dm writecache: fix incorrect flush sequence when doing SSD mode commit
[linux/fpc-iii.git] / drivers / usb / host / xhci.c
blobdbac0fa9748d5fcea4bbf44ce610c4ecd1d5b5c7
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
43 struct xhci_segment *seg = ring->first_seg;
45 if (!td || !td->start_seg)
46 return false;
47 do {
48 if (seg == td->start_seg)
49 return true;
50 seg = seg->next;
51 } while (seg && seg != ring->first_seg);
53 return false;
57 * xhci_handshake - spin reading hc until handshake completes or fails
58 * @ptr: address of hc register to be read
59 * @mask: bits to look at in result of read
60 * @done: value of those bits when handshake succeeds
61 * @usec: timeout in microseconds
63 * Returns negative errno, or zero on success
65 * Success happens when the "mask" bits have the specified value (hardware
66 * handshake done). There are two failure modes: "usec" have passed (major
67 * hardware flakeout), or the register reads as all-ones (hardware removed).
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
71 u32 result;
72 int ret;
74 ret = readl_poll_timeout_atomic(ptr, result,
75 (result & mask) == done ||
76 result == U32_MAX,
77 1, usec);
78 if (result == U32_MAX) /* card removed */
79 return -ENODEV;
81 return ret;
85 * Disable interrupts and begin the xHCI halting process.
87 void xhci_quiesce(struct xhci_hcd *xhci)
89 u32 halted;
90 u32 cmd;
91 u32 mask;
93 mask = ~(XHCI_IRQS);
94 halted = readl(&xhci->op_regs->status) & STS_HALT;
95 if (!halted)
96 mask &= ~CMD_RUN;
98 cmd = readl(&xhci->op_regs->command);
99 cmd &= mask;
100 writel(cmd, &xhci->op_regs->command);
104 * Force HC into halt state.
106 * Disable any IRQs and clear the run/stop bit.
107 * HC will complete any current and actively pipelined transactions, and
108 * should halt within 16 ms of the run/stop bit being cleared.
109 * Read HC Halted bit in the status register to see when the HC is finished.
111 int xhci_halt(struct xhci_hcd *xhci)
113 int ret;
114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 xhci_quiesce(xhci);
117 ret = xhci_handshake(&xhci->op_regs->status,
118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 if (ret) {
120 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 return ret;
123 xhci->xhc_state |= XHCI_STATE_HALTED;
124 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125 return ret;
129 * Set the run bit and wait for the host to be running.
131 int xhci_start(struct xhci_hcd *xhci)
133 u32 temp;
134 int ret;
136 temp = readl(&xhci->op_regs->command);
137 temp |= (CMD_RUN);
138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139 temp);
140 writel(temp, &xhci->op_regs->command);
143 * Wait for the HCHalted Status bit to be 0 to indicate the host is
144 * running.
146 ret = xhci_handshake(&xhci->op_regs->status,
147 STS_HALT, 0, XHCI_MAX_HALT_USEC);
148 if (ret == -ETIMEDOUT)
149 xhci_err(xhci, "Host took too long to start, "
150 "waited %u microseconds.\n",
151 XHCI_MAX_HALT_USEC);
152 if (!ret)
153 /* clear state flags. Including dying, halted or removing */
154 xhci->xhc_state = 0;
156 return ret;
160 * Reset a halted HC.
162 * This resets pipelines, timers, counters, state machines, etc.
163 * Transactions will be terminated immediately, and operational registers
164 * will be set to their defaults.
166 int xhci_reset(struct xhci_hcd *xhci)
168 u32 command;
169 u32 state;
170 int ret;
172 state = readl(&xhci->op_regs->status);
174 if (state == ~(u32)0) {
175 xhci_warn(xhci, "Host not accessible, reset failed.\n");
176 return -ENODEV;
179 if ((state & STS_HALT) == 0) {
180 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181 return 0;
184 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185 command = readl(&xhci->op_regs->command);
186 command |= CMD_RESET;
187 writel(command, &xhci->op_regs->command);
189 /* Existing Intel xHCI controllers require a delay of 1 mS,
190 * after setting the CMD_RESET bit, and before accessing any
191 * HC registers. This allows the HC to complete the
192 * reset operation and be ready for HC register access.
193 * Without this delay, the subsequent HC register access,
194 * may result in a system hang very rarely.
196 if (xhci->quirks & XHCI_INTEL_HOST)
197 udelay(1000);
199 ret = xhci_handshake(&xhci->op_regs->command,
200 CMD_RESET, 0, 10 * 1000 * 1000);
201 if (ret)
202 return ret;
204 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
207 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208 "Wait for controller to be ready for doorbell rings");
210 * xHCI cannot write to any doorbells or operational registers other
211 * than status until the "Controller Not Ready" flag is cleared.
213 ret = xhci_handshake(&xhci->op_regs->status,
214 STS_CNR, 0, 10 * 1000 * 1000);
216 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 xhci->usb3_rhub.bus_state.resuming_ports = 0;
223 return ret;
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
228 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 int err, i;
230 u64 val;
233 * Some Renesas controllers get into a weird state if they are
234 * reset while programmed with 64bit addresses (they will preserve
235 * the top half of the address in internal, non visible
236 * registers). You end up with half the address coming from the
237 * kernel, and the other half coming from the firmware. Also,
238 * changing the programming leads to extra accesses even if the
239 * controller is supposed to be halted. The controller ends up with
240 * a fatal fault, and is then ripe for being properly reset.
242 * Special care is taken to only apply this if the device is behind
243 * an iommu. Doing anything when there is no iommu is definitely
244 * unsafe...
246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 return;
249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
251 /* Clear HSEIE so that faults do not get signaled */
252 val = readl(&xhci->op_regs->command);
253 val &= ~CMD_HSEIE;
254 writel(val, &xhci->op_regs->command);
256 /* Clear HSE (aka FATAL) */
257 val = readl(&xhci->op_regs->status);
258 val |= STS_FATAL;
259 writel(val, &xhci->op_regs->status);
261 /* Now zero the registers, and brace for impact */
262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 if (upper_32_bits(val))
264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 if (upper_32_bits(val))
267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
269 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270 struct xhci_intr_reg __iomem *ir;
272 ir = &xhci->run_regs->ir_set[i];
273 val = xhci_read_64(xhci, &ir->erst_base);
274 if (upper_32_bits(val))
275 xhci_write_64(xhci, 0, &ir->erst_base);
276 val= xhci_read_64(xhci, &ir->erst_dequeue);
277 if (upper_32_bits(val))
278 xhci_write_64(xhci, 0, &ir->erst_dequeue);
281 /* Wait for the fault to appear. It will be cleared on reset */
282 err = xhci_handshake(&xhci->op_regs->status,
283 STS_FATAL, STS_FATAL,
284 XHCI_MAX_HALT_USEC);
285 if (!err)
286 xhci_info(xhci, "Fault detected\n");
289 #ifdef CONFIG_USB_PCI
291 * Set up MSI
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
295 int ret;
297 * TODO:Check with MSI Soc for sysdev
299 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
301 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302 if (ret < 0) {
303 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304 "failed to allocate MSI entry");
305 return ret;
308 ret = request_irq(pdev->irq, xhci_msi_irq,
309 0, "xhci_hcd", xhci_to_hcd(xhci));
310 if (ret) {
311 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312 "disable MSI interrupt");
313 pci_free_irq_vectors(pdev);
316 return ret;
320 * Set up MSI-X
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
324 int i, ret = 0;
325 struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
329 * calculate number of msi-x vectors supported.
330 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331 * with max number of interrupters based on the xhci HCSPARAMS1.
332 * - num_online_cpus: maximum msi-x vectors per CPUs core.
333 * Add additional 1 vector to ensure always available interrupt.
335 xhci->msix_count = min(num_online_cpus() + 1,
336 HCS_MAX_INTRS(xhci->hcs_params1));
338 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339 PCI_IRQ_MSIX);
340 if (ret < 0) {
341 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342 "Failed to enable MSI-X");
343 return ret;
346 for (i = 0; i < xhci->msix_count; i++) {
347 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348 "xhci_hcd", xhci_to_hcd(xhci));
349 if (ret)
350 goto disable_msix;
353 hcd->msix_enabled = 1;
354 return ret;
356 disable_msix:
357 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358 while (--i >= 0)
359 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360 pci_free_irq_vectors(pdev);
361 return ret;
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
367 struct usb_hcd *hcd = xhci_to_hcd(xhci);
368 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
370 if (xhci->quirks & XHCI_PLAT)
371 return;
373 /* return if using legacy interrupt */
374 if (hcd->irq > 0)
375 return;
377 if (hcd->msix_enabled) {
378 int i;
380 for (i = 0; i < xhci->msix_count; i++)
381 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382 } else {
383 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
386 pci_free_irq_vectors(pdev);
387 hcd->msix_enabled = 0;
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
392 struct usb_hcd *hcd = xhci_to_hcd(xhci);
394 if (hcd->msix_enabled) {
395 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396 int i;
398 for (i = 0; i < xhci->msix_count; i++)
399 synchronize_irq(pci_irq_vector(pdev, i));
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
405 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406 struct pci_dev *pdev;
407 int ret;
409 /* The xhci platform device has set up IRQs through usb_add_hcd. */
410 if (xhci->quirks & XHCI_PLAT)
411 return 0;
413 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
415 * Some Fresco Logic host controllers advertise MSI, but fail to
416 * generate interrupts. Don't even try to enable MSI.
418 if (xhci->quirks & XHCI_BROKEN_MSI)
419 goto legacy_irq;
421 /* unregister the legacy interrupt */
422 if (hcd->irq)
423 free_irq(hcd->irq, hcd);
424 hcd->irq = 0;
426 ret = xhci_setup_msix(xhci);
427 if (ret)
428 /* fall back to msi*/
429 ret = xhci_setup_msi(xhci);
431 if (!ret) {
432 hcd->msi_enabled = 1;
433 return 0;
436 if (!pdev->irq) {
437 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438 return -EINVAL;
441 legacy_irq:
442 if (!strlen(hcd->irq_descr))
443 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444 hcd->driver->description, hcd->self.busnum);
446 /* fall back to legacy interrupt*/
447 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448 hcd->irq_descr, hcd);
449 if (ret) {
450 xhci_err(xhci, "request interrupt %d failed\n",
451 pdev->irq);
452 return ret;
454 hcd->irq = pdev->irq;
455 return 0;
458 #else
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
462 return 0;
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
473 #endif
475 static void compliance_mode_recovery(struct timer_list *t)
477 struct xhci_hcd *xhci;
478 struct usb_hcd *hcd;
479 struct xhci_hub *rhub;
480 u32 temp;
481 int i;
483 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484 rhub = &xhci->usb3_rhub;
486 for (i = 0; i < rhub->num_ports; i++) {
487 temp = readl(rhub->ports[i]->addr);
488 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
490 * Compliance Mode Detected. Letting USB Core
491 * handle the Warm Reset
493 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494 "Compliance mode detected->port %d",
495 i + 1);
496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 "Attempting compliance mode recovery");
498 hcd = xhci->shared_hcd;
500 if (hcd->state == HC_STATE_SUSPENDED)
501 usb_hcd_resume_root_hub(hcd);
503 usb_hcd_poll_rh_status(hcd);
507 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508 mod_timer(&xhci->comp_mode_recovery_timer,
509 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
513 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514 * that causes ports behind that hardware to enter compliance mode sometimes.
515 * The quirk creates a timer that polls every 2 seconds the link state of
516 * each host controller's port and recovers it by issuing a Warm reset
517 * if Compliance mode is detected, otherwise the port will become "dead" (no
518 * device connections or disconnections will be detected anymore). Becasue no
519 * status event is generated when entering compliance mode (per xhci spec),
520 * this quirk is needed on systems that have the failing hardware installed.
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
524 xhci->port_status_u0 = 0;
525 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
527 xhci->comp_mode_recovery_timer.expires = jiffies +
528 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
530 add_timer(&xhci->comp_mode_recovery_timer);
531 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532 "Compliance mode recovery timer initialized");
536 * This function identifies the systems that have installed the SN65LVPE502CP
537 * USB3.0 re-driver and that need the Compliance Mode Quirk.
538 * Systems:
539 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
543 const char *dmi_product_name, *dmi_sys_vendor;
545 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547 if (!dmi_product_name || !dmi_sys_vendor)
548 return false;
550 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551 return false;
553 if (strstr(dmi_product_name, "Z420") ||
554 strstr(dmi_product_name, "Z620") ||
555 strstr(dmi_product_name, "Z820") ||
556 strstr(dmi_product_name, "Z1 Workstation"))
557 return true;
559 return false;
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
564 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
569 * Initialize memory for HCD and xHC (one-time init).
571 * Program the PAGESIZE register, initialize the device context array, create
572 * device contexts (?), set up a command ring segment (or two?), create event
573 * ring (one for now).
575 static int xhci_init(struct usb_hcd *hcd)
577 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578 int retval = 0;
580 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581 spin_lock_init(&xhci->lock);
582 if (xhci->hci_version == 0x95 && link_quirk) {
583 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584 "QUIRK: Not clearing Link TRB chain bits.");
585 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586 } else {
587 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588 "xHCI doesn't need link TRB QUIRK");
590 retval = xhci_mem_init(xhci, GFP_KERNEL);
591 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
593 /* Initializing Compliance Mode Recovery Data If Needed */
594 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596 compliance_mode_recovery_timer_init(xhci);
599 return retval;
602 /*-------------------------------------------------------------------------*/
605 static int xhci_run_finished(struct xhci_hcd *xhci)
607 if (xhci_start(xhci)) {
608 xhci_halt(xhci);
609 return -ENODEV;
611 xhci->shared_hcd->state = HC_STATE_RUNNING;
612 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
614 if (xhci->quirks & XHCI_NEC_HOST)
615 xhci_ring_cmd_db(xhci);
617 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618 "Finished xhci_run for USB3 roothub");
619 return 0;
623 * Start the HC after it was halted.
625 * This function is called by the USB core when the HC driver is added.
626 * Its opposite is xhci_stop().
628 * xhci_init() must be called once before this function can be called.
629 * Reset the HC, enable device slot contexts, program DCBAAP, and
630 * set command ring pointer and event ring pointer.
632 * Setup MSI-X vectors and enable interrupts.
634 int xhci_run(struct usb_hcd *hcd)
636 u32 temp;
637 u64 temp_64;
638 int ret;
639 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
641 /* Start the xHCI host controller running only after the USB 2.0 roothub
642 * is setup.
645 hcd->uses_new_polling = 1;
646 if (!usb_hcd_is_primary_hcd(hcd))
647 return xhci_run_finished(xhci);
649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
651 ret = xhci_try_enable_msi(hcd);
652 if (ret)
653 return ret;
655 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656 temp_64 &= ~ERST_PTR_MASK;
657 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
660 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 "// Set the interrupt modulation register");
662 temp = readl(&xhci->ir_set->irq_control);
663 temp &= ~ER_IRQ_INTERVAL_MASK;
664 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665 writel(temp, &xhci->ir_set->irq_control);
667 /* Set the HCD state before we enable the irqs */
668 temp = readl(&xhci->op_regs->command);
669 temp |= (CMD_EIE);
670 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 "// Enable interrupts, cmd = 0x%x.", temp);
672 writel(temp, &xhci->op_regs->command);
674 temp = readl(&xhci->ir_set->irq_pending);
675 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
680 if (xhci->quirks & XHCI_NEC_HOST) {
681 struct xhci_command *command;
683 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684 if (!command)
685 return -ENOMEM;
687 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688 TRB_TYPE(TRB_NEC_GET_FW));
689 if (ret)
690 xhci_free_command(xhci, command);
692 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693 "Finished xhci_run for USB2 roothub");
695 xhci_dbc_init(xhci);
697 xhci_debugfs_init(xhci);
699 return 0;
701 EXPORT_SYMBOL_GPL(xhci_run);
704 * Stop xHCI driver.
706 * This function is called by the USB core when the HC driver is removed.
707 * Its opposite is xhci_run().
709 * Disable device contexts, disable IRQs, and quiesce the HC.
710 * Reset the HC, finish any completed transactions, and cleanup memory.
712 static void xhci_stop(struct usb_hcd *hcd)
714 u32 temp;
715 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
717 mutex_lock(&xhci->mutex);
719 /* Only halt host and free memory after both hcds are removed */
720 if (!usb_hcd_is_primary_hcd(hcd)) {
721 mutex_unlock(&xhci->mutex);
722 return;
725 xhci_dbc_exit(xhci);
727 spin_lock_irq(&xhci->lock);
728 xhci->xhc_state |= XHCI_STATE_HALTED;
729 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730 xhci_halt(xhci);
731 xhci_reset(xhci);
732 spin_unlock_irq(&xhci->lock);
734 xhci_cleanup_msix(xhci);
736 /* Deleting Compliance Mode Recovery Timer */
737 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738 (!(xhci_all_ports_seen_u0(xhci)))) {
739 del_timer_sync(&xhci->comp_mode_recovery_timer);
740 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741 "%s: compliance mode recovery timer deleted",
742 __func__);
745 if (xhci->quirks & XHCI_AMD_PLL_FIX)
746 usb_amd_dev_put();
748 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749 "// Disabling event ring interrupts");
750 temp = readl(&xhci->op_regs->status);
751 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752 temp = readl(&xhci->ir_set->irq_pending);
753 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
755 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756 xhci_mem_cleanup(xhci);
757 xhci_debugfs_exit(xhci);
758 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759 "xhci_stop completed - status = %x",
760 readl(&xhci->op_regs->status));
761 mutex_unlock(&xhci->mutex);
765 * Shutdown HC (not bus-specific)
767 * This is called when the machine is rebooting or halting. We assume that the
768 * machine will be powered off, and the HC's internal state will be reset.
769 * Don't bother to free memory.
771 * This will only ever be called with the main usb_hcd (the USB3 roothub).
773 void xhci_shutdown(struct usb_hcd *hcd)
775 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
777 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
780 spin_lock_irq(&xhci->lock);
781 xhci_halt(xhci);
782 /* Workaround for spurious wakeups at shutdown with HSW */
783 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784 xhci_reset(xhci);
785 spin_unlock_irq(&xhci->lock);
787 xhci_cleanup_msix(xhci);
789 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790 "xhci_shutdown completed - status = %x",
791 readl(&xhci->op_regs->status));
793 EXPORT_SYMBOL_GPL(xhci_shutdown);
795 #ifdef CONFIG_PM
796 static void xhci_save_registers(struct xhci_hcd *xhci)
798 xhci->s3.command = readl(&xhci->op_regs->command);
799 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
803 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
804 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
805 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
806 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
809 static void xhci_restore_registers(struct xhci_hcd *xhci)
811 writel(xhci->s3.command, &xhci->op_regs->command);
812 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
813 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
814 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
815 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
816 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
817 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
818 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
819 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
824 u64 val_64;
826 /* step 2: initialize command ring buffer */
827 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
828 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
829 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
830 xhci->cmd_ring->dequeue) &
831 (u64) ~CMD_RING_RSVD_BITS) |
832 xhci->cmd_ring->cycle_state;
833 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
834 "// Setting command ring address to 0x%llx",
835 (long unsigned long) val_64);
836 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
840 * The whole command ring must be cleared to zero when we suspend the host.
842 * The host doesn't save the command ring pointer in the suspend well, so we
843 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
844 * aligned, because of the reserved bits in the command ring dequeue pointer
845 * register. Therefore, we can't just set the dequeue pointer back in the
846 * middle of the ring (TRBs are 16-byte aligned).
848 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
850 struct xhci_ring *ring;
851 struct xhci_segment *seg;
853 ring = xhci->cmd_ring;
854 seg = ring->deq_seg;
855 do {
856 memset(seg->trbs, 0,
857 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
858 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
859 cpu_to_le32(~TRB_CYCLE);
860 seg = seg->next;
861 } while (seg != ring->deq_seg);
863 /* Reset the software enqueue and dequeue pointers */
864 ring->deq_seg = ring->first_seg;
865 ring->dequeue = ring->first_seg->trbs;
866 ring->enq_seg = ring->deq_seg;
867 ring->enqueue = ring->dequeue;
869 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
871 * Ring is now zeroed, so the HW should look for change of ownership
872 * when the cycle bit is set to 1.
874 ring->cycle_state = 1;
877 * Reset the hardware dequeue pointer.
878 * Yes, this will need to be re-written after resume, but we're paranoid
879 * and want to make sure the hardware doesn't access bogus memory
880 * because, say, the BIOS or an SMI started the host without changing
881 * the command ring pointers.
883 xhci_set_cmd_ring_deq(xhci);
886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
888 struct xhci_port **ports;
889 int port_index;
890 unsigned long flags;
891 u32 t1, t2, portsc;
893 spin_lock_irqsave(&xhci->lock, flags);
895 /* disable usb3 ports Wake bits */
896 port_index = xhci->usb3_rhub.num_ports;
897 ports = xhci->usb3_rhub.ports;
898 while (port_index--) {
899 t1 = readl(ports[port_index]->addr);
900 portsc = t1;
901 t1 = xhci_port_state_to_neutral(t1);
902 t2 = t1 & ~PORT_WAKE_BITS;
903 if (t1 != t2) {
904 writel(t2, ports[port_index]->addr);
905 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
906 xhci->usb3_rhub.hcd->self.busnum,
907 port_index + 1, portsc, t2);
911 /* disable usb2 ports Wake bits */
912 port_index = xhci->usb2_rhub.num_ports;
913 ports = xhci->usb2_rhub.ports;
914 while (port_index--) {
915 t1 = readl(ports[port_index]->addr);
916 portsc = t1;
917 t1 = xhci_port_state_to_neutral(t1);
918 t2 = t1 & ~PORT_WAKE_BITS;
919 if (t1 != t2) {
920 writel(t2, ports[port_index]->addr);
921 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
922 xhci->usb2_rhub.hcd->self.busnum,
923 port_index + 1, portsc, t2);
926 spin_unlock_irqrestore(&xhci->lock, flags);
929 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
931 struct xhci_port **ports;
932 int port_index;
933 u32 status;
934 u32 portsc;
936 status = readl(&xhci->op_regs->status);
937 if (status & STS_EINT)
938 return true;
940 * Checking STS_EINT is not enough as there is a lag between a change
941 * bit being set and the Port Status Change Event that it generated
942 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
945 port_index = xhci->usb2_rhub.num_ports;
946 ports = xhci->usb2_rhub.ports;
947 while (port_index--) {
948 portsc = readl(ports[port_index]->addr);
949 if (portsc & PORT_CHANGE_MASK ||
950 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
951 return true;
953 port_index = xhci->usb3_rhub.num_ports;
954 ports = xhci->usb3_rhub.ports;
955 while (port_index--) {
956 portsc = readl(ports[port_index]->addr);
957 if (portsc & PORT_CHANGE_MASK ||
958 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
959 return true;
961 return false;
965 * Stop HC (not bus-specific)
967 * This is called when the machine transition into S3/S4 mode.
970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
972 int rc = 0;
973 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
974 struct usb_hcd *hcd = xhci_to_hcd(xhci);
975 u32 command;
976 u32 res;
978 if (!hcd->state)
979 return 0;
981 if (hcd->state != HC_STATE_SUSPENDED ||
982 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
983 return -EINVAL;
985 xhci_dbc_suspend(xhci);
987 /* Clear root port wake on bits if wakeup not allowed. */
988 if (!do_wakeup)
989 xhci_disable_port_wake_on_bits(xhci);
991 /* Don't poll the roothubs on bus suspend. */
992 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
993 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
994 del_timer_sync(&hcd->rh_timer);
995 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
996 del_timer_sync(&xhci->shared_hcd->rh_timer);
998 if (xhci->quirks & XHCI_SUSPEND_DELAY)
999 usleep_range(1000, 1500);
1001 spin_lock_irq(&xhci->lock);
1002 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1003 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1004 /* step 1: stop endpoint */
1005 /* skipped assuming that port suspend has done */
1007 /* step 2: clear Run/Stop bit */
1008 command = readl(&xhci->op_regs->command);
1009 command &= ~CMD_RUN;
1010 writel(command, &xhci->op_regs->command);
1012 /* Some chips from Fresco Logic need an extraordinary delay */
1013 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1015 if (xhci_handshake(&xhci->op_regs->status,
1016 STS_HALT, STS_HALT, delay)) {
1017 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1018 spin_unlock_irq(&xhci->lock);
1019 return -ETIMEDOUT;
1021 xhci_clear_command_ring(xhci);
1023 /* step 3: save registers */
1024 xhci_save_registers(xhci);
1026 /* step 4: set CSS flag */
1027 command = readl(&xhci->op_regs->command);
1028 command |= CMD_CSS;
1029 writel(command, &xhci->op_regs->command);
1030 xhci->broken_suspend = 0;
1031 if (xhci_handshake(&xhci->op_regs->status,
1032 STS_SAVE, 0, 20 * 1000)) {
1034 * AMD SNPS xHC 3.0 occasionally does not clear the
1035 * SSS bit of USBSTS and when driver tries to poll
1036 * to see if the xHC clears BIT(8) which never happens
1037 * and driver assumes that controller is not responding
1038 * and times out. To workaround this, its good to check
1039 * if SRE and HCE bits are not set (as per xhci
1040 * Section 5.4.2) and bypass the timeout.
1042 res = readl(&xhci->op_regs->status);
1043 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1044 (((res & STS_SRE) == 0) &&
1045 ((res & STS_HCE) == 0))) {
1046 xhci->broken_suspend = 1;
1047 } else {
1048 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1049 spin_unlock_irq(&xhci->lock);
1050 return -ETIMEDOUT;
1053 spin_unlock_irq(&xhci->lock);
1056 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1057 * is about to be suspended.
1059 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1060 (!(xhci_all_ports_seen_u0(xhci)))) {
1061 del_timer_sync(&xhci->comp_mode_recovery_timer);
1062 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1063 "%s: compliance mode recovery timer deleted",
1064 __func__);
1067 /* step 5: remove core well power */
1068 /* synchronize irq when using MSI-X */
1069 xhci_msix_sync_irqs(xhci);
1071 return rc;
1073 EXPORT_SYMBOL_GPL(xhci_suspend);
1076 * start xHC (not bus-specific)
1078 * This is called when the machine transition from S3/S4 mode.
1081 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1083 u32 command, temp = 0;
1084 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1085 struct usb_hcd *secondary_hcd;
1086 int retval = 0;
1087 bool comp_timer_running = false;
1089 if (!hcd->state)
1090 return 0;
1092 /* Wait a bit if either of the roothubs need to settle from the
1093 * transition into bus suspend.
1096 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1097 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1098 msleep(100);
1100 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1101 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1103 spin_lock_irq(&xhci->lock);
1104 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1105 hibernated = true;
1107 if (!hibernated) {
1109 * Some controllers might lose power during suspend, so wait
1110 * for controller not ready bit to clear, just as in xHC init.
1112 retval = xhci_handshake(&xhci->op_regs->status,
1113 STS_CNR, 0, 10 * 1000 * 1000);
1114 if (retval) {
1115 xhci_warn(xhci, "Controller not ready at resume %d\n",
1116 retval);
1117 spin_unlock_irq(&xhci->lock);
1118 return retval;
1120 /* step 1: restore register */
1121 xhci_restore_registers(xhci);
1122 /* step 2: initialize command ring buffer */
1123 xhci_set_cmd_ring_deq(xhci);
1124 /* step 3: restore state and start state*/
1125 /* step 3: set CRS flag */
1126 command = readl(&xhci->op_regs->command);
1127 command |= CMD_CRS;
1128 writel(command, &xhci->op_regs->command);
1130 * Some controllers take up to 55+ ms to complete the controller
1131 * restore so setting the timeout to 100ms. Xhci specification
1132 * doesn't mention any timeout value.
1134 if (xhci_handshake(&xhci->op_regs->status,
1135 STS_RESTORE, 0, 100 * 1000)) {
1136 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1137 spin_unlock_irq(&xhci->lock);
1138 return -ETIMEDOUT;
1140 temp = readl(&xhci->op_regs->status);
1143 /* If restore operation fails, re-initialize the HC during resume */
1144 if ((temp & STS_SRE) || hibernated) {
1146 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1147 !(xhci_all_ports_seen_u0(xhci))) {
1148 del_timer_sync(&xhci->comp_mode_recovery_timer);
1149 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1150 "Compliance Mode Recovery Timer deleted!");
1153 /* Let the USB core know _both_ roothubs lost power. */
1154 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1155 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1157 xhci_dbg(xhci, "Stop HCD\n");
1158 xhci_halt(xhci);
1159 xhci_zero_64b_regs(xhci);
1160 xhci_reset(xhci);
1161 spin_unlock_irq(&xhci->lock);
1162 xhci_cleanup_msix(xhci);
1164 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1165 temp = readl(&xhci->op_regs->status);
1166 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1167 temp = readl(&xhci->ir_set->irq_pending);
1168 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1170 xhci_dbg(xhci, "cleaning up memory\n");
1171 xhci_mem_cleanup(xhci);
1172 xhci_debugfs_exit(xhci);
1173 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1174 readl(&xhci->op_regs->status));
1176 /* USB core calls the PCI reinit and start functions twice:
1177 * first with the primary HCD, and then with the secondary HCD.
1178 * If we don't do the same, the host will never be started.
1180 if (!usb_hcd_is_primary_hcd(hcd))
1181 secondary_hcd = hcd;
1182 else
1183 secondary_hcd = xhci->shared_hcd;
1185 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1186 retval = xhci_init(hcd->primary_hcd);
1187 if (retval)
1188 return retval;
1189 comp_timer_running = true;
1191 xhci_dbg(xhci, "Start the primary HCD\n");
1192 retval = xhci_run(hcd->primary_hcd);
1193 if (!retval) {
1194 xhci_dbg(xhci, "Start the secondary HCD\n");
1195 retval = xhci_run(secondary_hcd);
1197 hcd->state = HC_STATE_SUSPENDED;
1198 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1199 goto done;
1202 /* step 4: set Run/Stop bit */
1203 command = readl(&xhci->op_regs->command);
1204 command |= CMD_RUN;
1205 writel(command, &xhci->op_regs->command);
1206 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1207 0, 250 * 1000);
1209 /* step 5: walk topology and initialize portsc,
1210 * portpmsc and portli
1212 /* this is done in bus_resume */
1214 /* step 6: restart each of the previously
1215 * Running endpoints by ringing their doorbells
1218 spin_unlock_irq(&xhci->lock);
1220 xhci_dbc_resume(xhci);
1222 done:
1223 if (retval == 0) {
1224 /* Resume root hubs only when have pending events. */
1225 if (xhci_pending_portevent(xhci)) {
1226 usb_hcd_resume_root_hub(xhci->shared_hcd);
1227 usb_hcd_resume_root_hub(hcd);
1232 * If system is subject to the Quirk, Compliance Mode Timer needs to
1233 * be re-initialized Always after a system resume. Ports are subject
1234 * to suffer the Compliance Mode issue again. It doesn't matter if
1235 * ports have entered previously to U0 before system's suspension.
1237 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1238 compliance_mode_recovery_timer_init(xhci);
1240 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1241 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1243 /* Re-enable port polling. */
1244 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1245 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1246 usb_hcd_poll_rh_status(xhci->shared_hcd);
1247 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1248 usb_hcd_poll_rh_status(hcd);
1250 return retval;
1252 EXPORT_SYMBOL_GPL(xhci_resume);
1253 #endif /* CONFIG_PM */
1255 /*-------------------------------------------------------------------------*/
1258 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1259 * we'll copy the actual data into the TRB address register. This is limited to
1260 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1261 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1263 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1264 gfp_t mem_flags)
1266 if (xhci_urb_suitable_for_idt(urb))
1267 return 0;
1269 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1273 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1274 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1275 * value to right shift 1 for the bitmask.
1277 * Index = (epnum * 2) + direction - 1,
1278 * where direction = 0 for OUT, 1 for IN.
1279 * For control endpoints, the IN index is used (OUT index is unused), so
1280 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1282 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1284 unsigned int index;
1285 if (usb_endpoint_xfer_control(desc))
1286 index = (unsigned int) (usb_endpoint_num(desc)*2);
1287 else
1288 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1289 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1290 return index;
1293 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1294 * address from the XHCI endpoint index.
1296 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1298 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1299 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1300 return direction | number;
1303 /* Find the flag for this endpoint (for use in the control context). Use the
1304 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1305 * bit 1, etc.
1307 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1309 return 1 << (xhci_get_endpoint_index(desc) + 1);
1312 /* Find the flag for this endpoint (for use in the control context). Use the
1313 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1314 * bit 1, etc.
1316 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1318 return 1 << (ep_index + 1);
1321 /* Compute the last valid endpoint context index. Basically, this is the
1322 * endpoint index plus one. For slot contexts with more than valid endpoint,
1323 * we find the most significant bit set in the added contexts flags.
1324 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1325 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1327 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1329 return fls(added_ctxs) - 1;
1332 /* Returns 1 if the arguments are OK;
1333 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1335 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1336 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1337 const char *func) {
1338 struct xhci_hcd *xhci;
1339 struct xhci_virt_device *virt_dev;
1341 if (!hcd || (check_ep && !ep) || !udev) {
1342 pr_debug("xHCI %s called with invalid args\n", func);
1343 return -EINVAL;
1345 if (!udev->parent) {
1346 pr_debug("xHCI %s called for root hub\n", func);
1347 return 0;
1350 xhci = hcd_to_xhci(hcd);
1351 if (check_virt_dev) {
1352 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1353 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1354 func);
1355 return -EINVAL;
1358 virt_dev = xhci->devs[udev->slot_id];
1359 if (virt_dev->udev != udev) {
1360 xhci_dbg(xhci, "xHCI %s called with udev and "
1361 "virt_dev does not match\n", func);
1362 return -EINVAL;
1366 if (xhci->xhc_state & XHCI_STATE_HALTED)
1367 return -ENODEV;
1369 return 1;
1372 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1373 struct usb_device *udev, struct xhci_command *command,
1374 bool ctx_change, bool must_succeed);
1377 * Full speed devices may have a max packet size greater than 8 bytes, but the
1378 * USB core doesn't know that until it reads the first 8 bytes of the
1379 * descriptor. If the usb_device's max packet size changes after that point,
1380 * we need to issue an evaluate context command and wait on it.
1382 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1383 unsigned int ep_index, struct urb *urb)
1385 struct xhci_container_ctx *out_ctx;
1386 struct xhci_input_control_ctx *ctrl_ctx;
1387 struct xhci_ep_ctx *ep_ctx;
1388 struct xhci_command *command;
1389 int max_packet_size;
1390 int hw_max_packet_size;
1391 int ret = 0;
1393 out_ctx = xhci->devs[slot_id]->out_ctx;
1394 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1395 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1396 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1397 if (hw_max_packet_size != max_packet_size) {
1398 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1399 "Max Packet Size for ep 0 changed.");
1400 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1401 "Max packet size in usb_device = %d",
1402 max_packet_size);
1403 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1404 "Max packet size in xHCI HW = %d",
1405 hw_max_packet_size);
1406 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1407 "Issuing evaluate context command.");
1409 /* Set up the input context flags for the command */
1410 /* FIXME: This won't work if a non-default control endpoint
1411 * changes max packet sizes.
1414 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1415 if (!command)
1416 return -ENOMEM;
1418 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1419 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1420 if (!ctrl_ctx) {
1421 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1422 __func__);
1423 ret = -ENOMEM;
1424 goto command_cleanup;
1426 /* Set up the modified control endpoint 0 */
1427 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1428 xhci->devs[slot_id]->out_ctx, ep_index);
1430 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1431 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1432 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1434 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1435 ctrl_ctx->drop_flags = 0;
1437 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1438 true, false);
1440 /* Clean up the input context for later use by bandwidth
1441 * functions.
1443 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1444 command_cleanup:
1445 kfree(command->completion);
1446 kfree(command);
1448 return ret;
1452 * non-error returns are a promise to giveback() the urb later
1453 * we drop ownership so next owner (or urb unlink) can get it
1455 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1457 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1458 unsigned long flags;
1459 int ret = 0;
1460 unsigned int slot_id, ep_index;
1461 unsigned int *ep_state;
1462 struct urb_priv *urb_priv;
1463 int num_tds;
1465 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1466 true, true, __func__) <= 0)
1467 return -EINVAL;
1469 slot_id = urb->dev->slot_id;
1470 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1471 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1473 if (!HCD_HW_ACCESSIBLE(hcd)) {
1474 if (!in_interrupt())
1475 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1476 return -ESHUTDOWN;
1478 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1479 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1480 return -ENODEV;
1483 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1484 num_tds = urb->number_of_packets;
1485 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1486 urb->transfer_buffer_length > 0 &&
1487 urb->transfer_flags & URB_ZERO_PACKET &&
1488 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1489 num_tds = 2;
1490 else
1491 num_tds = 1;
1493 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1494 if (!urb_priv)
1495 return -ENOMEM;
1497 urb_priv->num_tds = num_tds;
1498 urb_priv->num_tds_done = 0;
1499 urb->hcpriv = urb_priv;
1501 trace_xhci_urb_enqueue(urb);
1503 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1504 /* Check to see if the max packet size for the default control
1505 * endpoint changed during FS device enumeration
1507 if (urb->dev->speed == USB_SPEED_FULL) {
1508 ret = xhci_check_maxpacket(xhci, slot_id,
1509 ep_index, urb);
1510 if (ret < 0) {
1511 xhci_urb_free_priv(urb_priv);
1512 urb->hcpriv = NULL;
1513 return ret;
1518 spin_lock_irqsave(&xhci->lock, flags);
1520 if (xhci->xhc_state & XHCI_STATE_DYING) {
1521 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1522 urb->ep->desc.bEndpointAddress, urb);
1523 ret = -ESHUTDOWN;
1524 goto free_priv;
1526 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1527 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1528 *ep_state);
1529 ret = -EINVAL;
1530 goto free_priv;
1532 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1533 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1534 ret = -EINVAL;
1535 goto free_priv;
1538 switch (usb_endpoint_type(&urb->ep->desc)) {
1540 case USB_ENDPOINT_XFER_CONTROL:
1541 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1542 slot_id, ep_index);
1543 break;
1544 case USB_ENDPOINT_XFER_BULK:
1545 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1546 slot_id, ep_index);
1547 break;
1548 case USB_ENDPOINT_XFER_INT:
1549 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1550 slot_id, ep_index);
1551 break;
1552 case USB_ENDPOINT_XFER_ISOC:
1553 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1554 slot_id, ep_index);
1557 if (ret) {
1558 free_priv:
1559 xhci_urb_free_priv(urb_priv);
1560 urb->hcpriv = NULL;
1562 spin_unlock_irqrestore(&xhci->lock, flags);
1563 return ret;
1567 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1568 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1569 * should pick up where it left off in the TD, unless a Set Transfer Ring
1570 * Dequeue Pointer is issued.
1572 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1573 * the ring. Since the ring is a contiguous structure, they can't be physically
1574 * removed. Instead, there are two options:
1576 * 1) If the HC is in the middle of processing the URB to be canceled, we
1577 * simply move the ring's dequeue pointer past those TRBs using the Set
1578 * Transfer Ring Dequeue Pointer command. This will be the common case,
1579 * when drivers timeout on the last submitted URB and attempt to cancel.
1581 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1582 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1583 * HC will need to invalidate the any TRBs it has cached after the stop
1584 * endpoint command, as noted in the xHCI 0.95 errata.
1586 * 3) The TD may have completed by the time the Stop Endpoint Command
1587 * completes, so software needs to handle that case too.
1589 * This function should protect against the TD enqueueing code ringing the
1590 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1591 * It also needs to account for multiple cancellations on happening at the same
1592 * time for the same endpoint.
1594 * Note that this function can be called in any context, or so says
1595 * usb_hcd_unlink_urb()
1597 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1599 unsigned long flags;
1600 int ret, i;
1601 u32 temp;
1602 struct xhci_hcd *xhci;
1603 struct urb_priv *urb_priv;
1604 struct xhci_td *td;
1605 unsigned int ep_index;
1606 struct xhci_ring *ep_ring;
1607 struct xhci_virt_ep *ep;
1608 struct xhci_command *command;
1609 struct xhci_virt_device *vdev;
1611 xhci = hcd_to_xhci(hcd);
1612 spin_lock_irqsave(&xhci->lock, flags);
1614 trace_xhci_urb_dequeue(urb);
1616 /* Make sure the URB hasn't completed or been unlinked already */
1617 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1618 if (ret)
1619 goto done;
1621 /* give back URB now if we can't queue it for cancel */
1622 vdev = xhci->devs[urb->dev->slot_id];
1623 urb_priv = urb->hcpriv;
1624 if (!vdev || !urb_priv)
1625 goto err_giveback;
1627 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1628 ep = &vdev->eps[ep_index];
1629 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1630 if (!ep || !ep_ring)
1631 goto err_giveback;
1633 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1634 temp = readl(&xhci->op_regs->status);
1635 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1636 xhci_hc_died(xhci);
1637 goto done;
1641 * check ring is not re-allocated since URB was enqueued. If it is, then
1642 * make sure none of the ring related pointers in this URB private data
1643 * are touched, such as td_list, otherwise we overwrite freed data
1645 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1646 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1647 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1648 td = &urb_priv->td[i];
1649 if (!list_empty(&td->cancelled_td_list))
1650 list_del_init(&td->cancelled_td_list);
1652 goto err_giveback;
1655 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1656 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1657 "HC halted, freeing TD manually.");
1658 for (i = urb_priv->num_tds_done;
1659 i < urb_priv->num_tds;
1660 i++) {
1661 td = &urb_priv->td[i];
1662 if (!list_empty(&td->td_list))
1663 list_del_init(&td->td_list);
1664 if (!list_empty(&td->cancelled_td_list))
1665 list_del_init(&td->cancelled_td_list);
1667 goto err_giveback;
1670 i = urb_priv->num_tds_done;
1671 if (i < urb_priv->num_tds)
1672 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1673 "Cancel URB %p, dev %s, ep 0x%x, "
1674 "starting at offset 0x%llx",
1675 urb, urb->dev->devpath,
1676 urb->ep->desc.bEndpointAddress,
1677 (unsigned long long) xhci_trb_virt_to_dma(
1678 urb_priv->td[i].start_seg,
1679 urb_priv->td[i].first_trb));
1681 for (; i < urb_priv->num_tds; i++) {
1682 td = &urb_priv->td[i];
1683 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1686 /* Queue a stop endpoint command, but only if this is
1687 * the first cancellation to be handled.
1689 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1690 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1691 if (!command) {
1692 ret = -ENOMEM;
1693 goto done;
1695 ep->ep_state |= EP_STOP_CMD_PENDING;
1696 ep->stop_cmd_timer.expires = jiffies +
1697 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1698 add_timer(&ep->stop_cmd_timer);
1699 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1700 ep_index, 0);
1701 xhci_ring_cmd_db(xhci);
1703 done:
1704 spin_unlock_irqrestore(&xhci->lock, flags);
1705 return ret;
1707 err_giveback:
1708 if (urb_priv)
1709 xhci_urb_free_priv(urb_priv);
1710 usb_hcd_unlink_urb_from_ep(hcd, urb);
1711 spin_unlock_irqrestore(&xhci->lock, flags);
1712 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1713 return ret;
1716 /* Drop an endpoint from a new bandwidth configuration for this device.
1717 * Only one call to this function is allowed per endpoint before
1718 * check_bandwidth() or reset_bandwidth() must be called.
1719 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1720 * add the endpoint to the schedule with possibly new parameters denoted by a
1721 * different endpoint descriptor in usb_host_endpoint.
1722 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1723 * not allowed.
1725 * The USB core will not allow URBs to be queued to an endpoint that is being
1726 * disabled, so there's no need for mutual exclusion to protect
1727 * the xhci->devs[slot_id] structure.
1729 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1730 struct usb_host_endpoint *ep)
1732 struct xhci_hcd *xhci;
1733 struct xhci_container_ctx *in_ctx, *out_ctx;
1734 struct xhci_input_control_ctx *ctrl_ctx;
1735 unsigned int ep_index;
1736 struct xhci_ep_ctx *ep_ctx;
1737 u32 drop_flag;
1738 u32 new_add_flags, new_drop_flags;
1739 int ret;
1741 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1742 if (ret <= 0)
1743 return ret;
1744 xhci = hcd_to_xhci(hcd);
1745 if (xhci->xhc_state & XHCI_STATE_DYING)
1746 return -ENODEV;
1748 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1749 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1750 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1751 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1752 __func__, drop_flag);
1753 return 0;
1756 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1757 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1758 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1759 if (!ctrl_ctx) {
1760 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1761 __func__);
1762 return 0;
1765 ep_index = xhci_get_endpoint_index(&ep->desc);
1766 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1767 /* If the HC already knows the endpoint is disabled,
1768 * or the HCD has noted it is disabled, ignore this request
1770 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1771 le32_to_cpu(ctrl_ctx->drop_flags) &
1772 xhci_get_endpoint_flag(&ep->desc)) {
1773 /* Do not warn when called after a usb_device_reset */
1774 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1775 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1776 __func__, ep);
1777 return 0;
1780 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1781 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1783 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1784 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1786 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1788 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1790 if (xhci->quirks & XHCI_MTK_HOST)
1791 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1793 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1794 (unsigned int) ep->desc.bEndpointAddress,
1795 udev->slot_id,
1796 (unsigned int) new_drop_flags,
1797 (unsigned int) new_add_flags);
1798 return 0;
1801 /* Add an endpoint to a new possible bandwidth configuration for this device.
1802 * Only one call to this function is allowed per endpoint before
1803 * check_bandwidth() or reset_bandwidth() must be called.
1804 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1805 * add the endpoint to the schedule with possibly new parameters denoted by a
1806 * different endpoint descriptor in usb_host_endpoint.
1807 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1808 * not allowed.
1810 * The USB core will not allow URBs to be queued to an endpoint until the
1811 * configuration or alt setting is installed in the device, so there's no need
1812 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1814 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1815 struct usb_host_endpoint *ep)
1817 struct xhci_hcd *xhci;
1818 struct xhci_container_ctx *in_ctx;
1819 unsigned int ep_index;
1820 struct xhci_input_control_ctx *ctrl_ctx;
1821 struct xhci_ep_ctx *ep_ctx;
1822 u32 added_ctxs;
1823 u32 new_add_flags, new_drop_flags;
1824 struct xhci_virt_device *virt_dev;
1825 int ret = 0;
1827 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1828 if (ret <= 0) {
1829 /* So we won't queue a reset ep command for a root hub */
1830 ep->hcpriv = NULL;
1831 return ret;
1833 xhci = hcd_to_xhci(hcd);
1834 if (xhci->xhc_state & XHCI_STATE_DYING)
1835 return -ENODEV;
1837 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1838 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1839 /* FIXME when we have to issue an evaluate endpoint command to
1840 * deal with ep0 max packet size changing once we get the
1841 * descriptors
1843 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1844 __func__, added_ctxs);
1845 return 0;
1848 virt_dev = xhci->devs[udev->slot_id];
1849 in_ctx = virt_dev->in_ctx;
1850 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1851 if (!ctrl_ctx) {
1852 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1853 __func__);
1854 return 0;
1857 ep_index = xhci_get_endpoint_index(&ep->desc);
1858 /* If this endpoint is already in use, and the upper layers are trying
1859 * to add it again without dropping it, reject the addition.
1861 if (virt_dev->eps[ep_index].ring &&
1862 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1863 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1864 "without dropping it.\n",
1865 (unsigned int) ep->desc.bEndpointAddress);
1866 return -EINVAL;
1869 /* If the HCD has already noted the endpoint is enabled,
1870 * ignore this request.
1872 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1873 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1874 __func__, ep);
1875 return 0;
1879 * Configuration and alternate setting changes must be done in
1880 * process context, not interrupt context (or so documenation
1881 * for usb_set_interface() and usb_set_configuration() claim).
1883 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1884 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1885 __func__, ep->desc.bEndpointAddress);
1886 return -ENOMEM;
1889 if (xhci->quirks & XHCI_MTK_HOST) {
1890 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1891 if (ret < 0) {
1892 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1893 virt_dev->eps[ep_index].new_ring = NULL;
1894 return ret;
1898 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1899 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1901 /* If xhci_endpoint_disable() was called for this endpoint, but the
1902 * xHC hasn't been notified yet through the check_bandwidth() call,
1903 * this re-adds a new state for the endpoint from the new endpoint
1904 * descriptors. We must drop and re-add this endpoint, so we leave the
1905 * drop flags alone.
1907 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1909 /* Store the usb_device pointer for later use */
1910 ep->hcpriv = udev;
1912 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1913 trace_xhci_add_endpoint(ep_ctx);
1915 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1917 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1918 (unsigned int) ep->desc.bEndpointAddress,
1919 udev->slot_id,
1920 (unsigned int) new_drop_flags,
1921 (unsigned int) new_add_flags);
1922 return 0;
1925 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1927 struct xhci_input_control_ctx *ctrl_ctx;
1928 struct xhci_ep_ctx *ep_ctx;
1929 struct xhci_slot_ctx *slot_ctx;
1930 int i;
1932 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1933 if (!ctrl_ctx) {
1934 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1935 __func__);
1936 return;
1939 /* When a device's add flag and drop flag are zero, any subsequent
1940 * configure endpoint command will leave that endpoint's state
1941 * untouched. Make sure we don't leave any old state in the input
1942 * endpoint contexts.
1944 ctrl_ctx->drop_flags = 0;
1945 ctrl_ctx->add_flags = 0;
1946 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1947 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1948 /* Endpoint 0 is always valid */
1949 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1950 for (i = 1; i < 31; i++) {
1951 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1952 ep_ctx->ep_info = 0;
1953 ep_ctx->ep_info2 = 0;
1954 ep_ctx->deq = 0;
1955 ep_ctx->tx_info = 0;
1959 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1960 struct usb_device *udev, u32 *cmd_status)
1962 int ret;
1964 switch (*cmd_status) {
1965 case COMP_COMMAND_ABORTED:
1966 case COMP_COMMAND_RING_STOPPED:
1967 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1968 ret = -ETIME;
1969 break;
1970 case COMP_RESOURCE_ERROR:
1971 dev_warn(&udev->dev,
1972 "Not enough host controller resources for new device state.\n");
1973 ret = -ENOMEM;
1974 /* FIXME: can we allocate more resources for the HC? */
1975 break;
1976 case COMP_BANDWIDTH_ERROR:
1977 case COMP_SECONDARY_BANDWIDTH_ERROR:
1978 dev_warn(&udev->dev,
1979 "Not enough bandwidth for new device state.\n");
1980 ret = -ENOSPC;
1981 /* FIXME: can we go back to the old state? */
1982 break;
1983 case COMP_TRB_ERROR:
1984 /* the HCD set up something wrong */
1985 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1986 "add flag = 1, "
1987 "and endpoint is not disabled.\n");
1988 ret = -EINVAL;
1989 break;
1990 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1991 dev_warn(&udev->dev,
1992 "ERROR: Incompatible device for endpoint configure command.\n");
1993 ret = -ENODEV;
1994 break;
1995 case COMP_SUCCESS:
1996 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1997 "Successful Endpoint Configure command");
1998 ret = 0;
1999 break;
2000 default:
2001 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2002 *cmd_status);
2003 ret = -EINVAL;
2004 break;
2006 return ret;
2009 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2010 struct usb_device *udev, u32 *cmd_status)
2012 int ret;
2014 switch (*cmd_status) {
2015 case COMP_COMMAND_ABORTED:
2016 case COMP_COMMAND_RING_STOPPED:
2017 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2018 ret = -ETIME;
2019 break;
2020 case COMP_PARAMETER_ERROR:
2021 dev_warn(&udev->dev,
2022 "WARN: xHCI driver setup invalid evaluate context command.\n");
2023 ret = -EINVAL;
2024 break;
2025 case COMP_SLOT_NOT_ENABLED_ERROR:
2026 dev_warn(&udev->dev,
2027 "WARN: slot not enabled for evaluate context command.\n");
2028 ret = -EINVAL;
2029 break;
2030 case COMP_CONTEXT_STATE_ERROR:
2031 dev_warn(&udev->dev,
2032 "WARN: invalid context state for evaluate context command.\n");
2033 ret = -EINVAL;
2034 break;
2035 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2036 dev_warn(&udev->dev,
2037 "ERROR: Incompatible device for evaluate context command.\n");
2038 ret = -ENODEV;
2039 break;
2040 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2041 /* Max Exit Latency too large error */
2042 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2043 ret = -EINVAL;
2044 break;
2045 case COMP_SUCCESS:
2046 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2047 "Successful evaluate context command");
2048 ret = 0;
2049 break;
2050 default:
2051 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2052 *cmd_status);
2053 ret = -EINVAL;
2054 break;
2056 return ret;
2059 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2060 struct xhci_input_control_ctx *ctrl_ctx)
2062 u32 valid_add_flags;
2063 u32 valid_drop_flags;
2065 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2066 * (bit 1). The default control endpoint is added during the Address
2067 * Device command and is never removed until the slot is disabled.
2069 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2070 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2072 /* Use hweight32 to count the number of ones in the add flags, or
2073 * number of endpoints added. Don't count endpoints that are changed
2074 * (both added and dropped).
2076 return hweight32(valid_add_flags) -
2077 hweight32(valid_add_flags & valid_drop_flags);
2080 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2081 struct xhci_input_control_ctx *ctrl_ctx)
2083 u32 valid_add_flags;
2084 u32 valid_drop_flags;
2086 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2087 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2089 return hweight32(valid_drop_flags) -
2090 hweight32(valid_add_flags & valid_drop_flags);
2094 * We need to reserve the new number of endpoints before the configure endpoint
2095 * command completes. We can't subtract the dropped endpoints from the number
2096 * of active endpoints until the command completes because we can oversubscribe
2097 * the host in this case:
2099 * - the first configure endpoint command drops more endpoints than it adds
2100 * - a second configure endpoint command that adds more endpoints is queued
2101 * - the first configure endpoint command fails, so the config is unchanged
2102 * - the second command may succeed, even though there isn't enough resources
2104 * Must be called with xhci->lock held.
2106 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2107 struct xhci_input_control_ctx *ctrl_ctx)
2109 u32 added_eps;
2111 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2112 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2113 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2114 "Not enough ep ctxs: "
2115 "%u active, need to add %u, limit is %u.",
2116 xhci->num_active_eps, added_eps,
2117 xhci->limit_active_eps);
2118 return -ENOMEM;
2120 xhci->num_active_eps += added_eps;
2121 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2122 "Adding %u ep ctxs, %u now active.", added_eps,
2123 xhci->num_active_eps);
2124 return 0;
2128 * The configure endpoint was failed by the xHC for some other reason, so we
2129 * need to revert the resources that failed configuration would have used.
2131 * Must be called with xhci->lock held.
2133 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2134 struct xhci_input_control_ctx *ctrl_ctx)
2136 u32 num_failed_eps;
2138 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2139 xhci->num_active_eps -= num_failed_eps;
2140 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2141 "Removing %u failed ep ctxs, %u now active.",
2142 num_failed_eps,
2143 xhci->num_active_eps);
2147 * Now that the command has completed, clean up the active endpoint count by
2148 * subtracting out the endpoints that were dropped (but not changed).
2150 * Must be called with xhci->lock held.
2152 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2153 struct xhci_input_control_ctx *ctrl_ctx)
2155 u32 num_dropped_eps;
2157 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2158 xhci->num_active_eps -= num_dropped_eps;
2159 if (num_dropped_eps)
2160 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2161 "Removing %u dropped ep ctxs, %u now active.",
2162 num_dropped_eps,
2163 xhci->num_active_eps);
2166 static unsigned int xhci_get_block_size(struct usb_device *udev)
2168 switch (udev->speed) {
2169 case USB_SPEED_LOW:
2170 case USB_SPEED_FULL:
2171 return FS_BLOCK;
2172 case USB_SPEED_HIGH:
2173 return HS_BLOCK;
2174 case USB_SPEED_SUPER:
2175 case USB_SPEED_SUPER_PLUS:
2176 return SS_BLOCK;
2177 case USB_SPEED_UNKNOWN:
2178 case USB_SPEED_WIRELESS:
2179 default:
2180 /* Should never happen */
2181 return 1;
2185 static unsigned int
2186 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2188 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2189 return LS_OVERHEAD;
2190 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2191 return FS_OVERHEAD;
2192 return HS_OVERHEAD;
2195 /* If we are changing a LS/FS device under a HS hub,
2196 * make sure (if we are activating a new TT) that the HS bus has enough
2197 * bandwidth for this new TT.
2199 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2200 struct xhci_virt_device *virt_dev,
2201 int old_active_eps)
2203 struct xhci_interval_bw_table *bw_table;
2204 struct xhci_tt_bw_info *tt_info;
2206 /* Find the bandwidth table for the root port this TT is attached to. */
2207 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2208 tt_info = virt_dev->tt_info;
2209 /* If this TT already had active endpoints, the bandwidth for this TT
2210 * has already been added. Removing all periodic endpoints (and thus
2211 * making the TT enactive) will only decrease the bandwidth used.
2213 if (old_active_eps)
2214 return 0;
2215 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2216 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2217 return -ENOMEM;
2218 return 0;
2220 /* Not sure why we would have no new active endpoints...
2222 * Maybe because of an Evaluate Context change for a hub update or a
2223 * control endpoint 0 max packet size change?
2224 * FIXME: skip the bandwidth calculation in that case.
2226 return 0;
2229 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2230 struct xhci_virt_device *virt_dev)
2232 unsigned int bw_reserved;
2234 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2235 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2236 return -ENOMEM;
2238 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2239 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2240 return -ENOMEM;
2242 return 0;
2246 * This algorithm is a very conservative estimate of the worst-case scheduling
2247 * scenario for any one interval. The hardware dynamically schedules the
2248 * packets, so we can't tell which microframe could be the limiting factor in
2249 * the bandwidth scheduling. This only takes into account periodic endpoints.
2251 * Obviously, we can't solve an NP complete problem to find the minimum worst
2252 * case scenario. Instead, we come up with an estimate that is no less than
2253 * the worst case bandwidth used for any one microframe, but may be an
2254 * over-estimate.
2256 * We walk the requirements for each endpoint by interval, starting with the
2257 * smallest interval, and place packets in the schedule where there is only one
2258 * possible way to schedule packets for that interval. In order to simplify
2259 * this algorithm, we record the largest max packet size for each interval, and
2260 * assume all packets will be that size.
2262 * For interval 0, we obviously must schedule all packets for each interval.
2263 * The bandwidth for interval 0 is just the amount of data to be transmitted
2264 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2265 * the number of packets).
2267 * For interval 1, we have two possible microframes to schedule those packets
2268 * in. For this algorithm, if we can schedule the same number of packets for
2269 * each possible scheduling opportunity (each microframe), we will do so. The
2270 * remaining number of packets will be saved to be transmitted in the gaps in
2271 * the next interval's scheduling sequence.
2273 * As we move those remaining packets to be scheduled with interval 2 packets,
2274 * we have to double the number of remaining packets to transmit. This is
2275 * because the intervals are actually powers of 2, and we would be transmitting
2276 * the previous interval's packets twice in this interval. We also have to be
2277 * sure that when we look at the largest max packet size for this interval, we
2278 * also look at the largest max packet size for the remaining packets and take
2279 * the greater of the two.
2281 * The algorithm continues to evenly distribute packets in each scheduling
2282 * opportunity, and push the remaining packets out, until we get to the last
2283 * interval. Then those packets and their associated overhead are just added
2284 * to the bandwidth used.
2286 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2287 struct xhci_virt_device *virt_dev,
2288 int old_active_eps)
2290 unsigned int bw_reserved;
2291 unsigned int max_bandwidth;
2292 unsigned int bw_used;
2293 unsigned int block_size;
2294 struct xhci_interval_bw_table *bw_table;
2295 unsigned int packet_size = 0;
2296 unsigned int overhead = 0;
2297 unsigned int packets_transmitted = 0;
2298 unsigned int packets_remaining = 0;
2299 unsigned int i;
2301 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2302 return xhci_check_ss_bw(xhci, virt_dev);
2304 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2305 max_bandwidth = HS_BW_LIMIT;
2306 /* Convert percent of bus BW reserved to blocks reserved */
2307 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2308 } else {
2309 max_bandwidth = FS_BW_LIMIT;
2310 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2313 bw_table = virt_dev->bw_table;
2314 /* We need to translate the max packet size and max ESIT payloads into
2315 * the units the hardware uses.
2317 block_size = xhci_get_block_size(virt_dev->udev);
2319 /* If we are manipulating a LS/FS device under a HS hub, double check
2320 * that the HS bus has enough bandwidth if we are activing a new TT.
2322 if (virt_dev->tt_info) {
2323 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2324 "Recalculating BW for rootport %u",
2325 virt_dev->real_port);
2326 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2327 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2328 "newly activated TT.\n");
2329 return -ENOMEM;
2331 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2332 "Recalculating BW for TT slot %u port %u",
2333 virt_dev->tt_info->slot_id,
2334 virt_dev->tt_info->ttport);
2335 } else {
2336 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2337 "Recalculating BW for rootport %u",
2338 virt_dev->real_port);
2341 /* Add in how much bandwidth will be used for interval zero, or the
2342 * rounded max ESIT payload + number of packets * largest overhead.
2344 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2345 bw_table->interval_bw[0].num_packets *
2346 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2348 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2349 unsigned int bw_added;
2350 unsigned int largest_mps;
2351 unsigned int interval_overhead;
2354 * How many packets could we transmit in this interval?
2355 * If packets didn't fit in the previous interval, we will need
2356 * to transmit that many packets twice within this interval.
2358 packets_remaining = 2 * packets_remaining +
2359 bw_table->interval_bw[i].num_packets;
2361 /* Find the largest max packet size of this or the previous
2362 * interval.
2364 if (list_empty(&bw_table->interval_bw[i].endpoints))
2365 largest_mps = 0;
2366 else {
2367 struct xhci_virt_ep *virt_ep;
2368 struct list_head *ep_entry;
2370 ep_entry = bw_table->interval_bw[i].endpoints.next;
2371 virt_ep = list_entry(ep_entry,
2372 struct xhci_virt_ep, bw_endpoint_list);
2373 /* Convert to blocks, rounding up */
2374 largest_mps = DIV_ROUND_UP(
2375 virt_ep->bw_info.max_packet_size,
2376 block_size);
2378 if (largest_mps > packet_size)
2379 packet_size = largest_mps;
2381 /* Use the larger overhead of this or the previous interval. */
2382 interval_overhead = xhci_get_largest_overhead(
2383 &bw_table->interval_bw[i]);
2384 if (interval_overhead > overhead)
2385 overhead = interval_overhead;
2387 /* How many packets can we evenly distribute across
2388 * (1 << (i + 1)) possible scheduling opportunities?
2390 packets_transmitted = packets_remaining >> (i + 1);
2392 /* Add in the bandwidth used for those scheduled packets */
2393 bw_added = packets_transmitted * (overhead + packet_size);
2395 /* How many packets do we have remaining to transmit? */
2396 packets_remaining = packets_remaining % (1 << (i + 1));
2398 /* What largest max packet size should those packets have? */
2399 /* If we've transmitted all packets, don't carry over the
2400 * largest packet size.
2402 if (packets_remaining == 0) {
2403 packet_size = 0;
2404 overhead = 0;
2405 } else if (packets_transmitted > 0) {
2406 /* Otherwise if we do have remaining packets, and we've
2407 * scheduled some packets in this interval, take the
2408 * largest max packet size from endpoints with this
2409 * interval.
2411 packet_size = largest_mps;
2412 overhead = interval_overhead;
2414 /* Otherwise carry over packet_size and overhead from the last
2415 * time we had a remainder.
2417 bw_used += bw_added;
2418 if (bw_used > max_bandwidth) {
2419 xhci_warn(xhci, "Not enough bandwidth. "
2420 "Proposed: %u, Max: %u\n",
2421 bw_used, max_bandwidth);
2422 return -ENOMEM;
2426 * Ok, we know we have some packets left over after even-handedly
2427 * scheduling interval 15. We don't know which microframes they will
2428 * fit into, so we over-schedule and say they will be scheduled every
2429 * microframe.
2431 if (packets_remaining > 0)
2432 bw_used += overhead + packet_size;
2434 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2435 unsigned int port_index = virt_dev->real_port - 1;
2437 /* OK, we're manipulating a HS device attached to a
2438 * root port bandwidth domain. Include the number of active TTs
2439 * in the bandwidth used.
2441 bw_used += TT_HS_OVERHEAD *
2442 xhci->rh_bw[port_index].num_active_tts;
2445 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2446 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2447 "Available: %u " "percent",
2448 bw_used, max_bandwidth, bw_reserved,
2449 (max_bandwidth - bw_used - bw_reserved) * 100 /
2450 max_bandwidth);
2452 bw_used += bw_reserved;
2453 if (bw_used > max_bandwidth) {
2454 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2455 bw_used, max_bandwidth);
2456 return -ENOMEM;
2459 bw_table->bw_used = bw_used;
2460 return 0;
2463 static bool xhci_is_async_ep(unsigned int ep_type)
2465 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2466 ep_type != ISOC_IN_EP &&
2467 ep_type != INT_IN_EP);
2470 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2472 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2475 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2477 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2479 if (ep_bw->ep_interval == 0)
2480 return SS_OVERHEAD_BURST +
2481 (ep_bw->mult * ep_bw->num_packets *
2482 (SS_OVERHEAD + mps));
2483 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2484 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2485 1 << ep_bw->ep_interval);
2489 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2490 struct xhci_bw_info *ep_bw,
2491 struct xhci_interval_bw_table *bw_table,
2492 struct usb_device *udev,
2493 struct xhci_virt_ep *virt_ep,
2494 struct xhci_tt_bw_info *tt_info)
2496 struct xhci_interval_bw *interval_bw;
2497 int normalized_interval;
2499 if (xhci_is_async_ep(ep_bw->type))
2500 return;
2502 if (udev->speed >= USB_SPEED_SUPER) {
2503 if (xhci_is_sync_in_ep(ep_bw->type))
2504 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2505 xhci_get_ss_bw_consumed(ep_bw);
2506 else
2507 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2508 xhci_get_ss_bw_consumed(ep_bw);
2509 return;
2512 /* SuperSpeed endpoints never get added to intervals in the table, so
2513 * this check is only valid for HS/FS/LS devices.
2515 if (list_empty(&virt_ep->bw_endpoint_list))
2516 return;
2517 /* For LS/FS devices, we need to translate the interval expressed in
2518 * microframes to frames.
2520 if (udev->speed == USB_SPEED_HIGH)
2521 normalized_interval = ep_bw->ep_interval;
2522 else
2523 normalized_interval = ep_bw->ep_interval - 3;
2525 if (normalized_interval == 0)
2526 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2527 interval_bw = &bw_table->interval_bw[normalized_interval];
2528 interval_bw->num_packets -= ep_bw->num_packets;
2529 switch (udev->speed) {
2530 case USB_SPEED_LOW:
2531 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2532 break;
2533 case USB_SPEED_FULL:
2534 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2535 break;
2536 case USB_SPEED_HIGH:
2537 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2538 break;
2539 case USB_SPEED_SUPER:
2540 case USB_SPEED_SUPER_PLUS:
2541 case USB_SPEED_UNKNOWN:
2542 case USB_SPEED_WIRELESS:
2543 /* Should never happen because only LS/FS/HS endpoints will get
2544 * added to the endpoint list.
2546 return;
2548 if (tt_info)
2549 tt_info->active_eps -= 1;
2550 list_del_init(&virt_ep->bw_endpoint_list);
2553 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2554 struct xhci_bw_info *ep_bw,
2555 struct xhci_interval_bw_table *bw_table,
2556 struct usb_device *udev,
2557 struct xhci_virt_ep *virt_ep,
2558 struct xhci_tt_bw_info *tt_info)
2560 struct xhci_interval_bw *interval_bw;
2561 struct xhci_virt_ep *smaller_ep;
2562 int normalized_interval;
2564 if (xhci_is_async_ep(ep_bw->type))
2565 return;
2567 if (udev->speed == USB_SPEED_SUPER) {
2568 if (xhci_is_sync_in_ep(ep_bw->type))
2569 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2570 xhci_get_ss_bw_consumed(ep_bw);
2571 else
2572 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2573 xhci_get_ss_bw_consumed(ep_bw);
2574 return;
2577 /* For LS/FS devices, we need to translate the interval expressed in
2578 * microframes to frames.
2580 if (udev->speed == USB_SPEED_HIGH)
2581 normalized_interval = ep_bw->ep_interval;
2582 else
2583 normalized_interval = ep_bw->ep_interval - 3;
2585 if (normalized_interval == 0)
2586 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2587 interval_bw = &bw_table->interval_bw[normalized_interval];
2588 interval_bw->num_packets += ep_bw->num_packets;
2589 switch (udev->speed) {
2590 case USB_SPEED_LOW:
2591 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2592 break;
2593 case USB_SPEED_FULL:
2594 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2595 break;
2596 case USB_SPEED_HIGH:
2597 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2598 break;
2599 case USB_SPEED_SUPER:
2600 case USB_SPEED_SUPER_PLUS:
2601 case USB_SPEED_UNKNOWN:
2602 case USB_SPEED_WIRELESS:
2603 /* Should never happen because only LS/FS/HS endpoints will get
2604 * added to the endpoint list.
2606 return;
2609 if (tt_info)
2610 tt_info->active_eps += 1;
2611 /* Insert the endpoint into the list, largest max packet size first. */
2612 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2613 bw_endpoint_list) {
2614 if (ep_bw->max_packet_size >=
2615 smaller_ep->bw_info.max_packet_size) {
2616 /* Add the new ep before the smaller endpoint */
2617 list_add_tail(&virt_ep->bw_endpoint_list,
2618 &smaller_ep->bw_endpoint_list);
2619 return;
2622 /* Add the new endpoint at the end of the list. */
2623 list_add_tail(&virt_ep->bw_endpoint_list,
2624 &interval_bw->endpoints);
2627 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2628 struct xhci_virt_device *virt_dev,
2629 int old_active_eps)
2631 struct xhci_root_port_bw_info *rh_bw_info;
2632 if (!virt_dev->tt_info)
2633 return;
2635 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2636 if (old_active_eps == 0 &&
2637 virt_dev->tt_info->active_eps != 0) {
2638 rh_bw_info->num_active_tts += 1;
2639 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2640 } else if (old_active_eps != 0 &&
2641 virt_dev->tt_info->active_eps == 0) {
2642 rh_bw_info->num_active_tts -= 1;
2643 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2647 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2648 struct xhci_virt_device *virt_dev,
2649 struct xhci_container_ctx *in_ctx)
2651 struct xhci_bw_info ep_bw_info[31];
2652 int i;
2653 struct xhci_input_control_ctx *ctrl_ctx;
2654 int old_active_eps = 0;
2656 if (virt_dev->tt_info)
2657 old_active_eps = virt_dev->tt_info->active_eps;
2659 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2660 if (!ctrl_ctx) {
2661 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2662 __func__);
2663 return -ENOMEM;
2666 for (i = 0; i < 31; i++) {
2667 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2668 continue;
2670 /* Make a copy of the BW info in case we need to revert this */
2671 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2672 sizeof(ep_bw_info[i]));
2673 /* Drop the endpoint from the interval table if the endpoint is
2674 * being dropped or changed.
2676 if (EP_IS_DROPPED(ctrl_ctx, i))
2677 xhci_drop_ep_from_interval_table(xhci,
2678 &virt_dev->eps[i].bw_info,
2679 virt_dev->bw_table,
2680 virt_dev->udev,
2681 &virt_dev->eps[i],
2682 virt_dev->tt_info);
2684 /* Overwrite the information stored in the endpoints' bw_info */
2685 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2686 for (i = 0; i < 31; i++) {
2687 /* Add any changed or added endpoints to the interval table */
2688 if (EP_IS_ADDED(ctrl_ctx, i))
2689 xhci_add_ep_to_interval_table(xhci,
2690 &virt_dev->eps[i].bw_info,
2691 virt_dev->bw_table,
2692 virt_dev->udev,
2693 &virt_dev->eps[i],
2694 virt_dev->tt_info);
2697 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2698 /* Ok, this fits in the bandwidth we have.
2699 * Update the number of active TTs.
2701 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2702 return 0;
2705 /* We don't have enough bandwidth for this, revert the stored info. */
2706 for (i = 0; i < 31; i++) {
2707 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2708 continue;
2710 /* Drop the new copies of any added or changed endpoints from
2711 * the interval table.
2713 if (EP_IS_ADDED(ctrl_ctx, i)) {
2714 xhci_drop_ep_from_interval_table(xhci,
2715 &virt_dev->eps[i].bw_info,
2716 virt_dev->bw_table,
2717 virt_dev->udev,
2718 &virt_dev->eps[i],
2719 virt_dev->tt_info);
2721 /* Revert the endpoint back to its old information */
2722 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2723 sizeof(ep_bw_info[i]));
2724 /* Add any changed or dropped endpoints back into the table */
2725 if (EP_IS_DROPPED(ctrl_ctx, i))
2726 xhci_add_ep_to_interval_table(xhci,
2727 &virt_dev->eps[i].bw_info,
2728 virt_dev->bw_table,
2729 virt_dev->udev,
2730 &virt_dev->eps[i],
2731 virt_dev->tt_info);
2733 return -ENOMEM;
2737 /* Issue a configure endpoint command or evaluate context command
2738 * and wait for it to finish.
2740 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2741 struct usb_device *udev,
2742 struct xhci_command *command,
2743 bool ctx_change, bool must_succeed)
2745 int ret;
2746 unsigned long flags;
2747 struct xhci_input_control_ctx *ctrl_ctx;
2748 struct xhci_virt_device *virt_dev;
2749 struct xhci_slot_ctx *slot_ctx;
2751 if (!command)
2752 return -EINVAL;
2754 spin_lock_irqsave(&xhci->lock, flags);
2756 if (xhci->xhc_state & XHCI_STATE_DYING) {
2757 spin_unlock_irqrestore(&xhci->lock, flags);
2758 return -ESHUTDOWN;
2761 virt_dev = xhci->devs[udev->slot_id];
2763 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2764 if (!ctrl_ctx) {
2765 spin_unlock_irqrestore(&xhci->lock, flags);
2766 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2767 __func__);
2768 return -ENOMEM;
2771 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2772 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2773 spin_unlock_irqrestore(&xhci->lock, flags);
2774 xhci_warn(xhci, "Not enough host resources, "
2775 "active endpoint contexts = %u\n",
2776 xhci->num_active_eps);
2777 return -ENOMEM;
2779 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2780 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2781 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2782 xhci_free_host_resources(xhci, ctrl_ctx);
2783 spin_unlock_irqrestore(&xhci->lock, flags);
2784 xhci_warn(xhci, "Not enough bandwidth\n");
2785 return -ENOMEM;
2788 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2790 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2791 trace_xhci_configure_endpoint(slot_ctx);
2793 if (!ctx_change)
2794 ret = xhci_queue_configure_endpoint(xhci, command,
2795 command->in_ctx->dma,
2796 udev->slot_id, must_succeed);
2797 else
2798 ret = xhci_queue_evaluate_context(xhci, command,
2799 command->in_ctx->dma,
2800 udev->slot_id, must_succeed);
2801 if (ret < 0) {
2802 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2803 xhci_free_host_resources(xhci, ctrl_ctx);
2804 spin_unlock_irqrestore(&xhci->lock, flags);
2805 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2806 "FIXME allocate a new ring segment");
2807 return -ENOMEM;
2809 xhci_ring_cmd_db(xhci);
2810 spin_unlock_irqrestore(&xhci->lock, flags);
2812 /* Wait for the configure endpoint command to complete */
2813 wait_for_completion(command->completion);
2815 if (!ctx_change)
2816 ret = xhci_configure_endpoint_result(xhci, udev,
2817 &command->status);
2818 else
2819 ret = xhci_evaluate_context_result(xhci, udev,
2820 &command->status);
2822 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2823 spin_lock_irqsave(&xhci->lock, flags);
2824 /* If the command failed, remove the reserved resources.
2825 * Otherwise, clean up the estimate to include dropped eps.
2827 if (ret)
2828 xhci_free_host_resources(xhci, ctrl_ctx);
2829 else
2830 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2831 spin_unlock_irqrestore(&xhci->lock, flags);
2833 return ret;
2836 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2837 struct xhci_virt_device *vdev, int i)
2839 struct xhci_virt_ep *ep = &vdev->eps[i];
2841 if (ep->ep_state & EP_HAS_STREAMS) {
2842 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2843 xhci_get_endpoint_address(i));
2844 xhci_free_stream_info(xhci, ep->stream_info);
2845 ep->stream_info = NULL;
2846 ep->ep_state &= ~EP_HAS_STREAMS;
2850 /* Called after one or more calls to xhci_add_endpoint() or
2851 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2852 * to call xhci_reset_bandwidth().
2854 * Since we are in the middle of changing either configuration or
2855 * installing a new alt setting, the USB core won't allow URBs to be
2856 * enqueued for any endpoint on the old config or interface. Nothing
2857 * else should be touching the xhci->devs[slot_id] structure, so we
2858 * don't need to take the xhci->lock for manipulating that.
2860 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2862 int i;
2863 int ret = 0;
2864 struct xhci_hcd *xhci;
2865 struct xhci_virt_device *virt_dev;
2866 struct xhci_input_control_ctx *ctrl_ctx;
2867 struct xhci_slot_ctx *slot_ctx;
2868 struct xhci_command *command;
2870 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2871 if (ret <= 0)
2872 return ret;
2873 xhci = hcd_to_xhci(hcd);
2874 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2875 (xhci->xhc_state & XHCI_STATE_REMOVING))
2876 return -ENODEV;
2878 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2879 virt_dev = xhci->devs[udev->slot_id];
2881 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2882 if (!command)
2883 return -ENOMEM;
2885 command->in_ctx = virt_dev->in_ctx;
2887 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2888 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2889 if (!ctrl_ctx) {
2890 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2891 __func__);
2892 ret = -ENOMEM;
2893 goto command_cleanup;
2895 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2896 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2897 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2899 /* Don't issue the command if there's no endpoints to update. */
2900 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2901 ctrl_ctx->drop_flags == 0) {
2902 ret = 0;
2903 goto command_cleanup;
2905 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2906 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2907 for (i = 31; i >= 1; i--) {
2908 __le32 le32 = cpu_to_le32(BIT(i));
2910 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2911 || (ctrl_ctx->add_flags & le32) || i == 1) {
2912 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2913 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2914 break;
2918 ret = xhci_configure_endpoint(xhci, udev, command,
2919 false, false);
2920 if (ret)
2921 /* Callee should call reset_bandwidth() */
2922 goto command_cleanup;
2924 /* Free any rings that were dropped, but not changed. */
2925 for (i = 1; i < 31; i++) {
2926 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2927 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2928 xhci_free_endpoint_ring(xhci, virt_dev, i);
2929 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2932 xhci_zero_in_ctx(xhci, virt_dev);
2934 * Install any rings for completely new endpoints or changed endpoints,
2935 * and free any old rings from changed endpoints.
2937 for (i = 1; i < 31; i++) {
2938 if (!virt_dev->eps[i].new_ring)
2939 continue;
2940 /* Only free the old ring if it exists.
2941 * It may not if this is the first add of an endpoint.
2943 if (virt_dev->eps[i].ring) {
2944 xhci_free_endpoint_ring(xhci, virt_dev, i);
2946 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2947 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2948 virt_dev->eps[i].new_ring = NULL;
2950 command_cleanup:
2951 kfree(command->completion);
2952 kfree(command);
2954 return ret;
2957 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2959 struct xhci_hcd *xhci;
2960 struct xhci_virt_device *virt_dev;
2961 int i, ret;
2963 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2964 if (ret <= 0)
2965 return;
2966 xhci = hcd_to_xhci(hcd);
2968 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2969 virt_dev = xhci->devs[udev->slot_id];
2970 /* Free any rings allocated for added endpoints */
2971 for (i = 0; i < 31; i++) {
2972 if (virt_dev->eps[i].new_ring) {
2973 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2974 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2975 virt_dev->eps[i].new_ring = NULL;
2978 xhci_zero_in_ctx(xhci, virt_dev);
2981 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2982 struct xhci_container_ctx *in_ctx,
2983 struct xhci_container_ctx *out_ctx,
2984 struct xhci_input_control_ctx *ctrl_ctx,
2985 u32 add_flags, u32 drop_flags)
2987 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2988 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2989 xhci_slot_copy(xhci, in_ctx, out_ctx);
2990 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2993 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2994 unsigned int slot_id, unsigned int ep_index,
2995 struct xhci_dequeue_state *deq_state)
2997 struct xhci_input_control_ctx *ctrl_ctx;
2998 struct xhci_container_ctx *in_ctx;
2999 struct xhci_ep_ctx *ep_ctx;
3000 u32 added_ctxs;
3001 dma_addr_t addr;
3003 in_ctx = xhci->devs[slot_id]->in_ctx;
3004 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3005 if (!ctrl_ctx) {
3006 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3007 __func__);
3008 return;
3011 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3012 xhci->devs[slot_id]->out_ctx, ep_index);
3013 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3014 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3015 deq_state->new_deq_ptr);
3016 if (addr == 0) {
3017 xhci_warn(xhci, "WARN Cannot submit config ep after "
3018 "reset ep command\n");
3019 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3020 deq_state->new_deq_seg,
3021 deq_state->new_deq_ptr);
3022 return;
3024 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3026 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3027 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3028 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3029 added_ctxs, added_ctxs);
3032 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
3033 unsigned int stream_id, struct xhci_td *td)
3035 struct xhci_dequeue_state deq_state;
3036 struct usb_device *udev = td->urb->dev;
3038 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3039 "Cleaning up stalled endpoint ring");
3040 /* We need to move the HW's dequeue pointer past this TD,
3041 * or it will attempt to resend it on the next doorbell ring.
3043 xhci_find_new_dequeue_state(xhci, udev->slot_id,
3044 ep_index, stream_id, td, &deq_state);
3046 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3047 return;
3049 /* HW with the reset endpoint quirk will use the saved dequeue state to
3050 * issue a configure endpoint command later.
3052 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3053 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3054 "Queueing new dequeue state");
3055 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3056 ep_index, &deq_state);
3057 } else {
3058 /* Better hope no one uses the input context between now and the
3059 * reset endpoint completion!
3060 * XXX: No idea how this hardware will react when stream rings
3061 * are enabled.
3063 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3064 "Setting up input context for "
3065 "configure endpoint command");
3066 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3067 ep_index, &deq_state);
3071 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3072 struct usb_host_endpoint *host_ep)
3074 struct xhci_hcd *xhci;
3075 struct xhci_virt_device *vdev;
3076 struct xhci_virt_ep *ep;
3077 struct usb_device *udev;
3078 unsigned long flags;
3079 unsigned int ep_index;
3081 xhci = hcd_to_xhci(hcd);
3082 rescan:
3083 spin_lock_irqsave(&xhci->lock, flags);
3085 udev = (struct usb_device *)host_ep->hcpriv;
3086 if (!udev || !udev->slot_id)
3087 goto done;
3089 vdev = xhci->devs[udev->slot_id];
3090 if (!vdev)
3091 goto done;
3093 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3094 ep = &vdev->eps[ep_index];
3095 if (!ep)
3096 goto done;
3098 /* wait for hub_tt_work to finish clearing hub TT */
3099 if (ep->ep_state & EP_CLEARING_TT) {
3100 spin_unlock_irqrestore(&xhci->lock, flags);
3101 schedule_timeout_uninterruptible(1);
3102 goto rescan;
3105 if (ep->ep_state)
3106 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3107 ep->ep_state);
3108 done:
3109 host_ep->hcpriv = NULL;
3110 spin_unlock_irqrestore(&xhci->lock, flags);
3114 * Called after usb core issues a clear halt control message.
3115 * The host side of the halt should already be cleared by a reset endpoint
3116 * command issued when the STALL event was received.
3118 * The reset endpoint command may only be issued to endpoints in the halted
3119 * state. For software that wishes to reset the data toggle or sequence number
3120 * of an endpoint that isn't in the halted state this function will issue a
3121 * configure endpoint command with the Drop and Add bits set for the target
3122 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3125 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3126 struct usb_host_endpoint *host_ep)
3128 struct xhci_hcd *xhci;
3129 struct usb_device *udev;
3130 struct xhci_virt_device *vdev;
3131 struct xhci_virt_ep *ep;
3132 struct xhci_input_control_ctx *ctrl_ctx;
3133 struct xhci_command *stop_cmd, *cfg_cmd;
3134 unsigned int ep_index;
3135 unsigned long flags;
3136 u32 ep_flag;
3137 int err;
3139 xhci = hcd_to_xhci(hcd);
3140 if (!host_ep->hcpriv)
3141 return;
3142 udev = (struct usb_device *) host_ep->hcpriv;
3143 vdev = xhci->devs[udev->slot_id];
3146 * vdev may be lost due to xHC restore error and re-initialization
3147 * during S3/S4 resume. A new vdev will be allocated later by
3148 * xhci_discover_or_reset_device()
3150 if (!udev->slot_id || !vdev)
3151 return;
3152 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3153 ep = &vdev->eps[ep_index];
3154 if (!ep)
3155 return;
3157 /* Bail out if toggle is already being cleared by a endpoint reset */
3158 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3159 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3160 return;
3162 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3163 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3164 usb_endpoint_xfer_isoc(&host_ep->desc))
3165 return;
3167 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3169 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3170 return;
3172 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3173 if (!stop_cmd)
3174 return;
3176 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3177 if (!cfg_cmd)
3178 goto cleanup;
3180 spin_lock_irqsave(&xhci->lock, flags);
3182 /* block queuing new trbs and ringing ep doorbell */
3183 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3186 * Make sure endpoint ring is empty before resetting the toggle/seq.
3187 * Driver is required to synchronously cancel all transfer request.
3188 * Stop the endpoint to force xHC to update the output context
3191 if (!list_empty(&ep->ring->td_list)) {
3192 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3193 spin_unlock_irqrestore(&xhci->lock, flags);
3194 xhci_free_command(xhci, cfg_cmd);
3195 goto cleanup;
3198 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3199 ep_index, 0);
3200 if (err < 0) {
3201 spin_unlock_irqrestore(&xhci->lock, flags);
3202 xhci_free_command(xhci, cfg_cmd);
3203 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3204 __func__, err);
3205 goto cleanup;
3208 xhci_ring_cmd_db(xhci);
3209 spin_unlock_irqrestore(&xhci->lock, flags);
3211 wait_for_completion(stop_cmd->completion);
3213 spin_lock_irqsave(&xhci->lock, flags);
3215 /* config ep command clears toggle if add and drop ep flags are set */
3216 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3217 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3218 ctrl_ctx, ep_flag, ep_flag);
3219 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3221 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3222 udev->slot_id, false);
3223 if (err < 0) {
3224 spin_unlock_irqrestore(&xhci->lock, flags);
3225 xhci_free_command(xhci, cfg_cmd);
3226 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3227 __func__, err);
3228 goto cleanup;
3231 xhci_ring_cmd_db(xhci);
3232 spin_unlock_irqrestore(&xhci->lock, flags);
3234 wait_for_completion(cfg_cmd->completion);
3236 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3237 xhci_free_command(xhci, cfg_cmd);
3238 cleanup:
3239 xhci_free_command(xhci, stop_cmd);
3242 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3243 struct usb_device *udev, struct usb_host_endpoint *ep,
3244 unsigned int slot_id)
3246 int ret;
3247 unsigned int ep_index;
3248 unsigned int ep_state;
3250 if (!ep)
3251 return -EINVAL;
3252 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3253 if (ret <= 0)
3254 return -EINVAL;
3255 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3256 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3257 " descriptor for ep 0x%x does not support streams\n",
3258 ep->desc.bEndpointAddress);
3259 return -EINVAL;
3262 ep_index = xhci_get_endpoint_index(&ep->desc);
3263 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3264 if (ep_state & EP_HAS_STREAMS ||
3265 ep_state & EP_GETTING_STREAMS) {
3266 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3267 "already has streams set up.\n",
3268 ep->desc.bEndpointAddress);
3269 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3270 "dynamic stream context array reallocation.\n");
3271 return -EINVAL;
3273 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3274 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3275 "endpoint 0x%x; URBs are pending.\n",
3276 ep->desc.bEndpointAddress);
3277 return -EINVAL;
3279 return 0;
3282 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3283 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3285 unsigned int max_streams;
3287 /* The stream context array size must be a power of two */
3288 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3290 * Find out how many primary stream array entries the host controller
3291 * supports. Later we may use secondary stream arrays (similar to 2nd
3292 * level page entries), but that's an optional feature for xHCI host
3293 * controllers. xHCs must support at least 4 stream IDs.
3295 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3296 if (*num_stream_ctxs > max_streams) {
3297 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3298 max_streams);
3299 *num_stream_ctxs = max_streams;
3300 *num_streams = max_streams;
3304 /* Returns an error code if one of the endpoint already has streams.
3305 * This does not change any data structures, it only checks and gathers
3306 * information.
3308 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3309 struct usb_device *udev,
3310 struct usb_host_endpoint **eps, unsigned int num_eps,
3311 unsigned int *num_streams, u32 *changed_ep_bitmask)
3313 unsigned int max_streams;
3314 unsigned int endpoint_flag;
3315 int i;
3316 int ret;
3318 for (i = 0; i < num_eps; i++) {
3319 ret = xhci_check_streams_endpoint(xhci, udev,
3320 eps[i], udev->slot_id);
3321 if (ret < 0)
3322 return ret;
3324 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3325 if (max_streams < (*num_streams - 1)) {
3326 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3327 eps[i]->desc.bEndpointAddress,
3328 max_streams);
3329 *num_streams = max_streams+1;
3332 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3333 if (*changed_ep_bitmask & endpoint_flag)
3334 return -EINVAL;
3335 *changed_ep_bitmask |= endpoint_flag;
3337 return 0;
3340 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3341 struct usb_device *udev,
3342 struct usb_host_endpoint **eps, unsigned int num_eps)
3344 u32 changed_ep_bitmask = 0;
3345 unsigned int slot_id;
3346 unsigned int ep_index;
3347 unsigned int ep_state;
3348 int i;
3350 slot_id = udev->slot_id;
3351 if (!xhci->devs[slot_id])
3352 return 0;
3354 for (i = 0; i < num_eps; i++) {
3355 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3356 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3357 /* Are streams already being freed for the endpoint? */
3358 if (ep_state & EP_GETTING_NO_STREAMS) {
3359 xhci_warn(xhci, "WARN Can't disable streams for "
3360 "endpoint 0x%x, "
3361 "streams are being disabled already\n",
3362 eps[i]->desc.bEndpointAddress);
3363 return 0;
3365 /* Are there actually any streams to free? */
3366 if (!(ep_state & EP_HAS_STREAMS) &&
3367 !(ep_state & EP_GETTING_STREAMS)) {
3368 xhci_warn(xhci, "WARN Can't disable streams for "
3369 "endpoint 0x%x, "
3370 "streams are already disabled!\n",
3371 eps[i]->desc.bEndpointAddress);
3372 xhci_warn(xhci, "WARN xhci_free_streams() called "
3373 "with non-streams endpoint\n");
3374 return 0;
3376 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3378 return changed_ep_bitmask;
3382 * The USB device drivers use this function (through the HCD interface in USB
3383 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3384 * coordinate mass storage command queueing across multiple endpoints (basically
3385 * a stream ID == a task ID).
3387 * Setting up streams involves allocating the same size stream context array
3388 * for each endpoint and issuing a configure endpoint command for all endpoints.
3390 * Don't allow the call to succeed if one endpoint only supports one stream
3391 * (which means it doesn't support streams at all).
3393 * Drivers may get less stream IDs than they asked for, if the host controller
3394 * hardware or endpoints claim they can't support the number of requested
3395 * stream IDs.
3397 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3398 struct usb_host_endpoint **eps, unsigned int num_eps,
3399 unsigned int num_streams, gfp_t mem_flags)
3401 int i, ret;
3402 struct xhci_hcd *xhci;
3403 struct xhci_virt_device *vdev;
3404 struct xhci_command *config_cmd;
3405 struct xhci_input_control_ctx *ctrl_ctx;
3406 unsigned int ep_index;
3407 unsigned int num_stream_ctxs;
3408 unsigned int max_packet;
3409 unsigned long flags;
3410 u32 changed_ep_bitmask = 0;
3412 if (!eps)
3413 return -EINVAL;
3415 /* Add one to the number of streams requested to account for
3416 * stream 0 that is reserved for xHCI usage.
3418 num_streams += 1;
3419 xhci = hcd_to_xhci(hcd);
3420 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3421 num_streams);
3423 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3424 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3425 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3426 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3427 return -ENOSYS;
3430 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3431 if (!config_cmd)
3432 return -ENOMEM;
3434 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3435 if (!ctrl_ctx) {
3436 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3437 __func__);
3438 xhci_free_command(xhci, config_cmd);
3439 return -ENOMEM;
3442 /* Check to make sure all endpoints are not already configured for
3443 * streams. While we're at it, find the maximum number of streams that
3444 * all the endpoints will support and check for duplicate endpoints.
3446 spin_lock_irqsave(&xhci->lock, flags);
3447 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3448 num_eps, &num_streams, &changed_ep_bitmask);
3449 if (ret < 0) {
3450 xhci_free_command(xhci, config_cmd);
3451 spin_unlock_irqrestore(&xhci->lock, flags);
3452 return ret;
3454 if (num_streams <= 1) {
3455 xhci_warn(xhci, "WARN: endpoints can't handle "
3456 "more than one stream.\n");
3457 xhci_free_command(xhci, config_cmd);
3458 spin_unlock_irqrestore(&xhci->lock, flags);
3459 return -EINVAL;
3461 vdev = xhci->devs[udev->slot_id];
3462 /* Mark each endpoint as being in transition, so
3463 * xhci_urb_enqueue() will reject all URBs.
3465 for (i = 0; i < num_eps; i++) {
3466 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3467 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3469 spin_unlock_irqrestore(&xhci->lock, flags);
3471 /* Setup internal data structures and allocate HW data structures for
3472 * streams (but don't install the HW structures in the input context
3473 * until we're sure all memory allocation succeeded).
3475 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3476 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3477 num_stream_ctxs, num_streams);
3479 for (i = 0; i < num_eps; i++) {
3480 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3481 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3482 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3483 num_stream_ctxs,
3484 num_streams,
3485 max_packet, mem_flags);
3486 if (!vdev->eps[ep_index].stream_info)
3487 goto cleanup;
3488 /* Set maxPstreams in endpoint context and update deq ptr to
3489 * point to stream context array. FIXME
3493 /* Set up the input context for a configure endpoint command. */
3494 for (i = 0; i < num_eps; i++) {
3495 struct xhci_ep_ctx *ep_ctx;
3497 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3498 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3500 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3501 vdev->out_ctx, ep_index);
3502 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3503 vdev->eps[ep_index].stream_info);
3505 /* Tell the HW to drop its old copy of the endpoint context info
3506 * and add the updated copy from the input context.
3508 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3509 vdev->out_ctx, ctrl_ctx,
3510 changed_ep_bitmask, changed_ep_bitmask);
3512 /* Issue and wait for the configure endpoint command */
3513 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3514 false, false);
3516 /* xHC rejected the configure endpoint command for some reason, so we
3517 * leave the old ring intact and free our internal streams data
3518 * structure.
3520 if (ret < 0)
3521 goto cleanup;
3523 spin_lock_irqsave(&xhci->lock, flags);
3524 for (i = 0; i < num_eps; i++) {
3525 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3526 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3527 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3528 udev->slot_id, ep_index);
3529 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3531 xhci_free_command(xhci, config_cmd);
3532 spin_unlock_irqrestore(&xhci->lock, flags);
3534 /* Subtract 1 for stream 0, which drivers can't use */
3535 return num_streams - 1;
3537 cleanup:
3538 /* If it didn't work, free the streams! */
3539 for (i = 0; i < num_eps; i++) {
3540 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3541 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3542 vdev->eps[ep_index].stream_info = NULL;
3543 /* FIXME Unset maxPstreams in endpoint context and
3544 * update deq ptr to point to normal string ring.
3546 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3547 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3548 xhci_endpoint_zero(xhci, vdev, eps[i]);
3550 xhci_free_command(xhci, config_cmd);
3551 return -ENOMEM;
3554 /* Transition the endpoint from using streams to being a "normal" endpoint
3555 * without streams.
3557 * Modify the endpoint context state, submit a configure endpoint command,
3558 * and free all endpoint rings for streams if that completes successfully.
3560 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3561 struct usb_host_endpoint **eps, unsigned int num_eps,
3562 gfp_t mem_flags)
3564 int i, ret;
3565 struct xhci_hcd *xhci;
3566 struct xhci_virt_device *vdev;
3567 struct xhci_command *command;
3568 struct xhci_input_control_ctx *ctrl_ctx;
3569 unsigned int ep_index;
3570 unsigned long flags;
3571 u32 changed_ep_bitmask;
3573 xhci = hcd_to_xhci(hcd);
3574 vdev = xhci->devs[udev->slot_id];
3576 /* Set up a configure endpoint command to remove the streams rings */
3577 spin_lock_irqsave(&xhci->lock, flags);
3578 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3579 udev, eps, num_eps);
3580 if (changed_ep_bitmask == 0) {
3581 spin_unlock_irqrestore(&xhci->lock, flags);
3582 return -EINVAL;
3585 /* Use the xhci_command structure from the first endpoint. We may have
3586 * allocated too many, but the driver may call xhci_free_streams() for
3587 * each endpoint it grouped into one call to xhci_alloc_streams().
3589 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3590 command = vdev->eps[ep_index].stream_info->free_streams_command;
3591 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3592 if (!ctrl_ctx) {
3593 spin_unlock_irqrestore(&xhci->lock, flags);
3594 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3595 __func__);
3596 return -EINVAL;
3599 for (i = 0; i < num_eps; i++) {
3600 struct xhci_ep_ctx *ep_ctx;
3602 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3603 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3604 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3605 EP_GETTING_NO_STREAMS;
3607 xhci_endpoint_copy(xhci, command->in_ctx,
3608 vdev->out_ctx, ep_index);
3609 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3610 &vdev->eps[ep_index]);
3612 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3613 vdev->out_ctx, ctrl_ctx,
3614 changed_ep_bitmask, changed_ep_bitmask);
3615 spin_unlock_irqrestore(&xhci->lock, flags);
3617 /* Issue and wait for the configure endpoint command,
3618 * which must succeed.
3620 ret = xhci_configure_endpoint(xhci, udev, command,
3621 false, true);
3623 /* xHC rejected the configure endpoint command for some reason, so we
3624 * leave the streams rings intact.
3626 if (ret < 0)
3627 return ret;
3629 spin_lock_irqsave(&xhci->lock, flags);
3630 for (i = 0; i < num_eps; i++) {
3631 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3632 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3633 vdev->eps[ep_index].stream_info = NULL;
3634 /* FIXME Unset maxPstreams in endpoint context and
3635 * update deq ptr to point to normal string ring.
3637 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3638 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3640 spin_unlock_irqrestore(&xhci->lock, flags);
3642 return 0;
3646 * Deletes endpoint resources for endpoints that were active before a Reset
3647 * Device command, or a Disable Slot command. The Reset Device command leaves
3648 * the control endpoint intact, whereas the Disable Slot command deletes it.
3650 * Must be called with xhci->lock held.
3652 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3653 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3655 int i;
3656 unsigned int num_dropped_eps = 0;
3657 unsigned int drop_flags = 0;
3659 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3660 if (virt_dev->eps[i].ring) {
3661 drop_flags |= 1 << i;
3662 num_dropped_eps++;
3665 xhci->num_active_eps -= num_dropped_eps;
3666 if (num_dropped_eps)
3667 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3668 "Dropped %u ep ctxs, flags = 0x%x, "
3669 "%u now active.",
3670 num_dropped_eps, drop_flags,
3671 xhci->num_active_eps);
3675 * This submits a Reset Device Command, which will set the device state to 0,
3676 * set the device address to 0, and disable all the endpoints except the default
3677 * control endpoint. The USB core should come back and call
3678 * xhci_address_device(), and then re-set up the configuration. If this is
3679 * called because of a usb_reset_and_verify_device(), then the old alternate
3680 * settings will be re-installed through the normal bandwidth allocation
3681 * functions.
3683 * Wait for the Reset Device command to finish. Remove all structures
3684 * associated with the endpoints that were disabled. Clear the input device
3685 * structure? Reset the control endpoint 0 max packet size?
3687 * If the virt_dev to be reset does not exist or does not match the udev,
3688 * it means the device is lost, possibly due to the xHC restore error and
3689 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3690 * re-allocate the device.
3692 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3693 struct usb_device *udev)
3695 int ret, i;
3696 unsigned long flags;
3697 struct xhci_hcd *xhci;
3698 unsigned int slot_id;
3699 struct xhci_virt_device *virt_dev;
3700 struct xhci_command *reset_device_cmd;
3701 struct xhci_slot_ctx *slot_ctx;
3702 int old_active_eps = 0;
3704 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3705 if (ret <= 0)
3706 return ret;
3707 xhci = hcd_to_xhci(hcd);
3708 slot_id = udev->slot_id;
3709 virt_dev = xhci->devs[slot_id];
3710 if (!virt_dev) {
3711 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3712 "not exist. Re-allocate the device\n", slot_id);
3713 ret = xhci_alloc_dev(hcd, udev);
3714 if (ret == 1)
3715 return 0;
3716 else
3717 return -EINVAL;
3720 if (virt_dev->tt_info)
3721 old_active_eps = virt_dev->tt_info->active_eps;
3723 if (virt_dev->udev != udev) {
3724 /* If the virt_dev and the udev does not match, this virt_dev
3725 * may belong to another udev.
3726 * Re-allocate the device.
3728 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3729 "not match the udev. Re-allocate the device\n",
3730 slot_id);
3731 ret = xhci_alloc_dev(hcd, udev);
3732 if (ret == 1)
3733 return 0;
3734 else
3735 return -EINVAL;
3738 /* If device is not setup, there is no point in resetting it */
3739 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3740 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3741 SLOT_STATE_DISABLED)
3742 return 0;
3744 trace_xhci_discover_or_reset_device(slot_ctx);
3746 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3747 /* Allocate the command structure that holds the struct completion.
3748 * Assume we're in process context, since the normal device reset
3749 * process has to wait for the device anyway. Storage devices are
3750 * reset as part of error handling, so use GFP_NOIO instead of
3751 * GFP_KERNEL.
3753 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3754 if (!reset_device_cmd) {
3755 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3756 return -ENOMEM;
3759 /* Attempt to submit the Reset Device command to the command ring */
3760 spin_lock_irqsave(&xhci->lock, flags);
3762 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3763 if (ret) {
3764 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3765 spin_unlock_irqrestore(&xhci->lock, flags);
3766 goto command_cleanup;
3768 xhci_ring_cmd_db(xhci);
3769 spin_unlock_irqrestore(&xhci->lock, flags);
3771 /* Wait for the Reset Device command to finish */
3772 wait_for_completion(reset_device_cmd->completion);
3774 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3775 * unless we tried to reset a slot ID that wasn't enabled,
3776 * or the device wasn't in the addressed or configured state.
3778 ret = reset_device_cmd->status;
3779 switch (ret) {
3780 case COMP_COMMAND_ABORTED:
3781 case COMP_COMMAND_RING_STOPPED:
3782 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3783 ret = -ETIME;
3784 goto command_cleanup;
3785 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3786 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3787 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3788 slot_id,
3789 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3790 xhci_dbg(xhci, "Not freeing device rings.\n");
3791 /* Don't treat this as an error. May change my mind later. */
3792 ret = 0;
3793 goto command_cleanup;
3794 case COMP_SUCCESS:
3795 xhci_dbg(xhci, "Successful reset device command.\n");
3796 break;
3797 default:
3798 if (xhci_is_vendor_info_code(xhci, ret))
3799 break;
3800 xhci_warn(xhci, "Unknown completion code %u for "
3801 "reset device command.\n", ret);
3802 ret = -EINVAL;
3803 goto command_cleanup;
3806 /* Free up host controller endpoint resources */
3807 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3808 spin_lock_irqsave(&xhci->lock, flags);
3809 /* Don't delete the default control endpoint resources */
3810 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3811 spin_unlock_irqrestore(&xhci->lock, flags);
3814 /* Everything but endpoint 0 is disabled, so free the rings. */
3815 for (i = 1; i < 31; i++) {
3816 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3818 if (ep->ep_state & EP_HAS_STREAMS) {
3819 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3820 xhci_get_endpoint_address(i));
3821 xhci_free_stream_info(xhci, ep->stream_info);
3822 ep->stream_info = NULL;
3823 ep->ep_state &= ~EP_HAS_STREAMS;
3826 if (ep->ring) {
3827 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3828 xhci_free_endpoint_ring(xhci, virt_dev, i);
3830 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3831 xhci_drop_ep_from_interval_table(xhci,
3832 &virt_dev->eps[i].bw_info,
3833 virt_dev->bw_table,
3834 udev,
3835 &virt_dev->eps[i],
3836 virt_dev->tt_info);
3837 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3839 /* If necessary, update the number of active TTs on this root port */
3840 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3841 virt_dev->flags = 0;
3842 ret = 0;
3844 command_cleanup:
3845 xhci_free_command(xhci, reset_device_cmd);
3846 return ret;
3850 * At this point, the struct usb_device is about to go away, the device has
3851 * disconnected, and all traffic has been stopped and the endpoints have been
3852 * disabled. Free any HC data structures associated with that device.
3854 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3856 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3857 struct xhci_virt_device *virt_dev;
3858 struct xhci_slot_ctx *slot_ctx;
3859 int i, ret;
3861 #ifndef CONFIG_USB_DEFAULT_PERSIST
3863 * We called pm_runtime_get_noresume when the device was attached.
3864 * Decrement the counter here to allow controller to runtime suspend
3865 * if no devices remain.
3867 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3868 pm_runtime_put_noidle(hcd->self.controller);
3869 #endif
3871 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3872 /* If the host is halted due to driver unload, we still need to free the
3873 * device.
3875 if (ret <= 0 && ret != -ENODEV)
3876 return;
3878 virt_dev = xhci->devs[udev->slot_id];
3879 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3880 trace_xhci_free_dev(slot_ctx);
3882 /* Stop any wayward timer functions (which may grab the lock) */
3883 for (i = 0; i < 31; i++) {
3884 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3885 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3887 virt_dev->udev = NULL;
3888 ret = xhci_disable_slot(xhci, udev->slot_id);
3889 if (ret)
3890 xhci_free_virt_device(xhci, udev->slot_id);
3893 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3895 struct xhci_command *command;
3896 unsigned long flags;
3897 u32 state;
3898 int ret = 0;
3900 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3901 if (!command)
3902 return -ENOMEM;
3904 xhci_debugfs_remove_slot(xhci, slot_id);
3906 spin_lock_irqsave(&xhci->lock, flags);
3907 /* Don't disable the slot if the host controller is dead. */
3908 state = readl(&xhci->op_regs->status);
3909 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3910 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3911 spin_unlock_irqrestore(&xhci->lock, flags);
3912 kfree(command);
3913 return -ENODEV;
3916 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3917 slot_id);
3918 if (ret) {
3919 spin_unlock_irqrestore(&xhci->lock, flags);
3920 kfree(command);
3921 return ret;
3923 xhci_ring_cmd_db(xhci);
3924 spin_unlock_irqrestore(&xhci->lock, flags);
3925 return ret;
3929 * Checks if we have enough host controller resources for the default control
3930 * endpoint.
3932 * Must be called with xhci->lock held.
3934 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3936 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3937 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3938 "Not enough ep ctxs: "
3939 "%u active, need to add 1, limit is %u.",
3940 xhci->num_active_eps, xhci->limit_active_eps);
3941 return -ENOMEM;
3943 xhci->num_active_eps += 1;
3944 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3945 "Adding 1 ep ctx, %u now active.",
3946 xhci->num_active_eps);
3947 return 0;
3952 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3953 * timed out, or allocating memory failed. Returns 1 on success.
3955 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3957 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3958 struct xhci_virt_device *vdev;
3959 struct xhci_slot_ctx *slot_ctx;
3960 unsigned long flags;
3961 int ret, slot_id;
3962 struct xhci_command *command;
3964 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3965 if (!command)
3966 return 0;
3968 spin_lock_irqsave(&xhci->lock, flags);
3969 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3970 if (ret) {
3971 spin_unlock_irqrestore(&xhci->lock, flags);
3972 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3973 xhci_free_command(xhci, command);
3974 return 0;
3976 xhci_ring_cmd_db(xhci);
3977 spin_unlock_irqrestore(&xhci->lock, flags);
3979 wait_for_completion(command->completion);
3980 slot_id = command->slot_id;
3982 if (!slot_id || command->status != COMP_SUCCESS) {
3983 xhci_err(xhci, "Error while assigning device slot ID\n");
3984 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3985 HCS_MAX_SLOTS(
3986 readl(&xhci->cap_regs->hcs_params1)));
3987 xhci_free_command(xhci, command);
3988 return 0;
3991 xhci_free_command(xhci, command);
3993 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3994 spin_lock_irqsave(&xhci->lock, flags);
3995 ret = xhci_reserve_host_control_ep_resources(xhci);
3996 if (ret) {
3997 spin_unlock_irqrestore(&xhci->lock, flags);
3998 xhci_warn(xhci, "Not enough host resources, "
3999 "active endpoint contexts = %u\n",
4000 xhci->num_active_eps);
4001 goto disable_slot;
4003 spin_unlock_irqrestore(&xhci->lock, flags);
4005 /* Use GFP_NOIO, since this function can be called from
4006 * xhci_discover_or_reset_device(), which may be called as part of
4007 * mass storage driver error handling.
4009 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4010 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4011 goto disable_slot;
4013 vdev = xhci->devs[slot_id];
4014 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4015 trace_xhci_alloc_dev(slot_ctx);
4017 udev->slot_id = slot_id;
4019 xhci_debugfs_create_slot(xhci, slot_id);
4021 #ifndef CONFIG_USB_DEFAULT_PERSIST
4023 * If resetting upon resume, we can't put the controller into runtime
4024 * suspend if there is a device attached.
4026 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4027 pm_runtime_get_noresume(hcd->self.controller);
4028 #endif
4030 /* Is this a LS or FS device under a HS hub? */
4031 /* Hub or peripherial? */
4032 return 1;
4034 disable_slot:
4035 ret = xhci_disable_slot(xhci, udev->slot_id);
4036 if (ret)
4037 xhci_free_virt_device(xhci, udev->slot_id);
4039 return 0;
4043 * Issue an Address Device command and optionally send a corresponding
4044 * SetAddress request to the device.
4046 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4047 enum xhci_setup_dev setup)
4049 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4050 unsigned long flags;
4051 struct xhci_virt_device *virt_dev;
4052 int ret = 0;
4053 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4054 struct xhci_slot_ctx *slot_ctx;
4055 struct xhci_input_control_ctx *ctrl_ctx;
4056 u64 temp_64;
4057 struct xhci_command *command = NULL;
4059 mutex_lock(&xhci->mutex);
4061 if (xhci->xhc_state) { /* dying, removing or halted */
4062 ret = -ESHUTDOWN;
4063 goto out;
4066 if (!udev->slot_id) {
4067 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4068 "Bad Slot ID %d", udev->slot_id);
4069 ret = -EINVAL;
4070 goto out;
4073 virt_dev = xhci->devs[udev->slot_id];
4075 if (WARN_ON(!virt_dev)) {
4077 * In plug/unplug torture test with an NEC controller,
4078 * a zero-dereference was observed once due to virt_dev = 0.
4079 * Print useful debug rather than crash if it is observed again!
4081 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4082 udev->slot_id);
4083 ret = -EINVAL;
4084 goto out;
4086 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4087 trace_xhci_setup_device_slot(slot_ctx);
4089 if (setup == SETUP_CONTEXT_ONLY) {
4090 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4091 SLOT_STATE_DEFAULT) {
4092 xhci_dbg(xhci, "Slot already in default state\n");
4093 goto out;
4097 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4098 if (!command) {
4099 ret = -ENOMEM;
4100 goto out;
4103 command->in_ctx = virt_dev->in_ctx;
4105 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4106 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4107 if (!ctrl_ctx) {
4108 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4109 __func__);
4110 ret = -EINVAL;
4111 goto out;
4114 * If this is the first Set Address since device plug-in or
4115 * virt_device realloaction after a resume with an xHCI power loss,
4116 * then set up the slot context.
4118 if (!slot_ctx->dev_info)
4119 xhci_setup_addressable_virt_dev(xhci, udev);
4120 /* Otherwise, update the control endpoint ring enqueue pointer. */
4121 else
4122 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4123 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4124 ctrl_ctx->drop_flags = 0;
4126 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4127 le32_to_cpu(slot_ctx->dev_info) >> 27);
4129 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4130 spin_lock_irqsave(&xhci->lock, flags);
4131 trace_xhci_setup_device(virt_dev);
4132 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4133 udev->slot_id, setup);
4134 if (ret) {
4135 spin_unlock_irqrestore(&xhci->lock, flags);
4136 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4137 "FIXME: allocate a command ring segment");
4138 goto out;
4140 xhci_ring_cmd_db(xhci);
4141 spin_unlock_irqrestore(&xhci->lock, flags);
4143 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4144 wait_for_completion(command->completion);
4146 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4147 * the SetAddress() "recovery interval" required by USB and aborting the
4148 * command on a timeout.
4150 switch (command->status) {
4151 case COMP_COMMAND_ABORTED:
4152 case COMP_COMMAND_RING_STOPPED:
4153 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4154 ret = -ETIME;
4155 break;
4156 case COMP_CONTEXT_STATE_ERROR:
4157 case COMP_SLOT_NOT_ENABLED_ERROR:
4158 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4159 act, udev->slot_id);
4160 ret = -EINVAL;
4161 break;
4162 case COMP_USB_TRANSACTION_ERROR:
4163 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4165 mutex_unlock(&xhci->mutex);
4166 ret = xhci_disable_slot(xhci, udev->slot_id);
4167 if (!ret)
4168 xhci_alloc_dev(hcd, udev);
4169 kfree(command->completion);
4170 kfree(command);
4171 return -EPROTO;
4172 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4173 dev_warn(&udev->dev,
4174 "ERROR: Incompatible device for setup %s command\n", act);
4175 ret = -ENODEV;
4176 break;
4177 case COMP_SUCCESS:
4178 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4179 "Successful setup %s command", act);
4180 break;
4181 default:
4182 xhci_err(xhci,
4183 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4184 act, command->status);
4185 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4186 ret = -EINVAL;
4187 break;
4189 if (ret)
4190 goto out;
4191 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4192 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4193 "Op regs DCBAA ptr = %#016llx", temp_64);
4194 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4195 "Slot ID %d dcbaa entry @%p = %#016llx",
4196 udev->slot_id,
4197 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4198 (unsigned long long)
4199 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4200 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4201 "Output Context DMA address = %#08llx",
4202 (unsigned long long)virt_dev->out_ctx->dma);
4203 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4204 le32_to_cpu(slot_ctx->dev_info) >> 27);
4206 * USB core uses address 1 for the roothubs, so we add one to the
4207 * address given back to us by the HC.
4209 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4210 le32_to_cpu(slot_ctx->dev_info) >> 27);
4211 /* Zero the input context control for later use */
4212 ctrl_ctx->add_flags = 0;
4213 ctrl_ctx->drop_flags = 0;
4214 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4215 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4217 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4218 "Internal device address = %d",
4219 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4220 out:
4221 mutex_unlock(&xhci->mutex);
4222 if (command) {
4223 kfree(command->completion);
4224 kfree(command);
4226 return ret;
4229 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4231 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4234 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4236 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4240 * Transfer the port index into real index in the HW port status
4241 * registers. Caculate offset between the port's PORTSC register
4242 * and port status base. Divide the number of per port register
4243 * to get the real index. The raw port number bases 1.
4245 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4247 struct xhci_hub *rhub;
4249 rhub = xhci_get_rhub(hcd);
4250 return rhub->ports[port1 - 1]->hw_portnum + 1;
4254 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4255 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4257 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4258 struct usb_device *udev, u16 max_exit_latency)
4260 struct xhci_virt_device *virt_dev;
4261 struct xhci_command *command;
4262 struct xhci_input_control_ctx *ctrl_ctx;
4263 struct xhci_slot_ctx *slot_ctx;
4264 unsigned long flags;
4265 int ret;
4267 spin_lock_irqsave(&xhci->lock, flags);
4269 virt_dev = xhci->devs[udev->slot_id];
4272 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4273 * xHC was re-initialized. Exit latency will be set later after
4274 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4277 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4278 spin_unlock_irqrestore(&xhci->lock, flags);
4279 return 0;
4282 /* Attempt to issue an Evaluate Context command to change the MEL. */
4283 command = xhci->lpm_command;
4284 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4285 if (!ctrl_ctx) {
4286 spin_unlock_irqrestore(&xhci->lock, flags);
4287 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4288 __func__);
4289 return -ENOMEM;
4292 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4293 spin_unlock_irqrestore(&xhci->lock, flags);
4295 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4296 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4297 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4298 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4299 slot_ctx->dev_state = 0;
4301 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4302 "Set up evaluate context for LPM MEL change.");
4304 /* Issue and wait for the evaluate context command. */
4305 ret = xhci_configure_endpoint(xhci, udev, command,
4306 true, true);
4308 if (!ret) {
4309 spin_lock_irqsave(&xhci->lock, flags);
4310 virt_dev->current_mel = max_exit_latency;
4311 spin_unlock_irqrestore(&xhci->lock, flags);
4313 return ret;
4316 #ifdef CONFIG_PM
4318 /* BESL to HIRD Encoding array for USB2 LPM */
4319 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4320 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4322 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4323 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4324 struct usb_device *udev)
4326 int u2del, besl, besl_host;
4327 int besl_device = 0;
4328 u32 field;
4330 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4331 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4333 if (field & USB_BESL_SUPPORT) {
4334 for (besl_host = 0; besl_host < 16; besl_host++) {
4335 if (xhci_besl_encoding[besl_host] >= u2del)
4336 break;
4338 /* Use baseline BESL value as default */
4339 if (field & USB_BESL_BASELINE_VALID)
4340 besl_device = USB_GET_BESL_BASELINE(field);
4341 else if (field & USB_BESL_DEEP_VALID)
4342 besl_device = USB_GET_BESL_DEEP(field);
4343 } else {
4344 if (u2del <= 50)
4345 besl_host = 0;
4346 else
4347 besl_host = (u2del - 51) / 75 + 1;
4350 besl = besl_host + besl_device;
4351 if (besl > 15)
4352 besl = 15;
4354 return besl;
4357 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4358 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4360 u32 field;
4361 int l1;
4362 int besld = 0;
4363 int hirdm = 0;
4365 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4367 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4368 l1 = udev->l1_params.timeout / 256;
4370 /* device has preferred BESLD */
4371 if (field & USB_BESL_DEEP_VALID) {
4372 besld = USB_GET_BESL_DEEP(field);
4373 hirdm = 1;
4376 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4379 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4380 struct usb_device *udev, int enable)
4382 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4383 struct xhci_port **ports;
4384 __le32 __iomem *pm_addr, *hlpm_addr;
4385 u32 pm_val, hlpm_val, field;
4386 unsigned int port_num;
4387 unsigned long flags;
4388 int hird, exit_latency;
4389 int ret;
4391 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4392 !udev->lpm_capable)
4393 return -EPERM;
4395 if (!udev->parent || udev->parent->parent ||
4396 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4397 return -EPERM;
4399 if (udev->usb2_hw_lpm_capable != 1)
4400 return -EPERM;
4402 spin_lock_irqsave(&xhci->lock, flags);
4404 ports = xhci->usb2_rhub.ports;
4405 port_num = udev->portnum - 1;
4406 pm_addr = ports[port_num]->addr + PORTPMSC;
4407 pm_val = readl(pm_addr);
4408 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4410 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4411 enable ? "enable" : "disable", port_num + 1);
4413 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4414 /* Host supports BESL timeout instead of HIRD */
4415 if (udev->usb2_hw_lpm_besl_capable) {
4416 /* if device doesn't have a preferred BESL value use a
4417 * default one which works with mixed HIRD and BESL
4418 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4420 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4421 if ((field & USB_BESL_SUPPORT) &&
4422 (field & USB_BESL_BASELINE_VALID))
4423 hird = USB_GET_BESL_BASELINE(field);
4424 else
4425 hird = udev->l1_params.besl;
4427 exit_latency = xhci_besl_encoding[hird];
4428 spin_unlock_irqrestore(&xhci->lock, flags);
4430 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4431 * input context for link powermanagement evaluate
4432 * context commands. It is protected by hcd->bandwidth
4433 * mutex and is shared by all devices. We need to set
4434 * the max ext latency in USB 2 BESL LPM as well, so
4435 * use the same mutex and xhci_change_max_exit_latency()
4437 mutex_lock(hcd->bandwidth_mutex);
4438 ret = xhci_change_max_exit_latency(xhci, udev,
4439 exit_latency);
4440 mutex_unlock(hcd->bandwidth_mutex);
4442 if (ret < 0)
4443 return ret;
4444 spin_lock_irqsave(&xhci->lock, flags);
4446 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4447 writel(hlpm_val, hlpm_addr);
4448 /* flush write */
4449 readl(hlpm_addr);
4450 } else {
4451 hird = xhci_calculate_hird_besl(xhci, udev);
4454 pm_val &= ~PORT_HIRD_MASK;
4455 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4456 writel(pm_val, pm_addr);
4457 pm_val = readl(pm_addr);
4458 pm_val |= PORT_HLE;
4459 writel(pm_val, pm_addr);
4460 /* flush write */
4461 readl(pm_addr);
4462 } else {
4463 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4464 writel(pm_val, pm_addr);
4465 /* flush write */
4466 readl(pm_addr);
4467 if (udev->usb2_hw_lpm_besl_capable) {
4468 spin_unlock_irqrestore(&xhci->lock, flags);
4469 mutex_lock(hcd->bandwidth_mutex);
4470 xhci_change_max_exit_latency(xhci, udev, 0);
4471 mutex_unlock(hcd->bandwidth_mutex);
4472 return 0;
4476 spin_unlock_irqrestore(&xhci->lock, flags);
4477 return 0;
4480 /* check if a usb2 port supports a given extened capability protocol
4481 * only USB2 ports extended protocol capability values are cached.
4482 * Return 1 if capability is supported
4484 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4485 unsigned capability)
4487 u32 port_offset, port_count;
4488 int i;
4490 for (i = 0; i < xhci->num_ext_caps; i++) {
4491 if (xhci->ext_caps[i] & capability) {
4492 /* port offsets starts at 1 */
4493 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4494 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4495 if (port >= port_offset &&
4496 port < port_offset + port_count)
4497 return 1;
4500 return 0;
4503 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4505 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4506 int portnum = udev->portnum - 1;
4508 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4509 return 0;
4511 /* we only support lpm for non-hub device connected to root hub yet */
4512 if (!udev->parent || udev->parent->parent ||
4513 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4514 return 0;
4516 if (xhci->hw_lpm_support == 1 &&
4517 xhci_check_usb2_port_capability(
4518 xhci, portnum, XHCI_HLC)) {
4519 udev->usb2_hw_lpm_capable = 1;
4520 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4521 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4522 if (xhci_check_usb2_port_capability(xhci, portnum,
4523 XHCI_BLC))
4524 udev->usb2_hw_lpm_besl_capable = 1;
4527 return 0;
4530 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4532 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4533 static unsigned long long xhci_service_interval_to_ns(
4534 struct usb_endpoint_descriptor *desc)
4536 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4539 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4540 enum usb3_link_state state)
4542 unsigned long long sel;
4543 unsigned long long pel;
4544 unsigned int max_sel_pel;
4545 char *state_name;
4547 switch (state) {
4548 case USB3_LPM_U1:
4549 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4550 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4551 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4552 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4553 state_name = "U1";
4554 break;
4555 case USB3_LPM_U2:
4556 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4557 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4558 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4559 state_name = "U2";
4560 break;
4561 default:
4562 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4563 __func__);
4564 return USB3_LPM_DISABLED;
4567 if (sel <= max_sel_pel && pel <= max_sel_pel)
4568 return USB3_LPM_DEVICE_INITIATED;
4570 if (sel > max_sel_pel)
4571 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4572 "due to long SEL %llu ms\n",
4573 state_name, sel);
4574 else
4575 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4576 "due to long PEL %llu ms\n",
4577 state_name, pel);
4578 return USB3_LPM_DISABLED;
4581 /* The U1 timeout should be the maximum of the following values:
4582 * - For control endpoints, U1 system exit latency (SEL) * 3
4583 * - For bulk endpoints, U1 SEL * 5
4584 * - For interrupt endpoints:
4585 * - Notification EPs, U1 SEL * 3
4586 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4587 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4589 static unsigned long long xhci_calculate_intel_u1_timeout(
4590 struct usb_device *udev,
4591 struct usb_endpoint_descriptor *desc)
4593 unsigned long long timeout_ns;
4594 int ep_type;
4595 int intr_type;
4597 ep_type = usb_endpoint_type(desc);
4598 switch (ep_type) {
4599 case USB_ENDPOINT_XFER_CONTROL:
4600 timeout_ns = udev->u1_params.sel * 3;
4601 break;
4602 case USB_ENDPOINT_XFER_BULK:
4603 timeout_ns = udev->u1_params.sel * 5;
4604 break;
4605 case USB_ENDPOINT_XFER_INT:
4606 intr_type = usb_endpoint_interrupt_type(desc);
4607 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4608 timeout_ns = udev->u1_params.sel * 3;
4609 break;
4611 /* Otherwise the calculation is the same as isoc eps */
4612 /* fall through */
4613 case USB_ENDPOINT_XFER_ISOC:
4614 timeout_ns = xhci_service_interval_to_ns(desc);
4615 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4616 if (timeout_ns < udev->u1_params.sel * 2)
4617 timeout_ns = udev->u1_params.sel * 2;
4618 break;
4619 default:
4620 return 0;
4623 return timeout_ns;
4626 /* Returns the hub-encoded U1 timeout value. */
4627 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4628 struct usb_device *udev,
4629 struct usb_endpoint_descriptor *desc)
4631 unsigned long long timeout_ns;
4633 /* Prevent U1 if service interval is shorter than U1 exit latency */
4634 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4635 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4636 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4637 return USB3_LPM_DISABLED;
4641 if (xhci->quirks & XHCI_INTEL_HOST)
4642 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4643 else
4644 timeout_ns = udev->u1_params.sel;
4646 /* The U1 timeout is encoded in 1us intervals.
4647 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4649 if (timeout_ns == USB3_LPM_DISABLED)
4650 timeout_ns = 1;
4651 else
4652 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4654 /* If the necessary timeout value is bigger than what we can set in the
4655 * USB 3.0 hub, we have to disable hub-initiated U1.
4657 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4658 return timeout_ns;
4659 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4660 "due to long timeout %llu ms\n", timeout_ns);
4661 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4664 /* The U2 timeout should be the maximum of:
4665 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4666 * - largest bInterval of any active periodic endpoint (to avoid going
4667 * into lower power link states between intervals).
4668 * - the U2 Exit Latency of the device
4670 static unsigned long long xhci_calculate_intel_u2_timeout(
4671 struct usb_device *udev,
4672 struct usb_endpoint_descriptor *desc)
4674 unsigned long long timeout_ns;
4675 unsigned long long u2_del_ns;
4677 timeout_ns = 10 * 1000 * 1000;
4679 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4680 (xhci_service_interval_to_ns(desc) > timeout_ns))
4681 timeout_ns = xhci_service_interval_to_ns(desc);
4683 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4684 if (u2_del_ns > timeout_ns)
4685 timeout_ns = u2_del_ns;
4687 return timeout_ns;
4690 /* Returns the hub-encoded U2 timeout value. */
4691 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4692 struct usb_device *udev,
4693 struct usb_endpoint_descriptor *desc)
4695 unsigned long long timeout_ns;
4697 /* Prevent U2 if service interval is shorter than U2 exit latency */
4698 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4699 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4700 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4701 return USB3_LPM_DISABLED;
4705 if (xhci->quirks & XHCI_INTEL_HOST)
4706 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4707 else
4708 timeout_ns = udev->u2_params.sel;
4710 /* The U2 timeout is encoded in 256us intervals */
4711 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4712 /* If the necessary timeout value is bigger than what we can set in the
4713 * USB 3.0 hub, we have to disable hub-initiated U2.
4715 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4716 return timeout_ns;
4717 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4718 "due to long timeout %llu ms\n", timeout_ns);
4719 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4722 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4723 struct usb_device *udev,
4724 struct usb_endpoint_descriptor *desc,
4725 enum usb3_link_state state,
4726 u16 *timeout)
4728 if (state == USB3_LPM_U1)
4729 return xhci_calculate_u1_timeout(xhci, udev, desc);
4730 else if (state == USB3_LPM_U2)
4731 return xhci_calculate_u2_timeout(xhci, udev, desc);
4733 return USB3_LPM_DISABLED;
4736 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4737 struct usb_device *udev,
4738 struct usb_endpoint_descriptor *desc,
4739 enum usb3_link_state state,
4740 u16 *timeout)
4742 u16 alt_timeout;
4744 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4745 desc, state, timeout);
4747 /* If we found we can't enable hub-initiated LPM, and
4748 * the U1 or U2 exit latency was too high to allow
4749 * device-initiated LPM as well, then we will disable LPM
4750 * for this device, so stop searching any further.
4752 if (alt_timeout == USB3_LPM_DISABLED) {
4753 *timeout = alt_timeout;
4754 return -E2BIG;
4756 if (alt_timeout > *timeout)
4757 *timeout = alt_timeout;
4758 return 0;
4761 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4762 struct usb_device *udev,
4763 struct usb_host_interface *alt,
4764 enum usb3_link_state state,
4765 u16 *timeout)
4767 int j;
4769 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4770 if (xhci_update_timeout_for_endpoint(xhci, udev,
4771 &alt->endpoint[j].desc, state, timeout))
4772 return -E2BIG;
4773 continue;
4775 return 0;
4778 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4779 enum usb3_link_state state)
4781 struct usb_device *parent;
4782 unsigned int num_hubs;
4784 if (state == USB3_LPM_U2)
4785 return 0;
4787 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4788 for (parent = udev->parent, num_hubs = 0; parent->parent;
4789 parent = parent->parent)
4790 num_hubs++;
4792 if (num_hubs < 2)
4793 return 0;
4795 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4796 " below second-tier hub.\n");
4797 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4798 "to decrease power consumption.\n");
4799 return -E2BIG;
4802 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4803 struct usb_device *udev,
4804 enum usb3_link_state state)
4806 if (xhci->quirks & XHCI_INTEL_HOST)
4807 return xhci_check_intel_tier_policy(udev, state);
4808 else
4809 return 0;
4812 /* Returns the U1 or U2 timeout that should be enabled.
4813 * If the tier check or timeout setting functions return with a non-zero exit
4814 * code, that means the timeout value has been finalized and we shouldn't look
4815 * at any more endpoints.
4817 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4818 struct usb_device *udev, enum usb3_link_state state)
4820 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4821 struct usb_host_config *config;
4822 char *state_name;
4823 int i;
4824 u16 timeout = USB3_LPM_DISABLED;
4826 if (state == USB3_LPM_U1)
4827 state_name = "U1";
4828 else if (state == USB3_LPM_U2)
4829 state_name = "U2";
4830 else {
4831 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4832 state);
4833 return timeout;
4836 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4837 return timeout;
4839 /* Gather some information about the currently installed configuration
4840 * and alternate interface settings.
4842 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4843 state, &timeout))
4844 return timeout;
4846 config = udev->actconfig;
4847 if (!config)
4848 return timeout;
4850 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4851 struct usb_driver *driver;
4852 struct usb_interface *intf = config->interface[i];
4854 if (!intf)
4855 continue;
4857 /* Check if any currently bound drivers want hub-initiated LPM
4858 * disabled.
4860 if (intf->dev.driver) {
4861 driver = to_usb_driver(intf->dev.driver);
4862 if (driver && driver->disable_hub_initiated_lpm) {
4863 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4864 state_name, driver->name);
4865 timeout = xhci_get_timeout_no_hub_lpm(udev,
4866 state);
4867 if (timeout == USB3_LPM_DISABLED)
4868 return timeout;
4872 /* Not sure how this could happen... */
4873 if (!intf->cur_altsetting)
4874 continue;
4876 if (xhci_update_timeout_for_interface(xhci, udev,
4877 intf->cur_altsetting,
4878 state, &timeout))
4879 return timeout;
4881 return timeout;
4884 static int calculate_max_exit_latency(struct usb_device *udev,
4885 enum usb3_link_state state_changed,
4886 u16 hub_encoded_timeout)
4888 unsigned long long u1_mel_us = 0;
4889 unsigned long long u2_mel_us = 0;
4890 unsigned long long mel_us = 0;
4891 bool disabling_u1;
4892 bool disabling_u2;
4893 bool enabling_u1;
4894 bool enabling_u2;
4896 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4897 hub_encoded_timeout == USB3_LPM_DISABLED);
4898 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4899 hub_encoded_timeout == USB3_LPM_DISABLED);
4901 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4902 hub_encoded_timeout != USB3_LPM_DISABLED);
4903 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4904 hub_encoded_timeout != USB3_LPM_DISABLED);
4906 /* If U1 was already enabled and we're not disabling it,
4907 * or we're going to enable U1, account for the U1 max exit latency.
4909 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4910 enabling_u1)
4911 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4912 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4913 enabling_u2)
4914 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4916 if (u1_mel_us > u2_mel_us)
4917 mel_us = u1_mel_us;
4918 else
4919 mel_us = u2_mel_us;
4920 /* xHCI host controller max exit latency field is only 16 bits wide. */
4921 if (mel_us > MAX_EXIT) {
4922 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4923 "is too big.\n", mel_us);
4924 return -E2BIG;
4926 return mel_us;
4929 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4930 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4931 struct usb_device *udev, enum usb3_link_state state)
4933 struct xhci_hcd *xhci;
4934 u16 hub_encoded_timeout;
4935 int mel;
4936 int ret;
4938 xhci = hcd_to_xhci(hcd);
4939 /* The LPM timeout values are pretty host-controller specific, so don't
4940 * enable hub-initiated timeouts unless the vendor has provided
4941 * information about their timeout algorithm.
4943 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4944 !xhci->devs[udev->slot_id])
4945 return USB3_LPM_DISABLED;
4947 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4948 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4949 if (mel < 0) {
4950 /* Max Exit Latency is too big, disable LPM. */
4951 hub_encoded_timeout = USB3_LPM_DISABLED;
4952 mel = 0;
4955 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4956 if (ret)
4957 return ret;
4958 return hub_encoded_timeout;
4961 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4962 struct usb_device *udev, enum usb3_link_state state)
4964 struct xhci_hcd *xhci;
4965 u16 mel;
4967 xhci = hcd_to_xhci(hcd);
4968 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4969 !xhci->devs[udev->slot_id])
4970 return 0;
4972 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4973 return xhci_change_max_exit_latency(xhci, udev, mel);
4975 #else /* CONFIG_PM */
4977 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4978 struct usb_device *udev, int enable)
4980 return 0;
4983 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4985 return 0;
4988 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4989 struct usb_device *udev, enum usb3_link_state state)
4991 return USB3_LPM_DISABLED;
4994 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4995 struct usb_device *udev, enum usb3_link_state state)
4997 return 0;
4999 #endif /* CONFIG_PM */
5001 /*-------------------------------------------------------------------------*/
5003 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5004 * internal data structures for the device.
5006 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5007 struct usb_tt *tt, gfp_t mem_flags)
5009 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5010 struct xhci_virt_device *vdev;
5011 struct xhci_command *config_cmd;
5012 struct xhci_input_control_ctx *ctrl_ctx;
5013 struct xhci_slot_ctx *slot_ctx;
5014 unsigned long flags;
5015 unsigned think_time;
5016 int ret;
5018 /* Ignore root hubs */
5019 if (!hdev->parent)
5020 return 0;
5022 vdev = xhci->devs[hdev->slot_id];
5023 if (!vdev) {
5024 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5025 return -EINVAL;
5028 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5029 if (!config_cmd)
5030 return -ENOMEM;
5032 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5033 if (!ctrl_ctx) {
5034 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5035 __func__);
5036 xhci_free_command(xhci, config_cmd);
5037 return -ENOMEM;
5040 spin_lock_irqsave(&xhci->lock, flags);
5041 if (hdev->speed == USB_SPEED_HIGH &&
5042 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5043 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5044 xhci_free_command(xhci, config_cmd);
5045 spin_unlock_irqrestore(&xhci->lock, flags);
5046 return -ENOMEM;
5049 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5050 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5051 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5052 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5054 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5055 * but it may be already set to 1 when setup an xHCI virtual
5056 * device, so clear it anyway.
5058 if (tt->multi)
5059 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5060 else if (hdev->speed == USB_SPEED_FULL)
5061 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5063 if (xhci->hci_version > 0x95) {
5064 xhci_dbg(xhci, "xHCI version %x needs hub "
5065 "TT think time and number of ports\n",
5066 (unsigned int) xhci->hci_version);
5067 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5068 /* Set TT think time - convert from ns to FS bit times.
5069 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5070 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5072 * xHCI 1.0: this field shall be 0 if the device is not a
5073 * High-spped hub.
5075 think_time = tt->think_time;
5076 if (think_time != 0)
5077 think_time = (think_time / 666) - 1;
5078 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5079 slot_ctx->tt_info |=
5080 cpu_to_le32(TT_THINK_TIME(think_time));
5081 } else {
5082 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5083 "TT think time or number of ports\n",
5084 (unsigned int) xhci->hci_version);
5086 slot_ctx->dev_state = 0;
5087 spin_unlock_irqrestore(&xhci->lock, flags);
5089 xhci_dbg(xhci, "Set up %s for hub device.\n",
5090 (xhci->hci_version > 0x95) ?
5091 "configure endpoint" : "evaluate context");
5093 /* Issue and wait for the configure endpoint or
5094 * evaluate context command.
5096 if (xhci->hci_version > 0x95)
5097 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5098 false, false);
5099 else
5100 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5101 true, false);
5103 xhci_free_command(xhci, config_cmd);
5104 return ret;
5107 static int xhci_get_frame(struct usb_hcd *hcd)
5109 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5110 /* EHCI mods by the periodic size. Why? */
5111 return readl(&xhci->run_regs->microframe_index) >> 3;
5114 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5116 struct xhci_hcd *xhci;
5118 * TODO: Check with DWC3 clients for sysdev according to
5119 * quirks
5121 struct device *dev = hcd->self.sysdev;
5122 unsigned int minor_rev;
5123 int retval;
5125 /* Accept arbitrarily long scatter-gather lists */
5126 hcd->self.sg_tablesize = ~0;
5128 /* support to build packet from discontinuous buffers */
5129 hcd->self.no_sg_constraint = 1;
5131 /* XHCI controllers don't stop the ep queue on short packets :| */
5132 hcd->self.no_stop_on_short = 1;
5134 xhci = hcd_to_xhci(hcd);
5136 if (usb_hcd_is_primary_hcd(hcd)) {
5137 xhci->main_hcd = hcd;
5138 xhci->usb2_rhub.hcd = hcd;
5139 /* Mark the first roothub as being USB 2.0.
5140 * The xHCI driver will register the USB 3.0 roothub.
5142 hcd->speed = HCD_USB2;
5143 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5145 * USB 2.0 roothub under xHCI has an integrated TT,
5146 * (rate matching hub) as opposed to having an OHCI/UHCI
5147 * companion controller.
5149 hcd->has_tt = 1;
5150 } else {
5152 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5153 * should return 0x31 for sbrn, or that the minor revision
5154 * is a two digit BCD containig minor and sub-minor numbers.
5155 * This was later clarified in xHCI 1.2.
5157 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5158 * minor revision set to 0x1 instead of 0x10.
5160 if (xhci->usb3_rhub.min_rev == 0x1)
5161 minor_rev = 1;
5162 else
5163 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5165 switch (minor_rev) {
5166 case 2:
5167 hcd->speed = HCD_USB32;
5168 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5169 hcd->self.root_hub->rx_lanes = 2;
5170 hcd->self.root_hub->tx_lanes = 2;
5171 break;
5172 case 1:
5173 hcd->speed = HCD_USB31;
5174 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5175 break;
5177 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5178 minor_rev,
5179 minor_rev ? "Enhanced " : "");
5181 xhci->usb3_rhub.hcd = hcd;
5182 /* xHCI private pointer was set in xhci_pci_probe for the second
5183 * registered roothub.
5185 return 0;
5188 mutex_init(&xhci->mutex);
5189 xhci->cap_regs = hcd->regs;
5190 xhci->op_regs = hcd->regs +
5191 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5192 xhci->run_regs = hcd->regs +
5193 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5194 /* Cache read-only capability registers */
5195 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5196 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5197 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5198 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5199 xhci->hci_version = HC_VERSION(xhci->hcc_params);
5200 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5201 if (xhci->hci_version > 0x100)
5202 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5204 xhci->quirks |= quirks;
5206 get_quirks(dev, xhci);
5208 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5209 * success event after a short transfer. This quirk will ignore such
5210 * spurious event.
5212 if (xhci->hci_version > 0x96)
5213 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5215 /* Make sure the HC is halted. */
5216 retval = xhci_halt(xhci);
5217 if (retval)
5218 return retval;
5220 xhci_zero_64b_regs(xhci);
5222 xhci_dbg(xhci, "Resetting HCD\n");
5223 /* Reset the internal HC memory state and registers. */
5224 retval = xhci_reset(xhci);
5225 if (retval)
5226 return retval;
5227 xhci_dbg(xhci, "Reset complete\n");
5230 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5231 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5232 * address memory pointers actually. So, this driver clears the AC64
5233 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5234 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5236 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5237 xhci->hcc_params &= ~BIT(0);
5239 /* Set dma_mask and coherent_dma_mask to 64-bits,
5240 * if xHC supports 64-bit addressing */
5241 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5242 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5243 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5244 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5245 } else {
5247 * This is to avoid error in cases where a 32-bit USB
5248 * controller is used on a 64-bit capable system.
5250 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5251 if (retval)
5252 return retval;
5253 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5254 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5257 xhci_dbg(xhci, "Calling HCD init\n");
5258 /* Initialize HCD and host controller data structures. */
5259 retval = xhci_init(hcd);
5260 if (retval)
5261 return retval;
5262 xhci_dbg(xhci, "Called HCD init\n");
5264 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5265 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5267 return 0;
5269 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5271 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5272 struct usb_host_endpoint *ep)
5274 struct xhci_hcd *xhci;
5275 struct usb_device *udev;
5276 unsigned int slot_id;
5277 unsigned int ep_index;
5278 unsigned long flags;
5280 xhci = hcd_to_xhci(hcd);
5282 spin_lock_irqsave(&xhci->lock, flags);
5283 udev = (struct usb_device *)ep->hcpriv;
5284 slot_id = udev->slot_id;
5285 ep_index = xhci_get_endpoint_index(&ep->desc);
5287 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5288 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5289 spin_unlock_irqrestore(&xhci->lock, flags);
5292 static const struct hc_driver xhci_hc_driver = {
5293 .description = "xhci-hcd",
5294 .product_desc = "xHCI Host Controller",
5295 .hcd_priv_size = sizeof(struct xhci_hcd),
5298 * generic hardware linkage
5300 .irq = xhci_irq,
5301 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5302 HCD_BH,
5305 * basic lifecycle operations
5307 .reset = NULL, /* set in xhci_init_driver() */
5308 .start = xhci_run,
5309 .stop = xhci_stop,
5310 .shutdown = xhci_shutdown,
5313 * managing i/o requests and associated device resources
5315 .map_urb_for_dma = xhci_map_urb_for_dma,
5316 .urb_enqueue = xhci_urb_enqueue,
5317 .urb_dequeue = xhci_urb_dequeue,
5318 .alloc_dev = xhci_alloc_dev,
5319 .free_dev = xhci_free_dev,
5320 .alloc_streams = xhci_alloc_streams,
5321 .free_streams = xhci_free_streams,
5322 .add_endpoint = xhci_add_endpoint,
5323 .drop_endpoint = xhci_drop_endpoint,
5324 .endpoint_disable = xhci_endpoint_disable,
5325 .endpoint_reset = xhci_endpoint_reset,
5326 .check_bandwidth = xhci_check_bandwidth,
5327 .reset_bandwidth = xhci_reset_bandwidth,
5328 .address_device = xhci_address_device,
5329 .enable_device = xhci_enable_device,
5330 .update_hub_device = xhci_update_hub_device,
5331 .reset_device = xhci_discover_or_reset_device,
5334 * scheduling support
5336 .get_frame_number = xhci_get_frame,
5339 * root hub support
5341 .hub_control = xhci_hub_control,
5342 .hub_status_data = xhci_hub_status_data,
5343 .bus_suspend = xhci_bus_suspend,
5344 .bus_resume = xhci_bus_resume,
5345 .get_resuming_ports = xhci_get_resuming_ports,
5348 * call back when device connected and addressed
5350 .update_device = xhci_update_device,
5351 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5352 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5353 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5354 .find_raw_port_number = xhci_find_raw_port_number,
5355 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5358 void xhci_init_driver(struct hc_driver *drv,
5359 const struct xhci_driver_overrides *over)
5361 BUG_ON(!over);
5363 /* Copy the generic table to drv then apply the overrides */
5364 *drv = xhci_hc_driver;
5366 if (over) {
5367 drv->hcd_priv_size += over->extra_priv_size;
5368 if (over->reset)
5369 drv->reset = over->reset;
5370 if (over->start)
5371 drv->start = over->start;
5374 EXPORT_SYMBOL_GPL(xhci_init_driver);
5376 MODULE_DESCRIPTION(DRIVER_DESC);
5377 MODULE_AUTHOR(DRIVER_AUTHOR);
5378 MODULE_LICENSE("GPL");
5380 static int __init xhci_hcd_init(void)
5383 * Check the compiler generated sizes of structures that must be laid
5384 * out in specific ways for hardware access.
5386 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5387 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5388 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5389 /* xhci_device_control has eight fields, and also
5390 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5392 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5393 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5394 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5395 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5396 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5397 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5398 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5400 if (usb_disabled())
5401 return -ENODEV;
5403 xhci_debugfs_create_root();
5405 return 0;
5409 * If an init function is provided, an exit function must also be provided
5410 * to allow module unload.
5412 static void __exit xhci_hcd_fini(void)
5414 xhci_debugfs_remove_root();
5417 module_init(xhci_hcd_init);
5418 module_exit(xhci_hcd_fini);