dm writecache: fix incorrect flush sequence when doing SSD mode commit
[linux/fpc-iii.git] / net / ipv4 / fib_trie.c
blobb9df9c09b84e5e6af9d6fcd1386ea669ba14a560
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5 * & Swedish University of Agricultural Sciences.
7 * Jens Laas <jens.laas@data.slu.se> Swedish University of
8 * Agricultural Sciences.
10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
12 * This work is based on the LPC-trie which is originally described in:
14 * An experimental study of compression methods for dynamic tries
15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
21 * Code from fib_hash has been reused which includes the following header:
23 * INET An implementation of the TCP/IP protocol suite for the LINUX
24 * operating system. INET is implemented using the BSD Socket
25 * interface as the means of communication with the user level.
27 * IPv4 FIB: lookup engine and maintenance routines.
29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
31 * Substantial contributions to this work comes from:
33 * David S. Miller, <davem@davemloft.net>
34 * Stephen Hemminger <shemminger@osdl.org>
35 * Paul E. McKenney <paulmck@us.ibm.com>
36 * Patrick McHardy <kaber@trash.net>
39 #define VERSION "0.409"
41 #include <linux/cache.h>
42 #include <linux/uaccess.h>
43 #include <linux/bitops.h>
44 #include <linux/types.h>
45 #include <linux/kernel.h>
46 #include <linux/mm.h>
47 #include <linux/string.h>
48 #include <linux/socket.h>
49 #include <linux/sockios.h>
50 #include <linux/errno.h>
51 #include <linux/in.h>
52 #include <linux/inet.h>
53 #include <linux/inetdevice.h>
54 #include <linux/netdevice.h>
55 #include <linux/if_arp.h>
56 #include <linux/proc_fs.h>
57 #include <linux/rcupdate.h>
58 #include <linux/skbuff.h>
59 #include <linux/netlink.h>
60 #include <linux/init.h>
61 #include <linux/list.h>
62 #include <linux/slab.h>
63 #include <linux/export.h>
64 #include <linux/vmalloc.h>
65 #include <linux/notifier.h>
66 #include <net/net_namespace.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/tcp.h>
71 #include <net/sock.h>
72 #include <net/ip_fib.h>
73 #include <net/fib_notifier.h>
74 #include <trace/events/fib.h>
75 #include "fib_lookup.h"
77 static int call_fib_entry_notifier(struct notifier_block *nb,
78 enum fib_event_type event_type, u32 dst,
79 int dst_len, struct fib_alias *fa,
80 struct netlink_ext_ack *extack)
82 struct fib_entry_notifier_info info = {
83 .info.extack = extack,
84 .dst = dst,
85 .dst_len = dst_len,
86 .fi = fa->fa_info,
87 .tos = fa->fa_tos,
88 .type = fa->fa_type,
89 .tb_id = fa->tb_id,
91 return call_fib4_notifier(nb, event_type, &info.info);
94 static int call_fib_entry_notifiers(struct net *net,
95 enum fib_event_type event_type, u32 dst,
96 int dst_len, struct fib_alias *fa,
97 struct netlink_ext_ack *extack)
99 struct fib_entry_notifier_info info = {
100 .info.extack = extack,
101 .dst = dst,
102 .dst_len = dst_len,
103 .fi = fa->fa_info,
104 .tos = fa->fa_tos,
105 .type = fa->fa_type,
106 .tb_id = fa->tb_id,
108 return call_fib4_notifiers(net, event_type, &info.info);
111 #define MAX_STAT_DEPTH 32
113 #define KEYLENGTH (8*sizeof(t_key))
114 #define KEY_MAX ((t_key)~0)
116 typedef unsigned int t_key;
118 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
119 #define IS_TNODE(n) ((n)->bits)
120 #define IS_LEAF(n) (!(n)->bits)
122 struct key_vector {
123 t_key key;
124 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
125 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
126 unsigned char slen;
127 union {
128 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
129 struct hlist_head leaf;
130 /* This array is valid if (pos | bits) > 0 (TNODE) */
131 struct key_vector __rcu *tnode[0];
135 struct tnode {
136 struct rcu_head rcu;
137 t_key empty_children; /* KEYLENGTH bits needed */
138 t_key full_children; /* KEYLENGTH bits needed */
139 struct key_vector __rcu *parent;
140 struct key_vector kv[1];
141 #define tn_bits kv[0].bits
144 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
145 #define LEAF_SIZE TNODE_SIZE(1)
147 #ifdef CONFIG_IP_FIB_TRIE_STATS
148 struct trie_use_stats {
149 unsigned int gets;
150 unsigned int backtrack;
151 unsigned int semantic_match_passed;
152 unsigned int semantic_match_miss;
153 unsigned int null_node_hit;
154 unsigned int resize_node_skipped;
156 #endif
158 struct trie_stat {
159 unsigned int totdepth;
160 unsigned int maxdepth;
161 unsigned int tnodes;
162 unsigned int leaves;
163 unsigned int nullpointers;
164 unsigned int prefixes;
165 unsigned int nodesizes[MAX_STAT_DEPTH];
168 struct trie {
169 struct key_vector kv[1];
170 #ifdef CONFIG_IP_FIB_TRIE_STATS
171 struct trie_use_stats __percpu *stats;
172 #endif
175 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
176 static unsigned int tnode_free_size;
179 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
180 * especially useful before resizing the root node with PREEMPT_NONE configs;
181 * the value was obtained experimentally, aiming to avoid visible slowdown.
183 unsigned int sysctl_fib_sync_mem = 512 * 1024;
184 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
185 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
187 static struct kmem_cache *fn_alias_kmem __ro_after_init;
188 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
190 static inline struct tnode *tn_info(struct key_vector *kv)
192 return container_of(kv, struct tnode, kv[0]);
195 /* caller must hold RTNL */
196 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
197 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
199 /* caller must hold RCU read lock or RTNL */
200 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
201 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
203 /* wrapper for rcu_assign_pointer */
204 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
206 if (n)
207 rcu_assign_pointer(tn_info(n)->parent, tp);
210 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
212 /* This provides us with the number of children in this node, in the case of a
213 * leaf this will return 0 meaning none of the children are accessible.
215 static inline unsigned long child_length(const struct key_vector *tn)
217 return (1ul << tn->bits) & ~(1ul);
220 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
222 static inline unsigned long get_index(t_key key, struct key_vector *kv)
224 unsigned long index = key ^ kv->key;
226 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
227 return 0;
229 return index >> kv->pos;
232 /* To understand this stuff, an understanding of keys and all their bits is
233 * necessary. Every node in the trie has a key associated with it, but not
234 * all of the bits in that key are significant.
236 * Consider a node 'n' and its parent 'tp'.
238 * If n is a leaf, every bit in its key is significant. Its presence is
239 * necessitated by path compression, since during a tree traversal (when
240 * searching for a leaf - unless we are doing an insertion) we will completely
241 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
242 * a potentially successful search, that we have indeed been walking the
243 * correct key path.
245 * Note that we can never "miss" the correct key in the tree if present by
246 * following the wrong path. Path compression ensures that segments of the key
247 * that are the same for all keys with a given prefix are skipped, but the
248 * skipped part *is* identical for each node in the subtrie below the skipped
249 * bit! trie_insert() in this implementation takes care of that.
251 * if n is an internal node - a 'tnode' here, the various parts of its key
252 * have many different meanings.
254 * Example:
255 * _________________________________________________________________
256 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
257 * -----------------------------------------------------------------
258 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
260 * _________________________________________________________________
261 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
262 * -----------------------------------------------------------------
263 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
265 * tp->pos = 22
266 * tp->bits = 3
267 * n->pos = 13
268 * n->bits = 4
270 * First, let's just ignore the bits that come before the parent tp, that is
271 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
272 * point we do not use them for anything.
274 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
275 * index into the parent's child array. That is, they will be used to find
276 * 'n' among tp's children.
278 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
279 * for the node n.
281 * All the bits we have seen so far are significant to the node n. The rest
282 * of the bits are really not needed or indeed known in n->key.
284 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
285 * n's child array, and will of course be different for each child.
287 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
288 * at this point.
291 static const int halve_threshold = 25;
292 static const int inflate_threshold = 50;
293 static const int halve_threshold_root = 15;
294 static const int inflate_threshold_root = 30;
296 static void __alias_free_mem(struct rcu_head *head)
298 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
299 kmem_cache_free(fn_alias_kmem, fa);
302 static inline void alias_free_mem_rcu(struct fib_alias *fa)
304 call_rcu(&fa->rcu, __alias_free_mem);
307 #define TNODE_KMALLOC_MAX \
308 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
309 #define TNODE_VMALLOC_MAX \
310 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
312 static void __node_free_rcu(struct rcu_head *head)
314 struct tnode *n = container_of(head, struct tnode, rcu);
316 if (!n->tn_bits)
317 kmem_cache_free(trie_leaf_kmem, n);
318 else
319 kvfree(n);
322 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
324 static struct tnode *tnode_alloc(int bits)
326 size_t size;
328 /* verify bits is within bounds */
329 if (bits > TNODE_VMALLOC_MAX)
330 return NULL;
332 /* determine size and verify it is non-zero and didn't overflow */
333 size = TNODE_SIZE(1ul << bits);
335 if (size <= PAGE_SIZE)
336 return kzalloc(size, GFP_KERNEL);
337 else
338 return vzalloc(size);
341 static inline void empty_child_inc(struct key_vector *n)
343 tn_info(n)->empty_children++;
345 if (!tn_info(n)->empty_children)
346 tn_info(n)->full_children++;
349 static inline void empty_child_dec(struct key_vector *n)
351 if (!tn_info(n)->empty_children)
352 tn_info(n)->full_children--;
354 tn_info(n)->empty_children--;
357 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
359 struct key_vector *l;
360 struct tnode *kv;
362 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
363 if (!kv)
364 return NULL;
366 /* initialize key vector */
367 l = kv->kv;
368 l->key = key;
369 l->pos = 0;
370 l->bits = 0;
371 l->slen = fa->fa_slen;
373 /* link leaf to fib alias */
374 INIT_HLIST_HEAD(&l->leaf);
375 hlist_add_head(&fa->fa_list, &l->leaf);
377 return l;
380 static struct key_vector *tnode_new(t_key key, int pos, int bits)
382 unsigned int shift = pos + bits;
383 struct key_vector *tn;
384 struct tnode *tnode;
386 /* verify bits and pos their msb bits clear and values are valid */
387 BUG_ON(!bits || (shift > KEYLENGTH));
389 tnode = tnode_alloc(bits);
390 if (!tnode)
391 return NULL;
393 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
394 sizeof(struct key_vector *) << bits);
396 if (bits == KEYLENGTH)
397 tnode->full_children = 1;
398 else
399 tnode->empty_children = 1ul << bits;
401 tn = tnode->kv;
402 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
403 tn->pos = pos;
404 tn->bits = bits;
405 tn->slen = pos;
407 return tn;
410 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
411 * and no bits are skipped. See discussion in dyntree paper p. 6
413 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
415 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
418 /* Add a child at position i overwriting the old value.
419 * Update the value of full_children and empty_children.
421 static void put_child(struct key_vector *tn, unsigned long i,
422 struct key_vector *n)
424 struct key_vector *chi = get_child(tn, i);
425 int isfull, wasfull;
427 BUG_ON(i >= child_length(tn));
429 /* update emptyChildren, overflow into fullChildren */
430 if (!n && chi)
431 empty_child_inc(tn);
432 if (n && !chi)
433 empty_child_dec(tn);
435 /* update fullChildren */
436 wasfull = tnode_full(tn, chi);
437 isfull = tnode_full(tn, n);
439 if (wasfull && !isfull)
440 tn_info(tn)->full_children--;
441 else if (!wasfull && isfull)
442 tn_info(tn)->full_children++;
444 if (n && (tn->slen < n->slen))
445 tn->slen = n->slen;
447 rcu_assign_pointer(tn->tnode[i], n);
450 static void update_children(struct key_vector *tn)
452 unsigned long i;
454 /* update all of the child parent pointers */
455 for (i = child_length(tn); i;) {
456 struct key_vector *inode = get_child(tn, --i);
458 if (!inode)
459 continue;
461 /* Either update the children of a tnode that
462 * already belongs to us or update the child
463 * to point to ourselves.
465 if (node_parent(inode) == tn)
466 update_children(inode);
467 else
468 node_set_parent(inode, tn);
472 static inline void put_child_root(struct key_vector *tp, t_key key,
473 struct key_vector *n)
475 if (IS_TRIE(tp))
476 rcu_assign_pointer(tp->tnode[0], n);
477 else
478 put_child(tp, get_index(key, tp), n);
481 static inline void tnode_free_init(struct key_vector *tn)
483 tn_info(tn)->rcu.next = NULL;
486 static inline void tnode_free_append(struct key_vector *tn,
487 struct key_vector *n)
489 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
490 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
493 static void tnode_free(struct key_vector *tn)
495 struct callback_head *head = &tn_info(tn)->rcu;
497 while (head) {
498 head = head->next;
499 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
500 node_free(tn);
502 tn = container_of(head, struct tnode, rcu)->kv;
505 if (tnode_free_size >= sysctl_fib_sync_mem) {
506 tnode_free_size = 0;
507 synchronize_rcu();
511 static struct key_vector *replace(struct trie *t,
512 struct key_vector *oldtnode,
513 struct key_vector *tn)
515 struct key_vector *tp = node_parent(oldtnode);
516 unsigned long i;
518 /* setup the parent pointer out of and back into this node */
519 NODE_INIT_PARENT(tn, tp);
520 put_child_root(tp, tn->key, tn);
522 /* update all of the child parent pointers */
523 update_children(tn);
525 /* all pointers should be clean so we are done */
526 tnode_free(oldtnode);
528 /* resize children now that oldtnode is freed */
529 for (i = child_length(tn); i;) {
530 struct key_vector *inode = get_child(tn, --i);
532 /* resize child node */
533 if (tnode_full(tn, inode))
534 tn = resize(t, inode);
537 return tp;
540 static struct key_vector *inflate(struct trie *t,
541 struct key_vector *oldtnode)
543 struct key_vector *tn;
544 unsigned long i;
545 t_key m;
547 pr_debug("In inflate\n");
549 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
550 if (!tn)
551 goto notnode;
553 /* prepare oldtnode to be freed */
554 tnode_free_init(oldtnode);
556 /* Assemble all of the pointers in our cluster, in this case that
557 * represents all of the pointers out of our allocated nodes that
558 * point to existing tnodes and the links between our allocated
559 * nodes.
561 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
562 struct key_vector *inode = get_child(oldtnode, --i);
563 struct key_vector *node0, *node1;
564 unsigned long j, k;
566 /* An empty child */
567 if (!inode)
568 continue;
570 /* A leaf or an internal node with skipped bits */
571 if (!tnode_full(oldtnode, inode)) {
572 put_child(tn, get_index(inode->key, tn), inode);
573 continue;
576 /* drop the node in the old tnode free list */
577 tnode_free_append(oldtnode, inode);
579 /* An internal node with two children */
580 if (inode->bits == 1) {
581 put_child(tn, 2 * i + 1, get_child(inode, 1));
582 put_child(tn, 2 * i, get_child(inode, 0));
583 continue;
586 /* We will replace this node 'inode' with two new
587 * ones, 'node0' and 'node1', each with half of the
588 * original children. The two new nodes will have
589 * a position one bit further down the key and this
590 * means that the "significant" part of their keys
591 * (see the discussion near the top of this file)
592 * will differ by one bit, which will be "0" in
593 * node0's key and "1" in node1's key. Since we are
594 * moving the key position by one step, the bit that
595 * we are moving away from - the bit at position
596 * (tn->pos) - is the one that will differ between
597 * node0 and node1. So... we synthesize that bit in the
598 * two new keys.
600 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
601 if (!node1)
602 goto nomem;
603 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
605 tnode_free_append(tn, node1);
606 if (!node0)
607 goto nomem;
608 tnode_free_append(tn, node0);
610 /* populate child pointers in new nodes */
611 for (k = child_length(inode), j = k / 2; j;) {
612 put_child(node1, --j, get_child(inode, --k));
613 put_child(node0, j, get_child(inode, j));
614 put_child(node1, --j, get_child(inode, --k));
615 put_child(node0, j, get_child(inode, j));
618 /* link new nodes to parent */
619 NODE_INIT_PARENT(node1, tn);
620 NODE_INIT_PARENT(node0, tn);
622 /* link parent to nodes */
623 put_child(tn, 2 * i + 1, node1);
624 put_child(tn, 2 * i, node0);
627 /* setup the parent pointers into and out of this node */
628 return replace(t, oldtnode, tn);
629 nomem:
630 /* all pointers should be clean so we are done */
631 tnode_free(tn);
632 notnode:
633 return NULL;
636 static struct key_vector *halve(struct trie *t,
637 struct key_vector *oldtnode)
639 struct key_vector *tn;
640 unsigned long i;
642 pr_debug("In halve\n");
644 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
645 if (!tn)
646 goto notnode;
648 /* prepare oldtnode to be freed */
649 tnode_free_init(oldtnode);
651 /* Assemble all of the pointers in our cluster, in this case that
652 * represents all of the pointers out of our allocated nodes that
653 * point to existing tnodes and the links between our allocated
654 * nodes.
656 for (i = child_length(oldtnode); i;) {
657 struct key_vector *node1 = get_child(oldtnode, --i);
658 struct key_vector *node0 = get_child(oldtnode, --i);
659 struct key_vector *inode;
661 /* At least one of the children is empty */
662 if (!node1 || !node0) {
663 put_child(tn, i / 2, node1 ? : node0);
664 continue;
667 /* Two nonempty children */
668 inode = tnode_new(node0->key, oldtnode->pos, 1);
669 if (!inode)
670 goto nomem;
671 tnode_free_append(tn, inode);
673 /* initialize pointers out of node */
674 put_child(inode, 1, node1);
675 put_child(inode, 0, node0);
676 NODE_INIT_PARENT(inode, tn);
678 /* link parent to node */
679 put_child(tn, i / 2, inode);
682 /* setup the parent pointers into and out of this node */
683 return replace(t, oldtnode, tn);
684 nomem:
685 /* all pointers should be clean so we are done */
686 tnode_free(tn);
687 notnode:
688 return NULL;
691 static struct key_vector *collapse(struct trie *t,
692 struct key_vector *oldtnode)
694 struct key_vector *n, *tp;
695 unsigned long i;
697 /* scan the tnode looking for that one child that might still exist */
698 for (n = NULL, i = child_length(oldtnode); !n && i;)
699 n = get_child(oldtnode, --i);
701 /* compress one level */
702 tp = node_parent(oldtnode);
703 put_child_root(tp, oldtnode->key, n);
704 node_set_parent(n, tp);
706 /* drop dead node */
707 node_free(oldtnode);
709 return tp;
712 static unsigned char update_suffix(struct key_vector *tn)
714 unsigned char slen = tn->pos;
715 unsigned long stride, i;
716 unsigned char slen_max;
718 /* only vector 0 can have a suffix length greater than or equal to
719 * tn->pos + tn->bits, the second highest node will have a suffix
720 * length at most of tn->pos + tn->bits - 1
722 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
724 /* search though the list of children looking for nodes that might
725 * have a suffix greater than the one we currently have. This is
726 * why we start with a stride of 2 since a stride of 1 would
727 * represent the nodes with suffix length equal to tn->pos
729 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
730 struct key_vector *n = get_child(tn, i);
732 if (!n || (n->slen <= slen))
733 continue;
735 /* update stride and slen based on new value */
736 stride <<= (n->slen - slen);
737 slen = n->slen;
738 i &= ~(stride - 1);
740 /* stop searching if we have hit the maximum possible value */
741 if (slen >= slen_max)
742 break;
745 tn->slen = slen;
747 return slen;
750 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
751 * the Helsinki University of Technology and Matti Tikkanen of Nokia
752 * Telecommunications, page 6:
753 * "A node is doubled if the ratio of non-empty children to all
754 * children in the *doubled* node is at least 'high'."
756 * 'high' in this instance is the variable 'inflate_threshold'. It
757 * is expressed as a percentage, so we multiply it with
758 * child_length() and instead of multiplying by 2 (since the
759 * child array will be doubled by inflate()) and multiplying
760 * the left-hand side by 100 (to handle the percentage thing) we
761 * multiply the left-hand side by 50.
763 * The left-hand side may look a bit weird: child_length(tn)
764 * - tn->empty_children is of course the number of non-null children
765 * in the current node. tn->full_children is the number of "full"
766 * children, that is non-null tnodes with a skip value of 0.
767 * All of those will be doubled in the resulting inflated tnode, so
768 * we just count them one extra time here.
770 * A clearer way to write this would be:
772 * to_be_doubled = tn->full_children;
773 * not_to_be_doubled = child_length(tn) - tn->empty_children -
774 * tn->full_children;
776 * new_child_length = child_length(tn) * 2;
778 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
779 * new_child_length;
780 * if (new_fill_factor >= inflate_threshold)
782 * ...and so on, tho it would mess up the while () loop.
784 * anyway,
785 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
786 * inflate_threshold
788 * avoid a division:
789 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
790 * inflate_threshold * new_child_length
792 * expand not_to_be_doubled and to_be_doubled, and shorten:
793 * 100 * (child_length(tn) - tn->empty_children +
794 * tn->full_children) >= inflate_threshold * new_child_length
796 * expand new_child_length:
797 * 100 * (child_length(tn) - tn->empty_children +
798 * tn->full_children) >=
799 * inflate_threshold * child_length(tn) * 2
801 * shorten again:
802 * 50 * (tn->full_children + child_length(tn) -
803 * tn->empty_children) >= inflate_threshold *
804 * child_length(tn)
807 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
809 unsigned long used = child_length(tn);
810 unsigned long threshold = used;
812 /* Keep root node larger */
813 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
814 used -= tn_info(tn)->empty_children;
815 used += tn_info(tn)->full_children;
817 /* if bits == KEYLENGTH then pos = 0, and will fail below */
819 return (used > 1) && tn->pos && ((50 * used) >= threshold);
822 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
824 unsigned long used = child_length(tn);
825 unsigned long threshold = used;
827 /* Keep root node larger */
828 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
829 used -= tn_info(tn)->empty_children;
831 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
833 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
836 static inline bool should_collapse(struct key_vector *tn)
838 unsigned long used = child_length(tn);
840 used -= tn_info(tn)->empty_children;
842 /* account for bits == KEYLENGTH case */
843 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
844 used -= KEY_MAX;
846 /* One child or none, time to drop us from the trie */
847 return used < 2;
850 #define MAX_WORK 10
851 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
853 #ifdef CONFIG_IP_FIB_TRIE_STATS
854 struct trie_use_stats __percpu *stats = t->stats;
855 #endif
856 struct key_vector *tp = node_parent(tn);
857 unsigned long cindex = get_index(tn->key, tp);
858 int max_work = MAX_WORK;
860 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
861 tn, inflate_threshold, halve_threshold);
863 /* track the tnode via the pointer from the parent instead of
864 * doing it ourselves. This way we can let RCU fully do its
865 * thing without us interfering
867 BUG_ON(tn != get_child(tp, cindex));
869 /* Double as long as the resulting node has a number of
870 * nonempty nodes that are above the threshold.
872 while (should_inflate(tp, tn) && max_work) {
873 tp = inflate(t, tn);
874 if (!tp) {
875 #ifdef CONFIG_IP_FIB_TRIE_STATS
876 this_cpu_inc(stats->resize_node_skipped);
877 #endif
878 break;
881 max_work--;
882 tn = get_child(tp, cindex);
885 /* update parent in case inflate failed */
886 tp = node_parent(tn);
888 /* Return if at least one inflate is run */
889 if (max_work != MAX_WORK)
890 return tp;
892 /* Halve as long as the number of empty children in this
893 * node is above threshold.
895 while (should_halve(tp, tn) && max_work) {
896 tp = halve(t, tn);
897 if (!tp) {
898 #ifdef CONFIG_IP_FIB_TRIE_STATS
899 this_cpu_inc(stats->resize_node_skipped);
900 #endif
901 break;
904 max_work--;
905 tn = get_child(tp, cindex);
908 /* Only one child remains */
909 if (should_collapse(tn))
910 return collapse(t, tn);
912 /* update parent in case halve failed */
913 return node_parent(tn);
916 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
918 unsigned char node_slen = tn->slen;
920 while ((node_slen > tn->pos) && (node_slen > slen)) {
921 slen = update_suffix(tn);
922 if (node_slen == slen)
923 break;
925 tn = node_parent(tn);
926 node_slen = tn->slen;
930 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
932 while (tn->slen < slen) {
933 tn->slen = slen;
934 tn = node_parent(tn);
938 /* rcu_read_lock needs to be hold by caller from readside */
939 static struct key_vector *fib_find_node(struct trie *t,
940 struct key_vector **tp, u32 key)
942 struct key_vector *pn, *n = t->kv;
943 unsigned long index = 0;
945 do {
946 pn = n;
947 n = get_child_rcu(n, index);
949 if (!n)
950 break;
952 index = get_cindex(key, n);
954 /* This bit of code is a bit tricky but it combines multiple
955 * checks into a single check. The prefix consists of the
956 * prefix plus zeros for the bits in the cindex. The index
957 * is the difference between the key and this value. From
958 * this we can actually derive several pieces of data.
959 * if (index >= (1ul << bits))
960 * we have a mismatch in skip bits and failed
961 * else
962 * we know the value is cindex
964 * This check is safe even if bits == KEYLENGTH due to the
965 * fact that we can only allocate a node with 32 bits if a
966 * long is greater than 32 bits.
968 if (index >= (1ul << n->bits)) {
969 n = NULL;
970 break;
973 /* keep searching until we find a perfect match leaf or NULL */
974 } while (IS_TNODE(n));
976 *tp = pn;
978 return n;
981 /* Return the first fib alias matching TOS with
982 * priority less than or equal to PRIO.
984 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
985 u8 tos, u32 prio, u32 tb_id)
987 struct fib_alias *fa;
989 if (!fah)
990 return NULL;
992 hlist_for_each_entry(fa, fah, fa_list) {
993 if (fa->fa_slen < slen)
994 continue;
995 if (fa->fa_slen != slen)
996 break;
997 if (fa->tb_id > tb_id)
998 continue;
999 if (fa->tb_id != tb_id)
1000 break;
1001 if (fa->fa_tos > tos)
1002 continue;
1003 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004 return fa;
1007 return NULL;
1010 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1012 while (!IS_TRIE(tn))
1013 tn = resize(t, tn);
1016 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1017 struct fib_alias *new, t_key key)
1019 struct key_vector *n, *l;
1021 l = leaf_new(key, new);
1022 if (!l)
1023 goto noleaf;
1025 /* retrieve child from parent node */
1026 n = get_child(tp, get_index(key, tp));
1028 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1030 * Add a new tnode here
1031 * first tnode need some special handling
1032 * leaves us in position for handling as case 3
1034 if (n) {
1035 struct key_vector *tn;
1037 tn = tnode_new(key, __fls(key ^ n->key), 1);
1038 if (!tn)
1039 goto notnode;
1041 /* initialize routes out of node */
1042 NODE_INIT_PARENT(tn, tp);
1043 put_child(tn, get_index(key, tn) ^ 1, n);
1045 /* start adding routes into the node */
1046 put_child_root(tp, key, tn);
1047 node_set_parent(n, tn);
1049 /* parent now has a NULL spot where the leaf can go */
1050 tp = tn;
1053 /* Case 3: n is NULL, and will just insert a new leaf */
1054 node_push_suffix(tp, new->fa_slen);
1055 NODE_INIT_PARENT(l, tp);
1056 put_child_root(tp, key, l);
1057 trie_rebalance(t, tp);
1059 return 0;
1060 notnode:
1061 node_free(l);
1062 noleaf:
1063 return -ENOMEM;
1066 /* fib notifier for ADD is sent before calling fib_insert_alias with
1067 * the expectation that the only possible failure ENOMEM
1069 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1070 struct key_vector *l, struct fib_alias *new,
1071 struct fib_alias *fa, t_key key)
1073 if (!l)
1074 return fib_insert_node(t, tp, new, key);
1076 if (fa) {
1077 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1078 } else {
1079 struct fib_alias *last;
1081 hlist_for_each_entry(last, &l->leaf, fa_list) {
1082 if (new->fa_slen < last->fa_slen)
1083 break;
1084 if ((new->fa_slen == last->fa_slen) &&
1085 (new->tb_id > last->tb_id))
1086 break;
1087 fa = last;
1090 if (fa)
1091 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1092 else
1093 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1096 /* if we added to the tail node then we need to update slen */
1097 if (l->slen < new->fa_slen) {
1098 l->slen = new->fa_slen;
1099 node_push_suffix(tp, new->fa_slen);
1102 return 0;
1105 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1107 if (plen > KEYLENGTH) {
1108 NL_SET_ERR_MSG(extack, "Invalid prefix length");
1109 return false;
1112 if ((plen < KEYLENGTH) && (key << plen)) {
1113 NL_SET_ERR_MSG(extack,
1114 "Invalid prefix for given prefix length");
1115 return false;
1118 return true;
1121 /* Caller must hold RTNL. */
1122 int fib_table_insert(struct net *net, struct fib_table *tb,
1123 struct fib_config *cfg, struct netlink_ext_ack *extack)
1125 enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1126 struct trie *t = (struct trie *)tb->tb_data;
1127 struct fib_alias *fa, *new_fa;
1128 struct key_vector *l, *tp;
1129 u16 nlflags = NLM_F_EXCL;
1130 struct fib_info *fi;
1131 u8 plen = cfg->fc_dst_len;
1132 u8 slen = KEYLENGTH - plen;
1133 u8 tos = cfg->fc_tos;
1134 u32 key;
1135 int err;
1137 key = ntohl(cfg->fc_dst);
1139 if (!fib_valid_key_len(key, plen, extack))
1140 return -EINVAL;
1142 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1144 fi = fib_create_info(cfg, extack);
1145 if (IS_ERR(fi)) {
1146 err = PTR_ERR(fi);
1147 goto err;
1150 l = fib_find_node(t, &tp, key);
1151 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1152 tb->tb_id) : NULL;
1154 /* Now fa, if non-NULL, points to the first fib alias
1155 * with the same keys [prefix,tos,priority], if such key already
1156 * exists or to the node before which we will insert new one.
1158 * If fa is NULL, we will need to allocate a new one and
1159 * insert to the tail of the section matching the suffix length
1160 * of the new alias.
1163 if (fa && fa->fa_tos == tos &&
1164 fa->fa_info->fib_priority == fi->fib_priority) {
1165 struct fib_alias *fa_first, *fa_match;
1167 err = -EEXIST;
1168 if (cfg->fc_nlflags & NLM_F_EXCL)
1169 goto out;
1171 nlflags &= ~NLM_F_EXCL;
1173 /* We have 2 goals:
1174 * 1. Find exact match for type, scope, fib_info to avoid
1175 * duplicate routes
1176 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1178 fa_match = NULL;
1179 fa_first = fa;
1180 hlist_for_each_entry_from(fa, fa_list) {
1181 if ((fa->fa_slen != slen) ||
1182 (fa->tb_id != tb->tb_id) ||
1183 (fa->fa_tos != tos))
1184 break;
1185 if (fa->fa_info->fib_priority != fi->fib_priority)
1186 break;
1187 if (fa->fa_type == cfg->fc_type &&
1188 fa->fa_info == fi) {
1189 fa_match = fa;
1190 break;
1194 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1195 struct fib_info *fi_drop;
1196 u8 state;
1198 nlflags |= NLM_F_REPLACE;
1199 fa = fa_first;
1200 if (fa_match) {
1201 if (fa == fa_match)
1202 err = 0;
1203 goto out;
1205 err = -ENOBUFS;
1206 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1207 if (!new_fa)
1208 goto out;
1210 fi_drop = fa->fa_info;
1211 new_fa->fa_tos = fa->fa_tos;
1212 new_fa->fa_info = fi;
1213 new_fa->fa_type = cfg->fc_type;
1214 state = fa->fa_state;
1215 new_fa->fa_state = state & ~FA_S_ACCESSED;
1216 new_fa->fa_slen = fa->fa_slen;
1217 new_fa->tb_id = tb->tb_id;
1218 new_fa->fa_default = -1;
1220 err = call_fib_entry_notifiers(net,
1221 FIB_EVENT_ENTRY_REPLACE,
1222 key, plen, new_fa,
1223 extack);
1224 if (err)
1225 goto out_free_new_fa;
1227 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1228 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1230 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1232 alias_free_mem_rcu(fa);
1234 fib_release_info(fi_drop);
1235 if (state & FA_S_ACCESSED)
1236 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1238 goto succeeded;
1240 /* Error if we find a perfect match which
1241 * uses the same scope, type, and nexthop
1242 * information.
1244 if (fa_match)
1245 goto out;
1247 if (cfg->fc_nlflags & NLM_F_APPEND) {
1248 event = FIB_EVENT_ENTRY_APPEND;
1249 nlflags |= NLM_F_APPEND;
1250 } else {
1251 fa = fa_first;
1254 err = -ENOENT;
1255 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1256 goto out;
1258 nlflags |= NLM_F_CREATE;
1259 err = -ENOBUFS;
1260 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1261 if (!new_fa)
1262 goto out;
1264 new_fa->fa_info = fi;
1265 new_fa->fa_tos = tos;
1266 new_fa->fa_type = cfg->fc_type;
1267 new_fa->fa_state = 0;
1268 new_fa->fa_slen = slen;
1269 new_fa->tb_id = tb->tb_id;
1270 new_fa->fa_default = -1;
1272 err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1273 if (err)
1274 goto out_free_new_fa;
1276 /* Insert new entry to the list. */
1277 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1278 if (err)
1279 goto out_fib_notif;
1281 if (!plen)
1282 tb->tb_num_default++;
1284 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1285 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1286 &cfg->fc_nlinfo, nlflags);
1287 succeeded:
1288 return 0;
1290 out_fib_notif:
1291 /* notifier was sent that entry would be added to trie, but
1292 * the add failed and need to recover. Only failure for
1293 * fib_insert_alias is ENOMEM.
1295 NL_SET_ERR_MSG(extack, "Failed to insert route into trie");
1296 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key,
1297 plen, new_fa, NULL);
1298 out_free_new_fa:
1299 kmem_cache_free(fn_alias_kmem, new_fa);
1300 out:
1301 fib_release_info(fi);
1302 err:
1303 return err;
1306 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1308 t_key prefix = n->key;
1310 return (key ^ prefix) & (prefix | -prefix);
1313 /* should be called with rcu_read_lock */
1314 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1315 struct fib_result *res, int fib_flags)
1317 struct trie *t = (struct trie *) tb->tb_data;
1318 #ifdef CONFIG_IP_FIB_TRIE_STATS
1319 struct trie_use_stats __percpu *stats = t->stats;
1320 #endif
1321 const t_key key = ntohl(flp->daddr);
1322 struct key_vector *n, *pn;
1323 struct fib_alias *fa;
1324 unsigned long index;
1325 t_key cindex;
1327 pn = t->kv;
1328 cindex = 0;
1330 n = get_child_rcu(pn, cindex);
1331 if (!n) {
1332 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1333 return -EAGAIN;
1336 #ifdef CONFIG_IP_FIB_TRIE_STATS
1337 this_cpu_inc(stats->gets);
1338 #endif
1340 /* Step 1: Travel to the longest prefix match in the trie */
1341 for (;;) {
1342 index = get_cindex(key, n);
1344 /* This bit of code is a bit tricky but it combines multiple
1345 * checks into a single check. The prefix consists of the
1346 * prefix plus zeros for the "bits" in the prefix. The index
1347 * is the difference between the key and this value. From
1348 * this we can actually derive several pieces of data.
1349 * if (index >= (1ul << bits))
1350 * we have a mismatch in skip bits and failed
1351 * else
1352 * we know the value is cindex
1354 * This check is safe even if bits == KEYLENGTH due to the
1355 * fact that we can only allocate a node with 32 bits if a
1356 * long is greater than 32 bits.
1358 if (index >= (1ul << n->bits))
1359 break;
1361 /* we have found a leaf. Prefixes have already been compared */
1362 if (IS_LEAF(n))
1363 goto found;
1365 /* only record pn and cindex if we are going to be chopping
1366 * bits later. Otherwise we are just wasting cycles.
1368 if (n->slen > n->pos) {
1369 pn = n;
1370 cindex = index;
1373 n = get_child_rcu(n, index);
1374 if (unlikely(!n))
1375 goto backtrace;
1378 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1379 for (;;) {
1380 /* record the pointer where our next node pointer is stored */
1381 struct key_vector __rcu **cptr = n->tnode;
1383 /* This test verifies that none of the bits that differ
1384 * between the key and the prefix exist in the region of
1385 * the lsb and higher in the prefix.
1387 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1388 goto backtrace;
1390 /* exit out and process leaf */
1391 if (unlikely(IS_LEAF(n)))
1392 break;
1394 /* Don't bother recording parent info. Since we are in
1395 * prefix match mode we will have to come back to wherever
1396 * we started this traversal anyway
1399 while ((n = rcu_dereference(*cptr)) == NULL) {
1400 backtrace:
1401 #ifdef CONFIG_IP_FIB_TRIE_STATS
1402 if (!n)
1403 this_cpu_inc(stats->null_node_hit);
1404 #endif
1405 /* If we are at cindex 0 there are no more bits for
1406 * us to strip at this level so we must ascend back
1407 * up one level to see if there are any more bits to
1408 * be stripped there.
1410 while (!cindex) {
1411 t_key pkey = pn->key;
1413 /* If we don't have a parent then there is
1414 * nothing for us to do as we do not have any
1415 * further nodes to parse.
1417 if (IS_TRIE(pn)) {
1418 trace_fib_table_lookup(tb->tb_id, flp,
1419 NULL, -EAGAIN);
1420 return -EAGAIN;
1422 #ifdef CONFIG_IP_FIB_TRIE_STATS
1423 this_cpu_inc(stats->backtrack);
1424 #endif
1425 /* Get Child's index */
1426 pn = node_parent_rcu(pn);
1427 cindex = get_index(pkey, pn);
1430 /* strip the least significant bit from the cindex */
1431 cindex &= cindex - 1;
1433 /* grab pointer for next child node */
1434 cptr = &pn->tnode[cindex];
1438 found:
1439 /* this line carries forward the xor from earlier in the function */
1440 index = key ^ n->key;
1442 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1443 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1444 struct fib_info *fi = fa->fa_info;
1445 int nhsel, err;
1447 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1448 if (index >= (1ul << fa->fa_slen))
1449 continue;
1451 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1452 continue;
1453 if (fi->fib_dead)
1454 continue;
1455 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1456 continue;
1457 fib_alias_accessed(fa);
1458 err = fib_props[fa->fa_type].error;
1459 if (unlikely(err < 0)) {
1460 out_reject:
1461 #ifdef CONFIG_IP_FIB_TRIE_STATS
1462 this_cpu_inc(stats->semantic_match_passed);
1463 #endif
1464 trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1465 return err;
1467 if (fi->fib_flags & RTNH_F_DEAD)
1468 continue;
1470 if (unlikely(fi->nh && nexthop_is_blackhole(fi->nh))) {
1471 err = fib_props[RTN_BLACKHOLE].error;
1472 goto out_reject;
1475 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1476 struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel);
1478 if (nhc->nhc_flags & RTNH_F_DEAD)
1479 continue;
1480 if (ip_ignore_linkdown(nhc->nhc_dev) &&
1481 nhc->nhc_flags & RTNH_F_LINKDOWN &&
1482 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1483 continue;
1484 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1485 if (flp->flowi4_oif &&
1486 flp->flowi4_oif != nhc->nhc_oif)
1487 continue;
1490 if (!(fib_flags & FIB_LOOKUP_NOREF))
1491 refcount_inc(&fi->fib_clntref);
1493 res->prefix = htonl(n->key);
1494 res->prefixlen = KEYLENGTH - fa->fa_slen;
1495 res->nh_sel = nhsel;
1496 res->nhc = nhc;
1497 res->type = fa->fa_type;
1498 res->scope = fi->fib_scope;
1499 res->fi = fi;
1500 res->table = tb;
1501 res->fa_head = &n->leaf;
1502 #ifdef CONFIG_IP_FIB_TRIE_STATS
1503 this_cpu_inc(stats->semantic_match_passed);
1504 #endif
1505 trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1507 return err;
1510 #ifdef CONFIG_IP_FIB_TRIE_STATS
1511 this_cpu_inc(stats->semantic_match_miss);
1512 #endif
1513 goto backtrace;
1515 EXPORT_SYMBOL_GPL(fib_table_lookup);
1517 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1518 struct key_vector *l, struct fib_alias *old)
1520 /* record the location of the previous list_info entry */
1521 struct hlist_node **pprev = old->fa_list.pprev;
1522 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1524 /* remove the fib_alias from the list */
1525 hlist_del_rcu(&old->fa_list);
1527 /* if we emptied the list this leaf will be freed and we can sort
1528 * out parent suffix lengths as a part of trie_rebalance
1530 if (hlist_empty(&l->leaf)) {
1531 if (tp->slen == l->slen)
1532 node_pull_suffix(tp, tp->pos);
1533 put_child_root(tp, l->key, NULL);
1534 node_free(l);
1535 trie_rebalance(t, tp);
1536 return;
1539 /* only access fa if it is pointing at the last valid hlist_node */
1540 if (*pprev)
1541 return;
1543 /* update the trie with the latest suffix length */
1544 l->slen = fa->fa_slen;
1545 node_pull_suffix(tp, fa->fa_slen);
1548 /* Caller must hold RTNL. */
1549 int fib_table_delete(struct net *net, struct fib_table *tb,
1550 struct fib_config *cfg, struct netlink_ext_ack *extack)
1552 struct trie *t = (struct trie *) tb->tb_data;
1553 struct fib_alias *fa, *fa_to_delete;
1554 struct key_vector *l, *tp;
1555 u8 plen = cfg->fc_dst_len;
1556 u8 slen = KEYLENGTH - plen;
1557 u8 tos = cfg->fc_tos;
1558 u32 key;
1560 key = ntohl(cfg->fc_dst);
1562 if (!fib_valid_key_len(key, plen, extack))
1563 return -EINVAL;
1565 l = fib_find_node(t, &tp, key);
1566 if (!l)
1567 return -ESRCH;
1569 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1570 if (!fa)
1571 return -ESRCH;
1573 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1575 fa_to_delete = NULL;
1576 hlist_for_each_entry_from(fa, fa_list) {
1577 struct fib_info *fi = fa->fa_info;
1579 if ((fa->fa_slen != slen) ||
1580 (fa->tb_id != tb->tb_id) ||
1581 (fa->fa_tos != tos))
1582 break;
1584 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1585 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1586 fa->fa_info->fib_scope == cfg->fc_scope) &&
1587 (!cfg->fc_prefsrc ||
1588 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1589 (!cfg->fc_protocol ||
1590 fi->fib_protocol == cfg->fc_protocol) &&
1591 fib_nh_match(cfg, fi, extack) == 0 &&
1592 fib_metrics_match(cfg, fi)) {
1593 fa_to_delete = fa;
1594 break;
1598 if (!fa_to_delete)
1599 return -ESRCH;
1601 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1602 fa_to_delete, extack);
1603 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1604 &cfg->fc_nlinfo, 0);
1606 if (!plen)
1607 tb->tb_num_default--;
1609 fib_remove_alias(t, tp, l, fa_to_delete);
1611 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1612 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1614 fib_release_info(fa_to_delete->fa_info);
1615 alias_free_mem_rcu(fa_to_delete);
1616 return 0;
1619 /* Scan for the next leaf starting at the provided key value */
1620 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1622 struct key_vector *pn, *n = *tn;
1623 unsigned long cindex;
1625 /* this loop is meant to try and find the key in the trie */
1626 do {
1627 /* record parent and next child index */
1628 pn = n;
1629 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1631 if (cindex >> pn->bits)
1632 break;
1634 /* descend into the next child */
1635 n = get_child_rcu(pn, cindex++);
1636 if (!n)
1637 break;
1639 /* guarantee forward progress on the keys */
1640 if (IS_LEAF(n) && (n->key >= key))
1641 goto found;
1642 } while (IS_TNODE(n));
1644 /* this loop will search for the next leaf with a greater key */
1645 while (!IS_TRIE(pn)) {
1646 /* if we exhausted the parent node we will need to climb */
1647 if (cindex >= (1ul << pn->bits)) {
1648 t_key pkey = pn->key;
1650 pn = node_parent_rcu(pn);
1651 cindex = get_index(pkey, pn) + 1;
1652 continue;
1655 /* grab the next available node */
1656 n = get_child_rcu(pn, cindex++);
1657 if (!n)
1658 continue;
1660 /* no need to compare keys since we bumped the index */
1661 if (IS_LEAF(n))
1662 goto found;
1664 /* Rescan start scanning in new node */
1665 pn = n;
1666 cindex = 0;
1669 *tn = pn;
1670 return NULL; /* Root of trie */
1671 found:
1672 /* if we are at the limit for keys just return NULL for the tnode */
1673 *tn = pn;
1674 return n;
1677 static void fib_trie_free(struct fib_table *tb)
1679 struct trie *t = (struct trie *)tb->tb_data;
1680 struct key_vector *pn = t->kv;
1681 unsigned long cindex = 1;
1682 struct hlist_node *tmp;
1683 struct fib_alias *fa;
1685 /* walk trie in reverse order and free everything */
1686 for (;;) {
1687 struct key_vector *n;
1689 if (!(cindex--)) {
1690 t_key pkey = pn->key;
1692 if (IS_TRIE(pn))
1693 break;
1695 n = pn;
1696 pn = node_parent(pn);
1698 /* drop emptied tnode */
1699 put_child_root(pn, n->key, NULL);
1700 node_free(n);
1702 cindex = get_index(pkey, pn);
1704 continue;
1707 /* grab the next available node */
1708 n = get_child(pn, cindex);
1709 if (!n)
1710 continue;
1712 if (IS_TNODE(n)) {
1713 /* record pn and cindex for leaf walking */
1714 pn = n;
1715 cindex = 1ul << n->bits;
1717 continue;
1720 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1721 hlist_del_rcu(&fa->fa_list);
1722 alias_free_mem_rcu(fa);
1725 put_child_root(pn, n->key, NULL);
1726 node_free(n);
1729 #ifdef CONFIG_IP_FIB_TRIE_STATS
1730 free_percpu(t->stats);
1731 #endif
1732 kfree(tb);
1735 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1737 struct trie *ot = (struct trie *)oldtb->tb_data;
1738 struct key_vector *l, *tp = ot->kv;
1739 struct fib_table *local_tb;
1740 struct fib_alias *fa;
1741 struct trie *lt;
1742 t_key key = 0;
1744 if (oldtb->tb_data == oldtb->__data)
1745 return oldtb;
1747 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1748 if (!local_tb)
1749 return NULL;
1751 lt = (struct trie *)local_tb->tb_data;
1753 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1754 struct key_vector *local_l = NULL, *local_tp;
1756 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1757 struct fib_alias *new_fa;
1759 if (local_tb->tb_id != fa->tb_id)
1760 continue;
1762 /* clone fa for new local table */
1763 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1764 if (!new_fa)
1765 goto out;
1767 memcpy(new_fa, fa, sizeof(*fa));
1769 /* insert clone into table */
1770 if (!local_l)
1771 local_l = fib_find_node(lt, &local_tp, l->key);
1773 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1774 NULL, l->key)) {
1775 kmem_cache_free(fn_alias_kmem, new_fa);
1776 goto out;
1780 /* stop loop if key wrapped back to 0 */
1781 key = l->key + 1;
1782 if (key < l->key)
1783 break;
1786 return local_tb;
1787 out:
1788 fib_trie_free(local_tb);
1790 return NULL;
1793 /* Caller must hold RTNL */
1794 void fib_table_flush_external(struct fib_table *tb)
1796 struct trie *t = (struct trie *)tb->tb_data;
1797 struct key_vector *pn = t->kv;
1798 unsigned long cindex = 1;
1799 struct hlist_node *tmp;
1800 struct fib_alias *fa;
1802 /* walk trie in reverse order */
1803 for (;;) {
1804 unsigned char slen = 0;
1805 struct key_vector *n;
1807 if (!(cindex--)) {
1808 t_key pkey = pn->key;
1810 /* cannot resize the trie vector */
1811 if (IS_TRIE(pn))
1812 break;
1814 /* update the suffix to address pulled leaves */
1815 if (pn->slen > pn->pos)
1816 update_suffix(pn);
1818 /* resize completed node */
1819 pn = resize(t, pn);
1820 cindex = get_index(pkey, pn);
1822 continue;
1825 /* grab the next available node */
1826 n = get_child(pn, cindex);
1827 if (!n)
1828 continue;
1830 if (IS_TNODE(n)) {
1831 /* record pn and cindex for leaf walking */
1832 pn = n;
1833 cindex = 1ul << n->bits;
1835 continue;
1838 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1839 /* if alias was cloned to local then we just
1840 * need to remove the local copy from main
1842 if (tb->tb_id != fa->tb_id) {
1843 hlist_del_rcu(&fa->fa_list);
1844 alias_free_mem_rcu(fa);
1845 continue;
1848 /* record local slen */
1849 slen = fa->fa_slen;
1852 /* update leaf slen */
1853 n->slen = slen;
1855 if (hlist_empty(&n->leaf)) {
1856 put_child_root(pn, n->key, NULL);
1857 node_free(n);
1862 /* Caller must hold RTNL. */
1863 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1865 struct trie *t = (struct trie *)tb->tb_data;
1866 struct key_vector *pn = t->kv;
1867 unsigned long cindex = 1;
1868 struct hlist_node *tmp;
1869 struct fib_alias *fa;
1870 int found = 0;
1872 /* walk trie in reverse order */
1873 for (;;) {
1874 unsigned char slen = 0;
1875 struct key_vector *n;
1877 if (!(cindex--)) {
1878 t_key pkey = pn->key;
1880 /* cannot resize the trie vector */
1881 if (IS_TRIE(pn))
1882 break;
1884 /* update the suffix to address pulled leaves */
1885 if (pn->slen > pn->pos)
1886 update_suffix(pn);
1888 /* resize completed node */
1889 pn = resize(t, pn);
1890 cindex = get_index(pkey, pn);
1892 continue;
1895 /* grab the next available node */
1896 n = get_child(pn, cindex);
1897 if (!n)
1898 continue;
1900 if (IS_TNODE(n)) {
1901 /* record pn and cindex for leaf walking */
1902 pn = n;
1903 cindex = 1ul << n->bits;
1905 continue;
1908 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1909 struct fib_info *fi = fa->fa_info;
1911 if (!fi || tb->tb_id != fa->tb_id ||
1912 (!(fi->fib_flags & RTNH_F_DEAD) &&
1913 !fib_props[fa->fa_type].error)) {
1914 slen = fa->fa_slen;
1915 continue;
1918 /* Do not flush error routes if network namespace is
1919 * not being dismantled
1921 if (!flush_all && fib_props[fa->fa_type].error) {
1922 slen = fa->fa_slen;
1923 continue;
1926 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1927 n->key,
1928 KEYLENGTH - fa->fa_slen, fa,
1929 NULL);
1930 hlist_del_rcu(&fa->fa_list);
1931 fib_release_info(fa->fa_info);
1932 alias_free_mem_rcu(fa);
1933 found++;
1936 /* update leaf slen */
1937 n->slen = slen;
1939 if (hlist_empty(&n->leaf)) {
1940 put_child_root(pn, n->key, NULL);
1941 node_free(n);
1945 pr_debug("trie_flush found=%d\n", found);
1946 return found;
1949 /* derived from fib_trie_free */
1950 static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
1951 struct nl_info *info)
1953 struct trie *t = (struct trie *)tb->tb_data;
1954 struct key_vector *pn = t->kv;
1955 unsigned long cindex = 1;
1956 struct fib_alias *fa;
1958 for (;;) {
1959 struct key_vector *n;
1961 if (!(cindex--)) {
1962 t_key pkey = pn->key;
1964 if (IS_TRIE(pn))
1965 break;
1967 pn = node_parent(pn);
1968 cindex = get_index(pkey, pn);
1969 continue;
1972 /* grab the next available node */
1973 n = get_child(pn, cindex);
1974 if (!n)
1975 continue;
1977 if (IS_TNODE(n)) {
1978 /* record pn and cindex for leaf walking */
1979 pn = n;
1980 cindex = 1ul << n->bits;
1982 continue;
1985 hlist_for_each_entry(fa, &n->leaf, fa_list) {
1986 struct fib_info *fi = fa->fa_info;
1988 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
1989 continue;
1991 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
1992 KEYLENGTH - fa->fa_slen, tb->tb_id,
1993 info, NLM_F_REPLACE);
1995 /* call_fib_entry_notifiers will be removed when
1996 * in-kernel notifier is implemented and supported
1997 * for nexthop objects
1999 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
2000 n->key,
2001 KEYLENGTH - fa->fa_slen, fa,
2002 NULL);
2007 void fib_info_notify_update(struct net *net, struct nl_info *info)
2009 unsigned int h;
2011 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2012 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2013 struct fib_table *tb;
2015 hlist_for_each_entry_rcu(tb, head, tb_hlist)
2016 __fib_info_notify_update(net, tb, info);
2020 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2021 struct notifier_block *nb,
2022 struct netlink_ext_ack *extack)
2024 struct fib_alias *fa;
2025 int err;
2027 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2028 struct fib_info *fi = fa->fa_info;
2030 if (!fi)
2031 continue;
2033 /* local and main table can share the same trie,
2034 * so don't notify twice for the same entry.
2036 if (tb->tb_id != fa->tb_id)
2037 continue;
2039 err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_ADD, l->key,
2040 KEYLENGTH - fa->fa_slen,
2041 fa, extack);
2042 if (err)
2043 return err;
2045 return 0;
2048 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2049 struct netlink_ext_ack *extack)
2051 struct trie *t = (struct trie *)tb->tb_data;
2052 struct key_vector *l, *tp = t->kv;
2053 t_key key = 0;
2054 int err;
2056 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2057 err = fib_leaf_notify(l, tb, nb, extack);
2058 if (err)
2059 return err;
2061 key = l->key + 1;
2062 /* stop in case of wrap around */
2063 if (key < l->key)
2064 break;
2066 return 0;
2069 int fib_notify(struct net *net, struct notifier_block *nb,
2070 struct netlink_ext_ack *extack)
2072 unsigned int h;
2073 int err;
2075 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2076 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2077 struct fib_table *tb;
2079 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2080 err = fib_table_notify(tb, nb, extack);
2081 if (err)
2082 return err;
2085 return 0;
2088 static void __trie_free_rcu(struct rcu_head *head)
2090 struct fib_table *tb = container_of(head, struct fib_table, rcu);
2091 #ifdef CONFIG_IP_FIB_TRIE_STATS
2092 struct trie *t = (struct trie *)tb->tb_data;
2094 if (tb->tb_data == tb->__data)
2095 free_percpu(t->stats);
2096 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2097 kfree(tb);
2100 void fib_free_table(struct fib_table *tb)
2102 call_rcu(&tb->rcu, __trie_free_rcu);
2105 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2106 struct sk_buff *skb, struct netlink_callback *cb,
2107 struct fib_dump_filter *filter)
2109 unsigned int flags = NLM_F_MULTI;
2110 __be32 xkey = htonl(l->key);
2111 int i, s_i, i_fa, s_fa, err;
2112 struct fib_alias *fa;
2114 if (filter->filter_set ||
2115 !filter->dump_exceptions || !filter->dump_routes)
2116 flags |= NLM_F_DUMP_FILTERED;
2118 s_i = cb->args[4];
2119 s_fa = cb->args[5];
2120 i = 0;
2122 /* rcu_read_lock is hold by caller */
2123 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2124 struct fib_info *fi = fa->fa_info;
2126 if (i < s_i)
2127 goto next;
2129 i_fa = 0;
2131 if (tb->tb_id != fa->tb_id)
2132 goto next;
2134 if (filter->filter_set) {
2135 if (filter->rt_type && fa->fa_type != filter->rt_type)
2136 goto next;
2138 if ((filter->protocol &&
2139 fi->fib_protocol != filter->protocol))
2140 goto next;
2142 if (filter->dev &&
2143 !fib_info_nh_uses_dev(fi, filter->dev))
2144 goto next;
2147 if (filter->dump_routes) {
2148 if (!s_fa) {
2149 err = fib_dump_info(skb,
2150 NETLINK_CB(cb->skb).portid,
2151 cb->nlh->nlmsg_seq,
2152 RTM_NEWROUTE,
2153 tb->tb_id, fa->fa_type,
2154 xkey,
2155 KEYLENGTH - fa->fa_slen,
2156 fa->fa_tos, fi, flags);
2157 if (err < 0)
2158 goto stop;
2161 i_fa++;
2164 if (filter->dump_exceptions) {
2165 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2166 &i_fa, s_fa, flags);
2167 if (err < 0)
2168 goto stop;
2171 next:
2172 i++;
2175 cb->args[4] = i;
2176 return skb->len;
2178 stop:
2179 cb->args[4] = i;
2180 cb->args[5] = i_fa;
2181 return err;
2184 /* rcu_read_lock needs to be hold by caller from readside */
2185 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2186 struct netlink_callback *cb, struct fib_dump_filter *filter)
2188 struct trie *t = (struct trie *)tb->tb_data;
2189 struct key_vector *l, *tp = t->kv;
2190 /* Dump starting at last key.
2191 * Note: 0.0.0.0/0 (ie default) is first key.
2193 int count = cb->args[2];
2194 t_key key = cb->args[3];
2196 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2197 int err;
2199 err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2200 if (err < 0) {
2201 cb->args[3] = key;
2202 cb->args[2] = count;
2203 return err;
2206 ++count;
2207 key = l->key + 1;
2209 memset(&cb->args[4], 0,
2210 sizeof(cb->args) - 4*sizeof(cb->args[0]));
2212 /* stop loop if key wrapped back to 0 */
2213 if (key < l->key)
2214 break;
2217 cb->args[3] = key;
2218 cb->args[2] = count;
2220 return skb->len;
2223 void __init fib_trie_init(void)
2225 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2226 sizeof(struct fib_alias),
2227 0, SLAB_PANIC, NULL);
2229 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2230 LEAF_SIZE,
2231 0, SLAB_PANIC, NULL);
2234 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2236 struct fib_table *tb;
2237 struct trie *t;
2238 size_t sz = sizeof(*tb);
2240 if (!alias)
2241 sz += sizeof(struct trie);
2243 tb = kzalloc(sz, GFP_KERNEL);
2244 if (!tb)
2245 return NULL;
2247 tb->tb_id = id;
2248 tb->tb_num_default = 0;
2249 tb->tb_data = (alias ? alias->__data : tb->__data);
2251 if (alias)
2252 return tb;
2254 t = (struct trie *) tb->tb_data;
2255 t->kv[0].pos = KEYLENGTH;
2256 t->kv[0].slen = KEYLENGTH;
2257 #ifdef CONFIG_IP_FIB_TRIE_STATS
2258 t->stats = alloc_percpu(struct trie_use_stats);
2259 if (!t->stats) {
2260 kfree(tb);
2261 tb = NULL;
2263 #endif
2265 return tb;
2268 #ifdef CONFIG_PROC_FS
2269 /* Depth first Trie walk iterator */
2270 struct fib_trie_iter {
2271 struct seq_net_private p;
2272 struct fib_table *tb;
2273 struct key_vector *tnode;
2274 unsigned int index;
2275 unsigned int depth;
2278 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2280 unsigned long cindex = iter->index;
2281 struct key_vector *pn = iter->tnode;
2282 t_key pkey;
2284 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2285 iter->tnode, iter->index, iter->depth);
2287 while (!IS_TRIE(pn)) {
2288 while (cindex < child_length(pn)) {
2289 struct key_vector *n = get_child_rcu(pn, cindex++);
2291 if (!n)
2292 continue;
2294 if (IS_LEAF(n)) {
2295 iter->tnode = pn;
2296 iter->index = cindex;
2297 } else {
2298 /* push down one level */
2299 iter->tnode = n;
2300 iter->index = 0;
2301 ++iter->depth;
2304 return n;
2307 /* Current node exhausted, pop back up */
2308 pkey = pn->key;
2309 pn = node_parent_rcu(pn);
2310 cindex = get_index(pkey, pn) + 1;
2311 --iter->depth;
2314 /* record root node so further searches know we are done */
2315 iter->tnode = pn;
2316 iter->index = 0;
2318 return NULL;
2321 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2322 struct trie *t)
2324 struct key_vector *n, *pn;
2326 if (!t)
2327 return NULL;
2329 pn = t->kv;
2330 n = rcu_dereference(pn->tnode[0]);
2331 if (!n)
2332 return NULL;
2334 if (IS_TNODE(n)) {
2335 iter->tnode = n;
2336 iter->index = 0;
2337 iter->depth = 1;
2338 } else {
2339 iter->tnode = pn;
2340 iter->index = 0;
2341 iter->depth = 0;
2344 return n;
2347 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2349 struct key_vector *n;
2350 struct fib_trie_iter iter;
2352 memset(s, 0, sizeof(*s));
2354 rcu_read_lock();
2355 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2356 if (IS_LEAF(n)) {
2357 struct fib_alias *fa;
2359 s->leaves++;
2360 s->totdepth += iter.depth;
2361 if (iter.depth > s->maxdepth)
2362 s->maxdepth = iter.depth;
2364 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2365 ++s->prefixes;
2366 } else {
2367 s->tnodes++;
2368 if (n->bits < MAX_STAT_DEPTH)
2369 s->nodesizes[n->bits]++;
2370 s->nullpointers += tn_info(n)->empty_children;
2373 rcu_read_unlock();
2377 * This outputs /proc/net/fib_triestats
2379 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2381 unsigned int i, max, pointers, bytes, avdepth;
2383 if (stat->leaves)
2384 avdepth = stat->totdepth*100 / stat->leaves;
2385 else
2386 avdepth = 0;
2388 seq_printf(seq, "\tAver depth: %u.%02d\n",
2389 avdepth / 100, avdepth % 100);
2390 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2392 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2393 bytes = LEAF_SIZE * stat->leaves;
2395 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2396 bytes += sizeof(struct fib_alias) * stat->prefixes;
2398 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2399 bytes += TNODE_SIZE(0) * stat->tnodes;
2401 max = MAX_STAT_DEPTH;
2402 while (max > 0 && stat->nodesizes[max-1] == 0)
2403 max--;
2405 pointers = 0;
2406 for (i = 1; i < max; i++)
2407 if (stat->nodesizes[i] != 0) {
2408 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2409 pointers += (1<<i) * stat->nodesizes[i];
2411 seq_putc(seq, '\n');
2412 seq_printf(seq, "\tPointers: %u\n", pointers);
2414 bytes += sizeof(struct key_vector *) * pointers;
2415 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2416 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2419 #ifdef CONFIG_IP_FIB_TRIE_STATS
2420 static void trie_show_usage(struct seq_file *seq,
2421 const struct trie_use_stats __percpu *stats)
2423 struct trie_use_stats s = { 0 };
2424 int cpu;
2426 /* loop through all of the CPUs and gather up the stats */
2427 for_each_possible_cpu(cpu) {
2428 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2430 s.gets += pcpu->gets;
2431 s.backtrack += pcpu->backtrack;
2432 s.semantic_match_passed += pcpu->semantic_match_passed;
2433 s.semantic_match_miss += pcpu->semantic_match_miss;
2434 s.null_node_hit += pcpu->null_node_hit;
2435 s.resize_node_skipped += pcpu->resize_node_skipped;
2438 seq_printf(seq, "\nCounters:\n---------\n");
2439 seq_printf(seq, "gets = %u\n", s.gets);
2440 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2441 seq_printf(seq, "semantic match passed = %u\n",
2442 s.semantic_match_passed);
2443 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2444 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2445 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2447 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2449 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2451 if (tb->tb_id == RT_TABLE_LOCAL)
2452 seq_puts(seq, "Local:\n");
2453 else if (tb->tb_id == RT_TABLE_MAIN)
2454 seq_puts(seq, "Main:\n");
2455 else
2456 seq_printf(seq, "Id %d:\n", tb->tb_id);
2460 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2462 struct net *net = (struct net *)seq->private;
2463 unsigned int h;
2465 seq_printf(seq,
2466 "Basic info: size of leaf:"
2467 " %zd bytes, size of tnode: %zd bytes.\n",
2468 LEAF_SIZE, TNODE_SIZE(0));
2470 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2471 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2472 struct fib_table *tb;
2474 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2475 struct trie *t = (struct trie *) tb->tb_data;
2476 struct trie_stat stat;
2478 if (!t)
2479 continue;
2481 fib_table_print(seq, tb);
2483 trie_collect_stats(t, &stat);
2484 trie_show_stats(seq, &stat);
2485 #ifdef CONFIG_IP_FIB_TRIE_STATS
2486 trie_show_usage(seq, t->stats);
2487 #endif
2491 return 0;
2494 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2496 struct fib_trie_iter *iter = seq->private;
2497 struct net *net = seq_file_net(seq);
2498 loff_t idx = 0;
2499 unsigned int h;
2501 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2502 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2503 struct fib_table *tb;
2505 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2506 struct key_vector *n;
2508 for (n = fib_trie_get_first(iter,
2509 (struct trie *) tb->tb_data);
2510 n; n = fib_trie_get_next(iter))
2511 if (pos == idx++) {
2512 iter->tb = tb;
2513 return n;
2518 return NULL;
2521 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2522 __acquires(RCU)
2524 rcu_read_lock();
2525 return fib_trie_get_idx(seq, *pos);
2528 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2530 struct fib_trie_iter *iter = seq->private;
2531 struct net *net = seq_file_net(seq);
2532 struct fib_table *tb = iter->tb;
2533 struct hlist_node *tb_node;
2534 unsigned int h;
2535 struct key_vector *n;
2537 ++*pos;
2538 /* next node in same table */
2539 n = fib_trie_get_next(iter);
2540 if (n)
2541 return n;
2543 /* walk rest of this hash chain */
2544 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2545 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2546 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2547 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2548 if (n)
2549 goto found;
2552 /* new hash chain */
2553 while (++h < FIB_TABLE_HASHSZ) {
2554 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2555 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2556 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2557 if (n)
2558 goto found;
2561 return NULL;
2563 found:
2564 iter->tb = tb;
2565 return n;
2568 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2569 __releases(RCU)
2571 rcu_read_unlock();
2574 static void seq_indent(struct seq_file *seq, int n)
2576 while (n-- > 0)
2577 seq_puts(seq, " ");
2580 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2582 switch (s) {
2583 case RT_SCOPE_UNIVERSE: return "universe";
2584 case RT_SCOPE_SITE: return "site";
2585 case RT_SCOPE_LINK: return "link";
2586 case RT_SCOPE_HOST: return "host";
2587 case RT_SCOPE_NOWHERE: return "nowhere";
2588 default:
2589 snprintf(buf, len, "scope=%d", s);
2590 return buf;
2594 static const char *const rtn_type_names[__RTN_MAX] = {
2595 [RTN_UNSPEC] = "UNSPEC",
2596 [RTN_UNICAST] = "UNICAST",
2597 [RTN_LOCAL] = "LOCAL",
2598 [RTN_BROADCAST] = "BROADCAST",
2599 [RTN_ANYCAST] = "ANYCAST",
2600 [RTN_MULTICAST] = "MULTICAST",
2601 [RTN_BLACKHOLE] = "BLACKHOLE",
2602 [RTN_UNREACHABLE] = "UNREACHABLE",
2603 [RTN_PROHIBIT] = "PROHIBIT",
2604 [RTN_THROW] = "THROW",
2605 [RTN_NAT] = "NAT",
2606 [RTN_XRESOLVE] = "XRESOLVE",
2609 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2611 if (t < __RTN_MAX && rtn_type_names[t])
2612 return rtn_type_names[t];
2613 snprintf(buf, len, "type %u", t);
2614 return buf;
2617 /* Pretty print the trie */
2618 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2620 const struct fib_trie_iter *iter = seq->private;
2621 struct key_vector *n = v;
2623 if (IS_TRIE(node_parent_rcu(n)))
2624 fib_table_print(seq, iter->tb);
2626 if (IS_TNODE(n)) {
2627 __be32 prf = htonl(n->key);
2629 seq_indent(seq, iter->depth-1);
2630 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2631 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2632 tn_info(n)->full_children,
2633 tn_info(n)->empty_children);
2634 } else {
2635 __be32 val = htonl(n->key);
2636 struct fib_alias *fa;
2638 seq_indent(seq, iter->depth);
2639 seq_printf(seq, " |-- %pI4\n", &val);
2641 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2642 char buf1[32], buf2[32];
2644 seq_indent(seq, iter->depth + 1);
2645 seq_printf(seq, " /%zu %s %s",
2646 KEYLENGTH - fa->fa_slen,
2647 rtn_scope(buf1, sizeof(buf1),
2648 fa->fa_info->fib_scope),
2649 rtn_type(buf2, sizeof(buf2),
2650 fa->fa_type));
2651 if (fa->fa_tos)
2652 seq_printf(seq, " tos=%d", fa->fa_tos);
2653 seq_putc(seq, '\n');
2657 return 0;
2660 static const struct seq_operations fib_trie_seq_ops = {
2661 .start = fib_trie_seq_start,
2662 .next = fib_trie_seq_next,
2663 .stop = fib_trie_seq_stop,
2664 .show = fib_trie_seq_show,
2667 struct fib_route_iter {
2668 struct seq_net_private p;
2669 struct fib_table *main_tb;
2670 struct key_vector *tnode;
2671 loff_t pos;
2672 t_key key;
2675 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2676 loff_t pos)
2678 struct key_vector *l, **tp = &iter->tnode;
2679 t_key key;
2681 /* use cached location of previously found key */
2682 if (iter->pos > 0 && pos >= iter->pos) {
2683 key = iter->key;
2684 } else {
2685 iter->pos = 1;
2686 key = 0;
2689 pos -= iter->pos;
2691 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2692 key = l->key + 1;
2693 iter->pos++;
2694 l = NULL;
2696 /* handle unlikely case of a key wrap */
2697 if (!key)
2698 break;
2701 if (l)
2702 iter->key = l->key; /* remember it */
2703 else
2704 iter->pos = 0; /* forget it */
2706 return l;
2709 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2710 __acquires(RCU)
2712 struct fib_route_iter *iter = seq->private;
2713 struct fib_table *tb;
2714 struct trie *t;
2716 rcu_read_lock();
2718 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2719 if (!tb)
2720 return NULL;
2722 iter->main_tb = tb;
2723 t = (struct trie *)tb->tb_data;
2724 iter->tnode = t->kv;
2726 if (*pos != 0)
2727 return fib_route_get_idx(iter, *pos);
2729 iter->pos = 0;
2730 iter->key = KEY_MAX;
2732 return SEQ_START_TOKEN;
2735 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2737 struct fib_route_iter *iter = seq->private;
2738 struct key_vector *l = NULL;
2739 t_key key = iter->key + 1;
2741 ++*pos;
2743 /* only allow key of 0 for start of sequence */
2744 if ((v == SEQ_START_TOKEN) || key)
2745 l = leaf_walk_rcu(&iter->tnode, key);
2747 if (l) {
2748 iter->key = l->key;
2749 iter->pos++;
2750 } else {
2751 iter->pos = 0;
2754 return l;
2757 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2758 __releases(RCU)
2760 rcu_read_unlock();
2763 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2765 unsigned int flags = 0;
2767 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2768 flags = RTF_REJECT;
2769 if (fi) {
2770 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2772 if (nhc->nhc_gw.ipv4)
2773 flags |= RTF_GATEWAY;
2775 if (mask == htonl(0xFFFFFFFF))
2776 flags |= RTF_HOST;
2777 flags |= RTF_UP;
2778 return flags;
2782 * This outputs /proc/net/route.
2783 * The format of the file is not supposed to be changed
2784 * and needs to be same as fib_hash output to avoid breaking
2785 * legacy utilities
2787 static int fib_route_seq_show(struct seq_file *seq, void *v)
2789 struct fib_route_iter *iter = seq->private;
2790 struct fib_table *tb = iter->main_tb;
2791 struct fib_alias *fa;
2792 struct key_vector *l = v;
2793 __be32 prefix;
2795 if (v == SEQ_START_TOKEN) {
2796 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2797 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2798 "\tWindow\tIRTT");
2799 return 0;
2802 prefix = htonl(l->key);
2804 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2805 struct fib_info *fi = fa->fa_info;
2806 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2807 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2809 if ((fa->fa_type == RTN_BROADCAST) ||
2810 (fa->fa_type == RTN_MULTICAST))
2811 continue;
2813 if (fa->tb_id != tb->tb_id)
2814 continue;
2816 seq_setwidth(seq, 127);
2818 if (fi) {
2819 struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2820 __be32 gw = 0;
2822 if (nhc->nhc_gw_family == AF_INET)
2823 gw = nhc->nhc_gw.ipv4;
2825 seq_printf(seq,
2826 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2827 "%d\t%08X\t%d\t%u\t%u",
2828 nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2829 prefix, gw, flags, 0, 0,
2830 fi->fib_priority,
2831 mask,
2832 (fi->fib_advmss ?
2833 fi->fib_advmss + 40 : 0),
2834 fi->fib_window,
2835 fi->fib_rtt >> 3);
2836 } else {
2837 seq_printf(seq,
2838 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2839 "%d\t%08X\t%d\t%u\t%u",
2840 prefix, 0, flags, 0, 0, 0,
2841 mask, 0, 0, 0);
2843 seq_pad(seq, '\n');
2846 return 0;
2849 static const struct seq_operations fib_route_seq_ops = {
2850 .start = fib_route_seq_start,
2851 .next = fib_route_seq_next,
2852 .stop = fib_route_seq_stop,
2853 .show = fib_route_seq_show,
2856 int __net_init fib_proc_init(struct net *net)
2858 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2859 sizeof(struct fib_trie_iter)))
2860 goto out1;
2862 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2863 fib_triestat_seq_show, NULL))
2864 goto out2;
2866 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
2867 sizeof(struct fib_route_iter)))
2868 goto out3;
2870 return 0;
2872 out3:
2873 remove_proc_entry("fib_triestat", net->proc_net);
2874 out2:
2875 remove_proc_entry("fib_trie", net->proc_net);
2876 out1:
2877 return -ENOMEM;
2880 void __net_exit fib_proc_exit(struct net *net)
2882 remove_proc_entry("fib_trie", net->proc_net);
2883 remove_proc_entry("fib_triestat", net->proc_net);
2884 remove_proc_entry("route", net->proc_net);
2887 #endif /* CONFIG_PROC_FS */