1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <trace/events/kvm.h>
23 #include <kvm/arm_pmu.h>
24 #include <kvm/arm_psci.h>
26 #define CREATE_TRACE_POINTS
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_emulate.h>
40 #include <asm/kvm_coproc.h>
41 #include <asm/sections.h>
43 #include <kvm/arm_hypercalls.h>
44 #include <kvm/arm_pmu.h>
45 #include <kvm/arm_psci.h>
48 __asm__(".arch_extension virt");
51 DEFINE_PER_CPU(kvm_host_data_t
, kvm_host_data
);
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page
);
54 /* Per-CPU variable containing the currently running vcpu. */
55 static DEFINE_PER_CPU(struct kvm_vcpu
*, kvm_arm_running_vcpu
);
57 /* The VMID used in the VTTBR */
58 static atomic64_t kvm_vmid_gen
= ATOMIC64_INIT(1);
59 static u32 kvm_next_vmid
;
60 static DEFINE_SPINLOCK(kvm_vmid_lock
);
62 static bool vgic_present
;
64 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled
);
66 static void kvm_arm_set_running_vcpu(struct kvm_vcpu
*vcpu
)
68 __this_cpu_write(kvm_arm_running_vcpu
, vcpu
);
71 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use
);
74 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
75 * Must be called from non-preemptible context
77 struct kvm_vcpu
*kvm_arm_get_running_vcpu(void)
79 return __this_cpu_read(kvm_arm_running_vcpu
);
83 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
85 struct kvm_vcpu
* __percpu
*kvm_get_running_vcpus(void)
87 return &kvm_arm_running_vcpu
;
90 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
92 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
95 int kvm_arch_hardware_setup(void)
100 int kvm_arch_check_processor_compat(void)
105 int kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
106 struct kvm_enable_cap
*cap
)
114 case KVM_CAP_ARM_NISV_TO_USER
:
116 kvm
->arch
.return_nisv_io_abort_to_user
= true;
127 * kvm_arch_init_vm - initializes a VM data structure
128 * @kvm: pointer to the KVM struct
130 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
134 ret
= kvm_arm_setup_stage2(kvm
, type
);
138 kvm
->arch
.last_vcpu_ran
= alloc_percpu(typeof(*kvm
->arch
.last_vcpu_ran
));
139 if (!kvm
->arch
.last_vcpu_ran
)
142 for_each_possible_cpu(cpu
)
143 *per_cpu_ptr(kvm
->arch
.last_vcpu_ran
, cpu
) = -1;
145 ret
= kvm_alloc_stage2_pgd(kvm
);
149 ret
= create_hyp_mappings(kvm
, kvm
+ 1, PAGE_HYP
);
151 goto out_free_stage2_pgd
;
153 kvm_vgic_early_init(kvm
);
155 /* Mark the initial VMID generation invalid */
156 kvm
->arch
.vmid
.vmid_gen
= 0;
158 /* The maximum number of VCPUs is limited by the host's GIC model */
159 kvm
->arch
.max_vcpus
= vgic_present
?
160 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS
;
164 kvm_free_stage2_pgd(kvm
);
166 free_percpu(kvm
->arch
.last_vcpu_ran
);
167 kvm
->arch
.last_vcpu_ran
= NULL
;
171 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu
*vcpu
)
176 vm_fault_t
kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
178 return VM_FAULT_SIGBUS
;
183 * kvm_arch_destroy_vm - destroy the VM data structure
184 * @kvm: pointer to the KVM struct
186 void kvm_arch_destroy_vm(struct kvm
*kvm
)
190 kvm_vgic_destroy(kvm
);
192 free_percpu(kvm
->arch
.last_vcpu_ran
);
193 kvm
->arch
.last_vcpu_ran
= NULL
;
195 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
197 kvm_arch_vcpu_free(kvm
->vcpus
[i
]);
198 kvm
->vcpus
[i
] = NULL
;
201 atomic_set(&kvm
->online_vcpus
, 0);
204 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
208 case KVM_CAP_IRQCHIP
:
211 case KVM_CAP_IOEVENTFD
:
212 case KVM_CAP_DEVICE_CTRL
:
213 case KVM_CAP_USER_MEMORY
:
214 case KVM_CAP_SYNC_MMU
:
215 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
216 case KVM_CAP_ONE_REG
:
217 case KVM_CAP_ARM_PSCI
:
218 case KVM_CAP_ARM_PSCI_0_2
:
219 case KVM_CAP_READONLY_MEM
:
220 case KVM_CAP_MP_STATE
:
221 case KVM_CAP_IMMEDIATE_EXIT
:
222 case KVM_CAP_VCPU_EVENTS
:
223 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2
:
224 case KVM_CAP_ARM_NISV_TO_USER
:
225 case KVM_CAP_ARM_INJECT_EXT_DABT
:
228 case KVM_CAP_ARM_SET_DEVICE_ADDR
:
231 case KVM_CAP_NR_VCPUS
:
232 r
= num_online_cpus();
234 case KVM_CAP_MAX_VCPUS
:
237 case KVM_CAP_MAX_VCPU_ID
:
240 case KVM_CAP_MSI_DEVID
:
244 r
= kvm
->arch
.vgic
.msis_require_devid
;
246 case KVM_CAP_ARM_USER_IRQ
:
248 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
249 * (bump this number if adding more devices)
254 r
= kvm_arch_vm_ioctl_check_extension(kvm
, ext
);
260 long kvm_arch_dev_ioctl(struct file
*filp
,
261 unsigned int ioctl
, unsigned long arg
)
266 struct kvm
*kvm_arch_alloc_vm(void)
269 return kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
271 return vzalloc(sizeof(struct kvm
));
274 void kvm_arch_free_vm(struct kvm
*kvm
)
282 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
, unsigned int id
)
285 struct kvm_vcpu
*vcpu
;
287 if (irqchip_in_kernel(kvm
) && vgic_initialized(kvm
)) {
292 if (id
>= kvm
->arch
.max_vcpus
) {
297 vcpu
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
303 err
= kvm_vcpu_init(vcpu
, kvm
, id
);
307 err
= create_hyp_mappings(vcpu
, vcpu
+ 1, PAGE_HYP
);
313 kvm_vcpu_uninit(vcpu
);
315 kmem_cache_free(kvm_vcpu_cache
, vcpu
);
320 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
324 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
326 if (vcpu
->arch
.has_run_once
&& unlikely(!irqchip_in_kernel(vcpu
->kvm
)))
327 static_branch_dec(&userspace_irqchip_in_use
);
329 kvm_mmu_free_memory_caches(vcpu
);
330 kvm_timer_vcpu_terminate(vcpu
);
331 kvm_pmu_vcpu_destroy(vcpu
);
332 kvm_vcpu_uninit(vcpu
);
333 kmem_cache_free(kvm_vcpu_cache
, vcpu
);
336 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
338 kvm_arch_vcpu_free(vcpu
);
341 int kvm_cpu_has_pending_timer(struct kvm_vcpu
*vcpu
)
343 return kvm_timer_is_pending(vcpu
);
346 void kvm_arch_vcpu_blocking(struct kvm_vcpu
*vcpu
)
349 * If we're about to block (most likely because we've just hit a
350 * WFI), we need to sync back the state of the GIC CPU interface
351 * so that we have the latest PMR and group enables. This ensures
352 * that kvm_arch_vcpu_runnable has up-to-date data to decide
353 * whether we have pending interrupts.
355 * For the same reason, we want to tell GICv4 that we need
356 * doorbells to be signalled, should an interrupt become pending.
359 kvm_vgic_vmcr_sync(vcpu
);
360 vgic_v4_put(vcpu
, true);
364 void kvm_arch_vcpu_unblocking(struct kvm_vcpu
*vcpu
)
371 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
373 /* Force users to call KVM_ARM_VCPU_INIT */
374 vcpu
->arch
.target
= -1;
375 bitmap_zero(vcpu
->arch
.features
, KVM_VCPU_MAX_FEATURES
);
377 /* Set up the timer */
378 kvm_timer_vcpu_init(vcpu
);
380 kvm_pmu_vcpu_init(vcpu
);
382 kvm_arm_reset_debug_ptr(vcpu
);
384 kvm_arm_pvtime_vcpu_init(&vcpu
->arch
);
386 return kvm_vgic_vcpu_init(vcpu
);
389 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
392 kvm_host_data_t
*cpu_data
;
394 last_ran
= this_cpu_ptr(vcpu
->kvm
->arch
.last_vcpu_ran
);
395 cpu_data
= this_cpu_ptr(&kvm_host_data
);
398 * We might get preempted before the vCPU actually runs, but
399 * over-invalidation doesn't affect correctness.
401 if (*last_ran
!= vcpu
->vcpu_id
) {
402 kvm_call_hyp(__kvm_tlb_flush_local_vmid
, vcpu
);
403 *last_ran
= vcpu
->vcpu_id
;
407 vcpu
->arch
.host_cpu_context
= &cpu_data
->host_ctxt
;
409 kvm_arm_set_running_vcpu(vcpu
);
411 kvm_timer_vcpu_load(vcpu
);
412 kvm_vcpu_load_sysregs(vcpu
);
413 kvm_arch_vcpu_load_fp(vcpu
);
414 kvm_vcpu_pmu_restore_guest(vcpu
);
415 if (kvm_arm_is_pvtime_enabled(&vcpu
->arch
))
416 kvm_make_request(KVM_REQ_RECORD_STEAL
, vcpu
);
418 if (single_task_running())
419 vcpu_clear_wfx_traps(vcpu
);
421 vcpu_set_wfx_traps(vcpu
);
423 vcpu_ptrauth_setup_lazy(vcpu
);
426 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
428 kvm_arch_vcpu_put_fp(vcpu
);
429 kvm_vcpu_put_sysregs(vcpu
);
430 kvm_timer_vcpu_put(vcpu
);
432 kvm_vcpu_pmu_restore_host(vcpu
);
436 kvm_arm_set_running_vcpu(NULL
);
439 static void vcpu_power_off(struct kvm_vcpu
*vcpu
)
441 vcpu
->arch
.power_off
= true;
442 kvm_make_request(KVM_REQ_SLEEP
, vcpu
);
446 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
447 struct kvm_mp_state
*mp_state
)
449 if (vcpu
->arch
.power_off
)
450 mp_state
->mp_state
= KVM_MP_STATE_STOPPED
;
452 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
457 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
458 struct kvm_mp_state
*mp_state
)
462 switch (mp_state
->mp_state
) {
463 case KVM_MP_STATE_RUNNABLE
:
464 vcpu
->arch
.power_off
= false;
466 case KVM_MP_STATE_STOPPED
:
467 vcpu_power_off(vcpu
);
477 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
478 * @v: The VCPU pointer
480 * If the guest CPU is not waiting for interrupts or an interrupt line is
481 * asserted, the CPU is by definition runnable.
483 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*v
)
485 bool irq_lines
= *vcpu_hcr(v
) & (HCR_VI
| HCR_VF
);
486 return ((irq_lines
|| kvm_vgic_vcpu_pending_irq(v
))
487 && !v
->arch
.power_off
&& !v
->arch
.pause
);
490 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu
*vcpu
)
492 return vcpu_mode_priv(vcpu
);
495 /* Just ensure a guest exit from a particular CPU */
496 static void exit_vm_noop(void *info
)
500 void force_vm_exit(const cpumask_t
*mask
)
503 smp_call_function_many(mask
, exit_vm_noop
, NULL
, true);
508 * need_new_vmid_gen - check that the VMID is still valid
509 * @vmid: The VMID to check
511 * return true if there is a new generation of VMIDs being used
513 * The hardware supports a limited set of values with the value zero reserved
514 * for the host, so we check if an assigned value belongs to a previous
515 * generation, which which requires us to assign a new value. If we're the
516 * first to use a VMID for the new generation, we must flush necessary caches
517 * and TLBs on all CPUs.
519 static bool need_new_vmid_gen(struct kvm_vmid
*vmid
)
521 u64 current_vmid_gen
= atomic64_read(&kvm_vmid_gen
);
522 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
523 return unlikely(READ_ONCE(vmid
->vmid_gen
) != current_vmid_gen
);
527 * update_vmid - Update the vmid with a valid VMID for the current generation
528 * @kvm: The guest that struct vmid belongs to
529 * @vmid: The stage-2 VMID information struct
531 static void update_vmid(struct kvm_vmid
*vmid
)
533 if (!need_new_vmid_gen(vmid
))
536 spin_lock(&kvm_vmid_lock
);
539 * We need to re-check the vmid_gen here to ensure that if another vcpu
540 * already allocated a valid vmid for this vm, then this vcpu should
543 if (!need_new_vmid_gen(vmid
)) {
544 spin_unlock(&kvm_vmid_lock
);
548 /* First user of a new VMID generation? */
549 if (unlikely(kvm_next_vmid
== 0)) {
550 atomic64_inc(&kvm_vmid_gen
);
554 * On SMP we know no other CPUs can use this CPU's or each
555 * other's VMID after force_vm_exit returns since the
556 * kvm_vmid_lock blocks them from reentry to the guest.
558 force_vm_exit(cpu_all_mask
);
560 * Now broadcast TLB + ICACHE invalidation over the inner
561 * shareable domain to make sure all data structures are
564 kvm_call_hyp(__kvm_flush_vm_context
);
567 vmid
->vmid
= kvm_next_vmid
;
569 kvm_next_vmid
&= (1 << kvm_get_vmid_bits()) - 1;
572 WRITE_ONCE(vmid
->vmid_gen
, atomic64_read(&kvm_vmid_gen
));
574 spin_unlock(&kvm_vmid_lock
);
577 static int kvm_vcpu_first_run_init(struct kvm_vcpu
*vcpu
)
579 struct kvm
*kvm
= vcpu
->kvm
;
582 if (likely(vcpu
->arch
.has_run_once
))
585 if (!kvm_arm_vcpu_is_finalized(vcpu
))
588 vcpu
->arch
.has_run_once
= true;
590 if (likely(irqchip_in_kernel(kvm
))) {
592 * Map the VGIC hardware resources before running a vcpu the
593 * first time on this VM.
595 if (unlikely(!vgic_ready(kvm
))) {
596 ret
= kvm_vgic_map_resources(kvm
);
602 * Tell the rest of the code that there are userspace irqchip
605 static_branch_inc(&userspace_irqchip_in_use
);
608 ret
= kvm_timer_enable(vcpu
);
612 ret
= kvm_arm_pmu_v3_enable(vcpu
);
617 bool kvm_arch_intc_initialized(struct kvm
*kvm
)
619 return vgic_initialized(kvm
);
622 void kvm_arm_halt_guest(struct kvm
*kvm
)
625 struct kvm_vcpu
*vcpu
;
627 kvm_for_each_vcpu(i
, vcpu
, kvm
)
628 vcpu
->arch
.pause
= true;
629 kvm_make_all_cpus_request(kvm
, KVM_REQ_SLEEP
);
632 void kvm_arm_resume_guest(struct kvm
*kvm
)
635 struct kvm_vcpu
*vcpu
;
637 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
638 vcpu
->arch
.pause
= false;
639 swake_up_one(kvm_arch_vcpu_wq(vcpu
));
643 static void vcpu_req_sleep(struct kvm_vcpu
*vcpu
)
645 struct swait_queue_head
*wq
= kvm_arch_vcpu_wq(vcpu
);
647 swait_event_interruptible_exclusive(*wq
, ((!vcpu
->arch
.power_off
) &&
648 (!vcpu
->arch
.pause
)));
650 if (vcpu
->arch
.power_off
|| vcpu
->arch
.pause
) {
651 /* Awaken to handle a signal, request we sleep again later. */
652 kvm_make_request(KVM_REQ_SLEEP
, vcpu
);
656 * Make sure we will observe a potential reset request if we've
657 * observed a change to the power state. Pairs with the smp_wmb() in
658 * kvm_psci_vcpu_on().
663 static int kvm_vcpu_initialized(struct kvm_vcpu
*vcpu
)
665 return vcpu
->arch
.target
>= 0;
668 static void check_vcpu_requests(struct kvm_vcpu
*vcpu
)
670 if (kvm_request_pending(vcpu
)) {
671 if (kvm_check_request(KVM_REQ_SLEEP
, vcpu
))
672 vcpu_req_sleep(vcpu
);
674 if (kvm_check_request(KVM_REQ_VCPU_RESET
, vcpu
))
675 kvm_reset_vcpu(vcpu
);
678 * Clear IRQ_PENDING requests that were made to guarantee
679 * that a VCPU sees new virtual interrupts.
681 kvm_check_request(KVM_REQ_IRQ_PENDING
, vcpu
);
683 if (kvm_check_request(KVM_REQ_RECORD_STEAL
, vcpu
))
684 kvm_update_stolen_time(vcpu
);
689 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
690 * @vcpu: The VCPU pointer
691 * @run: The kvm_run structure pointer used for userspace state exchange
693 * This function is called through the VCPU_RUN ioctl called from user space. It
694 * will execute VM code in a loop until the time slice for the process is used
695 * or some emulation is needed from user space in which case the function will
696 * return with return value 0 and with the kvm_run structure filled in with the
697 * required data for the requested emulation.
699 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
703 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
706 ret
= kvm_vcpu_first_run_init(vcpu
);
710 if (run
->exit_reason
== KVM_EXIT_MMIO
) {
711 ret
= kvm_handle_mmio_return(vcpu
, vcpu
->run
);
716 if (run
->immediate_exit
)
721 kvm_sigset_activate(vcpu
);
724 run
->exit_reason
= KVM_EXIT_UNKNOWN
;
727 * Check conditions before entering the guest
731 update_vmid(&vcpu
->kvm
->arch
.vmid
);
733 check_vcpu_requests(vcpu
);
736 * Preparing the interrupts to be injected also
737 * involves poking the GIC, which must be done in a
738 * non-preemptible context.
742 kvm_pmu_flush_hwstate(vcpu
);
746 kvm_vgic_flush_hwstate(vcpu
);
749 * Exit if we have a signal pending so that we can deliver the
750 * signal to user space.
752 if (signal_pending(current
)) {
754 run
->exit_reason
= KVM_EXIT_INTR
;
758 * If we're using a userspace irqchip, then check if we need
759 * to tell a userspace irqchip about timer or PMU level
760 * changes and if so, exit to userspace (the actual level
761 * state gets updated in kvm_timer_update_run and
762 * kvm_pmu_update_run below).
764 if (static_branch_unlikely(&userspace_irqchip_in_use
)) {
765 if (kvm_timer_should_notify_user(vcpu
) ||
766 kvm_pmu_should_notify_user(vcpu
)) {
768 run
->exit_reason
= KVM_EXIT_INTR
;
773 * Ensure we set mode to IN_GUEST_MODE after we disable
774 * interrupts and before the final VCPU requests check.
775 * See the comment in kvm_vcpu_exiting_guest_mode() and
776 * Documentation/virt/kvm/vcpu-requests.rst
778 smp_store_mb(vcpu
->mode
, IN_GUEST_MODE
);
780 if (ret
<= 0 || need_new_vmid_gen(&vcpu
->kvm
->arch
.vmid
) ||
781 kvm_request_pending(vcpu
)) {
782 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
783 isb(); /* Ensure work in x_flush_hwstate is committed */
784 kvm_pmu_sync_hwstate(vcpu
);
785 if (static_branch_unlikely(&userspace_irqchip_in_use
))
786 kvm_timer_sync_hwstate(vcpu
);
787 kvm_vgic_sync_hwstate(vcpu
);
793 kvm_arm_setup_debug(vcpu
);
795 /**************************************************************
798 trace_kvm_entry(*vcpu_pc(vcpu
));
799 guest_enter_irqoff();
802 kvm_arm_vhe_guest_enter();
803 ret
= kvm_vcpu_run_vhe(vcpu
);
804 kvm_arm_vhe_guest_exit();
806 ret
= kvm_call_hyp_ret(__kvm_vcpu_run_nvhe
, vcpu
);
809 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
813 *************************************************************/
815 kvm_arm_clear_debug(vcpu
);
818 * We must sync the PMU state before the vgic state so
819 * that the vgic can properly sample the updated state of the
822 kvm_pmu_sync_hwstate(vcpu
);
825 * Sync the vgic state before syncing the timer state because
826 * the timer code needs to know if the virtual timer
827 * interrupts are active.
829 kvm_vgic_sync_hwstate(vcpu
);
832 * Sync the timer hardware state before enabling interrupts as
833 * we don't want vtimer interrupts to race with syncing the
834 * timer virtual interrupt state.
836 if (static_branch_unlikely(&userspace_irqchip_in_use
))
837 kvm_timer_sync_hwstate(vcpu
);
839 kvm_arch_vcpu_ctxsync_fp(vcpu
);
842 * We may have taken a host interrupt in HYP mode (ie
843 * while executing the guest). This interrupt is still
844 * pending, as we haven't serviced it yet!
846 * We're now back in SVC mode, with interrupts
847 * disabled. Enabling the interrupts now will have
848 * the effect of taking the interrupt again, in SVC
854 * We do local_irq_enable() before calling guest_exit() so
855 * that if a timer interrupt hits while running the guest we
856 * account that tick as being spent in the guest. We enable
857 * preemption after calling guest_exit() so that if we get
858 * preempted we make sure ticks after that is not counted as
862 trace_kvm_exit(ret
, kvm_vcpu_trap_get_class(vcpu
), *vcpu_pc(vcpu
));
864 /* Exit types that need handling before we can be preempted */
865 handle_exit_early(vcpu
, run
, ret
);
869 ret
= handle_exit(vcpu
, run
, ret
);
872 /* Tell userspace about in-kernel device output levels */
873 if (unlikely(!irqchip_in_kernel(vcpu
->kvm
))) {
874 kvm_timer_update_run(vcpu
);
875 kvm_pmu_update_run(vcpu
);
878 kvm_sigset_deactivate(vcpu
);
884 static int vcpu_interrupt_line(struct kvm_vcpu
*vcpu
, int number
, bool level
)
890 if (number
== KVM_ARM_IRQ_CPU_IRQ
)
891 bit_index
= __ffs(HCR_VI
);
892 else /* KVM_ARM_IRQ_CPU_FIQ */
893 bit_index
= __ffs(HCR_VF
);
895 hcr
= vcpu_hcr(vcpu
);
897 set
= test_and_set_bit(bit_index
, hcr
);
899 set
= test_and_clear_bit(bit_index
, hcr
);
902 * If we didn't change anything, no need to wake up or kick other CPUs
908 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
909 * trigger a world-switch round on the running physical CPU to set the
910 * virtual IRQ/FIQ fields in the HCR appropriately.
912 kvm_make_request(KVM_REQ_IRQ_PENDING
, vcpu
);
918 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_level
,
921 u32 irq
= irq_level
->irq
;
922 unsigned int irq_type
, vcpu_idx
, irq_num
;
923 int nrcpus
= atomic_read(&kvm
->online_vcpus
);
924 struct kvm_vcpu
*vcpu
= NULL
;
925 bool level
= irq_level
->level
;
927 irq_type
= (irq
>> KVM_ARM_IRQ_TYPE_SHIFT
) & KVM_ARM_IRQ_TYPE_MASK
;
928 vcpu_idx
= (irq
>> KVM_ARM_IRQ_VCPU_SHIFT
) & KVM_ARM_IRQ_VCPU_MASK
;
929 vcpu_idx
+= ((irq
>> KVM_ARM_IRQ_VCPU2_SHIFT
) & KVM_ARM_IRQ_VCPU2_MASK
) * (KVM_ARM_IRQ_VCPU_MASK
+ 1);
930 irq_num
= (irq
>> KVM_ARM_IRQ_NUM_SHIFT
) & KVM_ARM_IRQ_NUM_MASK
;
932 trace_kvm_irq_line(irq_type
, vcpu_idx
, irq_num
, irq_level
->level
);
935 case KVM_ARM_IRQ_TYPE_CPU
:
936 if (irqchip_in_kernel(kvm
))
939 if (vcpu_idx
>= nrcpus
)
942 vcpu
= kvm_get_vcpu(kvm
, vcpu_idx
);
946 if (irq_num
> KVM_ARM_IRQ_CPU_FIQ
)
949 return vcpu_interrupt_line(vcpu
, irq_num
, level
);
950 case KVM_ARM_IRQ_TYPE_PPI
:
951 if (!irqchip_in_kernel(kvm
))
954 if (vcpu_idx
>= nrcpus
)
957 vcpu
= kvm_get_vcpu(kvm
, vcpu_idx
);
961 if (irq_num
< VGIC_NR_SGIS
|| irq_num
>= VGIC_NR_PRIVATE_IRQS
)
964 return kvm_vgic_inject_irq(kvm
, vcpu
->vcpu_id
, irq_num
, level
, NULL
);
965 case KVM_ARM_IRQ_TYPE_SPI
:
966 if (!irqchip_in_kernel(kvm
))
969 if (irq_num
< VGIC_NR_PRIVATE_IRQS
)
972 return kvm_vgic_inject_irq(kvm
, 0, irq_num
, level
, NULL
);
978 static int kvm_vcpu_set_target(struct kvm_vcpu
*vcpu
,
979 const struct kvm_vcpu_init
*init
)
982 int phys_target
= kvm_target_cpu();
984 if (init
->target
!= phys_target
)
988 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
989 * use the same target.
991 if (vcpu
->arch
.target
!= -1 && vcpu
->arch
.target
!= init
->target
)
994 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
995 for (i
= 0; i
< sizeof(init
->features
) * 8; i
++) {
996 bool set
= (init
->features
[i
/ 32] & (1 << (i
% 32)));
998 if (set
&& i
>= KVM_VCPU_MAX_FEATURES
)
1002 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1003 * use the same feature set.
1005 if (vcpu
->arch
.target
!= -1 && i
< KVM_VCPU_MAX_FEATURES
&&
1006 test_bit(i
, vcpu
->arch
.features
) != set
)
1010 set_bit(i
, vcpu
->arch
.features
);
1013 vcpu
->arch
.target
= phys_target
;
1015 /* Now we know what it is, we can reset it. */
1016 ret
= kvm_reset_vcpu(vcpu
);
1018 vcpu
->arch
.target
= -1;
1019 bitmap_zero(vcpu
->arch
.features
, KVM_VCPU_MAX_FEATURES
);
1025 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu
*vcpu
,
1026 struct kvm_vcpu_init
*init
)
1030 ret
= kvm_vcpu_set_target(vcpu
, init
);
1035 * Ensure a rebooted VM will fault in RAM pages and detect if the
1036 * guest MMU is turned off and flush the caches as needed.
1038 if (vcpu
->arch
.has_run_once
)
1039 stage2_unmap_vm(vcpu
->kvm
);
1041 vcpu_reset_hcr(vcpu
);
1044 * Handle the "start in power-off" case.
1046 if (test_bit(KVM_ARM_VCPU_POWER_OFF
, vcpu
->arch
.features
))
1047 vcpu_power_off(vcpu
);
1049 vcpu
->arch
.power_off
= false;
1054 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu
*vcpu
,
1055 struct kvm_device_attr
*attr
)
1059 switch (attr
->group
) {
1061 ret
= kvm_arm_vcpu_arch_set_attr(vcpu
, attr
);
1068 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu
*vcpu
,
1069 struct kvm_device_attr
*attr
)
1073 switch (attr
->group
) {
1075 ret
= kvm_arm_vcpu_arch_get_attr(vcpu
, attr
);
1082 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu
*vcpu
,
1083 struct kvm_device_attr
*attr
)
1087 switch (attr
->group
) {
1089 ret
= kvm_arm_vcpu_arch_has_attr(vcpu
, attr
);
1096 static int kvm_arm_vcpu_get_events(struct kvm_vcpu
*vcpu
,
1097 struct kvm_vcpu_events
*events
)
1099 memset(events
, 0, sizeof(*events
));
1101 return __kvm_arm_vcpu_get_events(vcpu
, events
);
1104 static int kvm_arm_vcpu_set_events(struct kvm_vcpu
*vcpu
,
1105 struct kvm_vcpu_events
*events
)
1109 /* check whether the reserved field is zero */
1110 for (i
= 0; i
< ARRAY_SIZE(events
->reserved
); i
++)
1111 if (events
->reserved
[i
])
1114 /* check whether the pad field is zero */
1115 for (i
= 0; i
< ARRAY_SIZE(events
->exception
.pad
); i
++)
1116 if (events
->exception
.pad
[i
])
1119 return __kvm_arm_vcpu_set_events(vcpu
, events
);
1122 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1123 unsigned int ioctl
, unsigned long arg
)
1125 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1126 void __user
*argp
= (void __user
*)arg
;
1127 struct kvm_device_attr attr
;
1131 case KVM_ARM_VCPU_INIT
: {
1132 struct kvm_vcpu_init init
;
1135 if (copy_from_user(&init
, argp
, sizeof(init
)))
1138 r
= kvm_arch_vcpu_ioctl_vcpu_init(vcpu
, &init
);
1141 case KVM_SET_ONE_REG
:
1142 case KVM_GET_ONE_REG
: {
1143 struct kvm_one_reg reg
;
1146 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
1150 if (copy_from_user(®
, argp
, sizeof(reg
)))
1153 if (ioctl
== KVM_SET_ONE_REG
)
1154 r
= kvm_arm_set_reg(vcpu
, ®
);
1156 r
= kvm_arm_get_reg(vcpu
, ®
);
1159 case KVM_GET_REG_LIST
: {
1160 struct kvm_reg_list __user
*user_list
= argp
;
1161 struct kvm_reg_list reg_list
;
1165 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
1169 if (!kvm_arm_vcpu_is_finalized(vcpu
))
1173 if (copy_from_user(®_list
, user_list
, sizeof(reg_list
)))
1176 reg_list
.n
= kvm_arm_num_regs(vcpu
);
1177 if (copy_to_user(user_list
, ®_list
, sizeof(reg_list
)))
1182 r
= kvm_arm_copy_reg_indices(vcpu
, user_list
->reg
);
1185 case KVM_SET_DEVICE_ATTR
: {
1187 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
1189 r
= kvm_arm_vcpu_set_attr(vcpu
, &attr
);
1192 case KVM_GET_DEVICE_ATTR
: {
1194 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
1196 r
= kvm_arm_vcpu_get_attr(vcpu
, &attr
);
1199 case KVM_HAS_DEVICE_ATTR
: {
1201 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
1203 r
= kvm_arm_vcpu_has_attr(vcpu
, &attr
);
1206 case KVM_GET_VCPU_EVENTS
: {
1207 struct kvm_vcpu_events events
;
1209 if (kvm_arm_vcpu_get_events(vcpu
, &events
))
1212 if (copy_to_user(argp
, &events
, sizeof(events
)))
1217 case KVM_SET_VCPU_EVENTS
: {
1218 struct kvm_vcpu_events events
;
1220 if (copy_from_user(&events
, argp
, sizeof(events
)))
1223 return kvm_arm_vcpu_set_events(vcpu
, &events
);
1225 case KVM_ARM_VCPU_FINALIZE
: {
1228 if (!kvm_vcpu_initialized(vcpu
))
1231 if (get_user(what
, (const int __user
*)argp
))
1234 return kvm_arm_vcpu_finalize(vcpu
, what
);
1244 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1245 * @kvm: kvm instance
1246 * @log: slot id and address to which we copy the log
1248 * Steps 1-4 below provide general overview of dirty page logging. See
1249 * kvm_get_dirty_log_protect() function description for additional details.
1251 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1252 * always flush the TLB (step 4) even if previous step failed and the dirty
1253 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1254 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1255 * writes will be marked dirty for next log read.
1257 * 1. Take a snapshot of the bit and clear it if needed.
1258 * 2. Write protect the corresponding page.
1259 * 3. Copy the snapshot to the userspace.
1260 * 4. Flush TLB's if needed.
1262 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
1267 mutex_lock(&kvm
->slots_lock
);
1269 r
= kvm_get_dirty_log_protect(kvm
, log
, &flush
);
1272 kvm_flush_remote_tlbs(kvm
);
1274 mutex_unlock(&kvm
->slots_lock
);
1278 int kvm_vm_ioctl_clear_dirty_log(struct kvm
*kvm
, struct kvm_clear_dirty_log
*log
)
1283 mutex_lock(&kvm
->slots_lock
);
1285 r
= kvm_clear_dirty_log_protect(kvm
, log
, &flush
);
1288 kvm_flush_remote_tlbs(kvm
);
1290 mutex_unlock(&kvm
->slots_lock
);
1294 static int kvm_vm_ioctl_set_device_addr(struct kvm
*kvm
,
1295 struct kvm_arm_device_addr
*dev_addr
)
1297 unsigned long dev_id
, type
;
1299 dev_id
= (dev_addr
->id
& KVM_ARM_DEVICE_ID_MASK
) >>
1300 KVM_ARM_DEVICE_ID_SHIFT
;
1301 type
= (dev_addr
->id
& KVM_ARM_DEVICE_TYPE_MASK
) >>
1302 KVM_ARM_DEVICE_TYPE_SHIFT
;
1305 case KVM_ARM_DEVICE_VGIC_V2
:
1308 return kvm_vgic_addr(kvm
, type
, &dev_addr
->addr
, true);
1314 long kvm_arch_vm_ioctl(struct file
*filp
,
1315 unsigned int ioctl
, unsigned long arg
)
1317 struct kvm
*kvm
= filp
->private_data
;
1318 void __user
*argp
= (void __user
*)arg
;
1321 case KVM_CREATE_IRQCHIP
: {
1325 mutex_lock(&kvm
->lock
);
1326 ret
= kvm_vgic_create(kvm
, KVM_DEV_TYPE_ARM_VGIC_V2
);
1327 mutex_unlock(&kvm
->lock
);
1330 case KVM_ARM_SET_DEVICE_ADDR
: {
1331 struct kvm_arm_device_addr dev_addr
;
1333 if (copy_from_user(&dev_addr
, argp
, sizeof(dev_addr
)))
1335 return kvm_vm_ioctl_set_device_addr(kvm
, &dev_addr
);
1337 case KVM_ARM_PREFERRED_TARGET
: {
1339 struct kvm_vcpu_init init
;
1341 err
= kvm_vcpu_preferred_target(&init
);
1345 if (copy_to_user(argp
, &init
, sizeof(init
)))
1355 static void cpu_init_hyp_mode(void)
1357 phys_addr_t pgd_ptr
;
1358 unsigned long hyp_stack_ptr
;
1359 unsigned long stack_page
;
1360 unsigned long vector_ptr
;
1362 /* Switch from the HYP stub to our own HYP init vector */
1363 __hyp_set_vectors(kvm_get_idmap_vector());
1365 pgd_ptr
= kvm_mmu_get_httbr();
1366 stack_page
= __this_cpu_read(kvm_arm_hyp_stack_page
);
1367 hyp_stack_ptr
= stack_page
+ PAGE_SIZE
;
1368 vector_ptr
= (unsigned long)kvm_get_hyp_vector();
1370 __cpu_init_hyp_mode(pgd_ptr
, hyp_stack_ptr
, vector_ptr
);
1371 __cpu_init_stage2();
1374 static void cpu_hyp_reset(void)
1376 if (!is_kernel_in_hyp_mode())
1377 __hyp_reset_vectors();
1380 static void cpu_hyp_reinit(void)
1382 kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data
)->host_ctxt
);
1386 if (is_kernel_in_hyp_mode())
1387 kvm_timer_init_vhe();
1389 cpu_init_hyp_mode();
1391 kvm_arm_init_debug();
1394 kvm_vgic_init_cpu_hardware();
1397 static void _kvm_arch_hardware_enable(void *discard
)
1399 if (!__this_cpu_read(kvm_arm_hardware_enabled
)) {
1401 __this_cpu_write(kvm_arm_hardware_enabled
, 1);
1405 int kvm_arch_hardware_enable(void)
1407 _kvm_arch_hardware_enable(NULL
);
1411 static void _kvm_arch_hardware_disable(void *discard
)
1413 if (__this_cpu_read(kvm_arm_hardware_enabled
)) {
1415 __this_cpu_write(kvm_arm_hardware_enabled
, 0);
1419 void kvm_arch_hardware_disable(void)
1421 _kvm_arch_hardware_disable(NULL
);
1424 #ifdef CONFIG_CPU_PM
1425 static int hyp_init_cpu_pm_notifier(struct notifier_block
*self
,
1430 * kvm_arm_hardware_enabled is left with its old value over
1431 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1436 if (__this_cpu_read(kvm_arm_hardware_enabled
))
1438 * don't update kvm_arm_hardware_enabled here
1439 * so that the hardware will be re-enabled
1440 * when we resume. See below.
1445 case CPU_PM_ENTER_FAILED
:
1447 if (__this_cpu_read(kvm_arm_hardware_enabled
))
1448 /* The hardware was enabled before suspend. */
1458 static struct notifier_block hyp_init_cpu_pm_nb
= {
1459 .notifier_call
= hyp_init_cpu_pm_notifier
,
1462 static void __init
hyp_cpu_pm_init(void)
1464 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb
);
1466 static void __init
hyp_cpu_pm_exit(void)
1468 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb
);
1471 static inline void hyp_cpu_pm_init(void)
1474 static inline void hyp_cpu_pm_exit(void)
1479 static int init_common_resources(void)
1481 kvm_set_ipa_limit();
1486 static int init_subsystems(void)
1491 * Enable hardware so that subsystem initialisation can access EL2.
1493 on_each_cpu(_kvm_arch_hardware_enable
, NULL
, 1);
1496 * Register CPU lower-power notifier
1501 * Init HYP view of VGIC
1503 err
= kvm_vgic_hyp_init();
1506 vgic_present
= true;
1510 vgic_present
= false;
1518 * Init HYP architected timer support
1520 err
= kvm_timer_hyp_init(vgic_present
);
1525 kvm_coproc_table_init();
1528 on_each_cpu(_kvm_arch_hardware_disable
, NULL
, 1);
1533 static void teardown_hyp_mode(void)
1538 for_each_possible_cpu(cpu
)
1539 free_page(per_cpu(kvm_arm_hyp_stack_page
, cpu
));
1544 * Inits Hyp-mode on all online CPUs
1546 static int init_hyp_mode(void)
1552 * Allocate Hyp PGD and setup Hyp identity mapping
1554 err
= kvm_mmu_init();
1559 * Allocate stack pages for Hypervisor-mode
1561 for_each_possible_cpu(cpu
) {
1562 unsigned long stack_page
;
1564 stack_page
= __get_free_page(GFP_KERNEL
);
1570 per_cpu(kvm_arm_hyp_stack_page
, cpu
) = stack_page
;
1574 * Map the Hyp-code called directly from the host
1576 err
= create_hyp_mappings(kvm_ksym_ref(__hyp_text_start
),
1577 kvm_ksym_ref(__hyp_text_end
), PAGE_HYP_EXEC
);
1579 kvm_err("Cannot map world-switch code\n");
1583 err
= create_hyp_mappings(kvm_ksym_ref(__start_rodata
),
1584 kvm_ksym_ref(__end_rodata
), PAGE_HYP_RO
);
1586 kvm_err("Cannot map rodata section\n");
1590 err
= create_hyp_mappings(kvm_ksym_ref(__bss_start
),
1591 kvm_ksym_ref(__bss_stop
), PAGE_HYP_RO
);
1593 kvm_err("Cannot map bss section\n");
1597 err
= kvm_map_vectors();
1599 kvm_err("Cannot map vectors\n");
1604 * Map the Hyp stack pages
1606 for_each_possible_cpu(cpu
) {
1607 char *stack_page
= (char *)per_cpu(kvm_arm_hyp_stack_page
, cpu
);
1608 err
= create_hyp_mappings(stack_page
, stack_page
+ PAGE_SIZE
,
1612 kvm_err("Cannot map hyp stack\n");
1617 for_each_possible_cpu(cpu
) {
1618 kvm_host_data_t
*cpu_data
;
1620 cpu_data
= per_cpu_ptr(&kvm_host_data
, cpu
);
1621 err
= create_hyp_mappings(cpu_data
, cpu_data
+ 1, PAGE_HYP
);
1624 kvm_err("Cannot map host CPU state: %d\n", err
);
1629 err
= hyp_map_aux_data();
1631 kvm_err("Cannot map host auxiliary data: %d\n", err
);
1636 teardown_hyp_mode();
1637 kvm_err("error initializing Hyp mode: %d\n", err
);
1641 static void check_kvm_target_cpu(void *ret
)
1643 *(int *)ret
= kvm_target_cpu();
1646 struct kvm_vcpu
*kvm_mpidr_to_vcpu(struct kvm
*kvm
, unsigned long mpidr
)
1648 struct kvm_vcpu
*vcpu
;
1651 mpidr
&= MPIDR_HWID_BITMASK
;
1652 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1653 if (mpidr
== kvm_vcpu_get_mpidr_aff(vcpu
))
1659 bool kvm_arch_has_irq_bypass(void)
1664 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer
*cons
,
1665 struct irq_bypass_producer
*prod
)
1667 struct kvm_kernel_irqfd
*irqfd
=
1668 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1670 return kvm_vgic_v4_set_forwarding(irqfd
->kvm
, prod
->irq
,
1673 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer
*cons
,
1674 struct irq_bypass_producer
*prod
)
1676 struct kvm_kernel_irqfd
*irqfd
=
1677 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1679 kvm_vgic_v4_unset_forwarding(irqfd
->kvm
, prod
->irq
,
1683 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer
*cons
)
1685 struct kvm_kernel_irqfd
*irqfd
=
1686 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1688 kvm_arm_halt_guest(irqfd
->kvm
);
1691 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer
*cons
)
1693 struct kvm_kernel_irqfd
*irqfd
=
1694 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1696 kvm_arm_resume_guest(irqfd
->kvm
);
1700 * Initialize Hyp-mode and memory mappings on all CPUs.
1702 int kvm_arch_init(void *opaque
)
1708 if (!is_hyp_mode_available()) {
1709 kvm_info("HYP mode not available\n");
1713 in_hyp_mode
= is_kernel_in_hyp_mode();
1715 if (!in_hyp_mode
&& kvm_arch_requires_vhe()) {
1716 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1720 for_each_online_cpu(cpu
) {
1721 smp_call_function_single(cpu
, check_kvm_target_cpu
, &ret
, 1);
1723 kvm_err("Error, CPU %d not supported!\n", cpu
);
1728 err
= init_common_resources();
1732 err
= kvm_arm_init_sve();
1737 err
= init_hyp_mode();
1742 err
= init_subsystems();
1747 kvm_info("VHE mode initialized successfully\n");
1749 kvm_info("Hyp mode initialized successfully\n");
1755 teardown_hyp_mode();
1760 /* NOP: Compiling as a module not supported */
1761 void kvm_arch_exit(void)
1763 kvm_perf_teardown();
1766 static int arm_init(void)
1768 int rc
= kvm_init(NULL
, sizeof(struct kvm_vcpu
), 0, THIS_MODULE
);
1772 module_init(arm_init
);