dm writecache: fix incorrect flush sequence when doing SSD mode commit
[linux/fpc-iii.git] / net / ipv4 / ip_output.c
blob14db1e0b8a6e120a9410669dd635c32b77637818
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * The Internet Protocol (IP) output module.
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Donald Becker, <becker@super.org>
12 * Alan Cox, <Alan.Cox@linux.org>
13 * Richard Underwood
14 * Stefan Becker, <stefanb@yello.ping.de>
15 * Jorge Cwik, <jorge@laser.satlink.net>
16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17 * Hirokazu Takahashi, <taka@valinux.co.jp>
19 * See ip_input.c for original log
21 * Fixes:
22 * Alan Cox : Missing nonblock feature in ip_build_xmit.
23 * Mike Kilburn : htons() missing in ip_build_xmit.
24 * Bradford Johnson: Fix faulty handling of some frames when
25 * no route is found.
26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
27 * (in case if packet not accepted by
28 * output firewall rules)
29 * Mike McLagan : Routing by source
30 * Alexey Kuznetsov: use new route cache
31 * Andi Kleen: Fix broken PMTU recovery and remove
32 * some redundant tests.
33 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
34 * Andi Kleen : Replace ip_reply with ip_send_reply.
35 * Andi Kleen : Split fast and slow ip_build_xmit path
36 * for decreased register pressure on x86
37 * and more readibility.
38 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
39 * silently drop skb instead of failing with -EPERM.
40 * Detlev Wengorz : Copy protocol for fragments.
41 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * datagrams.
43 * Hirokazu Takahashi: sendfile() on UDP works now.
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <net/lwtunnel.h>
78 #include <linux/bpf-cgroup.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/netlink.h>
83 #include <linux/tcp.h>
85 static int
86 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
87 unsigned int mtu,
88 int (*output)(struct net *, struct sock *, struct sk_buff *));
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr *iph)
93 iph->check = 0;
94 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
96 EXPORT_SYMBOL(ip_send_check);
98 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
100 struct iphdr *iph = ip_hdr(skb);
102 iph->tot_len = htons(skb->len);
103 ip_send_check(iph);
105 /* if egress device is enslaved to an L3 master device pass the
106 * skb to its handler for processing
108 skb = l3mdev_ip_out(sk, skb);
109 if (unlikely(!skb))
110 return 0;
112 skb->protocol = htons(ETH_P_IP);
114 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
115 net, sk, skb, NULL, skb_dst(skb)->dev,
116 dst_output);
119 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
121 int err;
123 err = __ip_local_out(net, sk, skb);
124 if (likely(err == 1))
125 err = dst_output(net, sk, skb);
127 return err;
129 EXPORT_SYMBOL_GPL(ip_local_out);
131 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
133 int ttl = inet->uc_ttl;
135 if (ttl < 0)
136 ttl = ip4_dst_hoplimit(dst);
137 return ttl;
141 * Add an ip header to a skbuff and send it out.
144 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
145 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
147 struct inet_sock *inet = inet_sk(sk);
148 struct rtable *rt = skb_rtable(skb);
149 struct net *net = sock_net(sk);
150 struct iphdr *iph;
152 /* Build the IP header. */
153 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
154 skb_reset_network_header(skb);
155 iph = ip_hdr(skb);
156 iph->version = 4;
157 iph->ihl = 5;
158 iph->tos = inet->tos;
159 iph->ttl = ip_select_ttl(inet, &rt->dst);
160 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
161 iph->saddr = saddr;
162 iph->protocol = sk->sk_protocol;
163 if (ip_dont_fragment(sk, &rt->dst)) {
164 iph->frag_off = htons(IP_DF);
165 iph->id = 0;
166 } else {
167 iph->frag_off = 0;
168 __ip_select_ident(net, iph, 1);
171 if (opt && opt->opt.optlen) {
172 iph->ihl += opt->opt.optlen>>2;
173 ip_options_build(skb, &opt->opt, daddr, rt, 0);
176 skb->priority = sk->sk_priority;
177 if (!skb->mark)
178 skb->mark = sk->sk_mark;
180 /* Send it out. */
181 return ip_local_out(net, skb->sk, skb);
183 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
185 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
187 struct dst_entry *dst = skb_dst(skb);
188 struct rtable *rt = (struct rtable *)dst;
189 struct net_device *dev = dst->dev;
190 unsigned int hh_len = LL_RESERVED_SPACE(dev);
191 struct neighbour *neigh;
192 bool is_v6gw = false;
194 if (rt->rt_type == RTN_MULTICAST) {
195 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
196 } else if (rt->rt_type == RTN_BROADCAST)
197 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
199 /* Be paranoid, rather than too clever. */
200 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
201 struct sk_buff *skb2;
203 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
204 if (!skb2) {
205 kfree_skb(skb);
206 return -ENOMEM;
208 if (skb->sk)
209 skb_set_owner_w(skb2, skb->sk);
210 consume_skb(skb);
211 skb = skb2;
214 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
215 int res = lwtunnel_xmit(skb);
217 if (res < 0 || res == LWTUNNEL_XMIT_DONE)
218 return res;
221 rcu_read_lock_bh();
222 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
223 if (!IS_ERR(neigh)) {
224 int res;
226 sock_confirm_neigh(skb, neigh);
227 /* if crossing protocols, can not use the cached header */
228 res = neigh_output(neigh, skb, is_v6gw);
229 rcu_read_unlock_bh();
230 return res;
232 rcu_read_unlock_bh();
234 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
235 __func__);
236 kfree_skb(skb);
237 return -EINVAL;
240 static int ip_finish_output_gso(struct net *net, struct sock *sk,
241 struct sk_buff *skb, unsigned int mtu)
243 netdev_features_t features;
244 struct sk_buff *segs;
245 int ret = 0;
247 /* common case: seglen is <= mtu
249 if (skb_gso_validate_network_len(skb, mtu))
250 return ip_finish_output2(net, sk, skb);
252 /* Slowpath - GSO segment length exceeds the egress MTU.
254 * This can happen in several cases:
255 * - Forwarding of a TCP GRO skb, when DF flag is not set.
256 * - Forwarding of an skb that arrived on a virtualization interface
257 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
258 * stack.
259 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
260 * interface with a smaller MTU.
261 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
262 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
263 * insufficent MTU.
265 features = netif_skb_features(skb);
266 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
267 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
268 if (IS_ERR_OR_NULL(segs)) {
269 kfree_skb(skb);
270 return -ENOMEM;
273 consume_skb(skb);
275 do {
276 struct sk_buff *nskb = segs->next;
277 int err;
279 skb_mark_not_on_list(segs);
280 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
282 if (err && ret == 0)
283 ret = err;
284 segs = nskb;
285 } while (segs);
287 return ret;
290 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
292 unsigned int mtu;
294 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
295 /* Policy lookup after SNAT yielded a new policy */
296 if (skb_dst(skb)->xfrm) {
297 IPCB(skb)->flags |= IPSKB_REROUTED;
298 return dst_output(net, sk, skb);
300 #endif
301 mtu = ip_skb_dst_mtu(sk, skb);
302 if (skb_is_gso(skb))
303 return ip_finish_output_gso(net, sk, skb, mtu);
305 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
306 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
308 return ip_finish_output2(net, sk, skb);
311 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
313 int ret;
315 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
316 switch (ret) {
317 case NET_XMIT_SUCCESS:
318 return __ip_finish_output(net, sk, skb);
319 case NET_XMIT_CN:
320 return __ip_finish_output(net, sk, skb) ? : ret;
321 default:
322 kfree_skb(skb);
323 return ret;
327 static int ip_mc_finish_output(struct net *net, struct sock *sk,
328 struct sk_buff *skb)
330 struct rtable *new_rt;
331 bool do_cn = false;
332 int ret, err;
334 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
335 switch (ret) {
336 case NET_XMIT_CN:
337 do_cn = true;
338 /* fall through */
339 case NET_XMIT_SUCCESS:
340 break;
341 default:
342 kfree_skb(skb);
343 return ret;
346 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
347 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
348 * see ipv4_pktinfo_prepare().
350 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
351 if (new_rt) {
352 new_rt->rt_iif = 0;
353 skb_dst_drop(skb);
354 skb_dst_set(skb, &new_rt->dst);
357 err = dev_loopback_xmit(net, sk, skb);
358 return (do_cn && err) ? ret : err;
361 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
363 struct rtable *rt = skb_rtable(skb);
364 struct net_device *dev = rt->dst.dev;
367 * If the indicated interface is up and running, send the packet.
369 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
371 skb->dev = dev;
372 skb->protocol = htons(ETH_P_IP);
375 * Multicasts are looped back for other local users
378 if (rt->rt_flags&RTCF_MULTICAST) {
379 if (sk_mc_loop(sk)
380 #ifdef CONFIG_IP_MROUTE
381 /* Small optimization: do not loopback not local frames,
382 which returned after forwarding; they will be dropped
383 by ip_mr_input in any case.
384 Note, that local frames are looped back to be delivered
385 to local recipients.
387 This check is duplicated in ip_mr_input at the moment.
390 ((rt->rt_flags & RTCF_LOCAL) ||
391 !(IPCB(skb)->flags & IPSKB_FORWARDED))
392 #endif
394 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
395 if (newskb)
396 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
397 net, sk, newskb, NULL, newskb->dev,
398 ip_mc_finish_output);
401 /* Multicasts with ttl 0 must not go beyond the host */
403 if (ip_hdr(skb)->ttl == 0) {
404 kfree_skb(skb);
405 return 0;
409 if (rt->rt_flags&RTCF_BROADCAST) {
410 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
411 if (newskb)
412 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
413 net, sk, newskb, NULL, newskb->dev,
414 ip_mc_finish_output);
417 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
418 net, sk, skb, NULL, skb->dev,
419 ip_finish_output,
420 !(IPCB(skb)->flags & IPSKB_REROUTED));
423 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
425 struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev;
427 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
429 skb->dev = dev;
430 skb->protocol = htons(ETH_P_IP);
432 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
433 net, sk, skb, indev, dev,
434 ip_finish_output,
435 !(IPCB(skb)->flags & IPSKB_REROUTED));
439 * copy saddr and daddr, possibly using 64bit load/stores
440 * Equivalent to :
441 * iph->saddr = fl4->saddr;
442 * iph->daddr = fl4->daddr;
444 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
446 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
447 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
448 memcpy(&iph->saddr, &fl4->saddr,
449 sizeof(fl4->saddr) + sizeof(fl4->daddr));
452 /* Note: skb->sk can be different from sk, in case of tunnels */
453 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
454 __u8 tos)
456 struct inet_sock *inet = inet_sk(sk);
457 struct net *net = sock_net(sk);
458 struct ip_options_rcu *inet_opt;
459 struct flowi4 *fl4;
460 struct rtable *rt;
461 struct iphdr *iph;
462 int res;
464 /* Skip all of this if the packet is already routed,
465 * f.e. by something like SCTP.
467 rcu_read_lock();
468 inet_opt = rcu_dereference(inet->inet_opt);
469 fl4 = &fl->u.ip4;
470 rt = skb_rtable(skb);
471 if (rt)
472 goto packet_routed;
474 /* Make sure we can route this packet. */
475 rt = (struct rtable *)__sk_dst_check(sk, 0);
476 if (!rt) {
477 __be32 daddr;
479 /* Use correct destination address if we have options. */
480 daddr = inet->inet_daddr;
481 if (inet_opt && inet_opt->opt.srr)
482 daddr = inet_opt->opt.faddr;
484 /* If this fails, retransmit mechanism of transport layer will
485 * keep trying until route appears or the connection times
486 * itself out.
488 rt = ip_route_output_ports(net, fl4, sk,
489 daddr, inet->inet_saddr,
490 inet->inet_dport,
491 inet->inet_sport,
492 sk->sk_protocol,
493 RT_CONN_FLAGS_TOS(sk, tos),
494 sk->sk_bound_dev_if);
495 if (IS_ERR(rt))
496 goto no_route;
497 sk_setup_caps(sk, &rt->dst);
499 skb_dst_set_noref(skb, &rt->dst);
501 packet_routed:
502 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
503 goto no_route;
505 /* OK, we know where to send it, allocate and build IP header. */
506 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
507 skb_reset_network_header(skb);
508 iph = ip_hdr(skb);
509 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
510 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
511 iph->frag_off = htons(IP_DF);
512 else
513 iph->frag_off = 0;
514 iph->ttl = ip_select_ttl(inet, &rt->dst);
515 iph->protocol = sk->sk_protocol;
516 ip_copy_addrs(iph, fl4);
518 /* Transport layer set skb->h.foo itself. */
520 if (inet_opt && inet_opt->opt.optlen) {
521 iph->ihl += inet_opt->opt.optlen >> 2;
522 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
525 ip_select_ident_segs(net, skb, sk,
526 skb_shinfo(skb)->gso_segs ?: 1);
528 /* TODO : should we use skb->sk here instead of sk ? */
529 skb->priority = sk->sk_priority;
530 skb->mark = sk->sk_mark;
532 res = ip_local_out(net, sk, skb);
533 rcu_read_unlock();
534 return res;
536 no_route:
537 rcu_read_unlock();
538 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
539 kfree_skb(skb);
540 return -EHOSTUNREACH;
542 EXPORT_SYMBOL(__ip_queue_xmit);
544 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
546 to->pkt_type = from->pkt_type;
547 to->priority = from->priority;
548 to->protocol = from->protocol;
549 to->skb_iif = from->skb_iif;
550 skb_dst_drop(to);
551 skb_dst_copy(to, from);
552 to->dev = from->dev;
553 to->mark = from->mark;
555 skb_copy_hash(to, from);
557 #ifdef CONFIG_NET_SCHED
558 to->tc_index = from->tc_index;
559 #endif
560 nf_copy(to, from);
561 skb_ext_copy(to, from);
562 #if IS_ENABLED(CONFIG_IP_VS)
563 to->ipvs_property = from->ipvs_property;
564 #endif
565 skb_copy_secmark(to, from);
568 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
569 unsigned int mtu,
570 int (*output)(struct net *, struct sock *, struct sk_buff *))
572 struct iphdr *iph = ip_hdr(skb);
574 if ((iph->frag_off & htons(IP_DF)) == 0)
575 return ip_do_fragment(net, sk, skb, output);
577 if (unlikely(!skb->ignore_df ||
578 (IPCB(skb)->frag_max_size &&
579 IPCB(skb)->frag_max_size > mtu))) {
580 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
581 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
582 htonl(mtu));
583 kfree_skb(skb);
584 return -EMSGSIZE;
587 return ip_do_fragment(net, sk, skb, output);
590 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
591 unsigned int hlen, struct ip_fraglist_iter *iter)
593 unsigned int first_len = skb_pagelen(skb);
595 iter->frag = skb_shinfo(skb)->frag_list;
596 skb_frag_list_init(skb);
598 iter->offset = 0;
599 iter->iph = iph;
600 iter->hlen = hlen;
602 skb->data_len = first_len - skb_headlen(skb);
603 skb->len = first_len;
604 iph->tot_len = htons(first_len);
605 iph->frag_off = htons(IP_MF);
606 ip_send_check(iph);
608 EXPORT_SYMBOL(ip_fraglist_init);
610 static void ip_fraglist_ipcb_prepare(struct sk_buff *skb,
611 struct ip_fraglist_iter *iter)
613 struct sk_buff *to = iter->frag;
615 /* Copy the flags to each fragment. */
616 IPCB(to)->flags = IPCB(skb)->flags;
618 if (iter->offset == 0)
619 ip_options_fragment(to);
622 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
624 unsigned int hlen = iter->hlen;
625 struct iphdr *iph = iter->iph;
626 struct sk_buff *frag;
628 frag = iter->frag;
629 frag->ip_summed = CHECKSUM_NONE;
630 skb_reset_transport_header(frag);
631 __skb_push(frag, hlen);
632 skb_reset_network_header(frag);
633 memcpy(skb_network_header(frag), iph, hlen);
634 iter->iph = ip_hdr(frag);
635 iph = iter->iph;
636 iph->tot_len = htons(frag->len);
637 ip_copy_metadata(frag, skb);
638 iter->offset += skb->len - hlen;
639 iph->frag_off = htons(iter->offset >> 3);
640 if (frag->next)
641 iph->frag_off |= htons(IP_MF);
642 /* Ready, complete checksum */
643 ip_send_check(iph);
645 EXPORT_SYMBOL(ip_fraglist_prepare);
647 void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
648 unsigned int ll_rs, unsigned int mtu, bool DF,
649 struct ip_frag_state *state)
651 struct iphdr *iph = ip_hdr(skb);
653 state->DF = DF;
654 state->hlen = hlen;
655 state->ll_rs = ll_rs;
656 state->mtu = mtu;
658 state->left = skb->len - hlen; /* Space per frame */
659 state->ptr = hlen; /* Where to start from */
661 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
662 state->not_last_frag = iph->frag_off & htons(IP_MF);
664 EXPORT_SYMBOL(ip_frag_init);
666 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
667 bool first_frag, struct ip_frag_state *state)
669 /* Copy the flags to each fragment. */
670 IPCB(to)->flags = IPCB(from)->flags;
672 /* ANK: dirty, but effective trick. Upgrade options only if
673 * the segment to be fragmented was THE FIRST (otherwise,
674 * options are already fixed) and make it ONCE
675 * on the initial skb, so that all the following fragments
676 * will inherit fixed options.
678 if (first_frag)
679 ip_options_fragment(from);
682 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
684 unsigned int len = state->left;
685 struct sk_buff *skb2;
686 struct iphdr *iph;
688 len = state->left;
689 /* IF: it doesn't fit, use 'mtu' - the data space left */
690 if (len > state->mtu)
691 len = state->mtu;
692 /* IF: we are not sending up to and including the packet end
693 then align the next start on an eight byte boundary */
694 if (len < state->left) {
695 len &= ~7;
698 /* Allocate buffer */
699 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
700 if (!skb2)
701 return ERR_PTR(-ENOMEM);
704 * Set up data on packet
707 ip_copy_metadata(skb2, skb);
708 skb_reserve(skb2, state->ll_rs);
709 skb_put(skb2, len + state->hlen);
710 skb_reset_network_header(skb2);
711 skb2->transport_header = skb2->network_header + state->hlen;
714 * Charge the memory for the fragment to any owner
715 * it might possess
718 if (skb->sk)
719 skb_set_owner_w(skb2, skb->sk);
722 * Copy the packet header into the new buffer.
725 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
728 * Copy a block of the IP datagram.
730 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
731 BUG();
732 state->left -= len;
735 * Fill in the new header fields.
737 iph = ip_hdr(skb2);
738 iph->frag_off = htons((state->offset >> 3));
739 if (state->DF)
740 iph->frag_off |= htons(IP_DF);
743 * Added AC : If we are fragmenting a fragment that's not the
744 * last fragment then keep MF on each bit
746 if (state->left > 0 || state->not_last_frag)
747 iph->frag_off |= htons(IP_MF);
748 state->ptr += len;
749 state->offset += len;
751 iph->tot_len = htons(len + state->hlen);
753 ip_send_check(iph);
755 return skb2;
757 EXPORT_SYMBOL(ip_frag_next);
760 * This IP datagram is too large to be sent in one piece. Break it up into
761 * smaller pieces (each of size equal to IP header plus
762 * a block of the data of the original IP data part) that will yet fit in a
763 * single device frame, and queue such a frame for sending.
766 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
767 int (*output)(struct net *, struct sock *, struct sk_buff *))
769 struct iphdr *iph;
770 struct sk_buff *skb2;
771 struct rtable *rt = skb_rtable(skb);
772 unsigned int mtu, hlen, ll_rs;
773 struct ip_fraglist_iter iter;
774 ktime_t tstamp = skb->tstamp;
775 struct ip_frag_state state;
776 int err = 0;
778 /* for offloaded checksums cleanup checksum before fragmentation */
779 if (skb->ip_summed == CHECKSUM_PARTIAL &&
780 (err = skb_checksum_help(skb)))
781 goto fail;
784 * Point into the IP datagram header.
787 iph = ip_hdr(skb);
789 mtu = ip_skb_dst_mtu(sk, skb);
790 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
791 mtu = IPCB(skb)->frag_max_size;
794 * Setup starting values.
797 hlen = iph->ihl * 4;
798 mtu = mtu - hlen; /* Size of data space */
799 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
800 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
802 /* When frag_list is given, use it. First, check its validity:
803 * some transformers could create wrong frag_list or break existing
804 * one, it is not prohibited. In this case fall back to copying.
806 * LATER: this step can be merged to real generation of fragments,
807 * we can switch to copy when see the first bad fragment.
809 if (skb_has_frag_list(skb)) {
810 struct sk_buff *frag, *frag2;
811 unsigned int first_len = skb_pagelen(skb);
813 if (first_len - hlen > mtu ||
814 ((first_len - hlen) & 7) ||
815 ip_is_fragment(iph) ||
816 skb_cloned(skb) ||
817 skb_headroom(skb) < ll_rs)
818 goto slow_path;
820 skb_walk_frags(skb, frag) {
821 /* Correct geometry. */
822 if (frag->len > mtu ||
823 ((frag->len & 7) && frag->next) ||
824 skb_headroom(frag) < hlen + ll_rs)
825 goto slow_path_clean;
827 /* Partially cloned skb? */
828 if (skb_shared(frag))
829 goto slow_path_clean;
831 BUG_ON(frag->sk);
832 if (skb->sk) {
833 frag->sk = skb->sk;
834 frag->destructor = sock_wfree;
836 skb->truesize -= frag->truesize;
839 /* Everything is OK. Generate! */
840 ip_fraglist_init(skb, iph, hlen, &iter);
842 for (;;) {
843 /* Prepare header of the next frame,
844 * before previous one went down. */
845 if (iter.frag) {
846 ip_fraglist_ipcb_prepare(skb, &iter);
847 ip_fraglist_prepare(skb, &iter);
850 skb->tstamp = tstamp;
851 err = output(net, sk, skb);
853 if (!err)
854 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
855 if (err || !iter.frag)
856 break;
858 skb = ip_fraglist_next(&iter);
861 if (err == 0) {
862 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
863 return 0;
866 kfree_skb_list(iter.frag);
868 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
869 return err;
871 slow_path_clean:
872 skb_walk_frags(skb, frag2) {
873 if (frag2 == frag)
874 break;
875 frag2->sk = NULL;
876 frag2->destructor = NULL;
877 skb->truesize += frag2->truesize;
881 slow_path:
883 * Fragment the datagram.
886 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
887 &state);
890 * Keep copying data until we run out.
893 while (state.left > 0) {
894 bool first_frag = (state.offset == 0);
896 skb2 = ip_frag_next(skb, &state);
897 if (IS_ERR(skb2)) {
898 err = PTR_ERR(skb2);
899 goto fail;
901 ip_frag_ipcb(skb, skb2, first_frag, &state);
904 * Put this fragment into the sending queue.
906 skb2->tstamp = tstamp;
907 err = output(net, sk, skb2);
908 if (err)
909 goto fail;
911 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
913 consume_skb(skb);
914 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
915 return err;
917 fail:
918 kfree_skb(skb);
919 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
920 return err;
922 EXPORT_SYMBOL(ip_do_fragment);
925 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
927 struct msghdr *msg = from;
929 if (skb->ip_summed == CHECKSUM_PARTIAL) {
930 if (!copy_from_iter_full(to, len, &msg->msg_iter))
931 return -EFAULT;
932 } else {
933 __wsum csum = 0;
934 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
935 return -EFAULT;
936 skb->csum = csum_block_add(skb->csum, csum, odd);
938 return 0;
940 EXPORT_SYMBOL(ip_generic_getfrag);
942 static inline __wsum
943 csum_page(struct page *page, int offset, int copy)
945 char *kaddr;
946 __wsum csum;
947 kaddr = kmap(page);
948 csum = csum_partial(kaddr + offset, copy, 0);
949 kunmap(page);
950 return csum;
953 static int __ip_append_data(struct sock *sk,
954 struct flowi4 *fl4,
955 struct sk_buff_head *queue,
956 struct inet_cork *cork,
957 struct page_frag *pfrag,
958 int getfrag(void *from, char *to, int offset,
959 int len, int odd, struct sk_buff *skb),
960 void *from, int length, int transhdrlen,
961 unsigned int flags)
963 struct inet_sock *inet = inet_sk(sk);
964 struct ubuf_info *uarg = NULL;
965 struct sk_buff *skb;
967 struct ip_options *opt = cork->opt;
968 int hh_len;
969 int exthdrlen;
970 int mtu;
971 int copy;
972 int err;
973 int offset = 0;
974 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
975 int csummode = CHECKSUM_NONE;
976 struct rtable *rt = (struct rtable *)cork->dst;
977 unsigned int wmem_alloc_delta = 0;
978 bool paged, extra_uref = false;
979 u32 tskey = 0;
981 skb = skb_peek_tail(queue);
983 exthdrlen = !skb ? rt->dst.header_len : 0;
984 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
985 paged = !!cork->gso_size;
987 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
988 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
989 tskey = sk->sk_tskey++;
991 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
993 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
994 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
995 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
997 if (cork->length + length > maxnonfragsize - fragheaderlen) {
998 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
999 mtu - (opt ? opt->optlen : 0));
1000 return -EMSGSIZE;
1004 * transhdrlen > 0 means that this is the first fragment and we wish
1005 * it won't be fragmented in the future.
1007 if (transhdrlen &&
1008 length + fragheaderlen <= mtu &&
1009 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1010 (!(flags & MSG_MORE) || cork->gso_size) &&
1011 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1012 csummode = CHECKSUM_PARTIAL;
1014 if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
1015 uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
1016 if (!uarg)
1017 return -ENOBUFS;
1018 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */
1019 if (rt->dst.dev->features & NETIF_F_SG &&
1020 csummode == CHECKSUM_PARTIAL) {
1021 paged = true;
1022 } else {
1023 uarg->zerocopy = 0;
1024 skb_zcopy_set(skb, uarg, &extra_uref);
1028 cork->length += length;
1030 /* So, what's going on in the loop below?
1032 * We use calculated fragment length to generate chained skb,
1033 * each of segments is IP fragment ready for sending to network after
1034 * adding appropriate IP header.
1037 if (!skb)
1038 goto alloc_new_skb;
1040 while (length > 0) {
1041 /* Check if the remaining data fits into current packet. */
1042 copy = mtu - skb->len;
1043 if (copy < length)
1044 copy = maxfraglen - skb->len;
1045 if (copy <= 0) {
1046 char *data;
1047 unsigned int datalen;
1048 unsigned int fraglen;
1049 unsigned int fraggap;
1050 unsigned int alloclen;
1051 unsigned int pagedlen;
1052 struct sk_buff *skb_prev;
1053 alloc_new_skb:
1054 skb_prev = skb;
1055 if (skb_prev)
1056 fraggap = skb_prev->len - maxfraglen;
1057 else
1058 fraggap = 0;
1061 * If remaining data exceeds the mtu,
1062 * we know we need more fragment(s).
1064 datalen = length + fraggap;
1065 if (datalen > mtu - fragheaderlen)
1066 datalen = maxfraglen - fragheaderlen;
1067 fraglen = datalen + fragheaderlen;
1068 pagedlen = 0;
1070 if ((flags & MSG_MORE) &&
1071 !(rt->dst.dev->features&NETIF_F_SG))
1072 alloclen = mtu;
1073 else if (!paged)
1074 alloclen = fraglen;
1075 else {
1076 alloclen = min_t(int, fraglen, MAX_HEADER);
1077 pagedlen = fraglen - alloclen;
1080 alloclen += exthdrlen;
1082 /* The last fragment gets additional space at tail.
1083 * Note, with MSG_MORE we overallocate on fragments,
1084 * because we have no idea what fragment will be
1085 * the last.
1087 if (datalen == length + fraggap)
1088 alloclen += rt->dst.trailer_len;
1090 if (transhdrlen) {
1091 skb = sock_alloc_send_skb(sk,
1092 alloclen + hh_len + 15,
1093 (flags & MSG_DONTWAIT), &err);
1094 } else {
1095 skb = NULL;
1096 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1097 2 * sk->sk_sndbuf)
1098 skb = alloc_skb(alloclen + hh_len + 15,
1099 sk->sk_allocation);
1100 if (unlikely(!skb))
1101 err = -ENOBUFS;
1103 if (!skb)
1104 goto error;
1107 * Fill in the control structures
1109 skb->ip_summed = csummode;
1110 skb->csum = 0;
1111 skb_reserve(skb, hh_len);
1114 * Find where to start putting bytes.
1116 data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1117 skb_set_network_header(skb, exthdrlen);
1118 skb->transport_header = (skb->network_header +
1119 fragheaderlen);
1120 data += fragheaderlen + exthdrlen;
1122 if (fraggap) {
1123 skb->csum = skb_copy_and_csum_bits(
1124 skb_prev, maxfraglen,
1125 data + transhdrlen, fraggap, 0);
1126 skb_prev->csum = csum_sub(skb_prev->csum,
1127 skb->csum);
1128 data += fraggap;
1129 pskb_trim_unique(skb_prev, maxfraglen);
1132 copy = datalen - transhdrlen - fraggap - pagedlen;
1133 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1134 err = -EFAULT;
1135 kfree_skb(skb);
1136 goto error;
1139 offset += copy;
1140 length -= copy + transhdrlen;
1141 transhdrlen = 0;
1142 exthdrlen = 0;
1143 csummode = CHECKSUM_NONE;
1145 /* only the initial fragment is time stamped */
1146 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1147 cork->tx_flags = 0;
1148 skb_shinfo(skb)->tskey = tskey;
1149 tskey = 0;
1150 skb_zcopy_set(skb, uarg, &extra_uref);
1152 if ((flags & MSG_CONFIRM) && !skb_prev)
1153 skb_set_dst_pending_confirm(skb, 1);
1156 * Put the packet on the pending queue.
1158 if (!skb->destructor) {
1159 skb->destructor = sock_wfree;
1160 skb->sk = sk;
1161 wmem_alloc_delta += skb->truesize;
1163 __skb_queue_tail(queue, skb);
1164 continue;
1167 if (copy > length)
1168 copy = length;
1170 if (!(rt->dst.dev->features&NETIF_F_SG) &&
1171 skb_tailroom(skb) >= copy) {
1172 unsigned int off;
1174 off = skb->len;
1175 if (getfrag(from, skb_put(skb, copy),
1176 offset, copy, off, skb) < 0) {
1177 __skb_trim(skb, off);
1178 err = -EFAULT;
1179 goto error;
1181 } else if (!uarg || !uarg->zerocopy) {
1182 int i = skb_shinfo(skb)->nr_frags;
1184 err = -ENOMEM;
1185 if (!sk_page_frag_refill(sk, pfrag))
1186 goto error;
1188 if (!skb_can_coalesce(skb, i, pfrag->page,
1189 pfrag->offset)) {
1190 err = -EMSGSIZE;
1191 if (i == MAX_SKB_FRAGS)
1192 goto error;
1194 __skb_fill_page_desc(skb, i, pfrag->page,
1195 pfrag->offset, 0);
1196 skb_shinfo(skb)->nr_frags = ++i;
1197 get_page(pfrag->page);
1199 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1200 if (getfrag(from,
1201 page_address(pfrag->page) + pfrag->offset,
1202 offset, copy, skb->len, skb) < 0)
1203 goto error_efault;
1205 pfrag->offset += copy;
1206 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1207 skb->len += copy;
1208 skb->data_len += copy;
1209 skb->truesize += copy;
1210 wmem_alloc_delta += copy;
1211 } else {
1212 err = skb_zerocopy_iter_dgram(skb, from, copy);
1213 if (err < 0)
1214 goto error;
1216 offset += copy;
1217 length -= copy;
1220 if (wmem_alloc_delta)
1221 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1222 return 0;
1224 error_efault:
1225 err = -EFAULT;
1226 error:
1227 if (uarg)
1228 sock_zerocopy_put_abort(uarg, extra_uref);
1229 cork->length -= length;
1230 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1231 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1232 return err;
1235 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1236 struct ipcm_cookie *ipc, struct rtable **rtp)
1238 struct ip_options_rcu *opt;
1239 struct rtable *rt;
1241 rt = *rtp;
1242 if (unlikely(!rt))
1243 return -EFAULT;
1246 * setup for corking.
1248 opt = ipc->opt;
1249 if (opt) {
1250 if (!cork->opt) {
1251 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1252 sk->sk_allocation);
1253 if (unlikely(!cork->opt))
1254 return -ENOBUFS;
1256 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1257 cork->flags |= IPCORK_OPT;
1258 cork->addr = ipc->addr;
1261 cork->fragsize = ip_sk_use_pmtu(sk) ?
1262 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
1264 if (!inetdev_valid_mtu(cork->fragsize))
1265 return -ENETUNREACH;
1267 cork->gso_size = ipc->gso_size;
1269 cork->dst = &rt->dst;
1270 /* We stole this route, caller should not release it. */
1271 *rtp = NULL;
1273 cork->length = 0;
1274 cork->ttl = ipc->ttl;
1275 cork->tos = ipc->tos;
1276 cork->mark = ipc->sockc.mark;
1277 cork->priority = ipc->priority;
1278 cork->transmit_time = ipc->sockc.transmit_time;
1279 cork->tx_flags = 0;
1280 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1282 return 0;
1286 * ip_append_data() and ip_append_page() can make one large IP datagram
1287 * from many pieces of data. Each pieces will be holded on the socket
1288 * until ip_push_pending_frames() is called. Each piece can be a page
1289 * or non-page data.
1291 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1292 * this interface potentially.
1294 * LATER: length must be adjusted by pad at tail, when it is required.
1296 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1297 int getfrag(void *from, char *to, int offset, int len,
1298 int odd, struct sk_buff *skb),
1299 void *from, int length, int transhdrlen,
1300 struct ipcm_cookie *ipc, struct rtable **rtp,
1301 unsigned int flags)
1303 struct inet_sock *inet = inet_sk(sk);
1304 int err;
1306 if (flags&MSG_PROBE)
1307 return 0;
1309 if (skb_queue_empty(&sk->sk_write_queue)) {
1310 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1311 if (err)
1312 return err;
1313 } else {
1314 transhdrlen = 0;
1317 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1318 sk_page_frag(sk), getfrag,
1319 from, length, transhdrlen, flags);
1322 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1323 int offset, size_t size, int flags)
1325 struct inet_sock *inet = inet_sk(sk);
1326 struct sk_buff *skb;
1327 struct rtable *rt;
1328 struct ip_options *opt = NULL;
1329 struct inet_cork *cork;
1330 int hh_len;
1331 int mtu;
1332 int len;
1333 int err;
1334 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1336 if (inet->hdrincl)
1337 return -EPERM;
1339 if (flags&MSG_PROBE)
1340 return 0;
1342 if (skb_queue_empty(&sk->sk_write_queue))
1343 return -EINVAL;
1345 cork = &inet->cork.base;
1346 rt = (struct rtable *)cork->dst;
1347 if (cork->flags & IPCORK_OPT)
1348 opt = cork->opt;
1350 if (!(rt->dst.dev->features&NETIF_F_SG))
1351 return -EOPNOTSUPP;
1353 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1354 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1356 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1357 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1358 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1360 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1361 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1362 mtu - (opt ? opt->optlen : 0));
1363 return -EMSGSIZE;
1366 skb = skb_peek_tail(&sk->sk_write_queue);
1367 if (!skb)
1368 return -EINVAL;
1370 cork->length += size;
1372 while (size > 0) {
1373 /* Check if the remaining data fits into current packet. */
1374 len = mtu - skb->len;
1375 if (len < size)
1376 len = maxfraglen - skb->len;
1378 if (len <= 0) {
1379 struct sk_buff *skb_prev;
1380 int alloclen;
1382 skb_prev = skb;
1383 fraggap = skb_prev->len - maxfraglen;
1385 alloclen = fragheaderlen + hh_len + fraggap + 15;
1386 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1387 if (unlikely(!skb)) {
1388 err = -ENOBUFS;
1389 goto error;
1393 * Fill in the control structures
1395 skb->ip_summed = CHECKSUM_NONE;
1396 skb->csum = 0;
1397 skb_reserve(skb, hh_len);
1400 * Find where to start putting bytes.
1402 skb_put(skb, fragheaderlen + fraggap);
1403 skb_reset_network_header(skb);
1404 skb->transport_header = (skb->network_header +
1405 fragheaderlen);
1406 if (fraggap) {
1407 skb->csum = skb_copy_and_csum_bits(skb_prev,
1408 maxfraglen,
1409 skb_transport_header(skb),
1410 fraggap, 0);
1411 skb_prev->csum = csum_sub(skb_prev->csum,
1412 skb->csum);
1413 pskb_trim_unique(skb_prev, maxfraglen);
1417 * Put the packet on the pending queue.
1419 __skb_queue_tail(&sk->sk_write_queue, skb);
1420 continue;
1423 if (len > size)
1424 len = size;
1426 if (skb_append_pagefrags(skb, page, offset, len)) {
1427 err = -EMSGSIZE;
1428 goto error;
1431 if (skb->ip_summed == CHECKSUM_NONE) {
1432 __wsum csum;
1433 csum = csum_page(page, offset, len);
1434 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1437 skb->len += len;
1438 skb->data_len += len;
1439 skb->truesize += len;
1440 refcount_add(len, &sk->sk_wmem_alloc);
1441 offset += len;
1442 size -= len;
1444 return 0;
1446 error:
1447 cork->length -= size;
1448 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1449 return err;
1452 static void ip_cork_release(struct inet_cork *cork)
1454 cork->flags &= ~IPCORK_OPT;
1455 kfree(cork->opt);
1456 cork->opt = NULL;
1457 dst_release(cork->dst);
1458 cork->dst = NULL;
1462 * Combined all pending IP fragments on the socket as one IP datagram
1463 * and push them out.
1465 struct sk_buff *__ip_make_skb(struct sock *sk,
1466 struct flowi4 *fl4,
1467 struct sk_buff_head *queue,
1468 struct inet_cork *cork)
1470 struct sk_buff *skb, *tmp_skb;
1471 struct sk_buff **tail_skb;
1472 struct inet_sock *inet = inet_sk(sk);
1473 struct net *net = sock_net(sk);
1474 struct ip_options *opt = NULL;
1475 struct rtable *rt = (struct rtable *)cork->dst;
1476 struct iphdr *iph;
1477 __be16 df = 0;
1478 __u8 ttl;
1480 skb = __skb_dequeue(queue);
1481 if (!skb)
1482 goto out;
1483 tail_skb = &(skb_shinfo(skb)->frag_list);
1485 /* move skb->data to ip header from ext header */
1486 if (skb->data < skb_network_header(skb))
1487 __skb_pull(skb, skb_network_offset(skb));
1488 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1489 __skb_pull(tmp_skb, skb_network_header_len(skb));
1490 *tail_skb = tmp_skb;
1491 tail_skb = &(tmp_skb->next);
1492 skb->len += tmp_skb->len;
1493 skb->data_len += tmp_skb->len;
1494 skb->truesize += tmp_skb->truesize;
1495 tmp_skb->destructor = NULL;
1496 tmp_skb->sk = NULL;
1499 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1500 * to fragment the frame generated here. No matter, what transforms
1501 * how transforms change size of the packet, it will come out.
1503 skb->ignore_df = ip_sk_ignore_df(sk);
1505 /* DF bit is set when we want to see DF on outgoing frames.
1506 * If ignore_df is set too, we still allow to fragment this frame
1507 * locally. */
1508 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1509 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1510 (skb->len <= dst_mtu(&rt->dst) &&
1511 ip_dont_fragment(sk, &rt->dst)))
1512 df = htons(IP_DF);
1514 if (cork->flags & IPCORK_OPT)
1515 opt = cork->opt;
1517 if (cork->ttl != 0)
1518 ttl = cork->ttl;
1519 else if (rt->rt_type == RTN_MULTICAST)
1520 ttl = inet->mc_ttl;
1521 else
1522 ttl = ip_select_ttl(inet, &rt->dst);
1524 iph = ip_hdr(skb);
1525 iph->version = 4;
1526 iph->ihl = 5;
1527 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1528 iph->frag_off = df;
1529 iph->ttl = ttl;
1530 iph->protocol = sk->sk_protocol;
1531 ip_copy_addrs(iph, fl4);
1532 ip_select_ident(net, skb, sk);
1534 if (opt) {
1535 iph->ihl += opt->optlen>>2;
1536 ip_options_build(skb, opt, cork->addr, rt, 0);
1539 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1540 skb->mark = cork->mark;
1541 skb->tstamp = cork->transmit_time;
1543 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1544 * on dst refcount
1546 cork->dst = NULL;
1547 skb_dst_set(skb, &rt->dst);
1549 if (iph->protocol == IPPROTO_ICMP)
1550 icmp_out_count(net, ((struct icmphdr *)
1551 skb_transport_header(skb))->type);
1553 ip_cork_release(cork);
1554 out:
1555 return skb;
1558 int ip_send_skb(struct net *net, struct sk_buff *skb)
1560 int err;
1562 err = ip_local_out(net, skb->sk, skb);
1563 if (err) {
1564 if (err > 0)
1565 err = net_xmit_errno(err);
1566 if (err)
1567 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1570 return err;
1573 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1575 struct sk_buff *skb;
1577 skb = ip_finish_skb(sk, fl4);
1578 if (!skb)
1579 return 0;
1581 /* Netfilter gets whole the not fragmented skb. */
1582 return ip_send_skb(sock_net(sk), skb);
1586 * Throw away all pending data on the socket.
1588 static void __ip_flush_pending_frames(struct sock *sk,
1589 struct sk_buff_head *queue,
1590 struct inet_cork *cork)
1592 struct sk_buff *skb;
1594 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1595 kfree_skb(skb);
1597 ip_cork_release(cork);
1600 void ip_flush_pending_frames(struct sock *sk)
1602 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1605 struct sk_buff *ip_make_skb(struct sock *sk,
1606 struct flowi4 *fl4,
1607 int getfrag(void *from, char *to, int offset,
1608 int len, int odd, struct sk_buff *skb),
1609 void *from, int length, int transhdrlen,
1610 struct ipcm_cookie *ipc, struct rtable **rtp,
1611 struct inet_cork *cork, unsigned int flags)
1613 struct sk_buff_head queue;
1614 int err;
1616 if (flags & MSG_PROBE)
1617 return NULL;
1619 __skb_queue_head_init(&queue);
1621 cork->flags = 0;
1622 cork->addr = 0;
1623 cork->opt = NULL;
1624 err = ip_setup_cork(sk, cork, ipc, rtp);
1625 if (err)
1626 return ERR_PTR(err);
1628 err = __ip_append_data(sk, fl4, &queue, cork,
1629 &current->task_frag, getfrag,
1630 from, length, transhdrlen, flags);
1631 if (err) {
1632 __ip_flush_pending_frames(sk, &queue, cork);
1633 return ERR_PTR(err);
1636 return __ip_make_skb(sk, fl4, &queue, cork);
1640 * Fetch data from kernel space and fill in checksum if needed.
1642 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1643 int len, int odd, struct sk_buff *skb)
1645 __wsum csum;
1647 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1648 skb->csum = csum_block_add(skb->csum, csum, odd);
1649 return 0;
1653 * Generic function to send a packet as reply to another packet.
1654 * Used to send some TCP resets/acks so far.
1656 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1657 const struct ip_options *sopt,
1658 __be32 daddr, __be32 saddr,
1659 const struct ip_reply_arg *arg,
1660 unsigned int len, u64 transmit_time)
1662 struct ip_options_data replyopts;
1663 struct ipcm_cookie ipc;
1664 struct flowi4 fl4;
1665 struct rtable *rt = skb_rtable(skb);
1666 struct net *net = sock_net(sk);
1667 struct sk_buff *nskb;
1668 int err;
1669 int oif;
1671 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1672 return;
1674 ipcm_init(&ipc);
1675 ipc.addr = daddr;
1676 ipc.sockc.transmit_time = transmit_time;
1678 if (replyopts.opt.opt.optlen) {
1679 ipc.opt = &replyopts.opt;
1681 if (replyopts.opt.opt.srr)
1682 daddr = replyopts.opt.opt.faddr;
1685 oif = arg->bound_dev_if;
1686 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1687 oif = skb->skb_iif;
1689 flowi4_init_output(&fl4, oif,
1690 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1691 RT_TOS(arg->tos),
1692 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1693 ip_reply_arg_flowi_flags(arg),
1694 daddr, saddr,
1695 tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1696 arg->uid);
1697 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1698 rt = ip_route_output_key(net, &fl4);
1699 if (IS_ERR(rt))
1700 return;
1702 inet_sk(sk)->tos = arg->tos;
1704 sk->sk_protocol = ip_hdr(skb)->protocol;
1705 sk->sk_bound_dev_if = arg->bound_dev_if;
1706 sk->sk_sndbuf = sysctl_wmem_default;
1707 sk->sk_mark = fl4.flowi4_mark;
1708 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1709 len, 0, &ipc, &rt, MSG_DONTWAIT);
1710 if (unlikely(err)) {
1711 ip_flush_pending_frames(sk);
1712 goto out;
1715 nskb = skb_peek(&sk->sk_write_queue);
1716 if (nskb) {
1717 if (arg->csumoffset >= 0)
1718 *((__sum16 *)skb_transport_header(nskb) +
1719 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1720 arg->csum));
1721 nskb->ip_summed = CHECKSUM_NONE;
1722 ip_push_pending_frames(sk, &fl4);
1724 out:
1725 ip_rt_put(rt);
1728 void __init ip_init(void)
1730 ip_rt_init();
1731 inet_initpeers();
1733 #if defined(CONFIG_IP_MULTICAST)
1734 igmp_mc_init();
1735 #endif