1 // SPDX-License-Identifier: GPL-2.0-only
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
38 #define pr_fmt(fmt) "TCP: " fmt
42 #include <linux/compiler.h>
43 #include <linux/gfp.h>
44 #include <linux/module.h>
45 #include <linux/static_key.h>
47 #include <trace/events/tcp.h>
49 /* Refresh clocks of a TCP socket,
50 * ensuring monotically increasing values.
52 void tcp_mstamp_refresh(struct tcp_sock
*tp
)
54 u64 val
= tcp_clock_ns();
56 tp
->tcp_clock_cache
= val
;
57 tp
->tcp_mstamp
= div_u64(val
, NSEC_PER_USEC
);
60 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
61 int push_one
, gfp_t gfp
);
63 /* Account for new data that has been sent to the network. */
64 static void tcp_event_new_data_sent(struct sock
*sk
, struct sk_buff
*skb
)
66 struct inet_connection_sock
*icsk
= inet_csk(sk
);
67 struct tcp_sock
*tp
= tcp_sk(sk
);
68 unsigned int prior_packets
= tp
->packets_out
;
70 WRITE_ONCE(tp
->snd_nxt
, TCP_SKB_CB(skb
)->end_seq
);
72 __skb_unlink(skb
, &sk
->sk_write_queue
);
73 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, skb
);
75 if (tp
->highest_sack
== NULL
)
76 tp
->highest_sack
= skb
;
78 tp
->packets_out
+= tcp_skb_pcount(skb
);
79 if (!prior_packets
|| icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)
82 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
,
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87 * window scaling factor due to loss of precision.
88 * If window has been shrunk, what should we make? It is not clear at all.
89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91 * invalid. OK, let's make this for now:
93 static inline __u32
tcp_acceptable_seq(const struct sock
*sk
)
95 const struct tcp_sock
*tp
= tcp_sk(sk
);
97 if (!before(tcp_wnd_end(tp
), tp
->snd_nxt
) ||
98 (tp
->rx_opt
.wscale_ok
&&
99 ((tp
->snd_nxt
- tcp_wnd_end(tp
)) < (1 << tp
->rx_opt
.rcv_wscale
))))
102 return tcp_wnd_end(tp
);
105 /* Calculate mss to advertise in SYN segment.
106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
108 * 1. It is independent of path mtu.
109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111 * attached devices, because some buggy hosts are confused by
113 * 4. We do not make 3, we advertise MSS, calculated from first
114 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
115 * This may be overridden via information stored in routing table.
116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117 * probably even Jumbo".
119 static __u16
tcp_advertise_mss(struct sock
*sk
)
121 struct tcp_sock
*tp
= tcp_sk(sk
);
122 const struct dst_entry
*dst
= __sk_dst_get(sk
);
123 int mss
= tp
->advmss
;
126 unsigned int metric
= dst_metric_advmss(dst
);
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138 * This is the first part of cwnd validation mechanism.
140 void tcp_cwnd_restart(struct sock
*sk
, s32 delta
)
142 struct tcp_sock
*tp
= tcp_sk(sk
);
143 u32 restart_cwnd
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
144 u32 cwnd
= tp
->snd_cwnd
;
146 tcp_ca_event(sk
, CA_EVENT_CWND_RESTART
);
148 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
149 restart_cwnd
= min(restart_cwnd
, cwnd
);
151 while ((delta
-= inet_csk(sk
)->icsk_rto
) > 0 && cwnd
> restart_cwnd
)
153 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
154 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
155 tp
->snd_cwnd_used
= 0;
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock
*tp
,
162 struct inet_connection_sock
*icsk
= inet_csk(sk
);
163 const u32 now
= tcp_jiffies32
;
165 if (tcp_packets_in_flight(tp
) == 0)
166 tcp_ca_event(sk
, CA_EVENT_TX_START
);
168 /* If this is the first data packet sent in response to the
169 * previous received data,
170 * and it is a reply for ato after last received packet,
171 * increase pingpong count.
173 if (before(tp
->lsndtime
, icsk
->icsk_ack
.lrcvtime
) &&
174 (u32
)(now
- icsk
->icsk_ack
.lrcvtime
) < icsk
->icsk_ack
.ato
)
175 inet_csk_inc_pingpong_cnt(sk
);
180 /* Account for an ACK we sent. */
181 static inline void tcp_event_ack_sent(struct sock
*sk
, unsigned int pkts
,
184 struct tcp_sock
*tp
= tcp_sk(sk
);
186 if (unlikely(tp
->compressed_ack
> TCP_FASTRETRANS_THRESH
)) {
187 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPACKCOMPRESSED
,
188 tp
->compressed_ack
- TCP_FASTRETRANS_THRESH
);
189 tp
->compressed_ack
= TCP_FASTRETRANS_THRESH
;
190 if (hrtimer_try_to_cancel(&tp
->compressed_ack_timer
) == 1)
194 if (unlikely(rcv_nxt
!= tp
->rcv_nxt
))
195 return; /* Special ACK sent by DCTCP to reflect ECN */
196 tcp_dec_quickack_mode(sk
, pkts
);
197 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_DACK
);
200 /* Determine a window scaling and initial window to offer.
201 * Based on the assumption that the given amount of space
202 * will be offered. Store the results in the tp structure.
203 * NOTE: for smooth operation initial space offering should
204 * be a multiple of mss if possible. We assume here that mss >= 1.
205 * This MUST be enforced by all callers.
207 void tcp_select_initial_window(const struct sock
*sk
, int __space
, __u32 mss
,
208 __u32
*rcv_wnd
, __u32
*window_clamp
,
209 int wscale_ok
, __u8
*rcv_wscale
,
212 unsigned int space
= (__space
< 0 ? 0 : __space
);
214 /* If no clamp set the clamp to the max possible scaled window */
215 if (*window_clamp
== 0)
216 (*window_clamp
) = (U16_MAX
<< TCP_MAX_WSCALE
);
217 space
= min(*window_clamp
, space
);
219 /* Quantize space offering to a multiple of mss if possible. */
221 space
= rounddown(space
, mss
);
223 /* NOTE: offering an initial window larger than 32767
224 * will break some buggy TCP stacks. If the admin tells us
225 * it is likely we could be speaking with such a buggy stack
226 * we will truncate our initial window offering to 32K-1
227 * unless the remote has sent us a window scaling option,
228 * which we interpret as a sign the remote TCP is not
229 * misinterpreting the window field as a signed quantity.
231 if (sock_net(sk
)->ipv4
.sysctl_tcp_workaround_signed_windows
)
232 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
234 (*rcv_wnd
) = min_t(u32
, space
, U16_MAX
);
237 *rcv_wnd
= min(*rcv_wnd
, init_rcv_wnd
* mss
);
241 /* Set window scaling on max possible window */
242 space
= max_t(u32
, space
, sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]);
243 space
= max_t(u32
, space
, sysctl_rmem_max
);
244 space
= min_t(u32
, space
, *window_clamp
);
245 *rcv_wscale
= clamp_t(int, ilog2(space
) - 15,
248 /* Set the clamp no higher than max representable value */
249 (*window_clamp
) = min_t(__u32
, U16_MAX
<< (*rcv_wscale
), *window_clamp
);
251 EXPORT_SYMBOL(tcp_select_initial_window
);
253 /* Chose a new window to advertise, update state in tcp_sock for the
254 * socket, and return result with RFC1323 scaling applied. The return
255 * value can be stuffed directly into th->window for an outgoing
258 static u16
tcp_select_window(struct sock
*sk
)
260 struct tcp_sock
*tp
= tcp_sk(sk
);
261 u32 old_win
= tp
->rcv_wnd
;
262 u32 cur_win
= tcp_receive_window(tp
);
263 u32 new_win
= __tcp_select_window(sk
);
265 /* Never shrink the offered window */
266 if (new_win
< cur_win
) {
267 /* Danger Will Robinson!
268 * Don't update rcv_wup/rcv_wnd here or else
269 * we will not be able to advertise a zero
270 * window in time. --DaveM
272 * Relax Will Robinson.
275 NET_INC_STATS(sock_net(sk
),
276 LINUX_MIB_TCPWANTZEROWINDOWADV
);
277 new_win
= ALIGN(cur_win
, 1 << tp
->rx_opt
.rcv_wscale
);
279 tp
->rcv_wnd
= new_win
;
280 tp
->rcv_wup
= tp
->rcv_nxt
;
282 /* Make sure we do not exceed the maximum possible
285 if (!tp
->rx_opt
.rcv_wscale
&&
286 sock_net(sk
)->ipv4
.sysctl_tcp_workaround_signed_windows
)
287 new_win
= min(new_win
, MAX_TCP_WINDOW
);
289 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
291 /* RFC1323 scaling applied */
292 new_win
>>= tp
->rx_opt
.rcv_wscale
;
294 /* If we advertise zero window, disable fast path. */
298 NET_INC_STATS(sock_net(sk
),
299 LINUX_MIB_TCPTOZEROWINDOWADV
);
300 } else if (old_win
== 0) {
301 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPFROMZEROWINDOWADV
);
307 /* Packet ECN state for a SYN-ACK */
308 static void tcp_ecn_send_synack(struct sock
*sk
, struct sk_buff
*skb
)
310 const struct tcp_sock
*tp
= tcp_sk(sk
);
312 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_CWR
;
313 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
314 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_ECE
;
315 else if (tcp_ca_needs_ecn(sk
) ||
316 tcp_bpf_ca_needs_ecn(sk
))
320 /* Packet ECN state for a SYN. */
321 static void tcp_ecn_send_syn(struct sock
*sk
, struct sk_buff
*skb
)
323 struct tcp_sock
*tp
= tcp_sk(sk
);
324 bool bpf_needs_ecn
= tcp_bpf_ca_needs_ecn(sk
);
325 bool use_ecn
= sock_net(sk
)->ipv4
.sysctl_tcp_ecn
== 1 ||
326 tcp_ca_needs_ecn(sk
) || bpf_needs_ecn
;
329 const struct dst_entry
*dst
= __sk_dst_get(sk
);
331 if (dst
&& dst_feature(dst
, RTAX_FEATURE_ECN
))
338 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ECE
| TCPHDR_CWR
;
339 tp
->ecn_flags
= TCP_ECN_OK
;
340 if (tcp_ca_needs_ecn(sk
) || bpf_needs_ecn
)
345 static void tcp_ecn_clear_syn(struct sock
*sk
, struct sk_buff
*skb
)
347 if (sock_net(sk
)->ipv4
.sysctl_tcp_ecn_fallback
)
348 /* tp->ecn_flags are cleared at a later point in time when
349 * SYN ACK is ultimatively being received.
351 TCP_SKB_CB(skb
)->tcp_flags
&= ~(TCPHDR_ECE
| TCPHDR_CWR
);
355 tcp_ecn_make_synack(const struct request_sock
*req
, struct tcphdr
*th
)
357 if (inet_rsk(req
)->ecn_ok
)
361 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
364 static void tcp_ecn_send(struct sock
*sk
, struct sk_buff
*skb
,
365 struct tcphdr
*th
, int tcp_header_len
)
367 struct tcp_sock
*tp
= tcp_sk(sk
);
369 if (tp
->ecn_flags
& TCP_ECN_OK
) {
370 /* Not-retransmitted data segment: set ECT and inject CWR. */
371 if (skb
->len
!= tcp_header_len
&&
372 !before(TCP_SKB_CB(skb
)->seq
, tp
->snd_nxt
)) {
374 if (tp
->ecn_flags
& TCP_ECN_QUEUE_CWR
) {
375 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
377 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
379 } else if (!tcp_ca_needs_ecn(sk
)) {
380 /* ACK or retransmitted segment: clear ECT|CE */
381 INET_ECN_dontxmit(sk
);
383 if (tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)
388 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
389 * auto increment end seqno.
391 static void tcp_init_nondata_skb(struct sk_buff
*skb
, u32 seq
, u8 flags
)
393 skb
->ip_summed
= CHECKSUM_PARTIAL
;
395 TCP_SKB_CB(skb
)->tcp_flags
= flags
;
396 TCP_SKB_CB(skb
)->sacked
= 0;
398 tcp_skb_pcount_set(skb
, 1);
400 TCP_SKB_CB(skb
)->seq
= seq
;
401 if (flags
& (TCPHDR_SYN
| TCPHDR_FIN
))
403 TCP_SKB_CB(skb
)->end_seq
= seq
;
406 static inline bool tcp_urg_mode(const struct tcp_sock
*tp
)
408 return tp
->snd_una
!= tp
->snd_up
;
411 #define OPTION_SACK_ADVERTISE (1 << 0)
412 #define OPTION_TS (1 << 1)
413 #define OPTION_MD5 (1 << 2)
414 #define OPTION_WSCALE (1 << 3)
415 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
416 #define OPTION_SMC (1 << 9)
418 static void smc_options_write(__be32
*ptr
, u16
*options
)
420 #if IS_ENABLED(CONFIG_SMC)
421 if (static_branch_unlikely(&tcp_have_smc
)) {
422 if (unlikely(OPTION_SMC
& *options
)) {
423 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
426 (TCPOLEN_EXP_SMC_BASE
));
427 *ptr
++ = htonl(TCPOPT_SMC_MAGIC
);
433 struct tcp_out_options
{
434 u16 options
; /* bit field of OPTION_* */
435 u16 mss
; /* 0 to disable */
436 u8 ws
; /* window scale, 0 to disable */
437 u8 num_sack_blocks
; /* number of SACK blocks to include */
438 u8 hash_size
; /* bytes in hash_location */
439 __u8
*hash_location
; /* temporary pointer, overloaded */
440 __u32 tsval
, tsecr
; /* need to include OPTION_TS */
441 struct tcp_fastopen_cookie
*fastopen_cookie
; /* Fast open cookie */
444 /* Write previously computed TCP options to the packet.
446 * Beware: Something in the Internet is very sensitive to the ordering of
447 * TCP options, we learned this through the hard way, so be careful here.
448 * Luckily we can at least blame others for their non-compliance but from
449 * inter-operability perspective it seems that we're somewhat stuck with
450 * the ordering which we have been using if we want to keep working with
451 * those broken things (not that it currently hurts anybody as there isn't
452 * particular reason why the ordering would need to be changed).
454 * At least SACK_PERM as the first option is known to lead to a disaster
455 * (but it may well be that other scenarios fail similarly).
457 static void tcp_options_write(__be32
*ptr
, struct tcp_sock
*tp
,
458 struct tcp_out_options
*opts
)
460 u16 options
= opts
->options
; /* mungable copy */
462 if (unlikely(OPTION_MD5
& options
)) {
463 *ptr
++ = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
464 (TCPOPT_MD5SIG
<< 8) | TCPOLEN_MD5SIG
);
465 /* overload cookie hash location */
466 opts
->hash_location
= (__u8
*)ptr
;
470 if (unlikely(opts
->mss
)) {
471 *ptr
++ = htonl((TCPOPT_MSS
<< 24) |
472 (TCPOLEN_MSS
<< 16) |
476 if (likely(OPTION_TS
& options
)) {
477 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
478 *ptr
++ = htonl((TCPOPT_SACK_PERM
<< 24) |
479 (TCPOLEN_SACK_PERM
<< 16) |
480 (TCPOPT_TIMESTAMP
<< 8) |
482 options
&= ~OPTION_SACK_ADVERTISE
;
484 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
486 (TCPOPT_TIMESTAMP
<< 8) |
489 *ptr
++ = htonl(opts
->tsval
);
490 *ptr
++ = htonl(opts
->tsecr
);
493 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
494 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
496 (TCPOPT_SACK_PERM
<< 8) |
500 if (unlikely(OPTION_WSCALE
& options
)) {
501 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
502 (TCPOPT_WINDOW
<< 16) |
503 (TCPOLEN_WINDOW
<< 8) |
507 if (unlikely(opts
->num_sack_blocks
)) {
508 struct tcp_sack_block
*sp
= tp
->rx_opt
.dsack
?
509 tp
->duplicate_sack
: tp
->selective_acks
;
512 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
515 (TCPOLEN_SACK_BASE
+ (opts
->num_sack_blocks
*
516 TCPOLEN_SACK_PERBLOCK
)));
518 for (this_sack
= 0; this_sack
< opts
->num_sack_blocks
;
520 *ptr
++ = htonl(sp
[this_sack
].start_seq
);
521 *ptr
++ = htonl(sp
[this_sack
].end_seq
);
524 tp
->rx_opt
.dsack
= 0;
527 if (unlikely(OPTION_FAST_OPEN_COOKIE
& options
)) {
528 struct tcp_fastopen_cookie
*foc
= opts
->fastopen_cookie
;
530 u32 len
; /* Fast Open option length */
533 len
= TCPOLEN_EXP_FASTOPEN_BASE
+ foc
->len
;
534 *ptr
= htonl((TCPOPT_EXP
<< 24) | (len
<< 16) |
535 TCPOPT_FASTOPEN_MAGIC
);
536 p
+= TCPOLEN_EXP_FASTOPEN_BASE
;
538 len
= TCPOLEN_FASTOPEN_BASE
+ foc
->len
;
539 *p
++ = TCPOPT_FASTOPEN
;
543 memcpy(p
, foc
->val
, foc
->len
);
544 if ((len
& 3) == 2) {
545 p
[foc
->len
] = TCPOPT_NOP
;
546 p
[foc
->len
+ 1] = TCPOPT_NOP
;
548 ptr
+= (len
+ 3) >> 2;
551 smc_options_write(ptr
, &options
);
554 static void smc_set_option(const struct tcp_sock
*tp
,
555 struct tcp_out_options
*opts
,
556 unsigned int *remaining
)
558 #if IS_ENABLED(CONFIG_SMC)
559 if (static_branch_unlikely(&tcp_have_smc
)) {
561 if (*remaining
>= TCPOLEN_EXP_SMC_BASE_ALIGNED
) {
562 opts
->options
|= OPTION_SMC
;
563 *remaining
-= TCPOLEN_EXP_SMC_BASE_ALIGNED
;
570 static void smc_set_option_cond(const struct tcp_sock
*tp
,
571 const struct inet_request_sock
*ireq
,
572 struct tcp_out_options
*opts
,
573 unsigned int *remaining
)
575 #if IS_ENABLED(CONFIG_SMC)
576 if (static_branch_unlikely(&tcp_have_smc
)) {
577 if (tp
->syn_smc
&& ireq
->smc_ok
) {
578 if (*remaining
>= TCPOLEN_EXP_SMC_BASE_ALIGNED
) {
579 opts
->options
|= OPTION_SMC
;
580 *remaining
-= TCPOLEN_EXP_SMC_BASE_ALIGNED
;
587 /* Compute TCP options for SYN packets. This is not the final
588 * network wire format yet.
590 static unsigned int tcp_syn_options(struct sock
*sk
, struct sk_buff
*skb
,
591 struct tcp_out_options
*opts
,
592 struct tcp_md5sig_key
**md5
)
594 struct tcp_sock
*tp
= tcp_sk(sk
);
595 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
596 struct tcp_fastopen_request
*fastopen
= tp
->fastopen_req
;
599 #ifdef CONFIG_TCP_MD5SIG
600 if (static_branch_unlikely(&tcp_md5_needed
) &&
601 rcu_access_pointer(tp
->md5sig_info
)) {
602 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
604 opts
->options
|= OPTION_MD5
;
605 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
610 /* We always get an MSS option. The option bytes which will be seen in
611 * normal data packets should timestamps be used, must be in the MSS
612 * advertised. But we subtract them from tp->mss_cache so that
613 * calculations in tcp_sendmsg are simpler etc. So account for this
614 * fact here if necessary. If we don't do this correctly, as a
615 * receiver we won't recognize data packets as being full sized when we
616 * should, and thus we won't abide by the delayed ACK rules correctly.
617 * SACKs don't matter, we never delay an ACK when we have any of those
619 opts
->mss
= tcp_advertise_mss(sk
);
620 remaining
-= TCPOLEN_MSS_ALIGNED
;
622 if (likely(sock_net(sk
)->ipv4
.sysctl_tcp_timestamps
&& !*md5
)) {
623 opts
->options
|= OPTION_TS
;
624 opts
->tsval
= tcp_skb_timestamp(skb
) + tp
->tsoffset
;
625 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
626 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
628 if (likely(sock_net(sk
)->ipv4
.sysctl_tcp_window_scaling
)) {
629 opts
->ws
= tp
->rx_opt
.rcv_wscale
;
630 opts
->options
|= OPTION_WSCALE
;
631 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
633 if (likely(sock_net(sk
)->ipv4
.sysctl_tcp_sack
)) {
634 opts
->options
|= OPTION_SACK_ADVERTISE
;
635 if (unlikely(!(OPTION_TS
& opts
->options
)))
636 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
639 if (fastopen
&& fastopen
->cookie
.len
>= 0) {
640 u32 need
= fastopen
->cookie
.len
;
642 need
+= fastopen
->cookie
.exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
643 TCPOLEN_FASTOPEN_BASE
;
644 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
645 if (remaining
>= need
) {
646 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
647 opts
->fastopen_cookie
= &fastopen
->cookie
;
649 tp
->syn_fastopen
= 1;
650 tp
->syn_fastopen_exp
= fastopen
->cookie
.exp
? 1 : 0;
654 smc_set_option(tp
, opts
, &remaining
);
656 return MAX_TCP_OPTION_SPACE
- remaining
;
659 /* Set up TCP options for SYN-ACKs. */
660 static unsigned int tcp_synack_options(const struct sock
*sk
,
661 struct request_sock
*req
,
662 unsigned int mss
, struct sk_buff
*skb
,
663 struct tcp_out_options
*opts
,
664 const struct tcp_md5sig_key
*md5
,
665 struct tcp_fastopen_cookie
*foc
)
667 struct inet_request_sock
*ireq
= inet_rsk(req
);
668 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
670 #ifdef CONFIG_TCP_MD5SIG
672 opts
->options
|= OPTION_MD5
;
673 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
675 /* We can't fit any SACK blocks in a packet with MD5 + TS
676 * options. There was discussion about disabling SACK
677 * rather than TS in order to fit in better with old,
678 * buggy kernels, but that was deemed to be unnecessary.
680 ireq
->tstamp_ok
&= !ireq
->sack_ok
;
684 /* We always send an MSS option. */
686 remaining
-= TCPOLEN_MSS_ALIGNED
;
688 if (likely(ireq
->wscale_ok
)) {
689 opts
->ws
= ireq
->rcv_wscale
;
690 opts
->options
|= OPTION_WSCALE
;
691 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
693 if (likely(ireq
->tstamp_ok
)) {
694 opts
->options
|= OPTION_TS
;
695 opts
->tsval
= tcp_skb_timestamp(skb
) + tcp_rsk(req
)->ts_off
;
696 opts
->tsecr
= req
->ts_recent
;
697 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
699 if (likely(ireq
->sack_ok
)) {
700 opts
->options
|= OPTION_SACK_ADVERTISE
;
701 if (unlikely(!ireq
->tstamp_ok
))
702 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
704 if (foc
!= NULL
&& foc
->len
>= 0) {
707 need
+= foc
->exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
708 TCPOLEN_FASTOPEN_BASE
;
709 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
710 if (remaining
>= need
) {
711 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
712 opts
->fastopen_cookie
= foc
;
717 smc_set_option_cond(tcp_sk(sk
), ireq
, opts
, &remaining
);
719 return MAX_TCP_OPTION_SPACE
- remaining
;
722 /* Compute TCP options for ESTABLISHED sockets. This is not the
723 * final wire format yet.
725 static unsigned int tcp_established_options(struct sock
*sk
, struct sk_buff
*skb
,
726 struct tcp_out_options
*opts
,
727 struct tcp_md5sig_key
**md5
)
729 struct tcp_sock
*tp
= tcp_sk(sk
);
730 unsigned int size
= 0;
731 unsigned int eff_sacks
;
736 #ifdef CONFIG_TCP_MD5SIG
737 if (static_branch_unlikely(&tcp_md5_needed
) &&
738 rcu_access_pointer(tp
->md5sig_info
)) {
739 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
741 opts
->options
|= OPTION_MD5
;
742 size
+= TCPOLEN_MD5SIG_ALIGNED
;
747 if (likely(tp
->rx_opt
.tstamp_ok
)) {
748 opts
->options
|= OPTION_TS
;
749 opts
->tsval
= skb
? tcp_skb_timestamp(skb
) + tp
->tsoffset
: 0;
750 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
751 size
+= TCPOLEN_TSTAMP_ALIGNED
;
754 eff_sacks
= tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
;
755 if (unlikely(eff_sacks
)) {
756 const unsigned int remaining
= MAX_TCP_OPTION_SPACE
- size
;
757 opts
->num_sack_blocks
=
758 min_t(unsigned int, eff_sacks
,
759 (remaining
- TCPOLEN_SACK_BASE_ALIGNED
) /
760 TCPOLEN_SACK_PERBLOCK
);
761 if (likely(opts
->num_sack_blocks
))
762 size
+= TCPOLEN_SACK_BASE_ALIGNED
+
763 opts
->num_sack_blocks
* TCPOLEN_SACK_PERBLOCK
;
770 /* TCP SMALL QUEUES (TSQ)
772 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
773 * to reduce RTT and bufferbloat.
774 * We do this using a special skb destructor (tcp_wfree).
776 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
777 * needs to be reallocated in a driver.
778 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
780 * Since transmit from skb destructor is forbidden, we use a tasklet
781 * to process all sockets that eventually need to send more skbs.
782 * We use one tasklet per cpu, with its own queue of sockets.
785 struct tasklet_struct tasklet
;
786 struct list_head head
; /* queue of tcp sockets */
788 static DEFINE_PER_CPU(struct tsq_tasklet
, tsq_tasklet
);
790 static void tcp_tsq_write(struct sock
*sk
)
792 if ((1 << sk
->sk_state
) &
793 (TCPF_ESTABLISHED
| TCPF_FIN_WAIT1
| TCPF_CLOSING
|
794 TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
)) {
795 struct tcp_sock
*tp
= tcp_sk(sk
);
797 if (tp
->lost_out
> tp
->retrans_out
&&
798 tp
->snd_cwnd
> tcp_packets_in_flight(tp
)) {
799 tcp_mstamp_refresh(tp
);
800 tcp_xmit_retransmit_queue(sk
);
803 tcp_write_xmit(sk
, tcp_current_mss(sk
), tp
->nonagle
,
808 static void tcp_tsq_handler(struct sock
*sk
)
811 if (!sock_owned_by_user(sk
))
813 else if (!test_and_set_bit(TCP_TSQ_DEFERRED
, &sk
->sk_tsq_flags
))
818 * One tasklet per cpu tries to send more skbs.
819 * We run in tasklet context but need to disable irqs when
820 * transferring tsq->head because tcp_wfree() might
821 * interrupt us (non NAPI drivers)
823 static void tcp_tasklet_func(unsigned long data
)
825 struct tsq_tasklet
*tsq
= (struct tsq_tasklet
*)data
;
828 struct list_head
*q
, *n
;
832 local_irq_save(flags
);
833 list_splice_init(&tsq
->head
, &list
);
834 local_irq_restore(flags
);
836 list_for_each_safe(q
, n
, &list
) {
837 tp
= list_entry(q
, struct tcp_sock
, tsq_node
);
838 list_del(&tp
->tsq_node
);
840 sk
= (struct sock
*)tp
;
841 smp_mb__before_atomic();
842 clear_bit(TSQ_QUEUED
, &sk
->sk_tsq_flags
);
849 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
850 TCPF_WRITE_TIMER_DEFERRED | \
851 TCPF_DELACK_TIMER_DEFERRED | \
852 TCPF_MTU_REDUCED_DEFERRED)
854 * tcp_release_cb - tcp release_sock() callback
857 * called from release_sock() to perform protocol dependent
858 * actions before socket release.
860 void tcp_release_cb(struct sock
*sk
)
862 unsigned long flags
, nflags
;
864 /* perform an atomic operation only if at least one flag is set */
866 flags
= sk
->sk_tsq_flags
;
867 if (!(flags
& TCP_DEFERRED_ALL
))
869 nflags
= flags
& ~TCP_DEFERRED_ALL
;
870 } while (cmpxchg(&sk
->sk_tsq_flags
, flags
, nflags
) != flags
);
872 if (flags
& TCPF_TSQ_DEFERRED
) {
876 /* Here begins the tricky part :
877 * We are called from release_sock() with :
879 * 2) sk_lock.slock spinlock held
880 * 3) socket owned by us (sk->sk_lock.owned == 1)
882 * But following code is meant to be called from BH handlers,
883 * so we should keep BH disabled, but early release socket ownership
885 sock_release_ownership(sk
);
887 if (flags
& TCPF_WRITE_TIMER_DEFERRED
) {
888 tcp_write_timer_handler(sk
);
891 if (flags
& TCPF_DELACK_TIMER_DEFERRED
) {
892 tcp_delack_timer_handler(sk
);
895 if (flags
& TCPF_MTU_REDUCED_DEFERRED
) {
896 inet_csk(sk
)->icsk_af_ops
->mtu_reduced(sk
);
900 EXPORT_SYMBOL(tcp_release_cb
);
902 void __init
tcp_tasklet_init(void)
906 for_each_possible_cpu(i
) {
907 struct tsq_tasklet
*tsq
= &per_cpu(tsq_tasklet
, i
);
909 INIT_LIST_HEAD(&tsq
->head
);
910 tasklet_init(&tsq
->tasklet
,
917 * Write buffer destructor automatically called from kfree_skb.
918 * We can't xmit new skbs from this context, as we might already
921 void tcp_wfree(struct sk_buff
*skb
)
923 struct sock
*sk
= skb
->sk
;
924 struct tcp_sock
*tp
= tcp_sk(sk
);
925 unsigned long flags
, nval
, oval
;
927 /* Keep one reference on sk_wmem_alloc.
928 * Will be released by sk_free() from here or tcp_tasklet_func()
930 WARN_ON(refcount_sub_and_test(skb
->truesize
- 1, &sk
->sk_wmem_alloc
));
932 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
933 * Wait until our queues (qdisc + devices) are drained.
935 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
936 * - chance for incoming ACK (processed by another cpu maybe)
937 * to migrate this flow (skb->ooo_okay will be eventually set)
939 if (refcount_read(&sk
->sk_wmem_alloc
) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current
)
942 for (oval
= READ_ONCE(sk
->sk_tsq_flags
);; oval
= nval
) {
943 struct tsq_tasklet
*tsq
;
946 if (!(oval
& TSQF_THROTTLED
) || (oval
& TSQF_QUEUED
))
949 nval
= (oval
& ~TSQF_THROTTLED
) | TSQF_QUEUED
;
950 nval
= cmpxchg(&sk
->sk_tsq_flags
, oval
, nval
);
954 /* queue this socket to tasklet queue */
955 local_irq_save(flags
);
956 tsq
= this_cpu_ptr(&tsq_tasklet
);
957 empty
= list_empty(&tsq
->head
);
958 list_add(&tp
->tsq_node
, &tsq
->head
);
960 tasklet_schedule(&tsq
->tasklet
);
961 local_irq_restore(flags
);
968 /* Note: Called under soft irq.
969 * We can call TCP stack right away, unless socket is owned by user.
971 enum hrtimer_restart
tcp_pace_kick(struct hrtimer
*timer
)
973 struct tcp_sock
*tp
= container_of(timer
, struct tcp_sock
, pacing_timer
);
974 struct sock
*sk
= (struct sock
*)tp
;
979 return HRTIMER_NORESTART
;
982 static void tcp_update_skb_after_send(struct sock
*sk
, struct sk_buff
*skb
,
985 struct tcp_sock
*tp
= tcp_sk(sk
);
987 if (sk
->sk_pacing_status
!= SK_PACING_NONE
) {
988 unsigned long rate
= sk
->sk_pacing_rate
;
990 /* Original sch_fq does not pace first 10 MSS
991 * Note that tp->data_segs_out overflows after 2^32 packets,
992 * this is a minor annoyance.
994 if (rate
!= ~0UL && rate
&& tp
->data_segs_out
>= 10) {
995 u64 len_ns
= div64_ul((u64
)skb
->len
* NSEC_PER_SEC
, rate
);
996 u64 credit
= tp
->tcp_wstamp_ns
- prior_wstamp
;
998 /* take into account OS jitter */
999 len_ns
-= min_t(u64
, len_ns
/ 2, credit
);
1000 tp
->tcp_wstamp_ns
+= len_ns
;
1003 list_move_tail(&skb
->tcp_tsorted_anchor
, &tp
->tsorted_sent_queue
);
1006 /* This routine actually transmits TCP packets queued in by
1007 * tcp_do_sendmsg(). This is used by both the initial
1008 * transmission and possible later retransmissions.
1009 * All SKB's seen here are completely headerless. It is our
1010 * job to build the TCP header, and pass the packet down to
1011 * IP so it can do the same plus pass the packet off to the
1014 * We are working here with either a clone of the original
1015 * SKB, or a fresh unique copy made by the retransmit engine.
1017 static int __tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
,
1018 int clone_it
, gfp_t gfp_mask
, u32 rcv_nxt
)
1020 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1021 struct inet_sock
*inet
;
1022 struct tcp_sock
*tp
;
1023 struct tcp_skb_cb
*tcb
;
1024 struct tcp_out_options opts
;
1025 unsigned int tcp_options_size
, tcp_header_size
;
1026 struct sk_buff
*oskb
= NULL
;
1027 struct tcp_md5sig_key
*md5
;
1032 BUG_ON(!skb
|| !tcp_skb_pcount(skb
));
1034 prior_wstamp
= tp
->tcp_wstamp_ns
;
1035 tp
->tcp_wstamp_ns
= max(tp
->tcp_wstamp_ns
, tp
->tcp_clock_cache
);
1036 skb
->skb_mstamp_ns
= tp
->tcp_wstamp_ns
;
1038 TCP_SKB_CB(skb
)->tx
.in_flight
= TCP_SKB_CB(skb
)->end_seq
1042 tcp_skb_tsorted_save(oskb
) {
1043 if (unlikely(skb_cloned(oskb
)))
1044 skb
= pskb_copy(oskb
, gfp_mask
);
1046 skb
= skb_clone(oskb
, gfp_mask
);
1047 } tcp_skb_tsorted_restore(oskb
);
1054 tcb
= TCP_SKB_CB(skb
);
1055 memset(&opts
, 0, sizeof(opts
));
1057 if (unlikely(tcb
->tcp_flags
& TCPHDR_SYN
)) {
1058 tcp_options_size
= tcp_syn_options(sk
, skb
, &opts
, &md5
);
1060 tcp_options_size
= tcp_established_options(sk
, skb
, &opts
,
1062 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1063 * at receiver : This slightly improve GRO performance.
1064 * Note that we do not force the PSH flag for non GSO packets,
1065 * because they might be sent under high congestion events,
1066 * and in this case it is better to delay the delivery of 1-MSS
1067 * packets and thus the corresponding ACK packet that would
1068 * release the following packet.
1070 if (tcp_skb_pcount(skb
) > 1)
1071 tcb
->tcp_flags
|= TCPHDR_PSH
;
1073 tcp_header_size
= tcp_options_size
+ sizeof(struct tcphdr
);
1075 /* if no packet is in qdisc/device queue, then allow XPS to select
1076 * another queue. We can be called from tcp_tsq_handler()
1077 * which holds one reference to sk.
1079 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1080 * One way to get this would be to set skb->truesize = 2 on them.
1082 skb
->ooo_okay
= sk_wmem_alloc_get(sk
) < SKB_TRUESIZE(1);
1084 /* If we had to use memory reserve to allocate this skb,
1085 * this might cause drops if packet is looped back :
1086 * Other socket might not have SOCK_MEMALLOC.
1087 * Packets not looped back do not care about pfmemalloc.
1089 skb
->pfmemalloc
= 0;
1091 skb_push(skb
, tcp_header_size
);
1092 skb_reset_transport_header(skb
);
1096 skb
->destructor
= skb_is_tcp_pure_ack(skb
) ? __sock_wfree
: tcp_wfree
;
1097 skb_set_hash_from_sk(skb
, sk
);
1098 refcount_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
1100 skb_set_dst_pending_confirm(skb
, sk
->sk_dst_pending_confirm
);
1102 /* Build TCP header and checksum it. */
1103 th
= (struct tcphdr
*)skb
->data
;
1104 th
->source
= inet
->inet_sport
;
1105 th
->dest
= inet
->inet_dport
;
1106 th
->seq
= htonl(tcb
->seq
);
1107 th
->ack_seq
= htonl(rcv_nxt
);
1108 *(((__be16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) |
1114 /* The urg_mode check is necessary during a below snd_una win probe */
1115 if (unlikely(tcp_urg_mode(tp
) && before(tcb
->seq
, tp
->snd_up
))) {
1116 if (before(tp
->snd_up
, tcb
->seq
+ 0x10000)) {
1117 th
->urg_ptr
= htons(tp
->snd_up
- tcb
->seq
);
1119 } else if (after(tcb
->seq
+ 0xFFFF, tp
->snd_nxt
)) {
1120 th
->urg_ptr
= htons(0xFFFF);
1125 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
);
1126 skb_shinfo(skb
)->gso_type
= sk
->sk_gso_type
;
1127 if (likely(!(tcb
->tcp_flags
& TCPHDR_SYN
))) {
1128 th
->window
= htons(tcp_select_window(sk
));
1129 tcp_ecn_send(sk
, skb
, th
, tcp_header_size
);
1131 /* RFC1323: The window in SYN & SYN/ACK segments
1134 th
->window
= htons(min(tp
->rcv_wnd
, 65535U));
1136 #ifdef CONFIG_TCP_MD5SIG
1137 /* Calculate the MD5 hash, as we have all we need now */
1139 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
1140 tp
->af_specific
->calc_md5_hash(opts
.hash_location
,
1145 icsk
->icsk_af_ops
->send_check(sk
, skb
);
1147 if (likely(tcb
->tcp_flags
& TCPHDR_ACK
))
1148 tcp_event_ack_sent(sk
, tcp_skb_pcount(skb
), rcv_nxt
);
1150 if (skb
->len
!= tcp_header_size
) {
1151 tcp_event_data_sent(tp
, sk
);
1152 tp
->data_segs_out
+= tcp_skb_pcount(skb
);
1153 tp
->bytes_sent
+= skb
->len
- tcp_header_size
;
1156 if (after(tcb
->end_seq
, tp
->snd_nxt
) || tcb
->seq
== tcb
->end_seq
)
1157 TCP_ADD_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
,
1158 tcp_skb_pcount(skb
));
1160 tp
->segs_out
+= tcp_skb_pcount(skb
);
1161 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1162 skb_shinfo(skb
)->gso_segs
= tcp_skb_pcount(skb
);
1163 skb_shinfo(skb
)->gso_size
= tcp_skb_mss(skb
);
1165 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1167 /* Cleanup our debris for IP stacks */
1168 memset(skb
->cb
, 0, max(sizeof(struct inet_skb_parm
),
1169 sizeof(struct inet6_skb_parm
)));
1171 tcp_add_tx_delay(skb
, tp
);
1173 err
= icsk
->icsk_af_ops
->queue_xmit(sk
, skb
, &inet
->cork
.fl
);
1175 if (unlikely(err
> 0)) {
1177 err
= net_xmit_eval(err
);
1180 tcp_update_skb_after_send(sk
, oskb
, prior_wstamp
);
1181 tcp_rate_skb_sent(sk
, oskb
);
1186 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int clone_it
,
1189 return __tcp_transmit_skb(sk
, skb
, clone_it
, gfp_mask
,
1190 tcp_sk(sk
)->rcv_nxt
);
1193 /* This routine just queues the buffer for sending.
1195 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1196 * otherwise socket can stall.
1198 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
1200 struct tcp_sock
*tp
= tcp_sk(sk
);
1202 /* Advance write_seq and place onto the write_queue. */
1203 WRITE_ONCE(tp
->write_seq
, TCP_SKB_CB(skb
)->end_seq
);
1204 __skb_header_release(skb
);
1205 tcp_add_write_queue_tail(sk
, skb
);
1206 sk_wmem_queued_add(sk
, skb
->truesize
);
1207 sk_mem_charge(sk
, skb
->truesize
);
1210 /* Initialize TSO segments for a packet. */
1211 static void tcp_set_skb_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1213 if (skb
->len
<= mss_now
) {
1214 /* Avoid the costly divide in the normal
1217 tcp_skb_pcount_set(skb
, 1);
1218 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1220 tcp_skb_pcount_set(skb
, DIV_ROUND_UP(skb
->len
, mss_now
));
1221 TCP_SKB_CB(skb
)->tcp_gso_size
= mss_now
;
1225 /* Pcount in the middle of the write queue got changed, we need to do various
1226 * tweaks to fix counters
1228 static void tcp_adjust_pcount(struct sock
*sk
, const struct sk_buff
*skb
, int decr
)
1230 struct tcp_sock
*tp
= tcp_sk(sk
);
1232 tp
->packets_out
-= decr
;
1234 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1235 tp
->sacked_out
-= decr
;
1236 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1237 tp
->retrans_out
-= decr
;
1238 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
1239 tp
->lost_out
-= decr
;
1241 /* Reno case is special. Sigh... */
1242 if (tcp_is_reno(tp
) && decr
> 0)
1243 tp
->sacked_out
-= min_t(u32
, tp
->sacked_out
, decr
);
1245 if (tp
->lost_skb_hint
&&
1246 before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
) &&
1247 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
1248 tp
->lost_cnt_hint
-= decr
;
1250 tcp_verify_left_out(tp
);
1253 static bool tcp_has_tx_tstamp(const struct sk_buff
*skb
)
1255 return TCP_SKB_CB(skb
)->txstamp_ack
||
1256 (skb_shinfo(skb
)->tx_flags
& SKBTX_ANY_TSTAMP
);
1259 static void tcp_fragment_tstamp(struct sk_buff
*skb
, struct sk_buff
*skb2
)
1261 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1263 if (unlikely(tcp_has_tx_tstamp(skb
)) &&
1264 !before(shinfo
->tskey
, TCP_SKB_CB(skb2
)->seq
)) {
1265 struct skb_shared_info
*shinfo2
= skb_shinfo(skb2
);
1266 u8 tsflags
= shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
;
1268 shinfo
->tx_flags
&= ~tsflags
;
1269 shinfo2
->tx_flags
|= tsflags
;
1270 swap(shinfo
->tskey
, shinfo2
->tskey
);
1271 TCP_SKB_CB(skb2
)->txstamp_ack
= TCP_SKB_CB(skb
)->txstamp_ack
;
1272 TCP_SKB_CB(skb
)->txstamp_ack
= 0;
1276 static void tcp_skb_fragment_eor(struct sk_buff
*skb
, struct sk_buff
*skb2
)
1278 TCP_SKB_CB(skb2
)->eor
= TCP_SKB_CB(skb
)->eor
;
1279 TCP_SKB_CB(skb
)->eor
= 0;
1282 /* Insert buff after skb on the write or rtx queue of sk. */
1283 static void tcp_insert_write_queue_after(struct sk_buff
*skb
,
1284 struct sk_buff
*buff
,
1286 enum tcp_queue tcp_queue
)
1288 if (tcp_queue
== TCP_FRAG_IN_WRITE_QUEUE
)
1289 __skb_queue_after(&sk
->sk_write_queue
, skb
, buff
);
1291 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, buff
);
1294 /* Function to create two new TCP segments. Shrinks the given segment
1295 * to the specified size and appends a new segment with the rest of the
1296 * packet to the list. This won't be called frequently, I hope.
1297 * Remember, these are still headerless SKBs at this point.
1299 int tcp_fragment(struct sock
*sk
, enum tcp_queue tcp_queue
,
1300 struct sk_buff
*skb
, u32 len
,
1301 unsigned int mss_now
, gfp_t gfp
)
1303 struct tcp_sock
*tp
= tcp_sk(sk
);
1304 struct sk_buff
*buff
;
1305 int nsize
, old_factor
;
1310 if (WARN_ON(len
> skb
->len
))
1313 nsize
= skb_headlen(skb
) - len
;
1317 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1318 * We need some allowance to not penalize applications setting small
1320 * Also allow first and last skb in retransmit queue to be split.
1322 limit
= sk
->sk_sndbuf
+ 2 * SKB_TRUESIZE(GSO_MAX_SIZE
);
1323 if (unlikely((sk
->sk_wmem_queued
>> 1) > limit
&&
1324 tcp_queue
!= TCP_FRAG_IN_WRITE_QUEUE
&&
1325 skb
!= tcp_rtx_queue_head(sk
) &&
1326 skb
!= tcp_rtx_queue_tail(sk
))) {
1327 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPWQUEUETOOBIG
);
1331 if (skb_unclone(skb
, gfp
))
1334 /* Get a new skb... force flag on. */
1335 buff
= sk_stream_alloc_skb(sk
, nsize
, gfp
, true);
1337 return -ENOMEM
; /* We'll just try again later. */
1338 skb_copy_decrypted(buff
, skb
);
1340 sk_wmem_queued_add(sk
, buff
->truesize
);
1341 sk_mem_charge(sk
, buff
->truesize
);
1342 nlen
= skb
->len
- len
- nsize
;
1343 buff
->truesize
+= nlen
;
1344 skb
->truesize
-= nlen
;
1346 /* Correct the sequence numbers. */
1347 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1348 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1349 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1351 /* PSH and FIN should only be set in the second packet. */
1352 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1353 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1354 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1355 TCP_SKB_CB(buff
)->sacked
= TCP_SKB_CB(skb
)->sacked
;
1356 tcp_skb_fragment_eor(skb
, buff
);
1358 skb_split(skb
, buff
, len
);
1360 buff
->ip_summed
= CHECKSUM_PARTIAL
;
1362 buff
->tstamp
= skb
->tstamp
;
1363 tcp_fragment_tstamp(skb
, buff
);
1365 old_factor
= tcp_skb_pcount(skb
);
1367 /* Fix up tso_factor for both original and new SKB. */
1368 tcp_set_skb_tso_segs(skb
, mss_now
);
1369 tcp_set_skb_tso_segs(buff
, mss_now
);
1371 /* Update delivered info for the new segment */
1372 TCP_SKB_CB(buff
)->tx
= TCP_SKB_CB(skb
)->tx
;
1374 /* If this packet has been sent out already, we must
1375 * adjust the various packet counters.
1377 if (!before(tp
->snd_nxt
, TCP_SKB_CB(buff
)->end_seq
)) {
1378 int diff
= old_factor
- tcp_skb_pcount(skb
) -
1379 tcp_skb_pcount(buff
);
1382 tcp_adjust_pcount(sk
, skb
, diff
);
1385 /* Link BUFF into the send queue. */
1386 __skb_header_release(buff
);
1387 tcp_insert_write_queue_after(skb
, buff
, sk
, tcp_queue
);
1388 if (tcp_queue
== TCP_FRAG_IN_RTX_QUEUE
)
1389 list_add(&buff
->tcp_tsorted_anchor
, &skb
->tcp_tsorted_anchor
);
1394 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1395 * data is not copied, but immediately discarded.
1397 static int __pskb_trim_head(struct sk_buff
*skb
, int len
)
1399 struct skb_shared_info
*shinfo
;
1402 eat
= min_t(int, len
, skb_headlen(skb
));
1404 __skb_pull(skb
, eat
);
1411 shinfo
= skb_shinfo(skb
);
1412 for (i
= 0; i
< shinfo
->nr_frags
; i
++) {
1413 int size
= skb_frag_size(&shinfo
->frags
[i
]);
1416 skb_frag_unref(skb
, i
);
1419 shinfo
->frags
[k
] = shinfo
->frags
[i
];
1421 skb_frag_off_add(&shinfo
->frags
[k
], eat
);
1422 skb_frag_size_sub(&shinfo
->frags
[k
], eat
);
1428 shinfo
->nr_frags
= k
;
1430 skb
->data_len
-= len
;
1431 skb
->len
= skb
->data_len
;
1435 /* Remove acked data from a packet in the transmit queue. */
1436 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
1440 if (skb_unclone(skb
, GFP_ATOMIC
))
1443 delta_truesize
= __pskb_trim_head(skb
, len
);
1445 TCP_SKB_CB(skb
)->seq
+= len
;
1446 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1448 if (delta_truesize
) {
1449 skb
->truesize
-= delta_truesize
;
1450 sk_wmem_queued_add(sk
, -delta_truesize
);
1451 sk_mem_uncharge(sk
, delta_truesize
);
1452 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
1455 /* Any change of skb->len requires recalculation of tso factor. */
1456 if (tcp_skb_pcount(skb
) > 1)
1457 tcp_set_skb_tso_segs(skb
, tcp_skb_mss(skb
));
1462 /* Calculate MSS not accounting any TCP options. */
1463 static inline int __tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1465 const struct tcp_sock
*tp
= tcp_sk(sk
);
1466 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1469 /* Calculate base mss without TCP options:
1470 It is MMS_S - sizeof(tcphdr) of rfc1122
1472 mss_now
= pmtu
- icsk
->icsk_af_ops
->net_header_len
- sizeof(struct tcphdr
);
1474 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1475 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1476 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1478 if (dst
&& dst_allfrag(dst
))
1479 mss_now
-= icsk
->icsk_af_ops
->net_frag_header_len
;
1482 /* Clamp it (mss_clamp does not include tcp options) */
1483 if (mss_now
> tp
->rx_opt
.mss_clamp
)
1484 mss_now
= tp
->rx_opt
.mss_clamp
;
1486 /* Now subtract optional transport overhead */
1487 mss_now
-= icsk
->icsk_ext_hdr_len
;
1489 /* Then reserve room for full set of TCP options and 8 bytes of data */
1490 mss_now
= max(mss_now
, sock_net(sk
)->ipv4
.sysctl_tcp_min_snd_mss
);
1494 /* Calculate MSS. Not accounting for SACKs here. */
1495 int tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1497 /* Subtract TCP options size, not including SACKs */
1498 return __tcp_mtu_to_mss(sk
, pmtu
) -
1499 (tcp_sk(sk
)->tcp_header_len
- sizeof(struct tcphdr
));
1502 /* Inverse of above */
1503 int tcp_mss_to_mtu(struct sock
*sk
, int mss
)
1505 const struct tcp_sock
*tp
= tcp_sk(sk
);
1506 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1510 tp
->tcp_header_len
+
1511 icsk
->icsk_ext_hdr_len
+
1512 icsk
->icsk_af_ops
->net_header_len
;
1514 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1515 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1516 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1518 if (dst
&& dst_allfrag(dst
))
1519 mtu
+= icsk
->icsk_af_ops
->net_frag_header_len
;
1523 EXPORT_SYMBOL(tcp_mss_to_mtu
);
1525 /* MTU probing init per socket */
1526 void tcp_mtup_init(struct sock
*sk
)
1528 struct tcp_sock
*tp
= tcp_sk(sk
);
1529 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1530 struct net
*net
= sock_net(sk
);
1532 icsk
->icsk_mtup
.enabled
= net
->ipv4
.sysctl_tcp_mtu_probing
> 1;
1533 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+ sizeof(struct tcphdr
) +
1534 icsk
->icsk_af_ops
->net_header_len
;
1535 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, net
->ipv4
.sysctl_tcp_base_mss
);
1536 icsk
->icsk_mtup
.probe_size
= 0;
1537 if (icsk
->icsk_mtup
.enabled
)
1538 icsk
->icsk_mtup
.probe_timestamp
= tcp_jiffies32
;
1540 EXPORT_SYMBOL(tcp_mtup_init
);
1542 /* This function synchronize snd mss to current pmtu/exthdr set.
1544 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1545 for TCP options, but includes only bare TCP header.
1547 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1548 It is minimum of user_mss and mss received with SYN.
1549 It also does not include TCP options.
1551 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1553 tp->mss_cache is current effective sending mss, including
1554 all tcp options except for SACKs. It is evaluated,
1555 taking into account current pmtu, but never exceeds
1556 tp->rx_opt.mss_clamp.
1558 NOTE1. rfc1122 clearly states that advertised MSS
1559 DOES NOT include either tcp or ip options.
1561 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1562 are READ ONLY outside this function. --ANK (980731)
1564 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
1566 struct tcp_sock
*tp
= tcp_sk(sk
);
1567 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1570 if (icsk
->icsk_mtup
.search_high
> pmtu
)
1571 icsk
->icsk_mtup
.search_high
= pmtu
;
1573 mss_now
= tcp_mtu_to_mss(sk
, pmtu
);
1574 mss_now
= tcp_bound_to_half_wnd(tp
, mss_now
);
1576 /* And store cached results */
1577 icsk
->icsk_pmtu_cookie
= pmtu
;
1578 if (icsk
->icsk_mtup
.enabled
)
1579 mss_now
= min(mss_now
, tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_low
));
1580 tp
->mss_cache
= mss_now
;
1584 EXPORT_SYMBOL(tcp_sync_mss
);
1586 /* Compute the current effective MSS, taking SACKs and IP options,
1587 * and even PMTU discovery events into account.
1589 unsigned int tcp_current_mss(struct sock
*sk
)
1591 const struct tcp_sock
*tp
= tcp_sk(sk
);
1592 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1594 unsigned int header_len
;
1595 struct tcp_out_options opts
;
1596 struct tcp_md5sig_key
*md5
;
1598 mss_now
= tp
->mss_cache
;
1601 u32 mtu
= dst_mtu(dst
);
1602 if (mtu
!= inet_csk(sk
)->icsk_pmtu_cookie
)
1603 mss_now
= tcp_sync_mss(sk
, mtu
);
1606 header_len
= tcp_established_options(sk
, NULL
, &opts
, &md5
) +
1607 sizeof(struct tcphdr
);
1608 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1609 * some common options. If this is an odd packet (because we have SACK
1610 * blocks etc) then our calculated header_len will be different, and
1611 * we have to adjust mss_now correspondingly */
1612 if (header_len
!= tp
->tcp_header_len
) {
1613 int delta
= (int) header_len
- tp
->tcp_header_len
;
1620 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1621 * As additional protections, we do not touch cwnd in retransmission phases,
1622 * and if application hit its sndbuf limit recently.
1624 static void tcp_cwnd_application_limited(struct sock
*sk
)
1626 struct tcp_sock
*tp
= tcp_sk(sk
);
1628 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
1629 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
1630 /* Limited by application or receiver window. */
1631 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
1632 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
1633 if (win_used
< tp
->snd_cwnd
) {
1634 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
1635 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
1637 tp
->snd_cwnd_used
= 0;
1639 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
1642 static void tcp_cwnd_validate(struct sock
*sk
, bool is_cwnd_limited
)
1644 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
1645 struct tcp_sock
*tp
= tcp_sk(sk
);
1647 /* Track the maximum number of outstanding packets in each
1648 * window, and remember whether we were cwnd-limited then.
1650 if (!before(tp
->snd_una
, tp
->max_packets_seq
) ||
1651 tp
->packets_out
> tp
->max_packets_out
) {
1652 tp
->max_packets_out
= tp
->packets_out
;
1653 tp
->max_packets_seq
= tp
->snd_nxt
;
1654 tp
->is_cwnd_limited
= is_cwnd_limited
;
1657 if (tcp_is_cwnd_limited(sk
)) {
1658 /* Network is feed fully. */
1659 tp
->snd_cwnd_used
= 0;
1660 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
1662 /* Network starves. */
1663 if (tp
->packets_out
> tp
->snd_cwnd_used
)
1664 tp
->snd_cwnd_used
= tp
->packets_out
;
1666 if (sock_net(sk
)->ipv4
.sysctl_tcp_slow_start_after_idle
&&
1667 (s32
)(tcp_jiffies32
- tp
->snd_cwnd_stamp
) >= inet_csk(sk
)->icsk_rto
&&
1668 !ca_ops
->cong_control
)
1669 tcp_cwnd_application_limited(sk
);
1671 /* The following conditions together indicate the starvation
1672 * is caused by insufficient sender buffer:
1673 * 1) just sent some data (see tcp_write_xmit)
1674 * 2) not cwnd limited (this else condition)
1675 * 3) no more data to send (tcp_write_queue_empty())
1676 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1678 if (tcp_write_queue_empty(sk
) && sk
->sk_socket
&&
1679 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
) &&
1680 (1 << sk
->sk_state
) & (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
))
1681 tcp_chrono_start(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
1685 /* Minshall's variant of the Nagle send check. */
1686 static bool tcp_minshall_check(const struct tcp_sock
*tp
)
1688 return after(tp
->snd_sml
, tp
->snd_una
) &&
1689 !after(tp
->snd_sml
, tp
->snd_nxt
);
1692 /* Update snd_sml if this skb is under mss
1693 * Note that a TSO packet might end with a sub-mss segment
1694 * The test is really :
1695 * if ((skb->len % mss) != 0)
1696 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1697 * But we can avoid doing the divide again given we already have
1698 * skb_pcount = skb->len / mss_now
1700 static void tcp_minshall_update(struct tcp_sock
*tp
, unsigned int mss_now
,
1701 const struct sk_buff
*skb
)
1703 if (skb
->len
< tcp_skb_pcount(skb
) * mss_now
)
1704 tp
->snd_sml
= TCP_SKB_CB(skb
)->end_seq
;
1707 /* Return false, if packet can be sent now without violation Nagle's rules:
1708 * 1. It is full sized. (provided by caller in %partial bool)
1709 * 2. Or it contains FIN. (already checked by caller)
1710 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1711 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1712 * With Minshall's modification: all sent small packets are ACKed.
1714 static bool tcp_nagle_check(bool partial
, const struct tcp_sock
*tp
,
1718 ((nonagle
& TCP_NAGLE_CORK
) ||
1719 (!nonagle
&& tp
->packets_out
&& tcp_minshall_check(tp
)));
1722 /* Return how many segs we'd like on a TSO packet,
1723 * to send one TSO packet per ms
1725 static u32
tcp_tso_autosize(const struct sock
*sk
, unsigned int mss_now
,
1730 bytes
= min_t(unsigned long,
1731 sk
->sk_pacing_rate
>> READ_ONCE(sk
->sk_pacing_shift
),
1732 sk
->sk_gso_max_size
- 1 - MAX_TCP_HEADER
);
1734 /* Goal is to send at least one packet per ms,
1735 * not one big TSO packet every 100 ms.
1736 * This preserves ACK clocking and is consistent
1737 * with tcp_tso_should_defer() heuristic.
1739 segs
= max_t(u32
, bytes
/ mss_now
, min_tso_segs
);
1744 /* Return the number of segments we want in the skb we are transmitting.
1745 * See if congestion control module wants to decide; otherwise, autosize.
1747 static u32
tcp_tso_segs(struct sock
*sk
, unsigned int mss_now
)
1749 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
1750 u32 min_tso
, tso_segs
;
1752 min_tso
= ca_ops
->min_tso_segs
?
1753 ca_ops
->min_tso_segs(sk
) :
1754 sock_net(sk
)->ipv4
.sysctl_tcp_min_tso_segs
;
1756 tso_segs
= tcp_tso_autosize(sk
, mss_now
, min_tso
);
1757 return min_t(u32
, tso_segs
, sk
->sk_gso_max_segs
);
1760 /* Returns the portion of skb which can be sent right away */
1761 static unsigned int tcp_mss_split_point(const struct sock
*sk
,
1762 const struct sk_buff
*skb
,
1763 unsigned int mss_now
,
1764 unsigned int max_segs
,
1767 const struct tcp_sock
*tp
= tcp_sk(sk
);
1768 u32 partial
, needed
, window
, max_len
;
1770 window
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1771 max_len
= mss_now
* max_segs
;
1773 if (likely(max_len
<= window
&& skb
!= tcp_write_queue_tail(sk
)))
1776 needed
= min(skb
->len
, window
);
1778 if (max_len
<= needed
)
1781 partial
= needed
% mss_now
;
1782 /* If last segment is not a full MSS, check if Nagle rules allow us
1783 * to include this last segment in this skb.
1784 * Otherwise, we'll split the skb at last MSS boundary
1786 if (tcp_nagle_check(partial
!= 0, tp
, nonagle
))
1787 return needed
- partial
;
1792 /* Can at least one segment of SKB be sent right now, according to the
1793 * congestion window rules? If so, return how many segments are allowed.
1795 static inline unsigned int tcp_cwnd_test(const struct tcp_sock
*tp
,
1796 const struct sk_buff
*skb
)
1798 u32 in_flight
, cwnd
, halfcwnd
;
1800 /* Don't be strict about the congestion window for the final FIN. */
1801 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) &&
1802 tcp_skb_pcount(skb
) == 1)
1805 in_flight
= tcp_packets_in_flight(tp
);
1806 cwnd
= tp
->snd_cwnd
;
1807 if (in_flight
>= cwnd
)
1810 /* For better scheduling, ensure we have at least
1811 * 2 GSO packets in flight.
1813 halfcwnd
= max(cwnd
>> 1, 1U);
1814 return min(halfcwnd
, cwnd
- in_flight
);
1817 /* Initialize TSO state of a skb.
1818 * This must be invoked the first time we consider transmitting
1819 * SKB onto the wire.
1821 static int tcp_init_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1823 int tso_segs
= tcp_skb_pcount(skb
);
1825 if (!tso_segs
|| (tso_segs
> 1 && tcp_skb_mss(skb
) != mss_now
)) {
1826 tcp_set_skb_tso_segs(skb
, mss_now
);
1827 tso_segs
= tcp_skb_pcount(skb
);
1833 /* Return true if the Nagle test allows this packet to be
1836 static inline bool tcp_nagle_test(const struct tcp_sock
*tp
, const struct sk_buff
*skb
,
1837 unsigned int cur_mss
, int nonagle
)
1839 /* Nagle rule does not apply to frames, which sit in the middle of the
1840 * write_queue (they have no chances to get new data).
1842 * This is implemented in the callers, where they modify the 'nonagle'
1843 * argument based upon the location of SKB in the send queue.
1845 if (nonagle
& TCP_NAGLE_PUSH
)
1848 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1849 if (tcp_urg_mode(tp
) || (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
))
1852 if (!tcp_nagle_check(skb
->len
< cur_mss
, tp
, nonagle
))
1858 /* Does at least the first segment of SKB fit into the send window? */
1859 static bool tcp_snd_wnd_test(const struct tcp_sock
*tp
,
1860 const struct sk_buff
*skb
,
1861 unsigned int cur_mss
)
1863 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1865 if (skb
->len
> cur_mss
)
1866 end_seq
= TCP_SKB_CB(skb
)->seq
+ cur_mss
;
1868 return !after(end_seq
, tcp_wnd_end(tp
));
1871 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1872 * which is put after SKB on the list. It is very much like
1873 * tcp_fragment() except that it may make several kinds of assumptions
1874 * in order to speed up the splitting operation. In particular, we
1875 * know that all the data is in scatter-gather pages, and that the
1876 * packet has never been sent out before (and thus is not cloned).
1878 static int tso_fragment(struct sock
*sk
, struct sk_buff
*skb
, unsigned int len
,
1879 unsigned int mss_now
, gfp_t gfp
)
1881 int nlen
= skb
->len
- len
;
1882 struct sk_buff
*buff
;
1885 /* All of a TSO frame must be composed of paged data. */
1886 if (skb
->len
!= skb
->data_len
)
1887 return tcp_fragment(sk
, TCP_FRAG_IN_WRITE_QUEUE
,
1888 skb
, len
, mss_now
, gfp
);
1890 buff
= sk_stream_alloc_skb(sk
, 0, gfp
, true);
1891 if (unlikely(!buff
))
1893 skb_copy_decrypted(buff
, skb
);
1895 sk_wmem_queued_add(sk
, buff
->truesize
);
1896 sk_mem_charge(sk
, buff
->truesize
);
1897 buff
->truesize
+= nlen
;
1898 skb
->truesize
-= nlen
;
1900 /* Correct the sequence numbers. */
1901 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1902 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1903 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1905 /* PSH and FIN should only be set in the second packet. */
1906 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1907 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1908 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1910 /* This packet was never sent out yet, so no SACK bits. */
1911 TCP_SKB_CB(buff
)->sacked
= 0;
1913 tcp_skb_fragment_eor(skb
, buff
);
1915 buff
->ip_summed
= CHECKSUM_PARTIAL
;
1916 skb_split(skb
, buff
, len
);
1917 tcp_fragment_tstamp(skb
, buff
);
1919 /* Fix up tso_factor for both original and new SKB. */
1920 tcp_set_skb_tso_segs(skb
, mss_now
);
1921 tcp_set_skb_tso_segs(buff
, mss_now
);
1923 /* Link BUFF into the send queue. */
1924 __skb_header_release(buff
);
1925 tcp_insert_write_queue_after(skb
, buff
, sk
, TCP_FRAG_IN_WRITE_QUEUE
);
1930 /* Try to defer sending, if possible, in order to minimize the amount
1931 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1933 * This algorithm is from John Heffner.
1935 static bool tcp_tso_should_defer(struct sock
*sk
, struct sk_buff
*skb
,
1936 bool *is_cwnd_limited
,
1937 bool *is_rwnd_limited
,
1940 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1941 u32 send_win
, cong_win
, limit
, in_flight
;
1942 struct tcp_sock
*tp
= tcp_sk(sk
);
1943 struct sk_buff
*head
;
1947 if (icsk
->icsk_ca_state
>= TCP_CA_Recovery
)
1950 /* Avoid bursty behavior by allowing defer
1951 * only if the last write was recent (1 ms).
1952 * Note that tp->tcp_wstamp_ns can be in the future if we have
1953 * packets waiting in a qdisc or device for EDT delivery.
1955 delta
= tp
->tcp_clock_cache
- tp
->tcp_wstamp_ns
- NSEC_PER_MSEC
;
1959 in_flight
= tcp_packets_in_flight(tp
);
1961 BUG_ON(tcp_skb_pcount(skb
) <= 1);
1962 BUG_ON(tp
->snd_cwnd
<= in_flight
);
1964 send_win
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1966 /* From in_flight test above, we know that cwnd > in_flight. */
1967 cong_win
= (tp
->snd_cwnd
- in_flight
) * tp
->mss_cache
;
1969 limit
= min(send_win
, cong_win
);
1971 /* If a full-sized TSO skb can be sent, do it. */
1972 if (limit
>= max_segs
* tp
->mss_cache
)
1975 /* Middle in queue won't get any more data, full sendable already? */
1976 if ((skb
!= tcp_write_queue_tail(sk
)) && (limit
>= skb
->len
))
1979 win_divisor
= READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_tso_win_divisor
);
1981 u32 chunk
= min(tp
->snd_wnd
, tp
->snd_cwnd
* tp
->mss_cache
);
1983 /* If at least some fraction of a window is available,
1986 chunk
/= win_divisor
;
1990 /* Different approach, try not to defer past a single
1991 * ACK. Receiver should ACK every other full sized
1992 * frame, so if we have space for more than 3 frames
1995 if (limit
> tcp_max_tso_deferred_mss(tp
) * tp
->mss_cache
)
1999 /* TODO : use tsorted_sent_queue ? */
2000 head
= tcp_rtx_queue_head(sk
);
2003 delta
= tp
->tcp_clock_cache
- head
->tstamp
;
2004 /* If next ACK is likely to come too late (half srtt), do not defer */
2005 if ((s64
)(delta
- (u64
)NSEC_PER_USEC
* (tp
->srtt_us
>> 4)) < 0)
2008 /* Ok, it looks like it is advisable to defer.
2009 * Three cases are tracked :
2010 * 1) We are cwnd-limited
2011 * 2) We are rwnd-limited
2012 * 3) We are application limited.
2014 if (cong_win
< send_win
) {
2015 if (cong_win
<= skb
->len
) {
2016 *is_cwnd_limited
= true;
2020 if (send_win
<= skb
->len
) {
2021 *is_rwnd_limited
= true;
2026 /* If this packet won't get more data, do not wait. */
2027 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) ||
2028 TCP_SKB_CB(skb
)->eor
)
2037 static inline void tcp_mtu_check_reprobe(struct sock
*sk
)
2039 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2040 struct tcp_sock
*tp
= tcp_sk(sk
);
2041 struct net
*net
= sock_net(sk
);
2045 interval
= net
->ipv4
.sysctl_tcp_probe_interval
;
2046 delta
= tcp_jiffies32
- icsk
->icsk_mtup
.probe_timestamp
;
2047 if (unlikely(delta
>= interval
* HZ
)) {
2048 int mss
= tcp_current_mss(sk
);
2050 /* Update current search range */
2051 icsk
->icsk_mtup
.probe_size
= 0;
2052 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+
2053 sizeof(struct tcphdr
) +
2054 icsk
->icsk_af_ops
->net_header_len
;
2055 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, mss
);
2057 /* Update probe time stamp */
2058 icsk
->icsk_mtup
.probe_timestamp
= tcp_jiffies32
;
2062 static bool tcp_can_coalesce_send_queue_head(struct sock
*sk
, int len
)
2064 struct sk_buff
*skb
, *next
;
2066 skb
= tcp_send_head(sk
);
2067 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
2068 if (len
<= skb
->len
)
2071 if (unlikely(TCP_SKB_CB(skb
)->eor
) || tcp_has_tx_tstamp(skb
))
2080 /* Create a new MTU probe if we are ready.
2081 * MTU probe is regularly attempting to increase the path MTU by
2082 * deliberately sending larger packets. This discovers routing
2083 * changes resulting in larger path MTUs.
2085 * Returns 0 if we should wait to probe (no cwnd available),
2086 * 1 if a probe was sent,
2089 static int tcp_mtu_probe(struct sock
*sk
)
2091 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2092 struct tcp_sock
*tp
= tcp_sk(sk
);
2093 struct sk_buff
*skb
, *nskb
, *next
;
2094 struct net
*net
= sock_net(sk
);
2101 /* Not currently probing/verifying,
2103 * have enough cwnd, and
2104 * not SACKing (the variable headers throw things off)
2106 if (likely(!icsk
->icsk_mtup
.enabled
||
2107 icsk
->icsk_mtup
.probe_size
||
2108 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
||
2109 tp
->snd_cwnd
< 11 ||
2110 tp
->rx_opt
.num_sacks
|| tp
->rx_opt
.dsack
))
2113 /* Use binary search for probe_size between tcp_mss_base,
2114 * and current mss_clamp. if (search_high - search_low)
2115 * smaller than a threshold, backoff from probing.
2117 mss_now
= tcp_current_mss(sk
);
2118 probe_size
= tcp_mtu_to_mss(sk
, (icsk
->icsk_mtup
.search_high
+
2119 icsk
->icsk_mtup
.search_low
) >> 1);
2120 size_needed
= probe_size
+ (tp
->reordering
+ 1) * tp
->mss_cache
;
2121 interval
= icsk
->icsk_mtup
.search_high
- icsk
->icsk_mtup
.search_low
;
2122 /* When misfortune happens, we are reprobing actively,
2123 * and then reprobe timer has expired. We stick with current
2124 * probing process by not resetting search range to its orignal.
2126 if (probe_size
> tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_high
) ||
2127 interval
< net
->ipv4
.sysctl_tcp_probe_threshold
) {
2128 /* Check whether enough time has elaplased for
2129 * another round of probing.
2131 tcp_mtu_check_reprobe(sk
);
2135 /* Have enough data in the send queue to probe? */
2136 if (tp
->write_seq
- tp
->snd_nxt
< size_needed
)
2139 if (tp
->snd_wnd
< size_needed
)
2141 if (after(tp
->snd_nxt
+ size_needed
, tcp_wnd_end(tp
)))
2144 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2145 if (tcp_packets_in_flight(tp
) + 2 > tp
->snd_cwnd
) {
2146 if (!tcp_packets_in_flight(tp
))
2152 if (!tcp_can_coalesce_send_queue_head(sk
, probe_size
))
2155 /* We're allowed to probe. Build it now. */
2156 nskb
= sk_stream_alloc_skb(sk
, probe_size
, GFP_ATOMIC
, false);
2159 sk_wmem_queued_add(sk
, nskb
->truesize
);
2160 sk_mem_charge(sk
, nskb
->truesize
);
2162 skb
= tcp_send_head(sk
);
2163 skb_copy_decrypted(nskb
, skb
);
2165 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(skb
)->seq
;
2166 TCP_SKB_CB(nskb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ probe_size
;
2167 TCP_SKB_CB(nskb
)->tcp_flags
= TCPHDR_ACK
;
2168 TCP_SKB_CB(nskb
)->sacked
= 0;
2170 nskb
->ip_summed
= CHECKSUM_PARTIAL
;
2172 tcp_insert_write_queue_before(nskb
, skb
, sk
);
2173 tcp_highest_sack_replace(sk
, skb
, nskb
);
2176 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
2177 copy
= min_t(int, skb
->len
, probe_size
- len
);
2178 skb_copy_bits(skb
, 0, skb_put(nskb
, copy
), copy
);
2180 if (skb
->len
<= copy
) {
2181 /* We've eaten all the data from this skb.
2183 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
2184 /* If this is the last SKB we copy and eor is set
2185 * we need to propagate it to the new skb.
2187 TCP_SKB_CB(nskb
)->eor
= TCP_SKB_CB(skb
)->eor
;
2188 tcp_skb_collapse_tstamp(nskb
, skb
);
2189 tcp_unlink_write_queue(skb
, sk
);
2190 sk_wmem_free_skb(sk
, skb
);
2192 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
&
2193 ~(TCPHDR_FIN
|TCPHDR_PSH
);
2194 if (!skb_shinfo(skb
)->nr_frags
) {
2195 skb_pull(skb
, copy
);
2197 __pskb_trim_head(skb
, copy
);
2198 tcp_set_skb_tso_segs(skb
, mss_now
);
2200 TCP_SKB_CB(skb
)->seq
+= copy
;
2205 if (len
>= probe_size
)
2208 tcp_init_tso_segs(nskb
, nskb
->len
);
2210 /* We're ready to send. If this fails, the probe will
2211 * be resegmented into mss-sized pieces by tcp_write_xmit().
2213 if (!tcp_transmit_skb(sk
, nskb
, 1, GFP_ATOMIC
)) {
2214 /* Decrement cwnd here because we are sending
2215 * effectively two packets. */
2217 tcp_event_new_data_sent(sk
, nskb
);
2219 icsk
->icsk_mtup
.probe_size
= tcp_mss_to_mtu(sk
, nskb
->len
);
2220 tp
->mtu_probe
.probe_seq_start
= TCP_SKB_CB(nskb
)->seq
;
2221 tp
->mtu_probe
.probe_seq_end
= TCP_SKB_CB(nskb
)->end_seq
;
2229 static bool tcp_pacing_check(struct sock
*sk
)
2231 struct tcp_sock
*tp
= tcp_sk(sk
);
2233 if (!tcp_needs_internal_pacing(sk
))
2236 if (tp
->tcp_wstamp_ns
<= tp
->tcp_clock_cache
)
2239 if (!hrtimer_is_queued(&tp
->pacing_timer
)) {
2240 hrtimer_start(&tp
->pacing_timer
,
2241 ns_to_ktime(tp
->tcp_wstamp_ns
),
2242 HRTIMER_MODE_ABS_PINNED_SOFT
);
2248 /* TCP Small Queues :
2249 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2250 * (These limits are doubled for retransmits)
2252 * - better RTT estimation and ACK scheduling
2255 * Alas, some drivers / subsystems require a fair amount
2256 * of queued bytes to ensure line rate.
2257 * One example is wifi aggregation (802.11 AMPDU)
2259 static bool tcp_small_queue_check(struct sock
*sk
, const struct sk_buff
*skb
,
2260 unsigned int factor
)
2262 unsigned long limit
;
2264 limit
= max_t(unsigned long,
2266 sk
->sk_pacing_rate
>> READ_ONCE(sk
->sk_pacing_shift
));
2267 if (sk
->sk_pacing_status
== SK_PACING_NONE
)
2268 limit
= min_t(unsigned long, limit
,
2269 sock_net(sk
)->ipv4
.sysctl_tcp_limit_output_bytes
);
2272 if (static_branch_unlikely(&tcp_tx_delay_enabled
) &&
2273 tcp_sk(sk
)->tcp_tx_delay
) {
2274 u64 extra_bytes
= (u64
)sk
->sk_pacing_rate
* tcp_sk(sk
)->tcp_tx_delay
;
2276 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2277 * approximate our needs assuming an ~100% skb->truesize overhead.
2278 * USEC_PER_SEC is approximated by 2^20.
2279 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2281 extra_bytes
>>= (20 - 1);
2282 limit
+= extra_bytes
;
2284 if (refcount_read(&sk
->sk_wmem_alloc
) > limit
) {
2285 /* Always send skb if rtx queue is empty.
2286 * No need to wait for TX completion to call us back,
2287 * after softirq/tasklet schedule.
2288 * This helps when TX completions are delayed too much.
2290 if (tcp_rtx_queue_empty(sk
))
2293 set_bit(TSQ_THROTTLED
, &sk
->sk_tsq_flags
);
2294 /* It is possible TX completion already happened
2295 * before we set TSQ_THROTTLED, so we must
2296 * test again the condition.
2298 smp_mb__after_atomic();
2299 if (refcount_read(&sk
->sk_wmem_alloc
) > limit
)
2305 static void tcp_chrono_set(struct tcp_sock
*tp
, const enum tcp_chrono
new)
2307 const u32 now
= tcp_jiffies32
;
2308 enum tcp_chrono old
= tp
->chrono_type
;
2310 if (old
> TCP_CHRONO_UNSPEC
)
2311 tp
->chrono_stat
[old
- 1] += now
- tp
->chrono_start
;
2312 tp
->chrono_start
= now
;
2313 tp
->chrono_type
= new;
2316 void tcp_chrono_start(struct sock
*sk
, const enum tcp_chrono type
)
2318 struct tcp_sock
*tp
= tcp_sk(sk
);
2320 /* If there are multiple conditions worthy of tracking in a
2321 * chronograph then the highest priority enum takes precedence
2322 * over the other conditions. So that if something "more interesting"
2323 * starts happening, stop the previous chrono and start a new one.
2325 if (type
> tp
->chrono_type
)
2326 tcp_chrono_set(tp
, type
);
2329 void tcp_chrono_stop(struct sock
*sk
, const enum tcp_chrono type
)
2331 struct tcp_sock
*tp
= tcp_sk(sk
);
2334 /* There are multiple conditions worthy of tracking in a
2335 * chronograph, so that the highest priority enum takes
2336 * precedence over the other conditions (see tcp_chrono_start).
2337 * If a condition stops, we only stop chrono tracking if
2338 * it's the "most interesting" or current chrono we are
2339 * tracking and starts busy chrono if we have pending data.
2341 if (tcp_rtx_and_write_queues_empty(sk
))
2342 tcp_chrono_set(tp
, TCP_CHRONO_UNSPEC
);
2343 else if (type
== tp
->chrono_type
)
2344 tcp_chrono_set(tp
, TCP_CHRONO_BUSY
);
2347 /* This routine writes packets to the network. It advances the
2348 * send_head. This happens as incoming acks open up the remote
2351 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2352 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2353 * account rare use of URG, this is not a big flaw.
2355 * Send at most one packet when push_one > 0. Temporarily ignore
2356 * cwnd limit to force at most one packet out when push_one == 2.
2358 * Returns true, if no segments are in flight and we have queued segments,
2359 * but cannot send anything now because of SWS or another problem.
2361 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
2362 int push_one
, gfp_t gfp
)
2364 struct tcp_sock
*tp
= tcp_sk(sk
);
2365 struct sk_buff
*skb
;
2366 unsigned int tso_segs
, sent_pkts
;
2369 bool is_cwnd_limited
= false, is_rwnd_limited
= false;
2374 tcp_mstamp_refresh(tp
);
2376 /* Do MTU probing. */
2377 result
= tcp_mtu_probe(sk
);
2380 } else if (result
> 0) {
2385 max_segs
= tcp_tso_segs(sk
, mss_now
);
2386 while ((skb
= tcp_send_head(sk
))) {
2389 if (unlikely(tp
->repair
) && tp
->repair_queue
== TCP_SEND_QUEUE
) {
2390 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2391 skb
->skb_mstamp_ns
= tp
->tcp_wstamp_ns
= tp
->tcp_clock_cache
;
2392 list_move_tail(&skb
->tcp_tsorted_anchor
, &tp
->tsorted_sent_queue
);
2393 tcp_init_tso_segs(skb
, mss_now
);
2394 goto repair
; /* Skip network transmission */
2397 if (tcp_pacing_check(sk
))
2400 tso_segs
= tcp_init_tso_segs(skb
, mss_now
);
2403 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
2406 /* Force out a loss probe pkt. */
2412 if (unlikely(!tcp_snd_wnd_test(tp
, skb
, mss_now
))) {
2413 is_rwnd_limited
= true;
2417 if (tso_segs
== 1) {
2418 if (unlikely(!tcp_nagle_test(tp
, skb
, mss_now
,
2419 (tcp_skb_is_last(sk
, skb
) ?
2420 nonagle
: TCP_NAGLE_PUSH
))))
2424 tcp_tso_should_defer(sk
, skb
, &is_cwnd_limited
,
2425 &is_rwnd_limited
, max_segs
))
2430 if (tso_segs
> 1 && !tcp_urg_mode(tp
))
2431 limit
= tcp_mss_split_point(sk
, skb
, mss_now
,
2437 if (skb
->len
> limit
&&
2438 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
, gfp
)))
2441 if (tcp_small_queue_check(sk
, skb
, 0))
2444 /* Argh, we hit an empty skb(), presumably a thread
2445 * is sleeping in sendmsg()/sk_stream_wait_memory().
2446 * We do not want to send a pure-ack packet and have
2447 * a strange looking rtx queue with empty packet(s).
2449 if (TCP_SKB_CB(skb
)->end_seq
== TCP_SKB_CB(skb
)->seq
)
2452 if (unlikely(tcp_transmit_skb(sk
, skb
, 1, gfp
)))
2456 /* Advance the send_head. This one is sent out.
2457 * This call will increment packets_out.
2459 tcp_event_new_data_sent(sk
, skb
);
2461 tcp_minshall_update(tp
, mss_now
, skb
);
2462 sent_pkts
+= tcp_skb_pcount(skb
);
2468 if (is_rwnd_limited
)
2469 tcp_chrono_start(sk
, TCP_CHRONO_RWND_LIMITED
);
2471 tcp_chrono_stop(sk
, TCP_CHRONO_RWND_LIMITED
);
2473 if (likely(sent_pkts
)) {
2474 if (tcp_in_cwnd_reduction(sk
))
2475 tp
->prr_out
+= sent_pkts
;
2477 /* Send one loss probe per tail loss episode. */
2479 tcp_schedule_loss_probe(sk
, false);
2480 is_cwnd_limited
|= (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
);
2481 tcp_cwnd_validate(sk
, is_cwnd_limited
);
2484 return !tp
->packets_out
&& !tcp_write_queue_empty(sk
);
2487 bool tcp_schedule_loss_probe(struct sock
*sk
, bool advancing_rto
)
2489 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2490 struct tcp_sock
*tp
= tcp_sk(sk
);
2491 u32 timeout
, rto_delta_us
;
2494 /* Don't do any loss probe on a Fast Open connection before 3WHS
2497 if (rcu_access_pointer(tp
->fastopen_rsk
))
2500 early_retrans
= sock_net(sk
)->ipv4
.sysctl_tcp_early_retrans
;
2501 /* Schedule a loss probe in 2*RTT for SACK capable connections
2502 * not in loss recovery, that are either limited by cwnd or application.
2504 if ((early_retrans
!= 3 && early_retrans
!= 4) ||
2505 !tp
->packets_out
|| !tcp_is_sack(tp
) ||
2506 (icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2507 icsk
->icsk_ca_state
!= TCP_CA_CWR
))
2510 /* Probe timeout is 2*rtt. Add minimum RTO to account
2511 * for delayed ack when there's one outstanding packet. If no RTT
2512 * sample is available then probe after TCP_TIMEOUT_INIT.
2515 timeout
= usecs_to_jiffies(tp
->srtt_us
>> 2);
2516 if (tp
->packets_out
== 1)
2517 timeout
+= TCP_RTO_MIN
;
2519 timeout
+= TCP_TIMEOUT_MIN
;
2521 timeout
= TCP_TIMEOUT_INIT
;
2524 /* If the RTO formula yields an earlier time, then use that time. */
2525 rto_delta_us
= advancing_rto
?
2526 jiffies_to_usecs(inet_csk(sk
)->icsk_rto
) :
2527 tcp_rto_delta_us(sk
); /* How far in future is RTO? */
2528 if (rto_delta_us
> 0)
2529 timeout
= min_t(u32
, timeout
, usecs_to_jiffies(rto_delta_us
));
2531 tcp_reset_xmit_timer(sk
, ICSK_TIME_LOSS_PROBE
, timeout
,
2536 /* Thanks to skb fast clones, we can detect if a prior transmit of
2537 * a packet is still in a qdisc or driver queue.
2538 * In this case, there is very little point doing a retransmit !
2540 static bool skb_still_in_host_queue(const struct sock
*sk
,
2541 const struct sk_buff
*skb
)
2543 if (unlikely(skb_fclone_busy(sk
, skb
))) {
2544 NET_INC_STATS(sock_net(sk
),
2545 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES
);
2551 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2552 * retransmit the last segment.
2554 void tcp_send_loss_probe(struct sock
*sk
)
2556 struct tcp_sock
*tp
= tcp_sk(sk
);
2557 struct sk_buff
*skb
;
2559 int mss
= tcp_current_mss(sk
);
2561 skb
= tcp_send_head(sk
);
2562 if (skb
&& tcp_snd_wnd_test(tp
, skb
, mss
)) {
2563 pcount
= tp
->packets_out
;
2564 tcp_write_xmit(sk
, mss
, TCP_NAGLE_OFF
, 2, GFP_ATOMIC
);
2565 if (tp
->packets_out
> pcount
)
2569 skb
= skb_rb_last(&sk
->tcp_rtx_queue
);
2570 if (unlikely(!skb
)) {
2571 WARN_ONCE(tp
->packets_out
,
2572 "invalid inflight: %u state %u cwnd %u mss %d\n",
2573 tp
->packets_out
, sk
->sk_state
, tp
->snd_cwnd
, mss
);
2574 inet_csk(sk
)->icsk_pending
= 0;
2578 /* At most one outstanding TLP retransmission. */
2579 if (tp
->tlp_high_seq
)
2582 if (skb_still_in_host_queue(sk
, skb
))
2585 pcount
= tcp_skb_pcount(skb
);
2586 if (WARN_ON(!pcount
))
2589 if ((pcount
> 1) && (skb
->len
> (pcount
- 1) * mss
)) {
2590 if (unlikely(tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
2591 (pcount
- 1) * mss
, mss
,
2594 skb
= skb_rb_next(skb
);
2597 if (WARN_ON(!skb
|| !tcp_skb_pcount(skb
)))
2600 if (__tcp_retransmit_skb(sk
, skb
, 1))
2603 /* Record snd_nxt for loss detection. */
2604 tp
->tlp_high_seq
= tp
->snd_nxt
;
2607 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSPROBES
);
2608 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2609 inet_csk(sk
)->icsk_pending
= 0;
2614 /* Push out any pending frames which were held back due to
2615 * TCP_CORK or attempt at coalescing tiny packets.
2616 * The socket must be locked by the caller.
2618 void __tcp_push_pending_frames(struct sock
*sk
, unsigned int cur_mss
,
2621 /* If we are closed, the bytes will have to remain here.
2622 * In time closedown will finish, we empty the write queue and
2623 * all will be happy.
2625 if (unlikely(sk
->sk_state
== TCP_CLOSE
))
2628 if (tcp_write_xmit(sk
, cur_mss
, nonagle
, 0,
2629 sk_gfp_mask(sk
, GFP_ATOMIC
)))
2630 tcp_check_probe_timer(sk
);
2633 /* Send _single_ skb sitting at the send head. This function requires
2634 * true push pending frames to setup probe timer etc.
2636 void tcp_push_one(struct sock
*sk
, unsigned int mss_now
)
2638 struct sk_buff
*skb
= tcp_send_head(sk
);
2640 BUG_ON(!skb
|| skb
->len
< mss_now
);
2642 tcp_write_xmit(sk
, mss_now
, TCP_NAGLE_PUSH
, 1, sk
->sk_allocation
);
2645 /* This function returns the amount that we can raise the
2646 * usable window based on the following constraints
2648 * 1. The window can never be shrunk once it is offered (RFC 793)
2649 * 2. We limit memory per socket
2652 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2653 * RECV.NEXT + RCV.WIN fixed until:
2654 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2656 * i.e. don't raise the right edge of the window until you can raise
2657 * it at least MSS bytes.
2659 * Unfortunately, the recommended algorithm breaks header prediction,
2660 * since header prediction assumes th->window stays fixed.
2662 * Strictly speaking, keeping th->window fixed violates the receiver
2663 * side SWS prevention criteria. The problem is that under this rule
2664 * a stream of single byte packets will cause the right side of the
2665 * window to always advance by a single byte.
2667 * Of course, if the sender implements sender side SWS prevention
2668 * then this will not be a problem.
2670 * BSD seems to make the following compromise:
2672 * If the free space is less than the 1/4 of the maximum
2673 * space available and the free space is less than 1/2 mss,
2674 * then set the window to 0.
2675 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2676 * Otherwise, just prevent the window from shrinking
2677 * and from being larger than the largest representable value.
2679 * This prevents incremental opening of the window in the regime
2680 * where TCP is limited by the speed of the reader side taking
2681 * data out of the TCP receive queue. It does nothing about
2682 * those cases where the window is constrained on the sender side
2683 * because the pipeline is full.
2685 * BSD also seems to "accidentally" limit itself to windows that are a
2686 * multiple of MSS, at least until the free space gets quite small.
2687 * This would appear to be a side effect of the mbuf implementation.
2688 * Combining these two algorithms results in the observed behavior
2689 * of having a fixed window size at almost all times.
2691 * Below we obtain similar behavior by forcing the offered window to
2692 * a multiple of the mss when it is feasible to do so.
2694 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2695 * Regular options like TIMESTAMP are taken into account.
2697 u32
__tcp_select_window(struct sock
*sk
)
2699 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2700 struct tcp_sock
*tp
= tcp_sk(sk
);
2701 /* MSS for the peer's data. Previous versions used mss_clamp
2702 * here. I don't know if the value based on our guesses
2703 * of peer's MSS is better for the performance. It's more correct
2704 * but may be worse for the performance because of rcv_mss
2705 * fluctuations. --SAW 1998/11/1
2707 int mss
= icsk
->icsk_ack
.rcv_mss
;
2708 int free_space
= tcp_space(sk
);
2709 int allowed_space
= tcp_full_space(sk
);
2710 int full_space
= min_t(int, tp
->window_clamp
, allowed_space
);
2713 if (unlikely(mss
> full_space
)) {
2718 if (free_space
< (full_space
>> 1)) {
2719 icsk
->icsk_ack
.quick
= 0;
2721 if (tcp_under_memory_pressure(sk
))
2722 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
,
2725 /* free_space might become our new window, make sure we don't
2726 * increase it due to wscale.
2728 free_space
= round_down(free_space
, 1 << tp
->rx_opt
.rcv_wscale
);
2730 /* if free space is less than mss estimate, or is below 1/16th
2731 * of the maximum allowed, try to move to zero-window, else
2732 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2733 * new incoming data is dropped due to memory limits.
2734 * With large window, mss test triggers way too late in order
2735 * to announce zero window in time before rmem limit kicks in.
2737 if (free_space
< (allowed_space
>> 4) || free_space
< mss
)
2741 if (free_space
> tp
->rcv_ssthresh
)
2742 free_space
= tp
->rcv_ssthresh
;
2744 /* Don't do rounding if we are using window scaling, since the
2745 * scaled window will not line up with the MSS boundary anyway.
2747 if (tp
->rx_opt
.rcv_wscale
) {
2748 window
= free_space
;
2750 /* Advertise enough space so that it won't get scaled away.
2751 * Import case: prevent zero window announcement if
2752 * 1<<rcv_wscale > mss.
2754 window
= ALIGN(window
, (1 << tp
->rx_opt
.rcv_wscale
));
2756 window
= tp
->rcv_wnd
;
2757 /* Get the largest window that is a nice multiple of mss.
2758 * Window clamp already applied above.
2759 * If our current window offering is within 1 mss of the
2760 * free space we just keep it. This prevents the divide
2761 * and multiply from happening most of the time.
2762 * We also don't do any window rounding when the free space
2765 if (window
<= free_space
- mss
|| window
> free_space
)
2766 window
= rounddown(free_space
, mss
);
2767 else if (mss
== full_space
&&
2768 free_space
> window
+ (full_space
>> 1))
2769 window
= free_space
;
2775 void tcp_skb_collapse_tstamp(struct sk_buff
*skb
,
2776 const struct sk_buff
*next_skb
)
2778 if (unlikely(tcp_has_tx_tstamp(next_skb
))) {
2779 const struct skb_shared_info
*next_shinfo
=
2780 skb_shinfo(next_skb
);
2781 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
2783 shinfo
->tx_flags
|= next_shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
;
2784 shinfo
->tskey
= next_shinfo
->tskey
;
2785 TCP_SKB_CB(skb
)->txstamp_ack
|=
2786 TCP_SKB_CB(next_skb
)->txstamp_ack
;
2790 /* Collapses two adjacent SKB's during retransmission. */
2791 static bool tcp_collapse_retrans(struct sock
*sk
, struct sk_buff
*skb
)
2793 struct tcp_sock
*tp
= tcp_sk(sk
);
2794 struct sk_buff
*next_skb
= skb_rb_next(skb
);
2797 next_skb_size
= next_skb
->len
;
2799 BUG_ON(tcp_skb_pcount(skb
) != 1 || tcp_skb_pcount(next_skb
) != 1);
2801 if (next_skb_size
) {
2802 if (next_skb_size
<= skb_availroom(skb
))
2803 skb_copy_bits(next_skb
, 0, skb_put(skb
, next_skb_size
),
2805 else if (!tcp_skb_shift(skb
, next_skb
, 1, next_skb_size
))
2808 tcp_highest_sack_replace(sk
, next_skb
, skb
);
2810 /* Update sequence range on original skb. */
2811 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
2813 /* Merge over control information. This moves PSH/FIN etc. over */
2814 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(next_skb
)->tcp_flags
;
2816 /* All done, get rid of second SKB and account for it so
2817 * packet counting does not break.
2819 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
& TCPCB_EVER_RETRANS
;
2820 TCP_SKB_CB(skb
)->eor
= TCP_SKB_CB(next_skb
)->eor
;
2822 /* changed transmit queue under us so clear hints */
2823 tcp_clear_retrans_hints_partial(tp
);
2824 if (next_skb
== tp
->retransmit_skb_hint
)
2825 tp
->retransmit_skb_hint
= skb
;
2827 tcp_adjust_pcount(sk
, next_skb
, tcp_skb_pcount(next_skb
));
2829 tcp_skb_collapse_tstamp(skb
, next_skb
);
2831 tcp_rtx_queue_unlink_and_free(next_skb
, sk
);
2835 /* Check if coalescing SKBs is legal. */
2836 static bool tcp_can_collapse(const struct sock
*sk
, const struct sk_buff
*skb
)
2838 if (tcp_skb_pcount(skb
) > 1)
2840 if (skb_cloned(skb
))
2842 /* Some heuristics for collapsing over SACK'd could be invented */
2843 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
2849 /* Collapse packets in the retransmit queue to make to create
2850 * less packets on the wire. This is only done on retransmission.
2852 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*to
,
2855 struct tcp_sock
*tp
= tcp_sk(sk
);
2856 struct sk_buff
*skb
= to
, *tmp
;
2859 if (!sock_net(sk
)->ipv4
.sysctl_tcp_retrans_collapse
)
2861 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2864 skb_rbtree_walk_from_safe(skb
, tmp
) {
2865 if (!tcp_can_collapse(sk
, skb
))
2868 if (!tcp_skb_can_collapse_to(to
))
2881 if (after(TCP_SKB_CB(skb
)->end_seq
, tcp_wnd_end(tp
)))
2884 if (!tcp_collapse_retrans(sk
, to
))
2889 /* This retransmits one SKB. Policy decisions and retransmit queue
2890 * state updates are done by the caller. Returns non-zero if an
2891 * error occurred which prevented the send.
2893 int __tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int segs
)
2895 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2896 struct tcp_sock
*tp
= tcp_sk(sk
);
2897 unsigned int cur_mss
;
2901 /* Inconclusive MTU probe */
2902 if (icsk
->icsk_mtup
.probe_size
)
2903 icsk
->icsk_mtup
.probe_size
= 0;
2905 /* Do not sent more than we queued. 1/4 is reserved for possible
2906 * copying overhead: fragmentation, tunneling, mangling etc.
2908 if (refcount_read(&sk
->sk_wmem_alloc
) >
2909 min_t(u32
, sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2),
2913 if (skb_still_in_host_queue(sk
, skb
))
2916 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
2917 if (unlikely(before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))) {
2921 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
2925 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
2926 return -EHOSTUNREACH
; /* Routing failure or similar. */
2928 cur_mss
= tcp_current_mss(sk
);
2930 /* If receiver has shrunk his window, and skb is out of
2931 * new window, do not retransmit it. The exception is the
2932 * case, when window is shrunk to zero. In this case
2933 * our retransmit serves as a zero window probe.
2935 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
)) &&
2936 TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
2939 len
= cur_mss
* segs
;
2940 if (skb
->len
> len
) {
2941 if (tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
, len
,
2942 cur_mss
, GFP_ATOMIC
))
2943 return -ENOMEM
; /* We'll try again later. */
2945 if (skb_unclone(skb
, GFP_ATOMIC
))
2948 diff
= tcp_skb_pcount(skb
);
2949 tcp_set_skb_tso_segs(skb
, cur_mss
);
2950 diff
-= tcp_skb_pcount(skb
);
2952 tcp_adjust_pcount(sk
, skb
, diff
);
2953 if (skb
->len
< cur_mss
)
2954 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
2957 /* RFC3168, section 6.1.1.1. ECN fallback */
2958 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN_ECN
) == TCPHDR_SYN_ECN
)
2959 tcp_ecn_clear_syn(sk
, skb
);
2961 /* Update global and local TCP statistics. */
2962 segs
= tcp_skb_pcount(skb
);
2963 TCP_ADD_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
, segs
);
2964 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2965 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
2966 tp
->total_retrans
+= segs
;
2967 tp
->bytes_retrans
+= skb
->len
;
2969 /* make sure skb->data is aligned on arches that require it
2970 * and check if ack-trimming & collapsing extended the headroom
2971 * beyond what csum_start can cover.
2973 if (unlikely((NET_IP_ALIGN
&& ((unsigned long)skb
->data
& 3)) ||
2974 skb_headroom(skb
) >= 0xFFFF)) {
2975 struct sk_buff
*nskb
;
2977 tcp_skb_tsorted_save(skb
) {
2978 nskb
= __pskb_copy(skb
, MAX_TCP_HEADER
, GFP_ATOMIC
);
2979 err
= nskb
? tcp_transmit_skb(sk
, nskb
, 0, GFP_ATOMIC
) :
2981 } tcp_skb_tsorted_restore(skb
);
2984 tcp_update_skb_after_send(sk
, skb
, tp
->tcp_wstamp_ns
);
2985 tcp_rate_skb_sent(sk
, skb
);
2988 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2991 /* To avoid taking spuriously low RTT samples based on a timestamp
2992 * for a transmit that never happened, always mark EVER_RETRANS
2994 TCP_SKB_CB(skb
)->sacked
|= TCPCB_EVER_RETRANS
;
2996 if (BPF_SOCK_OPS_TEST_FLAG(tp
, BPF_SOCK_OPS_RETRANS_CB_FLAG
))
2997 tcp_call_bpf_3arg(sk
, BPF_SOCK_OPS_RETRANS_CB
,
2998 TCP_SKB_CB(skb
)->seq
, segs
, err
);
3001 trace_tcp_retransmit_skb(sk
, skb
);
3002 } else if (err
!= -EBUSY
) {
3003 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPRETRANSFAIL
, segs
);
3008 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int segs
)
3010 struct tcp_sock
*tp
= tcp_sk(sk
);
3011 int err
= __tcp_retransmit_skb(sk
, skb
, segs
);
3014 #if FASTRETRANS_DEBUG > 0
3015 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
3016 net_dbg_ratelimited("retrans_out leaked\n");
3019 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
3020 tp
->retrans_out
+= tcp_skb_pcount(skb
);
3023 /* Save stamp of the first (attempted) retransmit. */
3024 if (!tp
->retrans_stamp
)
3025 tp
->retrans_stamp
= tcp_skb_timestamp(skb
);
3027 if (tp
->undo_retrans
< 0)
3028 tp
->undo_retrans
= 0;
3029 tp
->undo_retrans
+= tcp_skb_pcount(skb
);
3033 /* This gets called after a retransmit timeout, and the initially
3034 * retransmitted data is acknowledged. It tries to continue
3035 * resending the rest of the retransmit queue, until either
3036 * we've sent it all or the congestion window limit is reached.
3038 void tcp_xmit_retransmit_queue(struct sock
*sk
)
3040 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3041 struct sk_buff
*skb
, *rtx_head
, *hole
= NULL
;
3042 struct tcp_sock
*tp
= tcp_sk(sk
);
3046 if (!tp
->packets_out
)
3049 rtx_head
= tcp_rtx_queue_head(sk
);
3050 skb
= tp
->retransmit_skb_hint
?: rtx_head
;
3051 max_segs
= tcp_tso_segs(sk
, tcp_current_mss(sk
));
3052 skb_rbtree_walk_from(skb
) {
3056 if (tcp_pacing_check(sk
))
3059 /* we could do better than to assign each time */
3061 tp
->retransmit_skb_hint
= skb
;
3063 segs
= tp
->snd_cwnd
- tcp_packets_in_flight(tp
);
3066 sacked
= TCP_SKB_CB(skb
)->sacked
;
3067 /* In case tcp_shift_skb_data() have aggregated large skbs,
3068 * we need to make sure not sending too bigs TSO packets
3070 segs
= min_t(int, segs
, max_segs
);
3072 if (tp
->retrans_out
>= tp
->lost_out
) {
3074 } else if (!(sacked
& TCPCB_LOST
)) {
3075 if (!hole
&& !(sacked
& (TCPCB_SACKED_RETRANS
|TCPCB_SACKED_ACKED
)))
3080 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
3081 mib_idx
= LINUX_MIB_TCPFASTRETRANS
;
3083 mib_idx
= LINUX_MIB_TCPSLOWSTARTRETRANS
;
3086 if (sacked
& (TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))
3089 if (tcp_small_queue_check(sk
, skb
, 1))
3092 if (tcp_retransmit_skb(sk
, skb
, segs
))
3095 NET_ADD_STATS(sock_net(sk
), mib_idx
, tcp_skb_pcount(skb
));
3097 if (tcp_in_cwnd_reduction(sk
))
3098 tp
->prr_out
+= tcp_skb_pcount(skb
);
3100 if (skb
== rtx_head
&&
3101 icsk
->icsk_pending
!= ICSK_TIME_REO_TIMEOUT
)
3102 tcp_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3103 inet_csk(sk
)->icsk_rto
,
3109 /* We allow to exceed memory limits for FIN packets to expedite
3110 * connection tear down and (memory) recovery.
3111 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3112 * or even be forced to close flow without any FIN.
3113 * In general, we want to allow one skb per socket to avoid hangs
3114 * with edge trigger epoll()
3116 void sk_forced_mem_schedule(struct sock
*sk
, int size
)
3120 if (size
<= sk
->sk_forward_alloc
)
3122 amt
= sk_mem_pages(size
);
3123 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
3124 sk_memory_allocated_add(sk
, amt
);
3126 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
3127 mem_cgroup_charge_skmem(sk
->sk_memcg
, amt
);
3130 /* Send a FIN. The caller locks the socket for us.
3131 * We should try to send a FIN packet really hard, but eventually give up.
3133 void tcp_send_fin(struct sock
*sk
)
3135 struct sk_buff
*skb
, *tskb
, *tail
= tcp_write_queue_tail(sk
);
3136 struct tcp_sock
*tp
= tcp_sk(sk
);
3138 /* Optimization, tack on the FIN if we have one skb in write queue and
3139 * this skb was not yet sent, or we are under memory pressure.
3140 * Note: in the latter case, FIN packet will be sent after a timeout,
3141 * as TCP stack thinks it has already been transmitted.
3144 if (!tskb
&& tcp_under_memory_pressure(sk
))
3145 tskb
= skb_rb_last(&sk
->tcp_rtx_queue
);
3148 TCP_SKB_CB(tskb
)->tcp_flags
|= TCPHDR_FIN
;
3149 TCP_SKB_CB(tskb
)->end_seq
++;
3152 /* This means tskb was already sent.
3153 * Pretend we included the FIN on previous transmit.
3154 * We need to set tp->snd_nxt to the value it would have
3155 * if FIN had been sent. This is because retransmit path
3156 * does not change tp->snd_nxt.
3158 WRITE_ONCE(tp
->snd_nxt
, tp
->snd_nxt
+ 1);
3162 skb
= alloc_skb_fclone(MAX_TCP_HEADER
, sk
->sk_allocation
);
3166 INIT_LIST_HEAD(&skb
->tcp_tsorted_anchor
);
3167 skb_reserve(skb
, MAX_TCP_HEADER
);
3168 sk_forced_mem_schedule(sk
, skb
->truesize
);
3169 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3170 tcp_init_nondata_skb(skb
, tp
->write_seq
,
3171 TCPHDR_ACK
| TCPHDR_FIN
);
3172 tcp_queue_skb(sk
, skb
);
3174 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
), TCP_NAGLE_OFF
);
3177 /* We get here when a process closes a file descriptor (either due to
3178 * an explicit close() or as a byproduct of exit()'ing) and there
3179 * was unread data in the receive queue. This behavior is recommended
3180 * by RFC 2525, section 2.17. -DaveM
3182 void tcp_send_active_reset(struct sock
*sk
, gfp_t priority
)
3184 struct sk_buff
*skb
;
3186 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTRSTS
);
3188 /* NOTE: No TCP options attached and we never retransmit this. */
3189 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
3191 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
3195 /* Reserve space for headers and prepare control bits. */
3196 skb_reserve(skb
, MAX_TCP_HEADER
);
3197 tcp_init_nondata_skb(skb
, tcp_acceptable_seq(sk
),
3198 TCPHDR_ACK
| TCPHDR_RST
);
3199 tcp_mstamp_refresh(tcp_sk(sk
));
3201 if (tcp_transmit_skb(sk
, skb
, 0, priority
))
3202 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
3204 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3205 * skb here is different to the troublesome skb, so use NULL
3207 trace_tcp_send_reset(sk
, NULL
);
3210 /* Send a crossed SYN-ACK during socket establishment.
3211 * WARNING: This routine must only be called when we have already sent
3212 * a SYN packet that crossed the incoming SYN that caused this routine
3213 * to get called. If this assumption fails then the initial rcv_wnd
3214 * and rcv_wscale values will not be correct.
3216 int tcp_send_synack(struct sock
*sk
)
3218 struct sk_buff
*skb
;
3220 skb
= tcp_rtx_queue_head(sk
);
3221 if (!skb
|| !(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
3222 pr_err("%s: wrong queue state\n", __func__
);
3225 if (!(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_ACK
)) {
3226 if (skb_cloned(skb
)) {
3227 struct sk_buff
*nskb
;
3229 tcp_skb_tsorted_save(skb
) {
3230 nskb
= skb_copy(skb
, GFP_ATOMIC
);
3231 } tcp_skb_tsorted_restore(skb
);
3234 INIT_LIST_HEAD(&nskb
->tcp_tsorted_anchor
);
3235 tcp_rtx_queue_unlink_and_free(skb
, sk
);
3236 __skb_header_release(nskb
);
3237 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, nskb
);
3238 sk_wmem_queued_add(sk
, nskb
->truesize
);
3239 sk_mem_charge(sk
, nskb
->truesize
);
3243 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ACK
;
3244 tcp_ecn_send_synack(sk
, skb
);
3246 return tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3250 * tcp_make_synack - Prepare a SYN-ACK.
3251 * sk: listener socket
3252 * dst: dst entry attached to the SYNACK
3253 * req: request_sock pointer
3255 * Allocate one skb and build a SYNACK packet.
3256 * @dst is consumed : Caller should not use it again.
3258 struct sk_buff
*tcp_make_synack(const struct sock
*sk
, struct dst_entry
*dst
,
3259 struct request_sock
*req
,
3260 struct tcp_fastopen_cookie
*foc
,
3261 enum tcp_synack_type synack_type
)
3263 struct inet_request_sock
*ireq
= inet_rsk(req
);
3264 const struct tcp_sock
*tp
= tcp_sk(sk
);
3265 struct tcp_md5sig_key
*md5
= NULL
;
3266 struct tcp_out_options opts
;
3267 struct sk_buff
*skb
;
3268 int tcp_header_size
;
3273 skb
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
3274 if (unlikely(!skb
)) {
3278 /* Reserve space for headers. */
3279 skb_reserve(skb
, MAX_TCP_HEADER
);
3281 switch (synack_type
) {
3282 case TCP_SYNACK_NORMAL
:
3283 skb_set_owner_w(skb
, req_to_sk(req
));
3285 case TCP_SYNACK_COOKIE
:
3286 /* Under synflood, we do not attach skb to a socket,
3287 * to avoid false sharing.
3290 case TCP_SYNACK_FASTOPEN
:
3291 /* sk is a const pointer, because we want to express multiple
3292 * cpu might call us concurrently.
3293 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3295 skb_set_owner_w(skb
, (struct sock
*)sk
);
3298 skb_dst_set(skb
, dst
);
3300 mss
= tcp_mss_clamp(tp
, dst_metric_advmss(dst
));
3302 memset(&opts
, 0, sizeof(opts
));
3303 now
= tcp_clock_ns();
3304 #ifdef CONFIG_SYN_COOKIES
3305 if (unlikely(req
->cookie_ts
))
3306 skb
->skb_mstamp_ns
= cookie_init_timestamp(req
, now
);
3310 skb
->skb_mstamp_ns
= now
;
3311 if (!tcp_rsk(req
)->snt_synack
) /* Timestamp first SYNACK */
3312 tcp_rsk(req
)->snt_synack
= tcp_skb_timestamp_us(skb
);
3315 #ifdef CONFIG_TCP_MD5SIG
3317 md5
= tcp_rsk(req
)->af_specific
->req_md5_lookup(sk
, req_to_sk(req
));
3319 skb_set_hash(skb
, tcp_rsk(req
)->txhash
, PKT_HASH_TYPE_L4
);
3320 tcp_header_size
= tcp_synack_options(sk
, req
, mss
, skb
, &opts
, md5
,
3323 skb_push(skb
, tcp_header_size
);
3324 skb_reset_transport_header(skb
);
3326 th
= (struct tcphdr
*)skb
->data
;
3327 memset(th
, 0, sizeof(struct tcphdr
));
3330 tcp_ecn_make_synack(req
, th
);
3331 th
->source
= htons(ireq
->ir_num
);
3332 th
->dest
= ireq
->ir_rmt_port
;
3333 skb
->mark
= ireq
->ir_mark
;
3334 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3335 th
->seq
= htonl(tcp_rsk(req
)->snt_isn
);
3336 /* XXX data is queued and acked as is. No buffer/window check */
3337 th
->ack_seq
= htonl(tcp_rsk(req
)->rcv_nxt
);
3339 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3340 th
->window
= htons(min(req
->rsk_rcv_wnd
, 65535U));
3341 tcp_options_write((__be32
*)(th
+ 1), NULL
, &opts
);
3342 th
->doff
= (tcp_header_size
>> 2);
3343 __TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
);
3345 #ifdef CONFIG_TCP_MD5SIG
3346 /* Okay, we have all we need - do the md5 hash if needed */
3348 tcp_rsk(req
)->af_specific
->calc_md5_hash(opts
.hash_location
,
3349 md5
, req_to_sk(req
), skb
);
3353 skb
->skb_mstamp_ns
= now
;
3354 tcp_add_tx_delay(skb
, tp
);
3358 EXPORT_SYMBOL(tcp_make_synack
);
3360 static void tcp_ca_dst_init(struct sock
*sk
, const struct dst_entry
*dst
)
3362 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3363 const struct tcp_congestion_ops
*ca
;
3364 u32 ca_key
= dst_metric(dst
, RTAX_CC_ALGO
);
3366 if (ca_key
== TCP_CA_UNSPEC
)
3370 ca
= tcp_ca_find_key(ca_key
);
3371 if (likely(ca
&& try_module_get(ca
->owner
))) {
3372 module_put(icsk
->icsk_ca_ops
->owner
);
3373 icsk
->icsk_ca_dst_locked
= tcp_ca_dst_locked(dst
);
3374 icsk
->icsk_ca_ops
= ca
;
3379 /* Do all connect socket setups that can be done AF independent. */
3380 static void tcp_connect_init(struct sock
*sk
)
3382 const struct dst_entry
*dst
= __sk_dst_get(sk
);
3383 struct tcp_sock
*tp
= tcp_sk(sk
);
3387 /* We'll fix this up when we get a response from the other end.
3388 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3390 tp
->tcp_header_len
= sizeof(struct tcphdr
);
3391 if (sock_net(sk
)->ipv4
.sysctl_tcp_timestamps
)
3392 tp
->tcp_header_len
+= TCPOLEN_TSTAMP_ALIGNED
;
3394 #ifdef CONFIG_TCP_MD5SIG
3395 if (tp
->af_specific
->md5_lookup(sk
, sk
))
3396 tp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
3399 /* If user gave his TCP_MAXSEG, record it to clamp */
3400 if (tp
->rx_opt
.user_mss
)
3401 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
3404 tcp_sync_mss(sk
, dst_mtu(dst
));
3406 tcp_ca_dst_init(sk
, dst
);
3408 if (!tp
->window_clamp
)
3409 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
3410 tp
->advmss
= tcp_mss_clamp(tp
, dst_metric_advmss(dst
));
3412 tcp_initialize_rcv_mss(sk
);
3414 /* limit the window selection if the user enforce a smaller rx buffer */
3415 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
&&
3416 (tp
->window_clamp
> tcp_full_space(sk
) || tp
->window_clamp
== 0))
3417 tp
->window_clamp
= tcp_full_space(sk
);
3419 rcv_wnd
= tcp_rwnd_init_bpf(sk
);
3421 rcv_wnd
= dst_metric(dst
, RTAX_INITRWND
);
3423 tcp_select_initial_window(sk
, tcp_full_space(sk
),
3424 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
3427 sock_net(sk
)->ipv4
.sysctl_tcp_window_scaling
,
3431 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
3432 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
3435 sock_reset_flag(sk
, SOCK_DONE
);
3438 tcp_write_queue_purge(sk
);
3439 tp
->snd_una
= tp
->write_seq
;
3440 tp
->snd_sml
= tp
->write_seq
;
3441 tp
->snd_up
= tp
->write_seq
;
3442 WRITE_ONCE(tp
->snd_nxt
, tp
->write_seq
);
3444 if (likely(!tp
->repair
))
3447 tp
->rcv_tstamp
= tcp_jiffies32
;
3448 tp
->rcv_wup
= tp
->rcv_nxt
;
3449 WRITE_ONCE(tp
->copied_seq
, tp
->rcv_nxt
);
3451 inet_csk(sk
)->icsk_rto
= tcp_timeout_init(sk
);
3452 inet_csk(sk
)->icsk_retransmits
= 0;
3453 tcp_clear_retrans(tp
);
3456 static void tcp_connect_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
3458 struct tcp_sock
*tp
= tcp_sk(sk
);
3459 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
3461 tcb
->end_seq
+= skb
->len
;
3462 __skb_header_release(skb
);
3463 sk_wmem_queued_add(sk
, skb
->truesize
);
3464 sk_mem_charge(sk
, skb
->truesize
);
3465 WRITE_ONCE(tp
->write_seq
, tcb
->end_seq
);
3466 tp
->packets_out
+= tcp_skb_pcount(skb
);
3469 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3470 * queue a data-only packet after the regular SYN, such that regular SYNs
3471 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3472 * only the SYN sequence, the data are retransmitted in the first ACK.
3473 * If cookie is not cached or other error occurs, falls back to send a
3474 * regular SYN with Fast Open cookie request option.
3476 static int tcp_send_syn_data(struct sock
*sk
, struct sk_buff
*syn
)
3478 struct tcp_sock
*tp
= tcp_sk(sk
);
3479 struct tcp_fastopen_request
*fo
= tp
->fastopen_req
;
3481 struct sk_buff
*syn_data
;
3483 tp
->rx_opt
.mss_clamp
= tp
->advmss
; /* If MSS is not cached */
3484 if (!tcp_fastopen_cookie_check(sk
, &tp
->rx_opt
.mss_clamp
, &fo
->cookie
))
3487 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3488 * user-MSS. Reserve maximum option space for middleboxes that add
3489 * private TCP options. The cost is reduced data space in SYN :(
3491 tp
->rx_opt
.mss_clamp
= tcp_mss_clamp(tp
, tp
->rx_opt
.mss_clamp
);
3493 space
= __tcp_mtu_to_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
) -
3494 MAX_TCP_OPTION_SPACE
;
3496 space
= min_t(size_t, space
, fo
->size
);
3498 /* limit to order-0 allocations */
3499 space
= min_t(size_t, space
, SKB_MAX_HEAD(MAX_TCP_HEADER
));
3501 syn_data
= sk_stream_alloc_skb(sk
, space
, sk
->sk_allocation
, false);
3504 syn_data
->ip_summed
= CHECKSUM_PARTIAL
;
3505 memcpy(syn_data
->cb
, syn
->cb
, sizeof(syn
->cb
));
3507 int copied
= copy_from_iter(skb_put(syn_data
, space
), space
,
3508 &fo
->data
->msg_iter
);
3509 if (unlikely(!copied
)) {
3510 tcp_skb_tsorted_anchor_cleanup(syn_data
);
3511 kfree_skb(syn_data
);
3514 if (copied
!= space
) {
3515 skb_trim(syn_data
, copied
);
3518 skb_zcopy_set(syn_data
, fo
->uarg
, NULL
);
3520 /* No more data pending in inet_wait_for_connect() */
3521 if (space
== fo
->size
)
3525 tcp_connect_queue_skb(sk
, syn_data
);
3527 tcp_chrono_start(sk
, TCP_CHRONO_BUSY
);
3529 err
= tcp_transmit_skb(sk
, syn_data
, 1, sk
->sk_allocation
);
3531 syn
->skb_mstamp_ns
= syn_data
->skb_mstamp_ns
;
3533 /* Now full SYN+DATA was cloned and sent (or not),
3534 * remove the SYN from the original skb (syn_data)
3535 * we keep in write queue in case of a retransmit, as we
3536 * also have the SYN packet (with no data) in the same queue.
3538 TCP_SKB_CB(syn_data
)->seq
++;
3539 TCP_SKB_CB(syn_data
)->tcp_flags
= TCPHDR_ACK
| TCPHDR_PSH
;
3541 tp
->syn_data
= (fo
->copied
> 0);
3542 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, syn_data
);
3543 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
);
3547 /* data was not sent, put it in write_queue */
3548 __skb_queue_tail(&sk
->sk_write_queue
, syn_data
);
3549 tp
->packets_out
-= tcp_skb_pcount(syn_data
);
3552 /* Send a regular SYN with Fast Open cookie request option */
3553 if (fo
->cookie
.len
> 0)
3555 err
= tcp_transmit_skb(sk
, syn
, 1, sk
->sk_allocation
);
3557 tp
->syn_fastopen
= 0;
3559 fo
->cookie
.len
= -1; /* Exclude Fast Open option for SYN retries */
3563 /* Build a SYN and send it off. */
3564 int tcp_connect(struct sock
*sk
)
3566 struct tcp_sock
*tp
= tcp_sk(sk
);
3567 struct sk_buff
*buff
;
3570 tcp_call_bpf(sk
, BPF_SOCK_OPS_TCP_CONNECT_CB
, 0, NULL
);
3572 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
3573 return -EHOSTUNREACH
; /* Routing failure or similar. */
3575 tcp_connect_init(sk
);
3577 if (unlikely(tp
->repair
)) {
3578 tcp_finish_connect(sk
, NULL
);
3582 buff
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
, true);
3583 if (unlikely(!buff
))
3586 tcp_init_nondata_skb(buff
, tp
->write_seq
++, TCPHDR_SYN
);
3587 tcp_mstamp_refresh(tp
);
3588 tp
->retrans_stamp
= tcp_time_stamp(tp
);
3589 tcp_connect_queue_skb(sk
, buff
);
3590 tcp_ecn_send_syn(sk
, buff
);
3591 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, buff
);
3593 /* Send off SYN; include data in Fast Open. */
3594 err
= tp
->fastopen_req
? tcp_send_syn_data(sk
, buff
) :
3595 tcp_transmit_skb(sk
, buff
, 1, sk
->sk_allocation
);
3596 if (err
== -ECONNREFUSED
)
3599 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3600 * in order to make this packet get counted in tcpOutSegs.
3602 WRITE_ONCE(tp
->snd_nxt
, tp
->write_seq
);
3603 tp
->pushed_seq
= tp
->write_seq
;
3604 buff
= tcp_send_head(sk
);
3605 if (unlikely(buff
)) {
3606 WRITE_ONCE(tp
->snd_nxt
, TCP_SKB_CB(buff
)->seq
);
3607 tp
->pushed_seq
= TCP_SKB_CB(buff
)->seq
;
3609 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ACTIVEOPENS
);
3611 /* Timer for repeating the SYN until an answer. */
3612 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3613 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3616 EXPORT_SYMBOL(tcp_connect
);
3618 /* Send out a delayed ack, the caller does the policy checking
3619 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3622 void tcp_send_delayed_ack(struct sock
*sk
)
3624 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3625 int ato
= icsk
->icsk_ack
.ato
;
3626 unsigned long timeout
;
3628 if (ato
> TCP_DELACK_MIN
) {
3629 const struct tcp_sock
*tp
= tcp_sk(sk
);
3630 int max_ato
= HZ
/ 2;
3632 if (inet_csk_in_pingpong_mode(sk
) ||
3633 (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
))
3634 max_ato
= TCP_DELACK_MAX
;
3636 /* Slow path, intersegment interval is "high". */
3638 /* If some rtt estimate is known, use it to bound delayed ack.
3639 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3643 int rtt
= max_t(int, usecs_to_jiffies(tp
->srtt_us
>> 3),
3650 ato
= min(ato
, max_ato
);
3653 /* Stay within the limit we were given */
3654 timeout
= jiffies
+ ato
;
3656 /* Use new timeout only if there wasn't a older one earlier. */
3657 if (icsk
->icsk_ack
.pending
& ICSK_ACK_TIMER
) {
3658 /* If delack timer was blocked or is about to expire,
3661 if (icsk
->icsk_ack
.blocked
||
3662 time_before_eq(icsk
->icsk_ack
.timeout
, jiffies
+ (ato
>> 2))) {
3667 if (!time_before(timeout
, icsk
->icsk_ack
.timeout
))
3668 timeout
= icsk
->icsk_ack
.timeout
;
3670 icsk
->icsk_ack
.pending
|= ICSK_ACK_SCHED
| ICSK_ACK_TIMER
;
3671 icsk
->icsk_ack
.timeout
= timeout
;
3672 sk_reset_timer(sk
, &icsk
->icsk_delack_timer
, timeout
);
3675 /* This routine sends an ack and also updates the window. */
3676 void __tcp_send_ack(struct sock
*sk
, u32 rcv_nxt
)
3678 struct sk_buff
*buff
;
3680 /* If we have been reset, we may not send again. */
3681 if (sk
->sk_state
== TCP_CLOSE
)
3684 /* We are not putting this on the write queue, so
3685 * tcp_transmit_skb() will set the ownership to this
3688 buff
= alloc_skb(MAX_TCP_HEADER
,
3689 sk_gfp_mask(sk
, GFP_ATOMIC
| __GFP_NOWARN
));
3690 if (unlikely(!buff
)) {
3691 inet_csk_schedule_ack(sk
);
3692 inet_csk(sk
)->icsk_ack
.ato
= TCP_ATO_MIN
;
3693 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
3694 TCP_DELACK_MAX
, TCP_RTO_MAX
);
3698 /* Reserve space for headers and prepare control bits. */
3699 skb_reserve(buff
, MAX_TCP_HEADER
);
3700 tcp_init_nondata_skb(buff
, tcp_acceptable_seq(sk
), TCPHDR_ACK
);
3702 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3704 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3706 skb_set_tcp_pure_ack(buff
);
3708 /* Send it off, this clears delayed acks for us. */
3709 __tcp_transmit_skb(sk
, buff
, 0, (__force gfp_t
)0, rcv_nxt
);
3711 EXPORT_SYMBOL_GPL(__tcp_send_ack
);
3713 void tcp_send_ack(struct sock
*sk
)
3715 __tcp_send_ack(sk
, tcp_sk(sk
)->rcv_nxt
);
3718 /* This routine sends a packet with an out of date sequence
3719 * number. It assumes the other end will try to ack it.
3721 * Question: what should we make while urgent mode?
3722 * 4.4BSD forces sending single byte of data. We cannot send
3723 * out of window data, because we have SND.NXT==SND.MAX...
3725 * Current solution: to send TWO zero-length segments in urgent mode:
3726 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3727 * out-of-date with SND.UNA-1 to probe window.
3729 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
, int mib
)
3731 struct tcp_sock
*tp
= tcp_sk(sk
);
3732 struct sk_buff
*skb
;
3734 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3735 skb
= alloc_skb(MAX_TCP_HEADER
,
3736 sk_gfp_mask(sk
, GFP_ATOMIC
| __GFP_NOWARN
));
3740 /* Reserve space for headers and set control bits. */
3741 skb_reserve(skb
, MAX_TCP_HEADER
);
3742 /* Use a previous sequence. This should cause the other
3743 * end to send an ack. Don't queue or clone SKB, just
3746 tcp_init_nondata_skb(skb
, tp
->snd_una
- !urgent
, TCPHDR_ACK
);
3747 NET_INC_STATS(sock_net(sk
), mib
);
3748 return tcp_transmit_skb(sk
, skb
, 0, (__force gfp_t
)0);
3751 /* Called from setsockopt( ... TCP_REPAIR ) */
3752 void tcp_send_window_probe(struct sock
*sk
)
3754 if (sk
->sk_state
== TCP_ESTABLISHED
) {
3755 tcp_sk(sk
)->snd_wl1
= tcp_sk(sk
)->rcv_nxt
- 1;
3756 tcp_mstamp_refresh(tcp_sk(sk
));
3757 tcp_xmit_probe_skb(sk
, 0, LINUX_MIB_TCPWINPROBE
);
3761 /* Initiate keepalive or window probe from timer. */
3762 int tcp_write_wakeup(struct sock
*sk
, int mib
)
3764 struct tcp_sock
*tp
= tcp_sk(sk
);
3765 struct sk_buff
*skb
;
3767 if (sk
->sk_state
== TCP_CLOSE
)
3770 skb
= tcp_send_head(sk
);
3771 if (skb
&& before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))) {
3773 unsigned int mss
= tcp_current_mss(sk
);
3774 unsigned int seg_size
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
3776 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
3777 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
3779 /* We are probing the opening of a window
3780 * but the window size is != 0
3781 * must have been a result SWS avoidance ( sender )
3783 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
3785 seg_size
= min(seg_size
, mss
);
3786 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3787 if (tcp_fragment(sk
, TCP_FRAG_IN_WRITE_QUEUE
,
3788 skb
, seg_size
, mss
, GFP_ATOMIC
))
3790 } else if (!tcp_skb_pcount(skb
))
3791 tcp_set_skb_tso_segs(skb
, mss
);
3793 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3794 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3796 tcp_event_new_data_sent(sk
, skb
);
3799 if (between(tp
->snd_up
, tp
->snd_una
+ 1, tp
->snd_una
+ 0xFFFF))
3800 tcp_xmit_probe_skb(sk
, 1, mib
);
3801 return tcp_xmit_probe_skb(sk
, 0, mib
);
3805 /* A window probe timeout has occurred. If window is not closed send
3806 * a partial packet else a zero probe.
3808 void tcp_send_probe0(struct sock
*sk
)
3810 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3811 struct tcp_sock
*tp
= tcp_sk(sk
);
3812 struct net
*net
= sock_net(sk
);
3813 unsigned long timeout
;
3816 err
= tcp_write_wakeup(sk
, LINUX_MIB_TCPWINPROBE
);
3818 if (tp
->packets_out
|| tcp_write_queue_empty(sk
)) {
3819 /* Cancel probe timer, if it is not required. */
3820 icsk
->icsk_probes_out
= 0;
3821 icsk
->icsk_backoff
= 0;
3825 icsk
->icsk_probes_out
++;
3827 if (icsk
->icsk_backoff
< net
->ipv4
.sysctl_tcp_retries2
)
3828 icsk
->icsk_backoff
++;
3829 timeout
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3831 /* If packet was not sent due to local congestion,
3832 * Let senders fight for local resources conservatively.
3834 timeout
= TCP_RESOURCE_PROBE_INTERVAL
;
3836 tcp_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
, timeout
, TCP_RTO_MAX
, NULL
);
3839 int tcp_rtx_synack(const struct sock
*sk
, struct request_sock
*req
)
3841 const struct tcp_request_sock_ops
*af_ops
= tcp_rsk(req
)->af_specific
;
3845 tcp_rsk(req
)->txhash
= net_tx_rndhash();
3846 res
= af_ops
->send_synack(sk
, NULL
, &fl
, req
, NULL
, TCP_SYNACK_NORMAL
);
3848 __TCP_INC_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
3849 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
3850 if (unlikely(tcp_passive_fastopen(sk
)))
3851 tcp_sk(sk
)->total_retrans
++;
3852 trace_tcp_retransmit_synack(sk
, req
);
3856 EXPORT_SYMBOL(tcp_rtx_synack
);