 return 0;
2489 /* verify ops for multi-parent clks */
2490 if (core->num_parents > 1 && !core->ops->set_parent)
2491 return -EPERM;
2493 /* check that we are allowed to re-parent if the clock is in use */
2494 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2495 return -EBUSY;
2497 if (clk_core_rate_is_protected(core))
2498 return -EBUSY;
2500 /* try finding the new parent index */
2501 if (parent) {
2502 p_index = clk_fetch_parent_index(core, parent);
2503 if (p_index < 0) {
2504 pr_debug("%s: clk %s can not be parent of clk %s\n",
2505 __func__, parent->name, core->name);
2506 return p_index;
2508 p_rate = parent->rate;
2511 ret = clk_pm_runtime_get(core);
2512 if (ret)
2513 return ret;
2515 /* propagate PRE_RATE_CHANGE notifications */
2516 ret = __clk_speculate_rates(core, p_rate);
2518 /* abort if a driver objects */
2519 if (ret & NOTIFY_STOP_MASK)
2520 goto runtime_put;
2522 /* do the re-parent */
2523 ret = __clk_set_parent(core, parent, p_index);
2525 /* propagate rate an accuracy recalculation accordingly */
2526 if (ret) {
2527 __clk_recalc_rates(core, ABORT_RATE_CHANGE);
2528 } else {
2529 __clk_recalc_rates(core, POST_RATE_CHANGE);
2530 __clk_recalc_accuracies(core);
2533 runtime_put:
2534 clk_pm_runtime_put(core);
2536 return ret;
2539 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2541 return clk_core_set_parent_nolock(hw->core, parent->core);
2543 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2546 * clk_set_parent - switch the parent of a mux clk
2547 * @clk: the mux clk whose input we are switching
2548 * @parent: the new input to clk
2550 * Re-parent clk to use parent as its new input source. If clk is in
2551 * prepared state, the clk will get enabled for the duration of this call. If
2552 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2553 * that, the reparenting is glitchy in hardware, etc), use the
2554 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2556 * After successfully changing clk's parent clk_set_parent will update the
2557 * clk topology, sysfs topology and propagate rate recalculation via
2558 * __clk_recalc_rates.
2560 * Returns 0 on success, -EERROR otherwise.
2562 int clk_set_parent(struct clk *clk, struct clk *parent)
2564 int ret;
2566 if (!clk)
2567 return 0;
2569 clk_prepare_lock();
2571 if (clk->exclusive_count)
2572 clk_core_rate_unprotect(clk->core);
2574 ret = clk_core_set_parent_nolock(clk->core,
2575 parent ? parent->core : NULL);
2577 if (clk->exclusive_count)
2578 clk_core_rate_protect(clk->core);
2580 clk_prepare_unlock();
2582 return ret;
2584 EXPORT_SYMBOL_GPL(clk_set_parent);
2586 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2588 int ret = -EINVAL;
2590 lockdep_assert_held(&prepare_lock);
2592 if (!core)
2593 return 0;
2595 if (clk_core_rate_is_protected(core))
2596 return -EBUSY;
2598 trace_clk_set_phase(core, degrees);
2600 if (core->ops->set_phase) {
2601 ret = core->ops->set_phase(core->hw, degrees);
2602 if (!ret)
2603 core->phase = degrees;
2606 trace_clk_set_phase_complete(core, degrees);
2608 return ret;
2612 * clk_set_phase - adjust the phase shift of a clock signal
2613 * @clk: clock signal source
2614 * @degrees: number of degrees the signal is shifted
2616 * Shifts the phase of a clock signal by the specified
2617 * degrees. Returns 0 on success, -EERROR otherwise.
2619 * This function makes no distinction about the input or reference
2620 * signal that we adjust the clock signal phase against. For example
2621 * phase locked-loop clock signal generators we may shift phase with
2622 * respect to feedback clock signal input, but for other cases the
2623 * clock phase may be shifted with respect to some other, unspecified
2624 * signal.
2626 * Additionally the concept of phase shift does not propagate through
2627 * the clock tree hierarchy, which sets it apart from clock rates and
2628 * clock accuracy. A parent clock phase attribute does not have an
2629 * impact on the phase attribute of a child clock.
2631 int clk_set_phase(struct clk *clk, int degrees)
2633 int ret;
2635 if (!clk)
2636 return 0;
2638 /* sanity check degrees */
2639 degrees %= 360;
2640 if (degrees < 0)
2641 degrees += 360;
2643 clk_prepare_lock();
2645 if (clk->exclusive_count)
2646 clk_core_rate_unprotect(clk->core);
2648 ret = clk_core_set_phase_nolock(clk->core, degrees);
2650 if (clk->exclusive_count)
2651 clk_core_rate_protect(clk->core);
2653 clk_prepare_unlock();
2655 return ret;
2657 EXPORT_SYMBOL_GPL(clk_set_phase);
2659 static int clk_core_get_phase(struct clk_core *core)
2661 int ret;
2663 clk_prepare_lock();
2664 /* Always try to update cached phase if possible */
2665 if (core->ops->get_phase)
2666 core->phase = core->ops->get_phase(core->hw);
2667 ret = core->phase;
2668 clk_prepare_unlock();
2670 return ret;
2674 * clk_get_phase - return the phase shift of a clock signal
2675 * @clk: clock signal source
2677 * Returns the phase shift of a clock node in degrees, otherwise returns
2678 * -EERROR.
2680 int clk_get_phase(struct clk *clk)
2682 if (!clk)
2683 return 0;
2685 return clk_core_get_phase(clk->core);
2687 EXPORT_SYMBOL_GPL(clk_get_phase);
2689 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2691 /* Assume a default value of 50% */
2692 core->duty.num = 1;
2693 core->duty.den = 2;
2696 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2698 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2700 struct clk_duty *duty = &core->duty;
2701 int ret = 0;
2703 if (!core->ops->get_duty_cycle)
2704 return clk_core_update_duty_cycle_parent_nolock(core);
2706 ret = core->ops->get_duty_cycle(core->hw, duty);
2707 if (ret)
2708 goto reset;
2710 /* Don't trust the clock provider too much */
2711 if (duty->den == 0 || duty->num > duty->den) {
2712 ret = -EINVAL;
2713 goto reset;
2716 return 0;
2718 reset:
2719 clk_core_reset_duty_cycle_nolock(core);
2720 return ret;
2723 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2725 int ret = 0;
2727 if (core->parent &&
2728 core->flags & CLK_DUTY_CYCLE_PARENT) {
2729 ret = clk_core_update_duty_cycle_nolock(core->parent);
2730 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2731 } else {
2732 clk_core_reset_duty_cycle_nolock(core);
2735 return ret;
2738 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2739 struct clk_duty *duty);
2741 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2742 struct clk_duty *duty)
2744 int ret;
2746 lockdep_assert_held(&prepare_lock);
2748 if (clk_core_rate_is_protected(core))
2749 return -EBUSY;
2751 trace_clk_set_duty_cycle(core, duty);
2753 if (!core->ops->set_duty_cycle)
2754 return clk_core_set_duty_cycle_parent_nolock(core, duty);
2756 ret = core->ops->set_duty_cycle(core->hw, duty);
2757 if (!ret)
2758 memcpy(&core->duty, duty, sizeof(*duty));
2760 trace_clk_set_duty_cycle_complete(core, duty);
2762 return ret;
2765 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2766 struct clk_duty *duty)
2768 int ret = 0;
2770 if (core->parent &&
2771 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2772 ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2773 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2776 return ret;
2780 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2781 * @clk: clock signal source
2782 * @num: numerator of the duty cycle ratio to be applied
2783 * @den: denominator of the duty cycle ratio to be applied
2785 * Apply the duty cycle ratio if the ratio is valid and the clock can
2786 * perform this operation
2788 * Returns (0) on success, a negative errno otherwise.
2790 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2792 int ret;
2793 struct clk_duty duty;
2795 if (!clk)
2796 return 0;
2798 /* sanity check the ratio */
2799 if (den == 0 || num > den)
2800 return -EINVAL;
2802 duty.num = num;
2803 duty.den = den;
2805 clk_prepare_lock();
2807 if (clk->exclusive_count)
2808 clk_core_rate_unprotect(clk->core);
2810 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2812 if (clk->exclusive_count)
2813 clk_core_rate_protect(clk->core);
2815 clk_prepare_unlock();
2817 return ret;
2819 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2821 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2822 unsigned int scale)
2824 struct clk_duty *duty = &core->duty;
2825 int ret;
2827 clk_prepare_lock();
2829 ret = clk_core_update_duty_cycle_nolock(core);
2830 if (!ret)
2831 ret = mult_frac(scale, duty->num, duty->den);
2833 clk_prepare_unlock();
2835 return ret;
2839 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2840 * @clk: clock signal source
2841 * @scale: scaling factor to be applied to represent the ratio as an integer
2843 * Returns the duty cycle ratio of a clock node multiplied by the provided
2844 * scaling factor, or negative errno on error.
2846 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2848 if (!clk)
2849 return 0;
2851 return clk_core_get_scaled_duty_cycle(clk->core, scale);
2853 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2856 * clk_is_match - check if two clk's point to the same hardware clock
2857 * @p: clk compared against q
2858 * @q: clk compared against p
2860 * Returns true if the two struct clk pointers both point to the same hardware
2861 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2862 * share the same struct clk_core object.
2864 * Returns false otherwise. Note that two NULL clks are treated as matching.
2866 bool clk_is_match(const struct clk *p, const struct clk *q)
2868 /* trivial case: identical struct clk's or both NULL */
2869 if (p == q)
2870 return true;
2872 /* true if clk->core pointers match. Avoid dereferencing garbage */
2873 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2874 if (p->core == q->core)
2875 return true;
2877 return false;
2879 EXPORT_SYMBOL_GPL(clk_is_match);
2881 /*** debugfs support ***/
2883 #ifdef CONFIG_DEBUG_FS
2884 #include <linux/debugfs.h>
2886 static struct dentry *rootdir;
2887 static int inited = 0;
2888 static DEFINE_MUTEX(clk_debug_lock);
2889 static HLIST_HEAD(clk_debug_list);
2891 static struct hlist_head *orphan_list[] = {
2892 &clk_orphan_list,
2893 NULL,
2896 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2897 int level)
2899 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n",
2900 level * 3 + 1, "",
2901 30 - level * 3, c->name,
2902 c->enable_count, c->prepare_count, c->protect_count,
2903 clk_core_get_rate(c), clk_core_get_accuracy(c),
2904 clk_core_get_phase(c),
2905 clk_core_get_scaled_duty_cycle(c, 100000));
2908 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2909 int level)
2911 struct clk_core *child;
2913 clk_summary_show_one(s, c, level);
2915 hlist_for_each_entry(child, &c->children, child_node)
2916 clk_summary_show_subtree(s, child, level + 1);
2919 static int clk_summary_show(struct seq_file *s, void *data)
2921 struct clk_core *c;
2922 struct hlist_head **lists = (struct hlist_head **)s->private;
2924 seq_puts(s, " enable prepare protect duty\n");
2925 seq_puts(s, " clock count count count rate accuracy phase cycle\n");
2926 seq_puts(s, "---------------------------------------------------------------------------------------------\n");
2928 clk_prepare_lock();
2930 for (; *lists; lists++)
2931 hlist_for_each_entry(c, *lists, child_node)
2932 clk_summary_show_subtree(s, c, 0);
2934 clk_prepare_unlock();
2936 return 0;
2938 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2940 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2942 unsigned long min_rate, max_rate;
2944 clk_core_get_boundaries(c, &min_rate, &max_rate);
2946 /* This should be JSON format, i.e. elements separated with a comma */
2947 seq_printf(s, "\"%s\": { ", c->name);
2948 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2949 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2950 seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2951 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2952 seq_printf(s, "\"min_rate\": %lu,", min_rate);
2953 seq_printf(s, "\"max_rate\": %lu,", max_rate);
2954 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2955 seq_printf(s, "\"phase\": %d,", clk_core_get_phase(c));
2956 seq_printf(s, "\"duty_cycle\": %u",
2957 clk_core_get_scaled_duty_cycle(c, 100000));
2960 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2962 struct clk_core *child;
2964 clk_dump_one(s, c, level);
2966 hlist_for_each_entry(child, &c->children, child_node) {
2967 seq_putc(s, ',');
2968 clk_dump_subtree(s, child, level + 1);
2971 seq_putc(s, '}');
2974 static int clk_dump_show(struct seq_file *s, void *data)
2976 struct clk_core *c;
2977 bool first_node = true;
2978 struct hlist_head **lists = (struct hlist_head **)s->private;
2980 seq_putc(s, '{');
2981 clk_prepare_lock();
2983 for (; *lists; lists++) {
2984 hlist_for_each_entry(c, *lists, child_node) {
2985 if (!first_node)
2986 seq_putc(s, ',');
2987 first_node = false;
2988 clk_dump_subtree(s, c, 0);
2992 clk_prepare_unlock();
2994 seq_puts(s, "}\n");
2995 return 0;
2997 DEFINE_SHOW_ATTRIBUTE(clk_dump);
2999 static const struct {
3000 unsigned long flag;
3001 const char *name;
3002 } clk_flags[] = {
3003 #define ENTRY(f) { f, #f }
3004 ENTRY(CLK_SET_RATE_GATE),
3005 ENTRY(CLK_SET_PARENT_GATE),
3006 ENTRY(CLK_SET_RATE_PARENT),
3007 ENTRY(CLK_IGNORE_UNUSED),
3008 ENTRY(CLK_GET_RATE_NOCACHE),
3009 ENTRY(CLK_SET_RATE_NO_REPARENT),
3010 ENTRY(CLK_GET_ACCURACY_NOCACHE),
3011 ENTRY(CLK_RECALC_NEW_RATES),
3012 ENTRY(CLK_SET_RATE_UNGATE),
3013 ENTRY(CLK_IS_CRITICAL),
3014 ENTRY(CLK_OPS_PARENT_ENABLE),
3015 ENTRY(CLK_DUTY_CYCLE_PARENT),
3016 #undef ENTRY
3019 static int clk_flags_show(struct seq_file *s, void *data)
3021 struct clk_core *core = s->private;
3022 unsigned long flags = core->flags;
3023 unsigned int i;
3025 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3026 if (flags & clk_flags[i].flag) {
3027 seq_printf(s, "%s\n", clk_flags[i].name);
3028 flags &= ~clk_flags[i].flag;
3031 if (flags) {
3032 /* Unknown flags */
3033 seq_printf(s, "0x%lx\n", flags);
3036 return 0;
3038 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3040 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3041 unsigned int i, char terminator)
3043 struct clk_core *parent;
3046 * Go through the following options to fetch a parent's name.
3048 * 1. Fetch the registered parent clock and use its name
3049 * 2. Use the global (fallback) name if specified
3050 * 3. Use the local fw_name if provided
3051 * 4. Fetch parent clock's clock-output-name if DT index was set
3053 * This may still fail in some cases, such as when the parent is
3054 * specified directly via a struct clk_hw pointer, but it isn't
3055 * registered (yet).
3057 parent = clk_core_get_parent_by_index(core, i);
3058 if (parent)
3059 seq_puts(s, parent->name);
3060 else if (core->parents[i].name)
3061 seq_puts(s, core->parents[i].name);
3062 else if (core->parents[i].fw_name)
3063 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3064 else if (core->parents[i].index >= 0)
3065 seq_puts(s,
3066 of_clk_get_parent_name(core->of_node,
3067 core->parents[i].index));
3068 else
3069 seq_puts(s, "(missing)");
3071 seq_putc(s, terminator);
3074 static int possible_parents_show(struct seq_file *s, void *data)
3076 struct clk_core *core = s->private;
3077 int i;
3079 for (i = 0; i < core->num_parents - 1; i++)
3080 possible_parent_show(s, core, i, ' ');
3082 possible_parent_show(s, core, i, '\n');
3084 return 0;
3086 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3088 static int current_parent_show(struct seq_file *s, void *data)
3090 struct clk_core *core = s->private;
3092 if (core->parent)
3093 seq_printf(s, "%s\n", core->parent->name);
3095 return 0;
3097 DEFINE_SHOW_ATTRIBUTE(current_parent);
3099 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3101 struct clk_core *core = s->private;
3102 struct clk_duty *duty = &core->duty;
3104 seq_printf(s, "%u/%u\n", duty->num, duty->den);
3106 return 0;
3108 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3110 static int clk_min_rate_show(struct seq_file *s, void *data)
3112 struct clk_core *core = s->private;
3113 unsigned long min_rate, max_rate;
3115 clk_prepare_lock();
3116 clk_core_get_boundaries(core, &min_rate, &max_rate);
3117 clk_prepare_unlock();
3118 seq_printf(s, "%lu\n", min_rate);
3120 return 0;
3122 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3124 static int clk_max_rate_show(struct seq_file *s, void *data)
3126 struct clk_core *core = s->private;
3127 unsigned long min_rate, max_rate;
3129 clk_prepare_lock();
3130 clk_core_get_boundaries(core, &min_rate, &max_rate);
3131 clk_prepare_unlock();
3132 seq_printf(s, "%lu\n", max_rate);
3134 return 0;
3136 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3138 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3140 struct dentry *root;
3142 if (!core || !pdentry)
3143 return;
3145 root = debugfs_create_dir(core->name, pdentry);
3146 core->dentry = root;
3148 debugfs_create_ulong("clk_rate", 0444, root, &core->rate);
3149 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3150 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3151 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3152 debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3153 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3154 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3155 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3156 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3157 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3158 debugfs_create_file("clk_duty_cycle", 0444, root, core,
3159 &clk_duty_cycle_fops);
3161 if (core->num_parents > 0)
3162 debugfs_create_file("clk_parent", 0444, root, core,
3163 &current_parent_fops);
3165 if (core->num_parents > 1)
3166 debugfs_create_file("clk_possible_parents", 0444, root, core,
3167 &possible_parents_fops);
3169 if (core->ops->debug_init)
3170 core->ops->debug_init(core->hw, core->dentry);
3174 * clk_debug_register - add a clk node to the debugfs clk directory
3175 * @core: the clk being added to the debugfs clk directory
3177 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3178 * initialized. Otherwise it bails out early since the debugfs clk directory
3179 * will be created lazily by clk_debug_init as part of a late_initcall.
3181 static void clk_debug_register(struct clk_core *core)
3183 mutex_lock(&clk_debug_lock);
3184 hlist_add_head(&core->debug_node, &clk_debug_list);
3185 if (inited)
3186 clk_debug_create_one(core, rootdir);
3187 mutex_unlock(&clk_debug_lock);
3191 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3192 * @core: the clk being removed from the debugfs clk directory
3194 * Dynamically removes a clk and all its child nodes from the
3195 * debugfs clk directory if clk->dentry points to debugfs created by
3196 * clk_debug_register in __clk_core_init.
3198 static void clk_debug_unregister(struct clk_core *core)
3200 mutex_lock(&clk_debug_lock);
3201 hlist_del_init(&core->debug_node);
3202 debugfs_remove_recursive(core->dentry);
3203 core->dentry = NULL;
3204 mutex_unlock(&clk_debug_lock);
3208 * clk_debug_init - lazily populate the debugfs clk directory
3210 * clks are often initialized very early during boot before memory can be
3211 * dynamically allocated and well before debugfs is setup. This function
3212 * populates the debugfs clk directory once at boot-time when we know that
3213 * debugfs is setup. It should only be called once at boot-time, all other clks
3214 * added dynamically will be done so with clk_debug_register.
3216 static int __init clk_debug_init(void)
3218 struct clk_core *core;
3220 rootdir = debugfs_create_dir("clk", NULL);
3222 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3223 &clk_summary_fops);
3224 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3225 &clk_dump_fops);
3226 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3227 &clk_summary_fops);
3228 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3229 &clk_dump_fops);
3231 mutex_lock(&clk_debug_lock);
3232 hlist_for_each_entry(core, &clk_debug_list, debug_node)
3233 clk_debug_create_one(core, rootdir);
3235 inited = 1;
3236 mutex_unlock(&clk_debug_lock);
3238 return 0;
3240 late_initcall(clk_debug_init);
3241 #else
3242 static inline void clk_debug_register(struct clk_core *core) { }
3243 static inline void clk_debug_reparent(struct clk_core *core,
3244 struct clk_core *new_parent)
3247 static inline void clk_debug_unregister(struct clk_core *core)
3250 #endif
3252 static void clk_core_reparent_orphans_nolock(void)
3254 struct clk_core *orphan;
3255 struct hlist_node *tmp2;
3258 * walk the list of orphan clocks and reparent any that newly finds a
3259 * parent.
3261 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3262 struct clk_core *parent = __clk_init_parent(orphan);
3265 * We need to use __clk_set_parent_before() and _after() to
3266 * to properly migrate any prepare/enable count of the orphan
3267 * clock. This is important for CLK_IS_CRITICAL clocks, which
3268 * are enabled during init but might not have a parent yet.
3270 if (parent) {
3271 /* update the clk tree topology */
3272 __clk_set_parent_before(orphan, parent);
3273 __clk_set_parent_after(orphan, parent, NULL);
3274 __clk_recalc_accuracies(orphan);
3275 __clk_recalc_rates(orphan, 0);
3281 * __clk_core_init - initialize the data structures in a struct clk_core
3282 * @core: clk_core being initialized
3284 * Initializes the lists in struct clk_core, queries the hardware for the
3285 * parent and rate and sets them both.
3287 static int __clk_core_init(struct clk_core *core)
3289 int ret;
3290 unsigned long rate;
3292 if (!core)
3293 return -EINVAL;
3295 clk_prepare_lock();
3297 ret = clk_pm_runtime_get(core);
3298 if (ret)
3299 goto unlock;
3301 /* check to see if a clock with this name is already registered */
3302 if (clk_core_lookup(core->name)) {
3303 pr_debug("%s: clk %s already initialized\n",
3304 __func__, core->name);
3305 ret = -EEXIST;
3306 goto out;
3309 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */
3310 if (core->ops->set_rate &&
3311 !((core->ops->round_rate || core->ops->determine_rate) &&
3312 core->ops->recalc_rate)) {
3313 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3314 __func__, core->name);
3315 ret = -EINVAL;
3316 goto out;
3319 if (core->ops->set_parent && !core->ops->get_parent) {
3320 pr_err("%s: %s must implement .get_parent & .set_parent\n",
3321 __func__, core->name);
3322 ret = -EINVAL;
3323 goto out;
3326 if (core->num_parents > 1 && !core->ops->get_parent) {
3327 pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3328 __func__, core->name);
3329 ret = -EINVAL;
3330 goto out;
3333 if (core->ops->set_rate_and_parent &&
3334 !(core->ops->set_parent && core->ops->set_rate)) {
3335 pr_err("%s: %s must implement .set_parent & .set_rate\n",
3336 __func__, core->name);
3337 ret = -EINVAL;
3338 goto out;
3341 core->parent = __clk_init_parent(core);
3344 * Populate core->parent if parent has already been clk_core_init'd. If
3345 * parent has not yet been clk_core_init'd then place clk in the orphan
3346 * list. If clk doesn't have any parents then place it in the root
3347 * clk list.
3349 * Every time a new clk is clk_init'd then we walk the list of orphan
3350 * clocks and re-parent any that are children of the clock currently
3351 * being clk_init'd.
3353 if (core->parent) {
3354 hlist_add_head(&core->child_node,
3355 &core->parent->children);
3356 core->orphan = core->parent->orphan;
3357 } else if (!core->num_parents) {
3358 hlist_add_head(&core->child_node, &clk_root_list);
3359 core->orphan = false;
3360 } else {
3361 hlist_add_head(&core->child_node, &clk_orphan_list);
3362 core->orphan = true;
3366 * optional platform-specific magic
3368 * The .init callback is not used by any of the basic clock types, but
3369 * exists for weird hardware that must perform initialization magic.
3370 * Please consider other ways of solving initialization problems before
3371 * using this callback, as its use is discouraged.
3373 if (core->ops->init)
3374 core->ops->init(core->hw);
3377 * Set clk's accuracy. The preferred method is to use
3378 * .recalc_accuracy. For simple clocks and lazy developers the default
3379 * fallback is to use the parent's accuracy. If a clock doesn't have a
3380 * parent (or is orphaned) then accuracy is set to zero (perfect
3381 * clock).
3383 if (core->ops->recalc_accuracy)
3384 core->accuracy = core->ops->recalc_accuracy(core->hw,
3385 __clk_get_accuracy(core->parent));
3386 else if (core->parent)
3387 core->accuracy = core->parent->accuracy;
3388 else
3389 core->accuracy = 0;
3392 * Set clk's phase.
3393 * Since a phase is by definition relative to its parent, just
3394 * query the current clock phase, or just assume it's in phase.
3396 if (core->ops->get_phase)
3397 core->phase = core->ops->get_phase(core->hw);
3398 else
3399 core->phase = 0;
3402 * Set clk's duty cycle.
3404 clk_core_update_duty_cycle_nolock(core);
3407 * Set clk's rate. The preferred method is to use .recalc_rate. For
3408 * simple clocks and lazy developers the default fallback is to use the
3409 * parent's rate. If a clock doesn't have a parent (or is orphaned)
3410 * then rate is set to zero.
3412 if (core->ops->recalc_rate)
3413 rate = core->ops->recalc_rate(core->hw,
3414 clk_core_get_rate_nolock(core->parent));
3415 else if (core->parent)
3416 rate = core->parent->rate;
3417 else
3418 rate = 0;
3419 core->rate = core->req_rate = rate;
3422 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3423 * don't get accidentally disabled when walking the orphan tree and
3424 * reparenting clocks
3426 if (core->flags & CLK_IS_CRITICAL) {
3427 unsigned long flags;
3429 clk_core_prepare(core);
3431 flags = clk_enable_lock();
3432 clk_core_enable(core);
3433 clk_enable_unlock(flags);
3436 clk_core_reparent_orphans_nolock();
3439 kref_init(&core->ref);
3440 out:
3441 clk_pm_runtime_put(core);
3442 unlock:
3443 clk_prepare_unlock();
3445 if (!ret)
3446 clk_debug_register(core);
3448 return ret;
3452 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3453 * @core: clk to add consumer to
3454 * @clk: consumer to link to a clk
3456 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3458 clk_prepare_lock();
3459 hlist_add_head(&clk->clks_node, &core->clks);
3460 clk_prepare_unlock();
3464 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3465 * @clk: consumer to unlink
3467 static void clk_core_unlink_consumer(struct clk *clk)
3469 lockdep_assert_held(&prepare_lock);
3470 hlist_del(&clk->clks_node);
3474 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3475 * @core: clk to allocate a consumer for
3476 * @dev_id: string describing device name
3477 * @con_id: connection ID string on device
3479 * Returns: clk consumer left unlinked from the consumer list
3481 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3482 const char *con_id)
3484 struct clk *clk;
3486 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3487 if (!clk)
3488 return ERR_PTR(-ENOMEM);
3490 clk->core = core;
3491 clk->dev_id = dev_id;
3492 clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3493 clk->max_rate = ULONG_MAX;
3495 return clk;
3499 * free_clk - Free a clk consumer
3500 * @clk: clk consumer to free
3502 * Note, this assumes the clk has been unlinked from the clk_core consumer
3503 * list.
3505 static void free_clk(struct clk *clk)
3507 kfree_const(clk->con_id);
3508 kfree(clk);
3512 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3513 * a clk_hw
3514 * @dev: clk consumer device
3515 * @hw: clk_hw associated with the clk being consumed
3516 * @dev_id: string describing device name
3517 * @con_id: connection ID string on device
3519 * This is the main function used to create a clk pointer for use by clk
3520 * consumers. It connects a consumer to the clk_core and clk_hw structures
3521 * used by the framework and clk provider respectively.
3523 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3524 const char *dev_id, const char *con_id)
3526 struct clk *clk;
3527 struct clk_core *core;
3529 /* This is to allow this function to be chained to others */
3530 if (IS_ERR_OR_NULL(hw))
3531 return ERR_CAST(hw);
3533 core = hw->core;
3534 clk = alloc_clk(core, dev_id, con_id);
3535 if (IS_ERR(clk))
3536 return clk;
3537 clk->dev = dev;
3539 if (!try_module_get(core->owner)) {
3540 free_clk(clk);
3541 return ERR_PTR(-ENOENT);
3544 kref_get(&core->ref);
3545 clk_core_link_consumer(core, clk);
3547 return clk;
3550 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3552 const char *dst;
3554 if (!src) {
3555 if (must_exist)
3556 return -EINVAL;
3557 return 0;
3560 *dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3561 if (!dst)
3562 return -ENOMEM;
3564 return 0;
3567 static int clk_core_populate_parent_map(struct clk_core *core,
3568 const struct clk_init_data *init)
3570 u8 num_parents = init->num_parents;
3571 const char * const *parent_names = init->parent_names;
3572 const struct clk_hw **parent_hws = init->parent_hws;
3573 const struct clk_parent_data *parent_data = init->parent_data;
3574 int i, ret = 0;
3575 struct clk_parent_map *parents, *parent;
3577 if (!num_parents)
3578 return 0;
3581 * Avoid unnecessary string look-ups of clk_core's possible parents by
3582 * having a cache of names/clk_hw pointers to clk_core pointers.
3584 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3585 core->parents = parents;
3586 if (!parents)
3587 return -ENOMEM;
3589 /* Copy everything over because it might be __initdata */
3590 for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3591 parent->index = -1;
3592 if (parent_names) {
3593 /* throw a WARN if any entries are NULL */
3594 WARN(!parent_names[i],
3595 "%s: invalid NULL in %s's .parent_names\n",
3596 __func__, core->name);
3597 ret = clk_cpy_name(&parent->name, parent_names[i],
3598 true);
3599 } else if (parent_data) {
3600 parent->hw = parent_data[i].hw;
3601 parent->index = parent_data[i].index;
3602 ret = clk_cpy_name(&parent->fw_name,
3603 parent_data[i].fw_name, false);
3604 if (!ret)
3605 ret = clk_cpy_name(&parent->name,
3606 parent_data[i].name,
3607 false);
3608 } else if (parent_hws) {
3609 parent->hw = parent_hws[i];
3610 } else {
3611 ret = -EINVAL;
3612 WARN(1, "Must specify parents if num_parents > 0\n");
3615 if (ret) {
3616 do {
3617 kfree_const(parents[i].name);
3618 kfree_const(parents[i].fw_name);
3619 } while (--i >= 0);
3620 kfree(parents);
3622 return ret;
3626 return 0;
3629 static void clk_core_free_parent_map(struct clk_core *core)
3631 int i = core->num_parents;
3633 if (!core->num_parents)
3634 return;
3636 while (--i >= 0) {
3637 kfree_const(core->parents[i].name);
3638 kfree_const(core->parents[i].fw_name);
3641 kfree(core->parents);
3644 static struct clk *
3645 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3647 int ret;
3648 struct clk_core *core;
3649 const struct clk_init_data *init = hw->init;
3652 * The init data is not supposed to be used outside of registration path.
3653 * Set it to NULL so that provider drivers can't use it either and so that
3654 * we catch use of hw->init early on in the core.
3656 hw->init = NULL;
3658 core = kzalloc(sizeof(*core), GFP_KERNEL);
3659 if (!core) {
3660 ret = -ENOMEM;
3661 goto fail_out;
3664 core->name = kstrdup_const(init->name, GFP_KERNEL);
3665 if (!core->name) {
3666 ret = -ENOMEM;
3667 goto fail_name;
3670 if (WARN_ON(!init->ops)) {
3671 ret = -EINVAL;
3672 goto fail_ops;
3674 core->ops = init->ops;
3676 if (dev && pm_runtime_enabled(dev))
3677 core->rpm_enabled = true;
3678 core->dev = dev;
3679 core->of_node = np;
3680 if (dev && dev->driver)
3681 core->owner = dev->driver->owner;
3682 core->hw = hw;
3683 core->flags = init->flags;
3684 core->num_parents = init->num_parents;
3685 core->min_rate = 0;
3686 core->max_rate = ULONG_MAX;
3687 hw->core = core;
3689 ret = clk_core_populate_parent_map(core, init);
3690 if (ret)
3691 goto fail_parents;
3693 INIT_HLIST_HEAD(&core->clks);
3696 * Don't call clk_hw_create_clk() here because that would pin the
3697 * provider module to itself and prevent it from ever being removed.
3699 hw->clk = alloc_clk(core, NULL, NULL);
3700 if (IS_ERR(hw->clk)) {
3701 ret = PTR_ERR(hw->clk);
3702 goto fail_create_clk;
3705 clk_core_link_consumer(hw->core, hw->clk);
3707 ret = __clk_core_init(core);
3708 if (!ret)
3709 return hw->clk;
3711 clk_prepare_lock();
3712 clk_core_unlink_consumer(hw->clk);
3713 clk_prepare_unlock();
3715 free_clk(hw->clk);
3716 hw->clk = NULL;
3718 fail_create_clk:
3719 clk_core_free_parent_map(core);
3720 fail_parents:
3721 fail_ops:
3722 kfree_const(core->name);
3723 fail_name:
3724 kfree(core);
3725 fail_out:
3726 return ERR_PTR(ret);
3730 * clk_register - allocate a new clock, register it and return an opaque cookie
3731 * @dev: device that is registering this clock
3732 * @hw: link to hardware-specific clock data
3734 * clk_register is the *deprecated* interface for populating the clock tree with
3735 * new clock nodes. Use clk_hw_register() instead.
3737 * Returns: a pointer to the newly allocated struct clk which
3738 * cannot be dereferenced by driver code but may be used in conjunction with the
3739 * rest of the clock API. In the event of an error clk_register will return an
3740 * error code; drivers must test for an error code after calling clk_register.
3742 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3744 return __clk_register(dev, dev_of_node(dev), hw);
3746 EXPORT_SYMBOL_GPL(clk_register);
3749 * clk_hw_register - register a clk_hw and return an error code
3750 * @dev: device that is registering this clock
3751 * @hw: link to hardware-specific clock data
3753 * clk_hw_register is the primary interface for populating the clock tree with
3754 * new clock nodes. It returns an integer equal to zero indicating success or
3755 * less than zero indicating failure. Drivers must test for an error code after
3756 * calling clk_hw_register().
3758 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3760 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_of_node(dev), hw));
3762 EXPORT_SYMBOL_GPL(clk_hw_register);
3765 * of_clk_hw_register - register a clk_hw and return an error code
3766 * @node: device_node of device that is registering this clock
3767 * @hw: link to hardware-specific clock data
3769 * of_clk_hw_register() is the primary interface for populating the clock tree
3770 * with new clock nodes when a struct device is not available, but a struct
3771 * device_node is. It returns an integer equal to zero indicating success or
3772 * less than zero indicating failure. Drivers must test for an error code after
3773 * calling of_clk_hw_register().
3775 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
3777 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
3779 EXPORT_SYMBOL_GPL(of_clk_hw_register);
3781 /* Free memory allocated for a clock. */
3782 static void __clk_release(struct kref *ref)
3784 struct clk_core *core = container_of(ref, struct clk_core, ref);
3786 lockdep_assert_held(&prepare_lock);
3788 clk_core_free_parent_map(core);
3789 kfree_const(core->name);
3790 kfree(core);
3794 * Empty clk_ops for unregistered clocks. These are used temporarily
3795 * after clk_unregister() was called on a clock and until last clock
3796 * consumer calls clk_put() and the struct clk object is freed.
3798 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3800 return -ENXIO;
3803 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3805 WARN_ON_ONCE(1);
3808 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3809 unsigned long parent_rate)
3811 return -ENXIO;
3814 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3816 return -ENXIO;
3819 static const struct clk_ops clk_nodrv_ops = {
3820 .enable = clk_nodrv_prepare_enable,
3821 .disable = clk_nodrv_disable_unprepare,
3822 .prepare = clk_nodrv_prepare_enable,
3823 .unprepare = clk_nodrv_disable_unprepare,
3824 .set_rate = clk_nodrv_set_rate,
3825 .set_parent = clk_nodrv_set_parent,
3828 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
3829 struct clk_core *target)
3831 int i;
3832 struct clk_core *child;
3834 for (i = 0; i < root->num_parents; i++)
3835 if (root->parents[i].core == target)
3836 root->parents[i].core = NULL;
3838 hlist_for_each_entry(child, &root->children, child_node)
3839 clk_core_evict_parent_cache_subtree(child, target);
3842 /* Remove this clk from all parent caches */
3843 static void clk_core_evict_parent_cache(struct clk_core *core)
3845 struct hlist_head **lists;
3846 struct clk_core *root;
3848 lockdep_assert_held(&prepare_lock);
3850 for (lists = all_lists; *lists; lists++)
3851 hlist_for_each_entry(root, *lists, child_node)
3852 clk_core_evict_parent_cache_subtree(root, core);
3857 * clk_unregister - unregister a currently registered clock
3858 * @clk: clock to unregister
3860 void clk_unregister(struct clk *clk)
3862 unsigned long flags;
3864 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3865 return;
3867 clk_debug_unregister(clk->core);
3869 clk_prepare_lock();
3871 if (clk->core->ops == &clk_nodrv_ops) {
3872 pr_err("%s: unregistered clock: %s\n", __func__,
3873 clk->core->name);
3874 goto unlock;
3877 * Assign empty clock ops for consumers that might still hold
3878 * a reference to this clock.
3880 flags = clk_enable_lock();
3881 clk->core->ops = &clk_nodrv_ops;
3882 clk_enable_unlock(flags);
3884 if (!hlist_empty(&clk->core->children)) {
3885 struct clk_core *child;
3886 struct hlist_node *t;
3888 /* Reparent all children to the orphan list. */
3889 hlist_for_each_entry_safe(child, t, &clk->core->children,
3890 child_node)
3891 clk_core_set_parent_nolock(child, NULL);
3894 clk_core_evict_parent_cache(clk->core);
3896 hlist_del_init(&clk->core->child_node);
3898 if (clk->core->prepare_count)
3899 pr_warn("%s: unregistering prepared clock: %s\n",
3900 __func__, clk->core->name);
3902 if (clk->core->protect_count)
3903 pr_warn("%s: unregistering protected clock: %s\n",
3904 __func__, clk->core->name);
3906 kref_put(&clk->core->ref, __clk_release);
3907 free_clk(clk);
3908 unlock:
3909 clk_prepare_unlock();
3911 EXPORT_SYMBOL_GPL(clk_unregister);
3914 * clk_hw_unregister - unregister a currently registered clk_hw
3915 * @hw: hardware-specific clock data to unregister
3917 void clk_hw_unregister(struct clk_hw *hw)
3919 clk_unregister(hw->clk);
3921 EXPORT_SYMBOL_GPL(clk_hw_unregister);
3923 static void devm_clk_release(struct device *dev, void *res)
3925 clk_unregister(*(struct clk **)res);
3928 static void devm_clk_hw_release(struct device *dev, void *res)
3930 clk_hw_unregister(*(struct clk_hw **)res);
3934 * devm_clk_register - resource managed clk_register()
3935 * @dev: device that is registering this clock
3936 * @hw: link to hardware-specific clock data
3938 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
3940 * Clocks returned from this function are automatically clk_unregister()ed on
3941 * driver detach. See clk_register() for more information.
3943 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
3945 struct clk *clk;
3946 struct clk **clkp;
3948 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
3949 if (!clkp)
3950 return ERR_PTR(-ENOMEM);
3952 clk = clk_register(dev, hw);
3953 if (!IS_ERR(clk)) {
3954 *clkp = clk;
3955 devres_add(dev, clkp);
3956 } else {
3957 devres_free(clkp);
3960 return clk;
3962 EXPORT_SYMBOL_GPL(devm_clk_register);
3965 * devm_clk_hw_register - resource managed clk_hw_register()
3966 * @dev: device that is registering this clock
3967 * @hw: link to hardware-specific clock data
3969 * Managed clk_hw_register(). Clocks registered by this function are
3970 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
3971 * for more information.
3973 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
3975 struct clk_hw **hwp;
3976 int ret;
3978 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
3979 if (!hwp)
3980 return -ENOMEM;
3982 ret = clk_hw_register(dev, hw);
3983 if (!ret) {
3984 *hwp = hw;
3985 devres_add(dev, hwp);
3986 } else {
3987 devres_free(hwp);
3990 return ret;
3992 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
3994 static int devm_clk_match(struct device *dev, void *res, void *data)
3996 struct clk *c = res;
3997 if (WARN_ON(!c))
3998 return 0;
3999 return c == data;
4002 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4004 struct clk_hw *hw = res;
4006 if (WARN_ON(!hw))
4007 return 0;
4008 return hw == data;
4012 * devm_clk_unregister - resource managed clk_unregister()
4013 * @clk: clock to unregister
4015 * Deallocate a clock allocated with devm_clk_register(). Normally
4016 * this function will not need to be called and the resource management
4017 * code will ensure that the resource is freed.
4019 void devm_clk_unregister(struct device *dev, struct clk *clk)
4021 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
4023 EXPORT_SYMBOL_GPL(devm_clk_unregister);
4026 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4027 * @dev: device that is unregistering the hardware-specific clock data
4028 * @hw: link to hardware-specific clock data
4030 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4031 * this function will not need to be called and the resource management
4032 * code will ensure that the resource is freed.
4034 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4036 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
4037 hw));
4039 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4042 * clkdev helpers
4045 void __clk_put(struct clk *clk)
4047 struct module *owner;
4049 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4050 return;
4052 clk_prepare_lock();
4055 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4056 * given user should be balanced with calls to clk_rate_exclusive_put()
4057 * and by that same consumer
4059 if (WARN_ON(clk->exclusive_count)) {
4060 /* We voiced our concern, let's sanitize the situation */
4061 clk->core->protect_count -= (clk->exclusive_count - 1);
4062 clk_core_rate_unprotect(clk->core);
4063 clk->exclusive_count = 0;
4066 hlist_del(&clk->clks_node);
4067 if (clk->min_rate > clk->core->req_rate ||
4068 clk->max_rate < clk->core->req_rate)
4069 clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4071 owner = clk->core->owner;
4072 kref_put(&clk->core->ref, __clk_release);
4074 clk_prepare_unlock();
4076 module_put(owner);
4078 free_clk(clk);
4081 /*** clk rate change notifiers ***/
4084 * clk_notifier_register - add a clk rate change notifier
4085 * @clk: struct clk * to watch
4086 * @nb: struct notifier_block * with callback info
4088 * Request notification when clk's rate changes. This uses an SRCU
4089 * notifier because we want it to block and notifier unregistrations are
4090 * uncommon. The callbacks associated with the notifier must not
4091 * re-enter into the clk framework by calling any top-level clk APIs;
4092 * this will cause a nested prepare_lock mutex.
4094 * In all notification cases (pre, post and abort rate change) the original
4095 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4096 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4098 * clk_notifier_register() must be called from non-atomic context.
4099 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4100 * allocation failure; otherwise, passes along the return value of
4101 * srcu_notifier_chain_register().
4103 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4105 struct clk_notifier *cn;
4106 int ret = -ENOMEM;
4108 if (!clk || !nb)
4109 return -EINVAL;
4111 clk_prepare_lock();
4113 /* search the list of notifiers for this clk */
4114 list_for_each_entry(cn, &clk_notifier_list, node)
4115 if (cn->clk == clk)
4116 break;
4118 /* if clk wasn't in the notifier list, allocate new clk_notifier */
4119 if (cn->clk != clk) {
4120 cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4121 if (!cn)
4122 goto out;
4124 cn->clk = clk;
4125 srcu_init_notifier_head(&cn->notifier_head);
4127 list_add(&cn->node, &clk_notifier_list);
4130 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4132 clk->core->notifier_count++;
4134 out:
4135 clk_prepare_unlock();
4137 return ret;
4139 EXPORT_SYMBOL_GPL(clk_notifier_register);
4142 * clk_notifier_unregister - remove a clk rate change notifier
4143 * @clk: struct clk *
4144 * @nb: struct notifier_block * with callback info
4146 * Request no further notification for changes to 'clk' and frees memory
4147 * allocated in clk_notifier_register.
4149 * Returns -EINVAL if called with null arguments; otherwise, passes
4150 * along the return value of srcu_notifier_chain_unregister().
4152 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4154 struct clk_notifier *cn = NULL;
4155 int ret = -EINVAL;
4157 if (!clk || !nb)
4158 return -EINVAL;
4160 clk_prepare_lock();
4162 list_for_each_entry(cn, &clk_notifier_list, node)
4163 if (cn->clk == clk)
4164 break;
4166 if (cn->clk == clk) {
4167 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4169 clk->core->notifier_count--;
4171 /* XXX the notifier code should handle this better */
4172 if (!cn->notifier_head.head) {
4173 srcu_cleanup_notifier_head(&cn->notifier_head);
4174 list_del(&cn->node);
4175 kfree(cn);
4178 } else {
4179 ret = -ENOENT;
4182 clk_prepare_unlock();
4184 return ret;
4186 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4188 #ifdef CONFIG_OF
4189 static void clk_core_reparent_orphans(void)
4191 clk_prepare_lock();
4192 clk_core_reparent_orphans_nolock();
4193 clk_prepare_unlock();
4197 * struct of_clk_provider - Clock provider registration structure
4198 * @link: Entry in global list of clock providers
4199 * @node: Pointer to device tree node of clock provider
4200 * @get: Get clock callback. Returns NULL or a struct clk for the
4201 * given clock specifier
4202 * @data: context pointer to be passed into @get callback
4204 struct of_clk_provider {
4205 struct list_head link;
4207 struct device_node *node;
4208 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4209 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4210 void *data;
4213 extern struct of_device_id __clk_of_table;
4214 static const struct of_device_id __clk_of_table_sentinel
4215 __used __section(__clk_of_table_end);
4217 static LIST_HEAD(of_clk_providers);
4218 static DEFINE_MUTEX(of_clk_mutex);
4220 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4221 void *data)
4223 return data;
4225 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4227 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4229 return data;
4231 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4233 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4235 struct clk_onecell_data *clk_data = data;
4236 unsigned int idx = clkspec->args[0];
4238 if (idx >= clk_data->clk_num) {
4239 pr_err("%s: invalid clock index %u\n", __func__, idx);
4240 return ERR_PTR(-EINVAL);
4243 return clk_data->clks[idx];
4245 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4247 struct clk_hw *
4248 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4250 struct clk_hw_onecell_data *hw_data = data;
4251 unsigned int idx = clkspec->args[0];
4253 if (idx >= hw_data->num) {
4254 pr_err("%s: invalid index %u\n", __func__, idx);
4255 return ERR_PTR(-EINVAL);
4258 return hw_data->hws[idx];
4260 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4263 * of_clk_add_provider() - Register a clock provider for a node
4264 * @np: Device node pointer associated with clock provider
4265 * @clk_src_get: callback for decoding clock
4266 * @data: context pointer for @clk_src_get callback.
4268 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4270 int of_clk_add_provider(struct device_node *np,
4271 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4272 void *data),
4273 void *data)
4275 struct of_clk_provider *cp;
4276 int ret;
4278 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4279 if (!cp)
4280 return -ENOMEM;
4282 cp->node = of_node_get(np);
4283 cp->data = data;
4284 cp->get = clk_src_get;
4286 mutex_lock(&of_clk_mutex);
4287 list_add(&cp->link, &of_clk_providers);
4288 mutex_unlock(&of_clk_mutex);
4289 pr_debug("Added clock from %pOF\n", np);
4291 clk_core_reparent_orphans();
4293 ret = of_clk_set_defaults(np, true);
4294 if (ret < 0)
4295 of_clk_del_provider(np);
4297 return ret;
4299 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4302 * of_clk_add_hw_provider() - Register a clock provider for a node
4303 * @np: Device node pointer associated with clock provider
4304 * @get: callback for decoding clk_hw
4305 * @data: context pointer for @get callback.
4307 int of_clk_add_hw_provider(struct device_node *np,
4308 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4309 void *data),
4310 void *data)
4312 struct of_clk_provider *cp;
4313 int ret;
4315 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4316 if (!cp)
4317 return -ENOMEM;
4319 cp->node = of_node_get(np);
4320 cp->data = data;
4321 cp->get_hw = get;
4323 mutex_lock(&of_clk_mutex);
4324 list_add(&cp->link, &of_clk_providers);
4325 mutex_unlock(&of_clk_mutex);
4326 pr_debug("Added clk_hw provider from %pOF\n", np);
4328 clk_core_reparent_orphans();
4330 ret = of_clk_set_defaults(np, true);
4331 if (ret < 0)
4332 of_clk_del_provider(np);
4334 return ret;
4336 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4338 static void devm_of_clk_release_provider(struct device *dev, void *res)
4340 of_clk_del_provider(*(struct device_node **)res);
4344 * We allow a child device to use its parent device as the clock provider node
4345 * for cases like MFD sub-devices where the child device driver wants to use
4346 * devm_*() APIs but not list the device in DT as a sub-node.
4348 static struct device_node *get_clk_provider_node(struct device *dev)
4350 struct device_node *np, *parent_np;
4352 np = dev->of_node;
4353 parent_np = dev->parent ? dev->parent->of_node : NULL;
4355 if (!of_find_property(np, "#clock-cells", NULL))
4356 if (of_find_property(parent_np, "#clock-cells", NULL))
4357 np = parent_np;
4359 return np;
4363 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4364 * @dev: Device acting as the clock provider (used for DT node and lifetime)
4365 * @get: callback for decoding clk_hw
4366 * @data: context pointer for @get callback
4368 * Registers clock provider for given device's node. If the device has no DT
4369 * node or if the device node lacks of clock provider information (#clock-cells)
4370 * then the parent device's node is scanned for this information. If parent node
4371 * has the #clock-cells then it is used in registration. Provider is
4372 * automatically released at device exit.
4374 * Return: 0 on success or an errno on failure.
4376 int devm_of_clk_add_hw_provider(struct device *dev,
4377 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4378 void *data),
4379 void *data)
4381 struct device_node **ptr, *np;
4382 int ret;
4384 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4385 GFP_KERNEL);
4386 if (!ptr)
4387 return -ENOMEM;
4389 np = get_clk_provider_node(dev);
4390 ret = of_clk_add_hw_provider(np, get, data);
4391 if (!ret) {
4392 *ptr = np;
4393 devres_add(dev, ptr);
4394 } else {
4395 devres_free(ptr);
4398 return ret;
4400 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4403 * of_clk_del_provider() - Remove a previously registered clock provider
4404 * @np: Device node pointer associated with clock provider
4406 void of_clk_del_provider(struct device_node *np)
4408 struct of_clk_provider *cp;
4410 mutex_lock(&of_clk_mutex);
4411 list_for_each_entry(cp, &of_clk_providers, link) {
4412 if (cp->node == np) {
4413 list_del(&cp->link);
4414 of_node_put(cp->node);
4415 kfree(cp);
4416 break;
4419 mutex_unlock(&of_clk_mutex);
4421 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4423 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4425 struct device_node **np = res;
4427 if (WARN_ON(!np || !*np))
4428 return 0;
4430 return *np == data;
4434 * devm_of_clk_del_provider() - Remove clock provider registered using devm
4435 * @dev: Device to whose lifetime the clock provider was bound
4437 void devm_of_clk_del_provider(struct device *dev)
4439 int ret;
4440 struct device_node *np = get_clk_provider_node(dev);
4442 ret = devres_release(dev, devm_of_clk_release_provider,
4443 devm_clk_provider_match, np);
4445 WARN_ON(ret);
4447 EXPORT_SYMBOL(devm_of_clk_del_provider);
4450 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4451 * @np: device node to parse clock specifier from
4452 * @index: index of phandle to parse clock out of. If index < 0, @name is used
4453 * @name: clock name to find and parse. If name is NULL, the index is used
4454 * @out_args: Result of parsing the clock specifier
4456 * Parses a device node's "clocks" and "clock-names" properties to find the
4457 * phandle and cells for the index or name that is desired. The resulting clock
4458 * specifier is placed into @out_args, or an errno is returned when there's a
4459 * parsing error. The @index argument is ignored if @name is non-NULL.
4461 * Example:
4463 * phandle1: clock-controller@1 {
4464 * #clock-cells = <2>;
4467 * phandle2: clock-controller@2 {
4468 * #clock-cells = <1>;
4471 * clock-consumer@3 {
4472 * clocks = <&phandle1 1 2 &phandle2 3>;
4473 * clock-names = "name1", "name2";
4476 * To get a device_node for `clock-controller@2' node you may call this
4477 * function a few different ways:
4479 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4480 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4481 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4483 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4484 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4485 * the "clock-names" property of @np.
4487 static int of_parse_clkspec(const struct device_node *np, int index,
4488 const char *name, struct of_phandle_args *out_args)
4490 int ret = -ENOENT;
4492 /* Walk up the tree of devices looking for a clock property that matches */
4493 while (np) {
4495 * For named clocks, first look up the name in the
4496 * "clock-names" property. If it cannot be found, then index
4497 * will be an error code and of_parse_phandle_with_args() will
4498 * return -EINVAL.
4500 if (name)
4501 index = of_property_match_string(np, "clock-names", name);
4502 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4503 index, out_args);
4504 if (!ret)
4505 break;
4506 if (name && index >= 0)
4507 break;
4510 * No matching clock found on this node. If the parent node
4511 * has a "clock-ranges" property, then we can try one of its
4512 * clocks.
4514 np = np->parent;
4515 if (np && !of_get_property(np, "clock-ranges", NULL))
4516 break;
4517 index = 0;
4520 return ret;
4523 static struct clk_hw *
4524 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4525 struct of_phandle_args *clkspec)
4527 struct clk *clk;
4529 if (provider->get_hw)
4530 return provider->get_hw(clkspec, provider->data);
4532 clk = provider->get(clkspec, provider->data);
4533 if (IS_ERR(clk))
4534 return ERR_CAST(clk);
4535 return __clk_get_hw(clk);
4538 static struct clk_hw *
4539 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4541 struct of_clk_provider *provider;
4542 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4544 if (!clkspec)
4545 return ERR_PTR(-EINVAL);
4547 mutex_lock(&of_clk_mutex);
4548 list_for_each_entry(provider, &of_clk_providers, link) {
4549 if (provider->node == clkspec->np) {
4550 hw = __of_clk_get_hw_from_provider(provider, clkspec);
4551 if (!IS_ERR(hw))
4552 break;
4555 mutex_unlock(&of_clk_mutex);
4557 return hw;
4561 * of_clk_get_from_provider() - Lookup a clock from a clock provider
4562 * @clkspec: pointer to a clock specifier data structure
4564 * This function looks up a struct clk from the registered list of clock
4565 * providers, an input is a clock specifier data structure as returned
4566 * from the of_parse_phandle_with_args() function call.
4568 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4570 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4572 return clk_hw_create_clk(NULL, hw, NULL, __func__);
4574 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4576 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4577 const char *con_id)
4579 int ret;
4580 struct clk_hw *hw;
4581 struct of_phandle_args clkspec;
4583 ret = of_parse_clkspec(np, index, con_id, &clkspec);
4584 if (ret)
4585 return ERR_PTR(ret);
4587 hw = of_clk_get_hw_from_clkspec(&clkspec);
4588 of_node_put(clkspec.np);
4590 return hw;
4593 static struct clk *__of_clk_get(struct device_node *np,
4594 int index, const char *dev_id,
4595 const char *con_id)
4597 struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4599 return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4602 struct clk *of_clk_get(struct device_node *np, int index)
4604 return __of_clk_get(np, index, np->full_name, NULL);
4606 EXPORT_SYMBOL(of_clk_get);
4609 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4610 * @np: pointer to clock consumer node
4611 * @name: name of consumer's clock input, or NULL for the first clock reference
4613 * This function parses the clocks and clock-names properties,
4614 * and uses them to look up the struct clk from the registered list of clock
4615 * providers.
4617 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4619 if (!np)
4620 return ERR_PTR(-ENOENT);
4622 return __of_clk_get(np, 0, np->full_name, name);
4624 EXPORT_SYMBOL(of_clk_get_by_name);
4627 * of_clk_get_parent_count() - Count the number of clocks a device node has
4628 * @np: device node to count
4630 * Returns: The number of clocks that are possible parents of this node
4632 unsigned int of_clk_get_parent_count(struct device_node *np)
4634 int count;
4636 count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4637 if (count < 0)
4638 return 0;
4640 return count;
4642 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4644 const char *of_clk_get_parent_name(struct device_node *np, int index)
4646 struct of_phandle_args clkspec;
4647 struct property *prop;
4648 const char *clk_name;
4649 const __be32 *vp;
4650 u32 pv;
4651 int rc;
4652 int count;
4653 struct clk *clk;
4655 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4656 &clkspec);
4657 if (rc)
4658 return NULL;
4660 index = clkspec.args_count ? clkspec.args[0] : 0;
4661 count = 0;
4663 /* if there is an indices property, use it to transfer the index
4664 * specified into an array offset for the clock-output-names property.
4666 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4667 if (index == pv) {
4668 index = count;
4669 break;
4671 count++;
4673 /* We went off the end of 'clock-indices' without finding it */
4674 if (prop && !vp)
4675 return NULL;
4677 if (of_property_read_string_index(clkspec.np, "clock-output-names",
4678 index,
4679 &clk_name) < 0) {
4681 * Best effort to get the name if the clock has been
4682 * registered with the framework. If the clock isn't
4683 * registered, we return the node name as the name of
4684 * the clock as long as #clock-cells = 0.
4686 clk = of_clk_get_from_provider(&clkspec);
4687 if (IS_ERR(clk)) {
4688 if (clkspec.args_count == 0)
4689 clk_name = clkspec.np->name;
4690 else
4691 clk_name = NULL;
4692 } else {
4693 clk_name = __clk_get_name(clk);
4694 clk_put(clk);
4699 of_node_put(clkspec.np);
4700 return clk_name;
4702 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4705 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4706 * number of parents
4707 * @np: Device node pointer associated with clock provider
4708 * @parents: pointer to char array that hold the parents' names
4709 * @size: size of the @parents array
4711 * Return: number of parents for the clock node.
4713 int of_clk_parent_fill(struct device_node *np, const char **parents,
4714 unsigned int size)
4716 unsigned int i = 0;
4718 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4719 i++;
4721 return i;
4723 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4725 struct clock_provider {
4726 void (*clk_init_cb)(struct device_node *);
4727 struct device_node *np;
4728 struct list_head node;
4732 * This function looks for a parent clock. If there is one, then it
4733 * checks that the provider for this parent clock was initialized, in
4734 * this case the parent clock will be ready.
4736 static int parent_ready(struct device_node *np)
4738 int i = 0;
4740 while (true) {
4741 struct clk *clk = of_clk_get(np, i);
4743 /* this parent is ready we can check the next one */
4744 if (!IS_ERR(clk)) {
4745 clk_put(clk);
4746 i++;
4747 continue;
4750 /* at least one parent is not ready, we exit now */
4751 if (PTR_ERR(clk) == -EPROBE_DEFER)
4752 return 0;
4755 * Here we make assumption that the device tree is
4756 * written correctly. So an error means that there is
4757 * no more parent. As we didn't exit yet, then the
4758 * previous parent are ready. If there is no clock
4759 * parent, no need to wait for them, then we can
4760 * consider their absence as being ready
4762 return 1;
4767 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
4768 * @np: Device node pointer associated with clock provider
4769 * @index: clock index
4770 * @flags: pointer to top-level framework flags
4772 * Detects if the clock-critical property exists and, if so, sets the
4773 * corresponding CLK_IS_CRITICAL flag.
4775 * Do not use this function. It exists only for legacy Device Tree
4776 * bindings, such as the one-clock-per-node style that are outdated.
4777 * Those bindings typically put all clock data into .dts and the Linux
4778 * driver has no clock data, thus making it impossible to set this flag
4779 * correctly from the driver. Only those drivers may call
4780 * of_clk_detect_critical from their setup functions.
4782 * Return: error code or zero on success
4784 int of_clk_detect_critical(struct device_node *np,
4785 int index, unsigned long *flags)
4787 struct property *prop;
4788 const __be32 *cur;
4789 uint32_t idx;
4791 if (!np || !flags)
4792 return -EINVAL;
4794 of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
4795 if (index == idx)
4796 *flags |= CLK_IS_CRITICAL;
4798 return 0;
4802 * of_clk_init() - Scan and init clock providers from the DT
4803 * @matches: array of compatible values and init functions for providers.
4805 * This function scans the device tree for matching clock providers
4806 * and calls their initialization functions. It also does it by trying
4807 * to follow the dependencies.
4809 void __init of_clk_init(const struct of_device_id *matches)
4811 const struct of_device_id *match;
4812 struct device_node *np;
4813 struct clock_provider *clk_provider, *next;
4814 bool is_init_done;
4815 bool force = false;
4816 LIST_HEAD(clk_provider_list);
4818 if (!matches)
4819 matches = &__clk_of_table;
4821 /* First prepare the list of the clocks providers */
4822 for_each_matching_node_and_match(np, matches, &match) {
4823 struct clock_provider *parent;
4825 if (!of_device_is_available(np))
4826 continue;
4828 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4829 if (!parent) {
4830 list_for_each_entry_safe(clk_provider, next,
4831 &clk_provider_list, node) {
4832 list_del(&clk_provider->node);
4833 of_node_put(clk_provider->np);
4834 kfree(clk_provider);
4836 of_node_put(np);
4837 return;
4840 parent->clk_init_cb = match->data;
4841 parent->np = of_node_get(np);
4842 list_add_tail(&parent->node, &clk_provider_list);
4845 while (!list_empty(&clk_provider_list)) {
4846 is_init_done = false;
4847 list_for_each_entry_safe(clk_provider, next,
4848 &clk_provider_list, node) {
4849 if (force || parent_ready(clk_provider->np)) {
4851 /* Don't populate platform devices */
4852 of_node_set_flag(clk_provider->np,
4853 OF_POPULATED);
4855 clk_provider->clk_init_cb(clk_provider->np);
4856 of_clk_set_defaults(clk_provider->np, true);
4858 list_del(&clk_provider->node);
4859 of_node_put(clk_provider->np);
4860 kfree(clk_provider);
4861 is_init_done = true;
4866 * We didn't manage to initialize any of the
4867 * remaining providers during the last loop, so now we
4868 * initialize all the remaining ones unconditionally
4869 * in case the clock parent was not mandatory
4871 if (!is_init_done)
4872 force = true;
4875 #endif