1 // SPDX-License-Identifier: GPL-2.0-or-later
4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5 * & Swedish University of Agricultural Sciences.
7 * Jens Laas <jens.laas@data.slu.se> Swedish University of
8 * Agricultural Sciences.
10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
12 * This work is based on the LPC-trie which is originally described in:
14 * An experimental study of compression methods for dynamic tries
15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
21 * Code from fib_hash has been reused which includes the following header:
23 * INET An implementation of the TCP/IP protocol suite for the LINUX
24 * operating system. INET is implemented using the BSD Socket
25 * interface as the means of communication with the user level.
27 * IPv4 FIB: lookup engine and maintenance routines.
29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
31 * Substantial contributions to this work comes from:
33 * David S. Miller, <davem@davemloft.net>
34 * Stephen Hemminger <shemminger@osdl.org>
35 * Paul E. McKenney <paulmck@us.ibm.com>
36 * Patrick McHardy <kaber@trash.net>
39 #define VERSION "0.409"
41 #include <linux/cache.h>
42 #include <linux/uaccess.h>
43 #include <linux/bitops.h>
44 #include <linux/types.h>
45 #include <linux/kernel.h>
47 #include <linux/string.h>
48 #include <linux/socket.h>
49 #include <linux/sockios.h>
50 #include <linux/errno.h>
52 #include <linux/inet.h>
53 #include <linux/inetdevice.h>
54 #include <linux/netdevice.h>
55 #include <linux/if_arp.h>
56 #include <linux/proc_fs.h>
57 #include <linux/rcupdate.h>
58 #include <linux/skbuff.h>
59 #include <linux/netlink.h>
60 #include <linux/init.h>
61 #include <linux/list.h>
62 #include <linux/slab.h>
63 #include <linux/export.h>
64 #include <linux/vmalloc.h>
65 #include <linux/notifier.h>
66 #include <net/net_namespace.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
72 #include <net/ip_fib.h>
73 #include <net/fib_notifier.h>
74 #include <trace/events/fib.h>
75 #include "fib_lookup.h"
77 static int call_fib_entry_notifier(struct notifier_block
*nb
,
78 enum fib_event_type event_type
, u32 dst
,
79 int dst_len
, struct fib_alias
*fa
,
80 struct netlink_ext_ack
*extack
)
82 struct fib_entry_notifier_info info
= {
83 .info
.extack
= extack
,
91 return call_fib4_notifier(nb
, event_type
, &info
.info
);
94 static int call_fib_entry_notifiers(struct net
*net
,
95 enum fib_event_type event_type
, u32 dst
,
96 int dst_len
, struct fib_alias
*fa
,
97 struct netlink_ext_ack
*extack
)
99 struct fib_entry_notifier_info info
= {
100 .info
.extack
= extack
,
108 return call_fib4_notifiers(net
, event_type
, &info
.info
);
111 #define MAX_STAT_DEPTH 32
113 #define KEYLENGTH (8*sizeof(t_key))
114 #define KEY_MAX ((t_key)~0)
116 typedef unsigned int t_key
;
118 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
119 #define IS_TNODE(n) ((n)->bits)
120 #define IS_LEAF(n) (!(n)->bits)
124 unsigned char pos
; /* 2log(KEYLENGTH) bits needed */
125 unsigned char bits
; /* 2log(KEYLENGTH) bits needed */
128 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
129 struct hlist_head leaf
;
130 /* This array is valid if (pos | bits) > 0 (TNODE) */
131 struct key_vector __rcu
*tnode
[0];
137 t_key empty_children
; /* KEYLENGTH bits needed */
138 t_key full_children
; /* KEYLENGTH bits needed */
139 struct key_vector __rcu
*parent
;
140 struct key_vector kv
[1];
141 #define tn_bits kv[0].bits
144 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
145 #define LEAF_SIZE TNODE_SIZE(1)
147 #ifdef CONFIG_IP_FIB_TRIE_STATS
148 struct trie_use_stats
{
150 unsigned int backtrack
;
151 unsigned int semantic_match_passed
;
152 unsigned int semantic_match_miss
;
153 unsigned int null_node_hit
;
154 unsigned int resize_node_skipped
;
159 unsigned int totdepth
;
160 unsigned int maxdepth
;
163 unsigned int nullpointers
;
164 unsigned int prefixes
;
165 unsigned int nodesizes
[MAX_STAT_DEPTH
];
169 struct key_vector kv
[1];
170 #ifdef CONFIG_IP_FIB_TRIE_STATS
171 struct trie_use_stats __percpu
*stats
;
175 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
);
176 static unsigned int tnode_free_size
;
179 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
180 * especially useful before resizing the root node with PREEMPT_NONE configs;
181 * the value was obtained experimentally, aiming to avoid visible slowdown.
183 unsigned int sysctl_fib_sync_mem
= 512 * 1024;
184 unsigned int sysctl_fib_sync_mem_min
= 64 * 1024;
185 unsigned int sysctl_fib_sync_mem_max
= 64 * 1024 * 1024;
187 static struct kmem_cache
*fn_alias_kmem __ro_after_init
;
188 static struct kmem_cache
*trie_leaf_kmem __ro_after_init
;
190 static inline struct tnode
*tn_info(struct key_vector
*kv
)
192 return container_of(kv
, struct tnode
, kv
[0]);
195 /* caller must hold RTNL */
196 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
197 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
199 /* caller must hold RCU read lock or RTNL */
200 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
201 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
203 /* wrapper for rcu_assign_pointer */
204 static inline void node_set_parent(struct key_vector
*n
, struct key_vector
*tp
)
207 rcu_assign_pointer(tn_info(n
)->parent
, tp
);
210 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
212 /* This provides us with the number of children in this node, in the case of a
213 * leaf this will return 0 meaning none of the children are accessible.
215 static inline unsigned long child_length(const struct key_vector
*tn
)
217 return (1ul << tn
->bits
) & ~(1ul);
220 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
222 static inline unsigned long get_index(t_key key
, struct key_vector
*kv
)
224 unsigned long index
= key
^ kv
->key
;
226 if ((BITS_PER_LONG
<= KEYLENGTH
) && (KEYLENGTH
== kv
->pos
))
229 return index
>> kv
->pos
;
232 /* To understand this stuff, an understanding of keys and all their bits is
233 * necessary. Every node in the trie has a key associated with it, but not
234 * all of the bits in that key are significant.
236 * Consider a node 'n' and its parent 'tp'.
238 * If n is a leaf, every bit in its key is significant. Its presence is
239 * necessitated by path compression, since during a tree traversal (when
240 * searching for a leaf - unless we are doing an insertion) we will completely
241 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
242 * a potentially successful search, that we have indeed been walking the
245 * Note that we can never "miss" the correct key in the tree if present by
246 * following the wrong path. Path compression ensures that segments of the key
247 * that are the same for all keys with a given prefix are skipped, but the
248 * skipped part *is* identical for each node in the subtrie below the skipped
249 * bit! trie_insert() in this implementation takes care of that.
251 * if n is an internal node - a 'tnode' here, the various parts of its key
252 * have many different meanings.
255 * _________________________________________________________________
256 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
257 * -----------------------------------------------------------------
258 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
260 * _________________________________________________________________
261 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
262 * -----------------------------------------------------------------
263 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
270 * First, let's just ignore the bits that come before the parent tp, that is
271 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
272 * point we do not use them for anything.
274 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
275 * index into the parent's child array. That is, they will be used to find
276 * 'n' among tp's children.
278 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
281 * All the bits we have seen so far are significant to the node n. The rest
282 * of the bits are really not needed or indeed known in n->key.
284 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
285 * n's child array, and will of course be different for each child.
287 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
291 static const int halve_threshold
= 25;
292 static const int inflate_threshold
= 50;
293 static const int halve_threshold_root
= 15;
294 static const int inflate_threshold_root
= 30;
296 static void __alias_free_mem(struct rcu_head
*head
)
298 struct fib_alias
*fa
= container_of(head
, struct fib_alias
, rcu
);
299 kmem_cache_free(fn_alias_kmem
, fa
);
302 static inline void alias_free_mem_rcu(struct fib_alias
*fa
)
304 call_rcu(&fa
->rcu
, __alias_free_mem
);
307 #define TNODE_KMALLOC_MAX \
308 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
309 #define TNODE_VMALLOC_MAX \
310 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
312 static void __node_free_rcu(struct rcu_head
*head
)
314 struct tnode
*n
= container_of(head
, struct tnode
, rcu
);
317 kmem_cache_free(trie_leaf_kmem
, n
);
322 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
324 static struct tnode
*tnode_alloc(int bits
)
328 /* verify bits is within bounds */
329 if (bits
> TNODE_VMALLOC_MAX
)
332 /* determine size and verify it is non-zero and didn't overflow */
333 size
= TNODE_SIZE(1ul << bits
);
335 if (size
<= PAGE_SIZE
)
336 return kzalloc(size
, GFP_KERNEL
);
338 return vzalloc(size
);
341 static inline void empty_child_inc(struct key_vector
*n
)
343 tn_info(n
)->empty_children
++;
345 if (!tn_info(n
)->empty_children
)
346 tn_info(n
)->full_children
++;
349 static inline void empty_child_dec(struct key_vector
*n
)
351 if (!tn_info(n
)->empty_children
)
352 tn_info(n
)->full_children
--;
354 tn_info(n
)->empty_children
--;
357 static struct key_vector
*leaf_new(t_key key
, struct fib_alias
*fa
)
359 struct key_vector
*l
;
362 kv
= kmem_cache_alloc(trie_leaf_kmem
, GFP_KERNEL
);
366 /* initialize key vector */
371 l
->slen
= fa
->fa_slen
;
373 /* link leaf to fib alias */
374 INIT_HLIST_HEAD(&l
->leaf
);
375 hlist_add_head(&fa
->fa_list
, &l
->leaf
);
380 static struct key_vector
*tnode_new(t_key key
, int pos
, int bits
)
382 unsigned int shift
= pos
+ bits
;
383 struct key_vector
*tn
;
386 /* verify bits and pos their msb bits clear and values are valid */
387 BUG_ON(!bits
|| (shift
> KEYLENGTH
));
389 tnode
= tnode_alloc(bits
);
393 pr_debug("AT %p s=%zu %zu\n", tnode
, TNODE_SIZE(0),
394 sizeof(struct key_vector
*) << bits
);
396 if (bits
== KEYLENGTH
)
397 tnode
->full_children
= 1;
399 tnode
->empty_children
= 1ul << bits
;
402 tn
->key
= (shift
< KEYLENGTH
) ? (key
>> shift
) << shift
: 0;
410 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
411 * and no bits are skipped. See discussion in dyntree paper p. 6
413 static inline int tnode_full(struct key_vector
*tn
, struct key_vector
*n
)
415 return n
&& ((n
->pos
+ n
->bits
) == tn
->pos
) && IS_TNODE(n
);
418 /* Add a child at position i overwriting the old value.
419 * Update the value of full_children and empty_children.
421 static void put_child(struct key_vector
*tn
, unsigned long i
,
422 struct key_vector
*n
)
424 struct key_vector
*chi
= get_child(tn
, i
);
427 BUG_ON(i
>= child_length(tn
));
429 /* update emptyChildren, overflow into fullChildren */
435 /* update fullChildren */
436 wasfull
= tnode_full(tn
, chi
);
437 isfull
= tnode_full(tn
, n
);
439 if (wasfull
&& !isfull
)
440 tn_info(tn
)->full_children
--;
441 else if (!wasfull
&& isfull
)
442 tn_info(tn
)->full_children
++;
444 if (n
&& (tn
->slen
< n
->slen
))
447 rcu_assign_pointer(tn
->tnode
[i
], n
);
450 static void update_children(struct key_vector
*tn
)
454 /* update all of the child parent pointers */
455 for (i
= child_length(tn
); i
;) {
456 struct key_vector
*inode
= get_child(tn
, --i
);
461 /* Either update the children of a tnode that
462 * already belongs to us or update the child
463 * to point to ourselves.
465 if (node_parent(inode
) == tn
)
466 update_children(inode
);
468 node_set_parent(inode
, tn
);
472 static inline void put_child_root(struct key_vector
*tp
, t_key key
,
473 struct key_vector
*n
)
476 rcu_assign_pointer(tp
->tnode
[0], n
);
478 put_child(tp
, get_index(key
, tp
), n
);
481 static inline void tnode_free_init(struct key_vector
*tn
)
483 tn_info(tn
)->rcu
.next
= NULL
;
486 static inline void tnode_free_append(struct key_vector
*tn
,
487 struct key_vector
*n
)
489 tn_info(n
)->rcu
.next
= tn_info(tn
)->rcu
.next
;
490 tn_info(tn
)->rcu
.next
= &tn_info(n
)->rcu
;
493 static void tnode_free(struct key_vector
*tn
)
495 struct callback_head
*head
= &tn_info(tn
)->rcu
;
499 tnode_free_size
+= TNODE_SIZE(1ul << tn
->bits
);
502 tn
= container_of(head
, struct tnode
, rcu
)->kv
;
505 if (tnode_free_size
>= sysctl_fib_sync_mem
) {
511 static struct key_vector
*replace(struct trie
*t
,
512 struct key_vector
*oldtnode
,
513 struct key_vector
*tn
)
515 struct key_vector
*tp
= node_parent(oldtnode
);
518 /* setup the parent pointer out of and back into this node */
519 NODE_INIT_PARENT(tn
, tp
);
520 put_child_root(tp
, tn
->key
, tn
);
522 /* update all of the child parent pointers */
525 /* all pointers should be clean so we are done */
526 tnode_free(oldtnode
);
528 /* resize children now that oldtnode is freed */
529 for (i
= child_length(tn
); i
;) {
530 struct key_vector
*inode
= get_child(tn
, --i
);
532 /* resize child node */
533 if (tnode_full(tn
, inode
))
534 tn
= resize(t
, inode
);
540 static struct key_vector
*inflate(struct trie
*t
,
541 struct key_vector
*oldtnode
)
543 struct key_vector
*tn
;
547 pr_debug("In inflate\n");
549 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
- 1, oldtnode
->bits
+ 1);
553 /* prepare oldtnode to be freed */
554 tnode_free_init(oldtnode
);
556 /* Assemble all of the pointers in our cluster, in this case that
557 * represents all of the pointers out of our allocated nodes that
558 * point to existing tnodes and the links between our allocated
561 for (i
= child_length(oldtnode
), m
= 1u << tn
->pos
; i
;) {
562 struct key_vector
*inode
= get_child(oldtnode
, --i
);
563 struct key_vector
*node0
, *node1
;
570 /* A leaf or an internal node with skipped bits */
571 if (!tnode_full(oldtnode
, inode
)) {
572 put_child(tn
, get_index(inode
->key
, tn
), inode
);
576 /* drop the node in the old tnode free list */
577 tnode_free_append(oldtnode
, inode
);
579 /* An internal node with two children */
580 if (inode
->bits
== 1) {
581 put_child(tn
, 2 * i
+ 1, get_child(inode
, 1));
582 put_child(tn
, 2 * i
, get_child(inode
, 0));
586 /* We will replace this node 'inode' with two new
587 * ones, 'node0' and 'node1', each with half of the
588 * original children. The two new nodes will have
589 * a position one bit further down the key and this
590 * means that the "significant" part of their keys
591 * (see the discussion near the top of this file)
592 * will differ by one bit, which will be "0" in
593 * node0's key and "1" in node1's key. Since we are
594 * moving the key position by one step, the bit that
595 * we are moving away from - the bit at position
596 * (tn->pos) - is the one that will differ between
597 * node0 and node1. So... we synthesize that bit in the
600 node1
= tnode_new(inode
->key
| m
, inode
->pos
, inode
->bits
- 1);
603 node0
= tnode_new(inode
->key
, inode
->pos
, inode
->bits
- 1);
605 tnode_free_append(tn
, node1
);
608 tnode_free_append(tn
, node0
);
610 /* populate child pointers in new nodes */
611 for (k
= child_length(inode
), j
= k
/ 2; j
;) {
612 put_child(node1
, --j
, get_child(inode
, --k
));
613 put_child(node0
, j
, get_child(inode
, j
));
614 put_child(node1
, --j
, get_child(inode
, --k
));
615 put_child(node0
, j
, get_child(inode
, j
));
618 /* link new nodes to parent */
619 NODE_INIT_PARENT(node1
, tn
);
620 NODE_INIT_PARENT(node0
, tn
);
622 /* link parent to nodes */
623 put_child(tn
, 2 * i
+ 1, node1
);
624 put_child(tn
, 2 * i
, node0
);
627 /* setup the parent pointers into and out of this node */
628 return replace(t
, oldtnode
, tn
);
630 /* all pointers should be clean so we are done */
636 static struct key_vector
*halve(struct trie
*t
,
637 struct key_vector
*oldtnode
)
639 struct key_vector
*tn
;
642 pr_debug("In halve\n");
644 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
+ 1, oldtnode
->bits
- 1);
648 /* prepare oldtnode to be freed */
649 tnode_free_init(oldtnode
);
651 /* Assemble all of the pointers in our cluster, in this case that
652 * represents all of the pointers out of our allocated nodes that
653 * point to existing tnodes and the links between our allocated
656 for (i
= child_length(oldtnode
); i
;) {
657 struct key_vector
*node1
= get_child(oldtnode
, --i
);
658 struct key_vector
*node0
= get_child(oldtnode
, --i
);
659 struct key_vector
*inode
;
661 /* At least one of the children is empty */
662 if (!node1
|| !node0
) {
663 put_child(tn
, i
/ 2, node1
? : node0
);
667 /* Two nonempty children */
668 inode
= tnode_new(node0
->key
, oldtnode
->pos
, 1);
671 tnode_free_append(tn
, inode
);
673 /* initialize pointers out of node */
674 put_child(inode
, 1, node1
);
675 put_child(inode
, 0, node0
);
676 NODE_INIT_PARENT(inode
, tn
);
678 /* link parent to node */
679 put_child(tn
, i
/ 2, inode
);
682 /* setup the parent pointers into and out of this node */
683 return replace(t
, oldtnode
, tn
);
685 /* all pointers should be clean so we are done */
691 static struct key_vector
*collapse(struct trie
*t
,
692 struct key_vector
*oldtnode
)
694 struct key_vector
*n
, *tp
;
697 /* scan the tnode looking for that one child that might still exist */
698 for (n
= NULL
, i
= child_length(oldtnode
); !n
&& i
;)
699 n
= get_child(oldtnode
, --i
);
701 /* compress one level */
702 tp
= node_parent(oldtnode
);
703 put_child_root(tp
, oldtnode
->key
, n
);
704 node_set_parent(n
, tp
);
712 static unsigned char update_suffix(struct key_vector
*tn
)
714 unsigned char slen
= tn
->pos
;
715 unsigned long stride
, i
;
716 unsigned char slen_max
;
718 /* only vector 0 can have a suffix length greater than or equal to
719 * tn->pos + tn->bits, the second highest node will have a suffix
720 * length at most of tn->pos + tn->bits - 1
722 slen_max
= min_t(unsigned char, tn
->pos
+ tn
->bits
- 1, tn
->slen
);
724 /* search though the list of children looking for nodes that might
725 * have a suffix greater than the one we currently have. This is
726 * why we start with a stride of 2 since a stride of 1 would
727 * represent the nodes with suffix length equal to tn->pos
729 for (i
= 0, stride
= 0x2ul
; i
< child_length(tn
); i
+= stride
) {
730 struct key_vector
*n
= get_child(tn
, i
);
732 if (!n
|| (n
->slen
<= slen
))
735 /* update stride and slen based on new value */
736 stride
<<= (n
->slen
- slen
);
740 /* stop searching if we have hit the maximum possible value */
741 if (slen
>= slen_max
)
750 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
751 * the Helsinki University of Technology and Matti Tikkanen of Nokia
752 * Telecommunications, page 6:
753 * "A node is doubled if the ratio of non-empty children to all
754 * children in the *doubled* node is at least 'high'."
756 * 'high' in this instance is the variable 'inflate_threshold'. It
757 * is expressed as a percentage, so we multiply it with
758 * child_length() and instead of multiplying by 2 (since the
759 * child array will be doubled by inflate()) and multiplying
760 * the left-hand side by 100 (to handle the percentage thing) we
761 * multiply the left-hand side by 50.
763 * The left-hand side may look a bit weird: child_length(tn)
764 * - tn->empty_children is of course the number of non-null children
765 * in the current node. tn->full_children is the number of "full"
766 * children, that is non-null tnodes with a skip value of 0.
767 * All of those will be doubled in the resulting inflated tnode, so
768 * we just count them one extra time here.
770 * A clearer way to write this would be:
772 * to_be_doubled = tn->full_children;
773 * not_to_be_doubled = child_length(tn) - tn->empty_children -
776 * new_child_length = child_length(tn) * 2;
778 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
780 * if (new_fill_factor >= inflate_threshold)
782 * ...and so on, tho it would mess up the while () loop.
785 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
789 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
790 * inflate_threshold * new_child_length
792 * expand not_to_be_doubled and to_be_doubled, and shorten:
793 * 100 * (child_length(tn) - tn->empty_children +
794 * tn->full_children) >= inflate_threshold * new_child_length
796 * expand new_child_length:
797 * 100 * (child_length(tn) - tn->empty_children +
798 * tn->full_children) >=
799 * inflate_threshold * child_length(tn) * 2
802 * 50 * (tn->full_children + child_length(tn) -
803 * tn->empty_children) >= inflate_threshold *
807 static inline bool should_inflate(struct key_vector
*tp
, struct key_vector
*tn
)
809 unsigned long used
= child_length(tn
);
810 unsigned long threshold
= used
;
812 /* Keep root node larger */
813 threshold
*= IS_TRIE(tp
) ? inflate_threshold_root
: inflate_threshold
;
814 used
-= tn_info(tn
)->empty_children
;
815 used
+= tn_info(tn
)->full_children
;
817 /* if bits == KEYLENGTH then pos = 0, and will fail below */
819 return (used
> 1) && tn
->pos
&& ((50 * used
) >= threshold
);
822 static inline bool should_halve(struct key_vector
*tp
, struct key_vector
*tn
)
824 unsigned long used
= child_length(tn
);
825 unsigned long threshold
= used
;
827 /* Keep root node larger */
828 threshold
*= IS_TRIE(tp
) ? halve_threshold_root
: halve_threshold
;
829 used
-= tn_info(tn
)->empty_children
;
831 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
833 return (used
> 1) && (tn
->bits
> 1) && ((100 * used
) < threshold
);
836 static inline bool should_collapse(struct key_vector
*tn
)
838 unsigned long used
= child_length(tn
);
840 used
-= tn_info(tn
)->empty_children
;
842 /* account for bits == KEYLENGTH case */
843 if ((tn
->bits
== KEYLENGTH
) && tn_info(tn
)->full_children
)
846 /* One child or none, time to drop us from the trie */
851 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
)
853 #ifdef CONFIG_IP_FIB_TRIE_STATS
854 struct trie_use_stats __percpu
*stats
= t
->stats
;
856 struct key_vector
*tp
= node_parent(tn
);
857 unsigned long cindex
= get_index(tn
->key
, tp
);
858 int max_work
= MAX_WORK
;
860 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
861 tn
, inflate_threshold
, halve_threshold
);
863 /* track the tnode via the pointer from the parent instead of
864 * doing it ourselves. This way we can let RCU fully do its
865 * thing without us interfering
867 BUG_ON(tn
!= get_child(tp
, cindex
));
869 /* Double as long as the resulting node has a number of
870 * nonempty nodes that are above the threshold.
872 while (should_inflate(tp
, tn
) && max_work
) {
875 #ifdef CONFIG_IP_FIB_TRIE_STATS
876 this_cpu_inc(stats
->resize_node_skipped
);
882 tn
= get_child(tp
, cindex
);
885 /* update parent in case inflate failed */
886 tp
= node_parent(tn
);
888 /* Return if at least one inflate is run */
889 if (max_work
!= MAX_WORK
)
892 /* Halve as long as the number of empty children in this
893 * node is above threshold.
895 while (should_halve(tp
, tn
) && max_work
) {
898 #ifdef CONFIG_IP_FIB_TRIE_STATS
899 this_cpu_inc(stats
->resize_node_skipped
);
905 tn
= get_child(tp
, cindex
);
908 /* Only one child remains */
909 if (should_collapse(tn
))
910 return collapse(t
, tn
);
912 /* update parent in case halve failed */
913 return node_parent(tn
);
916 static void node_pull_suffix(struct key_vector
*tn
, unsigned char slen
)
918 unsigned char node_slen
= tn
->slen
;
920 while ((node_slen
> tn
->pos
) && (node_slen
> slen
)) {
921 slen
= update_suffix(tn
);
922 if (node_slen
== slen
)
925 tn
= node_parent(tn
);
926 node_slen
= tn
->slen
;
930 static void node_push_suffix(struct key_vector
*tn
, unsigned char slen
)
932 while (tn
->slen
< slen
) {
934 tn
= node_parent(tn
);
938 /* rcu_read_lock needs to be hold by caller from readside */
939 static struct key_vector
*fib_find_node(struct trie
*t
,
940 struct key_vector
**tp
, u32 key
)
942 struct key_vector
*pn
, *n
= t
->kv
;
943 unsigned long index
= 0;
947 n
= get_child_rcu(n
, index
);
952 index
= get_cindex(key
, n
);
954 /* This bit of code is a bit tricky but it combines multiple
955 * checks into a single check. The prefix consists of the
956 * prefix plus zeros for the bits in the cindex. The index
957 * is the difference between the key and this value. From
958 * this we can actually derive several pieces of data.
959 * if (index >= (1ul << bits))
960 * we have a mismatch in skip bits and failed
962 * we know the value is cindex
964 * This check is safe even if bits == KEYLENGTH due to the
965 * fact that we can only allocate a node with 32 bits if a
966 * long is greater than 32 bits.
968 if (index
>= (1ul << n
->bits
)) {
973 /* keep searching until we find a perfect match leaf or NULL */
974 } while (IS_TNODE(n
));
981 /* Return the first fib alias matching TOS with
982 * priority less than or equal to PRIO.
984 static struct fib_alias
*fib_find_alias(struct hlist_head
*fah
, u8 slen
,
985 u8 tos
, u32 prio
, u32 tb_id
)
987 struct fib_alias
*fa
;
992 hlist_for_each_entry(fa
, fah
, fa_list
) {
993 if (fa
->fa_slen
< slen
)
995 if (fa
->fa_slen
!= slen
)
997 if (fa
->tb_id
> tb_id
)
999 if (fa
->tb_id
!= tb_id
)
1001 if (fa
->fa_tos
> tos
)
1003 if (fa
->fa_info
->fib_priority
>= prio
|| fa
->fa_tos
< tos
)
1010 static void trie_rebalance(struct trie
*t
, struct key_vector
*tn
)
1012 while (!IS_TRIE(tn
))
1016 static int fib_insert_node(struct trie
*t
, struct key_vector
*tp
,
1017 struct fib_alias
*new, t_key key
)
1019 struct key_vector
*n
, *l
;
1021 l
= leaf_new(key
, new);
1025 /* retrieve child from parent node */
1026 n
= get_child(tp
, get_index(key
, tp
));
1028 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1030 * Add a new tnode here
1031 * first tnode need some special handling
1032 * leaves us in position for handling as case 3
1035 struct key_vector
*tn
;
1037 tn
= tnode_new(key
, __fls(key
^ n
->key
), 1);
1041 /* initialize routes out of node */
1042 NODE_INIT_PARENT(tn
, tp
);
1043 put_child(tn
, get_index(key
, tn
) ^ 1, n
);
1045 /* start adding routes into the node */
1046 put_child_root(tp
, key
, tn
);
1047 node_set_parent(n
, tn
);
1049 /* parent now has a NULL spot where the leaf can go */
1053 /* Case 3: n is NULL, and will just insert a new leaf */
1054 node_push_suffix(tp
, new->fa_slen
);
1055 NODE_INIT_PARENT(l
, tp
);
1056 put_child_root(tp
, key
, l
);
1057 trie_rebalance(t
, tp
);
1066 /* fib notifier for ADD is sent before calling fib_insert_alias with
1067 * the expectation that the only possible failure ENOMEM
1069 static int fib_insert_alias(struct trie
*t
, struct key_vector
*tp
,
1070 struct key_vector
*l
, struct fib_alias
*new,
1071 struct fib_alias
*fa
, t_key key
)
1074 return fib_insert_node(t
, tp
, new, key
);
1077 hlist_add_before_rcu(&new->fa_list
, &fa
->fa_list
);
1079 struct fib_alias
*last
;
1081 hlist_for_each_entry(last
, &l
->leaf
, fa_list
) {
1082 if (new->fa_slen
< last
->fa_slen
)
1084 if ((new->fa_slen
== last
->fa_slen
) &&
1085 (new->tb_id
> last
->tb_id
))
1091 hlist_add_behind_rcu(&new->fa_list
, &fa
->fa_list
);
1093 hlist_add_head_rcu(&new->fa_list
, &l
->leaf
);
1096 /* if we added to the tail node then we need to update slen */
1097 if (l
->slen
< new->fa_slen
) {
1098 l
->slen
= new->fa_slen
;
1099 node_push_suffix(tp
, new->fa_slen
);
1105 static bool fib_valid_key_len(u32 key
, u8 plen
, struct netlink_ext_ack
*extack
)
1107 if (plen
> KEYLENGTH
) {
1108 NL_SET_ERR_MSG(extack
, "Invalid prefix length");
1112 if ((plen
< KEYLENGTH
) && (key
<< plen
)) {
1113 NL_SET_ERR_MSG(extack
,
1114 "Invalid prefix for given prefix length");
1121 /* Caller must hold RTNL. */
1122 int fib_table_insert(struct net
*net
, struct fib_table
*tb
,
1123 struct fib_config
*cfg
, struct netlink_ext_ack
*extack
)
1125 enum fib_event_type event
= FIB_EVENT_ENTRY_ADD
;
1126 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1127 struct fib_alias
*fa
, *new_fa
;
1128 struct key_vector
*l
, *tp
;
1129 u16 nlflags
= NLM_F_EXCL
;
1130 struct fib_info
*fi
;
1131 u8 plen
= cfg
->fc_dst_len
;
1132 u8 slen
= KEYLENGTH
- plen
;
1133 u8 tos
= cfg
->fc_tos
;
1137 key
= ntohl(cfg
->fc_dst
);
1139 if (!fib_valid_key_len(key
, plen
, extack
))
1142 pr_debug("Insert table=%u %08x/%d\n", tb
->tb_id
, key
, plen
);
1144 fi
= fib_create_info(cfg
, extack
);
1150 l
= fib_find_node(t
, &tp
, key
);
1151 fa
= l
? fib_find_alias(&l
->leaf
, slen
, tos
, fi
->fib_priority
,
1154 /* Now fa, if non-NULL, points to the first fib alias
1155 * with the same keys [prefix,tos,priority], if such key already
1156 * exists or to the node before which we will insert new one.
1158 * If fa is NULL, we will need to allocate a new one and
1159 * insert to the tail of the section matching the suffix length
1163 if (fa
&& fa
->fa_tos
== tos
&&
1164 fa
->fa_info
->fib_priority
== fi
->fib_priority
) {
1165 struct fib_alias
*fa_first
, *fa_match
;
1168 if (cfg
->fc_nlflags
& NLM_F_EXCL
)
1171 nlflags
&= ~NLM_F_EXCL
;
1174 * 1. Find exact match for type, scope, fib_info to avoid
1176 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1180 hlist_for_each_entry_from(fa
, fa_list
) {
1181 if ((fa
->fa_slen
!= slen
) ||
1182 (fa
->tb_id
!= tb
->tb_id
) ||
1183 (fa
->fa_tos
!= tos
))
1185 if (fa
->fa_info
->fib_priority
!= fi
->fib_priority
)
1187 if (fa
->fa_type
== cfg
->fc_type
&&
1188 fa
->fa_info
== fi
) {
1194 if (cfg
->fc_nlflags
& NLM_F_REPLACE
) {
1195 struct fib_info
*fi_drop
;
1198 nlflags
|= NLM_F_REPLACE
;
1206 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1210 fi_drop
= fa
->fa_info
;
1211 new_fa
->fa_tos
= fa
->fa_tos
;
1212 new_fa
->fa_info
= fi
;
1213 new_fa
->fa_type
= cfg
->fc_type
;
1214 state
= fa
->fa_state
;
1215 new_fa
->fa_state
= state
& ~FA_S_ACCESSED
;
1216 new_fa
->fa_slen
= fa
->fa_slen
;
1217 new_fa
->tb_id
= tb
->tb_id
;
1218 new_fa
->fa_default
= -1;
1220 err
= call_fib_entry_notifiers(net
,
1221 FIB_EVENT_ENTRY_REPLACE
,
1225 goto out_free_new_fa
;
1227 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
,
1228 tb
->tb_id
, &cfg
->fc_nlinfo
, nlflags
);
1230 hlist_replace_rcu(&fa
->fa_list
, &new_fa
->fa_list
);
1232 alias_free_mem_rcu(fa
);
1234 fib_release_info(fi_drop
);
1235 if (state
& FA_S_ACCESSED
)
1236 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1240 /* Error if we find a perfect match which
1241 * uses the same scope, type, and nexthop
1247 if (cfg
->fc_nlflags
& NLM_F_APPEND
) {
1248 event
= FIB_EVENT_ENTRY_APPEND
;
1249 nlflags
|= NLM_F_APPEND
;
1255 if (!(cfg
->fc_nlflags
& NLM_F_CREATE
))
1258 nlflags
|= NLM_F_CREATE
;
1260 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1264 new_fa
->fa_info
= fi
;
1265 new_fa
->fa_tos
= tos
;
1266 new_fa
->fa_type
= cfg
->fc_type
;
1267 new_fa
->fa_state
= 0;
1268 new_fa
->fa_slen
= slen
;
1269 new_fa
->tb_id
= tb
->tb_id
;
1270 new_fa
->fa_default
= -1;
1272 err
= call_fib_entry_notifiers(net
, event
, key
, plen
, new_fa
, extack
);
1274 goto out_free_new_fa
;
1276 /* Insert new entry to the list. */
1277 err
= fib_insert_alias(t
, tp
, l
, new_fa
, fa
, key
);
1282 tb
->tb_num_default
++;
1284 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1285 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
, new_fa
->tb_id
,
1286 &cfg
->fc_nlinfo
, nlflags
);
1291 /* notifier was sent that entry would be added to trie, but
1292 * the add failed and need to recover. Only failure for
1293 * fib_insert_alias is ENOMEM.
1295 NL_SET_ERR_MSG(extack
, "Failed to insert route into trie");
1296 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_DEL
, key
,
1297 plen
, new_fa
, NULL
);
1299 kmem_cache_free(fn_alias_kmem
, new_fa
);
1301 fib_release_info(fi
);
1306 static inline t_key
prefix_mismatch(t_key key
, struct key_vector
*n
)
1308 t_key prefix
= n
->key
;
1310 return (key
^ prefix
) & (prefix
| -prefix
);
1313 /* should be called with rcu_read_lock */
1314 int fib_table_lookup(struct fib_table
*tb
, const struct flowi4
*flp
,
1315 struct fib_result
*res
, int fib_flags
)
1317 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1318 #ifdef CONFIG_IP_FIB_TRIE_STATS
1319 struct trie_use_stats __percpu
*stats
= t
->stats
;
1321 const t_key key
= ntohl(flp
->daddr
);
1322 struct key_vector
*n
, *pn
;
1323 struct fib_alias
*fa
;
1324 unsigned long index
;
1330 n
= get_child_rcu(pn
, cindex
);
1332 trace_fib_table_lookup(tb
->tb_id
, flp
, NULL
, -EAGAIN
);
1336 #ifdef CONFIG_IP_FIB_TRIE_STATS
1337 this_cpu_inc(stats
->gets
);
1340 /* Step 1: Travel to the longest prefix match in the trie */
1342 index
= get_cindex(key
, n
);
1344 /* This bit of code is a bit tricky but it combines multiple
1345 * checks into a single check. The prefix consists of the
1346 * prefix plus zeros for the "bits" in the prefix. The index
1347 * is the difference between the key and this value. From
1348 * this we can actually derive several pieces of data.
1349 * if (index >= (1ul << bits))
1350 * we have a mismatch in skip bits and failed
1352 * we know the value is cindex
1354 * This check is safe even if bits == KEYLENGTH due to the
1355 * fact that we can only allocate a node with 32 bits if a
1356 * long is greater than 32 bits.
1358 if (index
>= (1ul << n
->bits
))
1361 /* we have found a leaf. Prefixes have already been compared */
1365 /* only record pn and cindex if we are going to be chopping
1366 * bits later. Otherwise we are just wasting cycles.
1368 if (n
->slen
> n
->pos
) {
1373 n
= get_child_rcu(n
, index
);
1378 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1380 /* record the pointer where our next node pointer is stored */
1381 struct key_vector __rcu
**cptr
= n
->tnode
;
1383 /* This test verifies that none of the bits that differ
1384 * between the key and the prefix exist in the region of
1385 * the lsb and higher in the prefix.
1387 if (unlikely(prefix_mismatch(key
, n
)) || (n
->slen
== n
->pos
))
1390 /* exit out and process leaf */
1391 if (unlikely(IS_LEAF(n
)))
1394 /* Don't bother recording parent info. Since we are in
1395 * prefix match mode we will have to come back to wherever
1396 * we started this traversal anyway
1399 while ((n
= rcu_dereference(*cptr
)) == NULL
) {
1401 #ifdef CONFIG_IP_FIB_TRIE_STATS
1403 this_cpu_inc(stats
->null_node_hit
);
1405 /* If we are at cindex 0 there are no more bits for
1406 * us to strip at this level so we must ascend back
1407 * up one level to see if there are any more bits to
1408 * be stripped there.
1411 t_key pkey
= pn
->key
;
1413 /* If we don't have a parent then there is
1414 * nothing for us to do as we do not have any
1415 * further nodes to parse.
1418 trace_fib_table_lookup(tb
->tb_id
, flp
,
1422 #ifdef CONFIG_IP_FIB_TRIE_STATS
1423 this_cpu_inc(stats
->backtrack
);
1425 /* Get Child's index */
1426 pn
= node_parent_rcu(pn
);
1427 cindex
= get_index(pkey
, pn
);
1430 /* strip the least significant bit from the cindex */
1431 cindex
&= cindex
- 1;
1433 /* grab pointer for next child node */
1434 cptr
= &pn
->tnode
[cindex
];
1439 /* this line carries forward the xor from earlier in the function */
1440 index
= key
^ n
->key
;
1442 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1443 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
1444 struct fib_info
*fi
= fa
->fa_info
;
1447 if ((BITS_PER_LONG
> KEYLENGTH
) || (fa
->fa_slen
< KEYLENGTH
)) {
1448 if (index
>= (1ul << fa
->fa_slen
))
1451 if (fa
->fa_tos
&& fa
->fa_tos
!= flp
->flowi4_tos
)
1455 if (fa
->fa_info
->fib_scope
< flp
->flowi4_scope
)
1457 fib_alias_accessed(fa
);
1458 err
= fib_props
[fa
->fa_type
].error
;
1459 if (unlikely(err
< 0)) {
1461 #ifdef CONFIG_IP_FIB_TRIE_STATS
1462 this_cpu_inc(stats
->semantic_match_passed
);
1464 trace_fib_table_lookup(tb
->tb_id
, flp
, NULL
, err
);
1467 if (fi
->fib_flags
& RTNH_F_DEAD
)
1470 if (unlikely(fi
->nh
&& nexthop_is_blackhole(fi
->nh
))) {
1471 err
= fib_props
[RTN_BLACKHOLE
].error
;
1475 for (nhsel
= 0; nhsel
< fib_info_num_path(fi
); nhsel
++) {
1476 struct fib_nh_common
*nhc
= fib_info_nhc(fi
, nhsel
);
1478 if (nhc
->nhc_flags
& RTNH_F_DEAD
)
1480 if (ip_ignore_linkdown(nhc
->nhc_dev
) &&
1481 nhc
->nhc_flags
& RTNH_F_LINKDOWN
&&
1482 !(fib_flags
& FIB_LOOKUP_IGNORE_LINKSTATE
))
1484 if (!(flp
->flowi4_flags
& FLOWI_FLAG_SKIP_NH_OIF
)) {
1485 if (flp
->flowi4_oif
&&
1486 flp
->flowi4_oif
!= nhc
->nhc_oif
)
1490 if (!(fib_flags
& FIB_LOOKUP_NOREF
))
1491 refcount_inc(&fi
->fib_clntref
);
1493 res
->prefix
= htonl(n
->key
);
1494 res
->prefixlen
= KEYLENGTH
- fa
->fa_slen
;
1495 res
->nh_sel
= nhsel
;
1497 res
->type
= fa
->fa_type
;
1498 res
->scope
= fi
->fib_scope
;
1501 res
->fa_head
= &n
->leaf
;
1502 #ifdef CONFIG_IP_FIB_TRIE_STATS
1503 this_cpu_inc(stats
->semantic_match_passed
);
1505 trace_fib_table_lookup(tb
->tb_id
, flp
, nhc
, err
);
1510 #ifdef CONFIG_IP_FIB_TRIE_STATS
1511 this_cpu_inc(stats
->semantic_match_miss
);
1515 EXPORT_SYMBOL_GPL(fib_table_lookup
);
1517 static void fib_remove_alias(struct trie
*t
, struct key_vector
*tp
,
1518 struct key_vector
*l
, struct fib_alias
*old
)
1520 /* record the location of the previous list_info entry */
1521 struct hlist_node
**pprev
= old
->fa_list
.pprev
;
1522 struct fib_alias
*fa
= hlist_entry(pprev
, typeof(*fa
), fa_list
.next
);
1524 /* remove the fib_alias from the list */
1525 hlist_del_rcu(&old
->fa_list
);
1527 /* if we emptied the list this leaf will be freed and we can sort
1528 * out parent suffix lengths as a part of trie_rebalance
1530 if (hlist_empty(&l
->leaf
)) {
1531 if (tp
->slen
== l
->slen
)
1532 node_pull_suffix(tp
, tp
->pos
);
1533 put_child_root(tp
, l
->key
, NULL
);
1535 trie_rebalance(t
, tp
);
1539 /* only access fa if it is pointing at the last valid hlist_node */
1543 /* update the trie with the latest suffix length */
1544 l
->slen
= fa
->fa_slen
;
1545 node_pull_suffix(tp
, fa
->fa_slen
);
1548 /* Caller must hold RTNL. */
1549 int fib_table_delete(struct net
*net
, struct fib_table
*tb
,
1550 struct fib_config
*cfg
, struct netlink_ext_ack
*extack
)
1552 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1553 struct fib_alias
*fa
, *fa_to_delete
;
1554 struct key_vector
*l
, *tp
;
1555 u8 plen
= cfg
->fc_dst_len
;
1556 u8 slen
= KEYLENGTH
- plen
;
1557 u8 tos
= cfg
->fc_tos
;
1560 key
= ntohl(cfg
->fc_dst
);
1562 if (!fib_valid_key_len(key
, plen
, extack
))
1565 l
= fib_find_node(t
, &tp
, key
);
1569 fa
= fib_find_alias(&l
->leaf
, slen
, tos
, 0, tb
->tb_id
);
1573 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key
, plen
, tos
, t
);
1575 fa_to_delete
= NULL
;
1576 hlist_for_each_entry_from(fa
, fa_list
) {
1577 struct fib_info
*fi
= fa
->fa_info
;
1579 if ((fa
->fa_slen
!= slen
) ||
1580 (fa
->tb_id
!= tb
->tb_id
) ||
1581 (fa
->fa_tos
!= tos
))
1584 if ((!cfg
->fc_type
|| fa
->fa_type
== cfg
->fc_type
) &&
1585 (cfg
->fc_scope
== RT_SCOPE_NOWHERE
||
1586 fa
->fa_info
->fib_scope
== cfg
->fc_scope
) &&
1587 (!cfg
->fc_prefsrc
||
1588 fi
->fib_prefsrc
== cfg
->fc_prefsrc
) &&
1589 (!cfg
->fc_protocol
||
1590 fi
->fib_protocol
== cfg
->fc_protocol
) &&
1591 fib_nh_match(cfg
, fi
, extack
) == 0 &&
1592 fib_metrics_match(cfg
, fi
)) {
1601 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_DEL
, key
, plen
,
1602 fa_to_delete
, extack
);
1603 rtmsg_fib(RTM_DELROUTE
, htonl(key
), fa_to_delete
, plen
, tb
->tb_id
,
1604 &cfg
->fc_nlinfo
, 0);
1607 tb
->tb_num_default
--;
1609 fib_remove_alias(t
, tp
, l
, fa_to_delete
);
1611 if (fa_to_delete
->fa_state
& FA_S_ACCESSED
)
1612 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1614 fib_release_info(fa_to_delete
->fa_info
);
1615 alias_free_mem_rcu(fa_to_delete
);
1619 /* Scan for the next leaf starting at the provided key value */
1620 static struct key_vector
*leaf_walk_rcu(struct key_vector
**tn
, t_key key
)
1622 struct key_vector
*pn
, *n
= *tn
;
1623 unsigned long cindex
;
1625 /* this loop is meant to try and find the key in the trie */
1627 /* record parent and next child index */
1629 cindex
= (key
> pn
->key
) ? get_index(key
, pn
) : 0;
1631 if (cindex
>> pn
->bits
)
1634 /* descend into the next child */
1635 n
= get_child_rcu(pn
, cindex
++);
1639 /* guarantee forward progress on the keys */
1640 if (IS_LEAF(n
) && (n
->key
>= key
))
1642 } while (IS_TNODE(n
));
1644 /* this loop will search for the next leaf with a greater key */
1645 while (!IS_TRIE(pn
)) {
1646 /* if we exhausted the parent node we will need to climb */
1647 if (cindex
>= (1ul << pn
->bits
)) {
1648 t_key pkey
= pn
->key
;
1650 pn
= node_parent_rcu(pn
);
1651 cindex
= get_index(pkey
, pn
) + 1;
1655 /* grab the next available node */
1656 n
= get_child_rcu(pn
, cindex
++);
1660 /* no need to compare keys since we bumped the index */
1664 /* Rescan start scanning in new node */
1670 return NULL
; /* Root of trie */
1672 /* if we are at the limit for keys just return NULL for the tnode */
1677 static void fib_trie_free(struct fib_table
*tb
)
1679 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1680 struct key_vector
*pn
= t
->kv
;
1681 unsigned long cindex
= 1;
1682 struct hlist_node
*tmp
;
1683 struct fib_alias
*fa
;
1685 /* walk trie in reverse order and free everything */
1687 struct key_vector
*n
;
1690 t_key pkey
= pn
->key
;
1696 pn
= node_parent(pn
);
1698 /* drop emptied tnode */
1699 put_child_root(pn
, n
->key
, NULL
);
1702 cindex
= get_index(pkey
, pn
);
1707 /* grab the next available node */
1708 n
= get_child(pn
, cindex
);
1713 /* record pn and cindex for leaf walking */
1715 cindex
= 1ul << n
->bits
;
1720 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1721 hlist_del_rcu(&fa
->fa_list
);
1722 alias_free_mem_rcu(fa
);
1725 put_child_root(pn
, n
->key
, NULL
);
1729 #ifdef CONFIG_IP_FIB_TRIE_STATS
1730 free_percpu(t
->stats
);
1735 struct fib_table
*fib_trie_unmerge(struct fib_table
*oldtb
)
1737 struct trie
*ot
= (struct trie
*)oldtb
->tb_data
;
1738 struct key_vector
*l
, *tp
= ot
->kv
;
1739 struct fib_table
*local_tb
;
1740 struct fib_alias
*fa
;
1744 if (oldtb
->tb_data
== oldtb
->__data
)
1747 local_tb
= fib_trie_table(RT_TABLE_LOCAL
, NULL
);
1751 lt
= (struct trie
*)local_tb
->tb_data
;
1753 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1754 struct key_vector
*local_l
= NULL
, *local_tp
;
1756 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1757 struct fib_alias
*new_fa
;
1759 if (local_tb
->tb_id
!= fa
->tb_id
)
1762 /* clone fa for new local table */
1763 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1767 memcpy(new_fa
, fa
, sizeof(*fa
));
1769 /* insert clone into table */
1771 local_l
= fib_find_node(lt
, &local_tp
, l
->key
);
1773 if (fib_insert_alias(lt
, local_tp
, local_l
, new_fa
,
1775 kmem_cache_free(fn_alias_kmem
, new_fa
);
1780 /* stop loop if key wrapped back to 0 */
1788 fib_trie_free(local_tb
);
1793 /* Caller must hold RTNL */
1794 void fib_table_flush_external(struct fib_table
*tb
)
1796 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1797 struct key_vector
*pn
= t
->kv
;
1798 unsigned long cindex
= 1;
1799 struct hlist_node
*tmp
;
1800 struct fib_alias
*fa
;
1802 /* walk trie in reverse order */
1804 unsigned char slen
= 0;
1805 struct key_vector
*n
;
1808 t_key pkey
= pn
->key
;
1810 /* cannot resize the trie vector */
1814 /* update the suffix to address pulled leaves */
1815 if (pn
->slen
> pn
->pos
)
1818 /* resize completed node */
1820 cindex
= get_index(pkey
, pn
);
1825 /* grab the next available node */
1826 n
= get_child(pn
, cindex
);
1831 /* record pn and cindex for leaf walking */
1833 cindex
= 1ul << n
->bits
;
1838 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1839 /* if alias was cloned to local then we just
1840 * need to remove the local copy from main
1842 if (tb
->tb_id
!= fa
->tb_id
) {
1843 hlist_del_rcu(&fa
->fa_list
);
1844 alias_free_mem_rcu(fa
);
1848 /* record local slen */
1852 /* update leaf slen */
1855 if (hlist_empty(&n
->leaf
)) {
1856 put_child_root(pn
, n
->key
, NULL
);
1862 /* Caller must hold RTNL. */
1863 int fib_table_flush(struct net
*net
, struct fib_table
*tb
, bool flush_all
)
1865 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1866 struct key_vector
*pn
= t
->kv
;
1867 unsigned long cindex
= 1;
1868 struct hlist_node
*tmp
;
1869 struct fib_alias
*fa
;
1872 /* walk trie in reverse order */
1874 unsigned char slen
= 0;
1875 struct key_vector
*n
;
1878 t_key pkey
= pn
->key
;
1880 /* cannot resize the trie vector */
1884 /* update the suffix to address pulled leaves */
1885 if (pn
->slen
> pn
->pos
)
1888 /* resize completed node */
1890 cindex
= get_index(pkey
, pn
);
1895 /* grab the next available node */
1896 n
= get_child(pn
, cindex
);
1901 /* record pn and cindex for leaf walking */
1903 cindex
= 1ul << n
->bits
;
1908 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1909 struct fib_info
*fi
= fa
->fa_info
;
1911 if (!fi
|| tb
->tb_id
!= fa
->tb_id
||
1912 (!(fi
->fib_flags
& RTNH_F_DEAD
) &&
1913 !fib_props
[fa
->fa_type
].error
)) {
1918 /* Do not flush error routes if network namespace is
1919 * not being dismantled
1921 if (!flush_all
&& fib_props
[fa
->fa_type
].error
) {
1926 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_DEL
,
1928 KEYLENGTH
- fa
->fa_slen
, fa
,
1930 hlist_del_rcu(&fa
->fa_list
);
1931 fib_release_info(fa
->fa_info
);
1932 alias_free_mem_rcu(fa
);
1936 /* update leaf slen */
1939 if (hlist_empty(&n
->leaf
)) {
1940 put_child_root(pn
, n
->key
, NULL
);
1945 pr_debug("trie_flush found=%d\n", found
);
1949 /* derived from fib_trie_free */
1950 static void __fib_info_notify_update(struct net
*net
, struct fib_table
*tb
,
1951 struct nl_info
*info
)
1953 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1954 struct key_vector
*pn
= t
->kv
;
1955 unsigned long cindex
= 1;
1956 struct fib_alias
*fa
;
1959 struct key_vector
*n
;
1962 t_key pkey
= pn
->key
;
1967 pn
= node_parent(pn
);
1968 cindex
= get_index(pkey
, pn
);
1972 /* grab the next available node */
1973 n
= get_child(pn
, cindex
);
1978 /* record pn and cindex for leaf walking */
1980 cindex
= 1ul << n
->bits
;
1985 hlist_for_each_entry(fa
, &n
->leaf
, fa_list
) {
1986 struct fib_info
*fi
= fa
->fa_info
;
1988 if (!fi
|| !fi
->nh_updated
|| fa
->tb_id
!= tb
->tb_id
)
1991 rtmsg_fib(RTM_NEWROUTE
, htonl(n
->key
), fa
,
1992 KEYLENGTH
- fa
->fa_slen
, tb
->tb_id
,
1993 info
, NLM_F_REPLACE
);
1995 /* call_fib_entry_notifiers will be removed when
1996 * in-kernel notifier is implemented and supported
1997 * for nexthop objects
1999 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_REPLACE
,
2001 KEYLENGTH
- fa
->fa_slen
, fa
,
2007 void fib_info_notify_update(struct net
*net
, struct nl_info
*info
)
2011 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2012 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2013 struct fib_table
*tb
;
2015 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
)
2016 __fib_info_notify_update(net
, tb
, info
);
2020 static int fib_leaf_notify(struct key_vector
*l
, struct fib_table
*tb
,
2021 struct notifier_block
*nb
,
2022 struct netlink_ext_ack
*extack
)
2024 struct fib_alias
*fa
;
2027 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2028 struct fib_info
*fi
= fa
->fa_info
;
2033 /* local and main table can share the same trie,
2034 * so don't notify twice for the same entry.
2036 if (tb
->tb_id
!= fa
->tb_id
)
2039 err
= call_fib_entry_notifier(nb
, FIB_EVENT_ENTRY_ADD
, l
->key
,
2040 KEYLENGTH
- fa
->fa_slen
,
2048 static int fib_table_notify(struct fib_table
*tb
, struct notifier_block
*nb
,
2049 struct netlink_ext_ack
*extack
)
2051 struct trie
*t
= (struct trie
*)tb
->tb_data
;
2052 struct key_vector
*l
, *tp
= t
->kv
;
2056 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
2057 err
= fib_leaf_notify(l
, tb
, nb
, extack
);
2062 /* stop in case of wrap around */
2069 int fib_notify(struct net
*net
, struct notifier_block
*nb
,
2070 struct netlink_ext_ack
*extack
)
2075 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2076 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2077 struct fib_table
*tb
;
2079 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2080 err
= fib_table_notify(tb
, nb
, extack
);
2088 static void __trie_free_rcu(struct rcu_head
*head
)
2090 struct fib_table
*tb
= container_of(head
, struct fib_table
, rcu
);
2091 #ifdef CONFIG_IP_FIB_TRIE_STATS
2092 struct trie
*t
= (struct trie
*)tb
->tb_data
;
2094 if (tb
->tb_data
== tb
->__data
)
2095 free_percpu(t
->stats
);
2096 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2100 void fib_free_table(struct fib_table
*tb
)
2102 call_rcu(&tb
->rcu
, __trie_free_rcu
);
2105 static int fn_trie_dump_leaf(struct key_vector
*l
, struct fib_table
*tb
,
2106 struct sk_buff
*skb
, struct netlink_callback
*cb
,
2107 struct fib_dump_filter
*filter
)
2109 unsigned int flags
= NLM_F_MULTI
;
2110 __be32 xkey
= htonl(l
->key
);
2111 int i
, s_i
, i_fa
, s_fa
, err
;
2112 struct fib_alias
*fa
;
2114 if (filter
->filter_set
||
2115 !filter
->dump_exceptions
|| !filter
->dump_routes
)
2116 flags
|= NLM_F_DUMP_FILTERED
;
2122 /* rcu_read_lock is hold by caller */
2123 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2124 struct fib_info
*fi
= fa
->fa_info
;
2131 if (tb
->tb_id
!= fa
->tb_id
)
2134 if (filter
->filter_set
) {
2135 if (filter
->rt_type
&& fa
->fa_type
!= filter
->rt_type
)
2138 if ((filter
->protocol
&&
2139 fi
->fib_protocol
!= filter
->protocol
))
2143 !fib_info_nh_uses_dev(fi
, filter
->dev
))
2147 if (filter
->dump_routes
) {
2149 err
= fib_dump_info(skb
,
2150 NETLINK_CB(cb
->skb
).portid
,
2153 tb
->tb_id
, fa
->fa_type
,
2155 KEYLENGTH
- fa
->fa_slen
,
2156 fa
->fa_tos
, fi
, flags
);
2164 if (filter
->dump_exceptions
) {
2165 err
= fib_dump_info_fnhe(skb
, cb
, tb
->tb_id
, fi
,
2166 &i_fa
, s_fa
, flags
);
2184 /* rcu_read_lock needs to be hold by caller from readside */
2185 int fib_table_dump(struct fib_table
*tb
, struct sk_buff
*skb
,
2186 struct netlink_callback
*cb
, struct fib_dump_filter
*filter
)
2188 struct trie
*t
= (struct trie
*)tb
->tb_data
;
2189 struct key_vector
*l
, *tp
= t
->kv
;
2190 /* Dump starting at last key.
2191 * Note: 0.0.0.0/0 (ie default) is first key.
2193 int count
= cb
->args
[2];
2194 t_key key
= cb
->args
[3];
2196 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
2199 err
= fn_trie_dump_leaf(l
, tb
, skb
, cb
, filter
);
2202 cb
->args
[2] = count
;
2209 memset(&cb
->args
[4], 0,
2210 sizeof(cb
->args
) - 4*sizeof(cb
->args
[0]));
2212 /* stop loop if key wrapped back to 0 */
2218 cb
->args
[2] = count
;
2223 void __init
fib_trie_init(void)
2225 fn_alias_kmem
= kmem_cache_create("ip_fib_alias",
2226 sizeof(struct fib_alias
),
2227 0, SLAB_PANIC
, NULL
);
2229 trie_leaf_kmem
= kmem_cache_create("ip_fib_trie",
2231 0, SLAB_PANIC
, NULL
);
2234 struct fib_table
*fib_trie_table(u32 id
, struct fib_table
*alias
)
2236 struct fib_table
*tb
;
2238 size_t sz
= sizeof(*tb
);
2241 sz
+= sizeof(struct trie
);
2243 tb
= kzalloc(sz
, GFP_KERNEL
);
2248 tb
->tb_num_default
= 0;
2249 tb
->tb_data
= (alias
? alias
->__data
: tb
->__data
);
2254 t
= (struct trie
*) tb
->tb_data
;
2255 t
->kv
[0].pos
= KEYLENGTH
;
2256 t
->kv
[0].slen
= KEYLENGTH
;
2257 #ifdef CONFIG_IP_FIB_TRIE_STATS
2258 t
->stats
= alloc_percpu(struct trie_use_stats
);
2268 #ifdef CONFIG_PROC_FS
2269 /* Depth first Trie walk iterator */
2270 struct fib_trie_iter
{
2271 struct seq_net_private p
;
2272 struct fib_table
*tb
;
2273 struct key_vector
*tnode
;
2278 static struct key_vector
*fib_trie_get_next(struct fib_trie_iter
*iter
)
2280 unsigned long cindex
= iter
->index
;
2281 struct key_vector
*pn
= iter
->tnode
;
2284 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2285 iter
->tnode
, iter
->index
, iter
->depth
);
2287 while (!IS_TRIE(pn
)) {
2288 while (cindex
< child_length(pn
)) {
2289 struct key_vector
*n
= get_child_rcu(pn
, cindex
++);
2296 iter
->index
= cindex
;
2298 /* push down one level */
2307 /* Current node exhausted, pop back up */
2309 pn
= node_parent_rcu(pn
);
2310 cindex
= get_index(pkey
, pn
) + 1;
2314 /* record root node so further searches know we are done */
2321 static struct key_vector
*fib_trie_get_first(struct fib_trie_iter
*iter
,
2324 struct key_vector
*n
, *pn
;
2330 n
= rcu_dereference(pn
->tnode
[0]);
2347 static void trie_collect_stats(struct trie
*t
, struct trie_stat
*s
)
2349 struct key_vector
*n
;
2350 struct fib_trie_iter iter
;
2352 memset(s
, 0, sizeof(*s
));
2355 for (n
= fib_trie_get_first(&iter
, t
); n
; n
= fib_trie_get_next(&iter
)) {
2357 struct fib_alias
*fa
;
2360 s
->totdepth
+= iter
.depth
;
2361 if (iter
.depth
> s
->maxdepth
)
2362 s
->maxdepth
= iter
.depth
;
2364 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
)
2368 if (n
->bits
< MAX_STAT_DEPTH
)
2369 s
->nodesizes
[n
->bits
]++;
2370 s
->nullpointers
+= tn_info(n
)->empty_children
;
2377 * This outputs /proc/net/fib_triestats
2379 static void trie_show_stats(struct seq_file
*seq
, struct trie_stat
*stat
)
2381 unsigned int i
, max
, pointers
, bytes
, avdepth
;
2384 avdepth
= stat
->totdepth
*100 / stat
->leaves
;
2388 seq_printf(seq
, "\tAver depth: %u.%02d\n",
2389 avdepth
/ 100, avdepth
% 100);
2390 seq_printf(seq
, "\tMax depth: %u\n", stat
->maxdepth
);
2392 seq_printf(seq
, "\tLeaves: %u\n", stat
->leaves
);
2393 bytes
= LEAF_SIZE
* stat
->leaves
;
2395 seq_printf(seq
, "\tPrefixes: %u\n", stat
->prefixes
);
2396 bytes
+= sizeof(struct fib_alias
) * stat
->prefixes
;
2398 seq_printf(seq
, "\tInternal nodes: %u\n\t", stat
->tnodes
);
2399 bytes
+= TNODE_SIZE(0) * stat
->tnodes
;
2401 max
= MAX_STAT_DEPTH
;
2402 while (max
> 0 && stat
->nodesizes
[max
-1] == 0)
2406 for (i
= 1; i
< max
; i
++)
2407 if (stat
->nodesizes
[i
] != 0) {
2408 seq_printf(seq
, " %u: %u", i
, stat
->nodesizes
[i
]);
2409 pointers
+= (1<<i
) * stat
->nodesizes
[i
];
2411 seq_putc(seq
, '\n');
2412 seq_printf(seq
, "\tPointers: %u\n", pointers
);
2414 bytes
+= sizeof(struct key_vector
*) * pointers
;
2415 seq_printf(seq
, "Null ptrs: %u\n", stat
->nullpointers
);
2416 seq_printf(seq
, "Total size: %u kB\n", (bytes
+ 1023) / 1024);
2419 #ifdef CONFIG_IP_FIB_TRIE_STATS
2420 static void trie_show_usage(struct seq_file
*seq
,
2421 const struct trie_use_stats __percpu
*stats
)
2423 struct trie_use_stats s
= { 0 };
2426 /* loop through all of the CPUs and gather up the stats */
2427 for_each_possible_cpu(cpu
) {
2428 const struct trie_use_stats
*pcpu
= per_cpu_ptr(stats
, cpu
);
2430 s
.gets
+= pcpu
->gets
;
2431 s
.backtrack
+= pcpu
->backtrack
;
2432 s
.semantic_match_passed
+= pcpu
->semantic_match_passed
;
2433 s
.semantic_match_miss
+= pcpu
->semantic_match_miss
;
2434 s
.null_node_hit
+= pcpu
->null_node_hit
;
2435 s
.resize_node_skipped
+= pcpu
->resize_node_skipped
;
2438 seq_printf(seq
, "\nCounters:\n---------\n");
2439 seq_printf(seq
, "gets = %u\n", s
.gets
);
2440 seq_printf(seq
, "backtracks = %u\n", s
.backtrack
);
2441 seq_printf(seq
, "semantic match passed = %u\n",
2442 s
.semantic_match_passed
);
2443 seq_printf(seq
, "semantic match miss = %u\n", s
.semantic_match_miss
);
2444 seq_printf(seq
, "null node hit= %u\n", s
.null_node_hit
);
2445 seq_printf(seq
, "skipped node resize = %u\n\n", s
.resize_node_skipped
);
2447 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2449 static void fib_table_print(struct seq_file
*seq
, struct fib_table
*tb
)
2451 if (tb
->tb_id
== RT_TABLE_LOCAL
)
2452 seq_puts(seq
, "Local:\n");
2453 else if (tb
->tb_id
== RT_TABLE_MAIN
)
2454 seq_puts(seq
, "Main:\n");
2456 seq_printf(seq
, "Id %d:\n", tb
->tb_id
);
2460 static int fib_triestat_seq_show(struct seq_file
*seq
, void *v
)
2462 struct net
*net
= (struct net
*)seq
->private;
2466 "Basic info: size of leaf:"
2467 " %zd bytes, size of tnode: %zd bytes.\n",
2468 LEAF_SIZE
, TNODE_SIZE(0));
2470 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2471 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2472 struct fib_table
*tb
;
2474 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2475 struct trie
*t
= (struct trie
*) tb
->tb_data
;
2476 struct trie_stat stat
;
2481 fib_table_print(seq
, tb
);
2483 trie_collect_stats(t
, &stat
);
2484 trie_show_stats(seq
, &stat
);
2485 #ifdef CONFIG_IP_FIB_TRIE_STATS
2486 trie_show_usage(seq
, t
->stats
);
2494 static struct key_vector
*fib_trie_get_idx(struct seq_file
*seq
, loff_t pos
)
2496 struct fib_trie_iter
*iter
= seq
->private;
2497 struct net
*net
= seq_file_net(seq
);
2501 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2502 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2503 struct fib_table
*tb
;
2505 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2506 struct key_vector
*n
;
2508 for (n
= fib_trie_get_first(iter
,
2509 (struct trie
*) tb
->tb_data
);
2510 n
; n
= fib_trie_get_next(iter
))
2521 static void *fib_trie_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2525 return fib_trie_get_idx(seq
, *pos
);
2528 static void *fib_trie_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2530 struct fib_trie_iter
*iter
= seq
->private;
2531 struct net
*net
= seq_file_net(seq
);
2532 struct fib_table
*tb
= iter
->tb
;
2533 struct hlist_node
*tb_node
;
2535 struct key_vector
*n
;
2538 /* next node in same table */
2539 n
= fib_trie_get_next(iter
);
2543 /* walk rest of this hash chain */
2544 h
= tb
->tb_id
& (FIB_TABLE_HASHSZ
- 1);
2545 while ((tb_node
= rcu_dereference(hlist_next_rcu(&tb
->tb_hlist
)))) {
2546 tb
= hlist_entry(tb_node
, struct fib_table
, tb_hlist
);
2547 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2552 /* new hash chain */
2553 while (++h
< FIB_TABLE_HASHSZ
) {
2554 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2555 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2556 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2568 static void fib_trie_seq_stop(struct seq_file
*seq
, void *v
)
2574 static void seq_indent(struct seq_file
*seq
, int n
)
2580 static inline const char *rtn_scope(char *buf
, size_t len
, enum rt_scope_t s
)
2583 case RT_SCOPE_UNIVERSE
: return "universe";
2584 case RT_SCOPE_SITE
: return "site";
2585 case RT_SCOPE_LINK
: return "link";
2586 case RT_SCOPE_HOST
: return "host";
2587 case RT_SCOPE_NOWHERE
: return "nowhere";
2589 snprintf(buf
, len
, "scope=%d", s
);
2594 static const char *const rtn_type_names
[__RTN_MAX
] = {
2595 [RTN_UNSPEC
] = "UNSPEC",
2596 [RTN_UNICAST
] = "UNICAST",
2597 [RTN_LOCAL
] = "LOCAL",
2598 [RTN_BROADCAST
] = "BROADCAST",
2599 [RTN_ANYCAST
] = "ANYCAST",
2600 [RTN_MULTICAST
] = "MULTICAST",
2601 [RTN_BLACKHOLE
] = "BLACKHOLE",
2602 [RTN_UNREACHABLE
] = "UNREACHABLE",
2603 [RTN_PROHIBIT
] = "PROHIBIT",
2604 [RTN_THROW
] = "THROW",
2606 [RTN_XRESOLVE
] = "XRESOLVE",
2609 static inline const char *rtn_type(char *buf
, size_t len
, unsigned int t
)
2611 if (t
< __RTN_MAX
&& rtn_type_names
[t
])
2612 return rtn_type_names
[t
];
2613 snprintf(buf
, len
, "type %u", t
);
2617 /* Pretty print the trie */
2618 static int fib_trie_seq_show(struct seq_file
*seq
, void *v
)
2620 const struct fib_trie_iter
*iter
= seq
->private;
2621 struct key_vector
*n
= v
;
2623 if (IS_TRIE(node_parent_rcu(n
)))
2624 fib_table_print(seq
, iter
->tb
);
2627 __be32 prf
= htonl(n
->key
);
2629 seq_indent(seq
, iter
->depth
-1);
2630 seq_printf(seq
, " +-- %pI4/%zu %u %u %u\n",
2631 &prf
, KEYLENGTH
- n
->pos
- n
->bits
, n
->bits
,
2632 tn_info(n
)->full_children
,
2633 tn_info(n
)->empty_children
);
2635 __be32 val
= htonl(n
->key
);
2636 struct fib_alias
*fa
;
2638 seq_indent(seq
, iter
->depth
);
2639 seq_printf(seq
, " |-- %pI4\n", &val
);
2641 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
2642 char buf1
[32], buf2
[32];
2644 seq_indent(seq
, iter
->depth
+ 1);
2645 seq_printf(seq
, " /%zu %s %s",
2646 KEYLENGTH
- fa
->fa_slen
,
2647 rtn_scope(buf1
, sizeof(buf1
),
2648 fa
->fa_info
->fib_scope
),
2649 rtn_type(buf2
, sizeof(buf2
),
2652 seq_printf(seq
, " tos=%d", fa
->fa_tos
);
2653 seq_putc(seq
, '\n');
2660 static const struct seq_operations fib_trie_seq_ops
= {
2661 .start
= fib_trie_seq_start
,
2662 .next
= fib_trie_seq_next
,
2663 .stop
= fib_trie_seq_stop
,
2664 .show
= fib_trie_seq_show
,
2667 struct fib_route_iter
{
2668 struct seq_net_private p
;
2669 struct fib_table
*main_tb
;
2670 struct key_vector
*tnode
;
2675 static struct key_vector
*fib_route_get_idx(struct fib_route_iter
*iter
,
2678 struct key_vector
*l
, **tp
= &iter
->tnode
;
2681 /* use cached location of previously found key */
2682 if (iter
->pos
> 0 && pos
>= iter
->pos
) {
2691 while ((l
= leaf_walk_rcu(tp
, key
)) && (pos
-- > 0)) {
2696 /* handle unlikely case of a key wrap */
2702 iter
->key
= l
->key
; /* remember it */
2704 iter
->pos
= 0; /* forget it */
2709 static void *fib_route_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2712 struct fib_route_iter
*iter
= seq
->private;
2713 struct fib_table
*tb
;
2718 tb
= fib_get_table(seq_file_net(seq
), RT_TABLE_MAIN
);
2723 t
= (struct trie
*)tb
->tb_data
;
2724 iter
->tnode
= t
->kv
;
2727 return fib_route_get_idx(iter
, *pos
);
2730 iter
->key
= KEY_MAX
;
2732 return SEQ_START_TOKEN
;
2735 static void *fib_route_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2737 struct fib_route_iter
*iter
= seq
->private;
2738 struct key_vector
*l
= NULL
;
2739 t_key key
= iter
->key
+ 1;
2743 /* only allow key of 0 for start of sequence */
2744 if ((v
== SEQ_START_TOKEN
) || key
)
2745 l
= leaf_walk_rcu(&iter
->tnode
, key
);
2757 static void fib_route_seq_stop(struct seq_file
*seq
, void *v
)
2763 static unsigned int fib_flag_trans(int type
, __be32 mask
, struct fib_info
*fi
)
2765 unsigned int flags
= 0;
2767 if (type
== RTN_UNREACHABLE
|| type
== RTN_PROHIBIT
)
2770 const struct fib_nh_common
*nhc
= fib_info_nhc(fi
, 0);
2772 if (nhc
->nhc_gw
.ipv4
)
2773 flags
|= RTF_GATEWAY
;
2775 if (mask
== htonl(0xFFFFFFFF))
2782 * This outputs /proc/net/route.
2783 * The format of the file is not supposed to be changed
2784 * and needs to be same as fib_hash output to avoid breaking
2787 static int fib_route_seq_show(struct seq_file
*seq
, void *v
)
2789 struct fib_route_iter
*iter
= seq
->private;
2790 struct fib_table
*tb
= iter
->main_tb
;
2791 struct fib_alias
*fa
;
2792 struct key_vector
*l
= v
;
2795 if (v
== SEQ_START_TOKEN
) {
2796 seq_printf(seq
, "%-127s\n", "Iface\tDestination\tGateway "
2797 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2802 prefix
= htonl(l
->key
);
2804 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2805 struct fib_info
*fi
= fa
->fa_info
;
2806 __be32 mask
= inet_make_mask(KEYLENGTH
- fa
->fa_slen
);
2807 unsigned int flags
= fib_flag_trans(fa
->fa_type
, mask
, fi
);
2809 if ((fa
->fa_type
== RTN_BROADCAST
) ||
2810 (fa
->fa_type
== RTN_MULTICAST
))
2813 if (fa
->tb_id
!= tb
->tb_id
)
2816 seq_setwidth(seq
, 127);
2819 struct fib_nh_common
*nhc
= fib_info_nhc(fi
, 0);
2822 if (nhc
->nhc_gw_family
== AF_INET
)
2823 gw
= nhc
->nhc_gw
.ipv4
;
2826 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2827 "%d\t%08X\t%d\t%u\t%u",
2828 nhc
->nhc_dev
? nhc
->nhc_dev
->name
: "*",
2829 prefix
, gw
, flags
, 0, 0,
2833 fi
->fib_advmss
+ 40 : 0),
2838 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2839 "%d\t%08X\t%d\t%u\t%u",
2840 prefix
, 0, flags
, 0, 0, 0,
2849 static const struct seq_operations fib_route_seq_ops
= {
2850 .start
= fib_route_seq_start
,
2851 .next
= fib_route_seq_next
,
2852 .stop
= fib_route_seq_stop
,
2853 .show
= fib_route_seq_show
,
2856 int __net_init
fib_proc_init(struct net
*net
)
2858 if (!proc_create_net("fib_trie", 0444, net
->proc_net
, &fib_trie_seq_ops
,
2859 sizeof(struct fib_trie_iter
)))
2862 if (!proc_create_net_single("fib_triestat", 0444, net
->proc_net
,
2863 fib_triestat_seq_show
, NULL
))
2866 if (!proc_create_net("route", 0444, net
->proc_net
, &fib_route_seq_ops
,
2867 sizeof(struct fib_route_iter
)))
2873 remove_proc_entry("fib_triestat", net
->proc_net
);
2875 remove_proc_entry("fib_trie", net
->proc_net
);
2880 void __net_exit
fib_proc_exit(struct net
*net
)
2882 remove_proc_entry("fib_trie", net
->proc_net
);
2883 remove_proc_entry("fib_triestat", net
->proc_net
);
2884 remove_proc_entry("route", net
->proc_net
);
2887 #endif /* CONFIG_PROC_FS */