dm writecache: fix incorrect flush sequence when doing SSD mode commit
[linux/fpc-iii.git] / virt / kvm / arm / arm.c
blob8de4daf25097d9267cf097d3be879f4372e3ff6a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <trace/events/kvm.h>
23 #include <kvm/arm_pmu.h>
24 #include <kvm/arm_psci.h>
26 #define CREATE_TRACE_POINTS
27 #include "trace.h"
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_emulate.h>
40 #include <asm/kvm_coproc.h>
41 #include <asm/sections.h>
43 #include <kvm/arm_hypercalls.h>
44 #include <kvm/arm_pmu.h>
45 #include <kvm/arm_psci.h>
47 #ifdef REQUIRES_VIRT
48 __asm__(".arch_extension virt");
49 #endif
51 DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54 /* Per-CPU variable containing the currently running vcpu. */
55 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
57 /* The VMID used in the VTTBR */
58 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
59 static u32 kvm_next_vmid;
60 static DEFINE_SPINLOCK(kvm_vmid_lock);
62 static bool vgic_present;
64 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
68 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
71 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
73 /**
74 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
75 * Must be called from non-preemptible context
77 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
79 return __this_cpu_read(kvm_arm_running_vcpu);
82 /**
83 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
85 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
87 return &kvm_arm_running_vcpu;
90 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
92 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
95 int kvm_arch_hardware_setup(void)
97 return 0;
100 int kvm_arch_check_processor_compat(void)
102 return 0;
105 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
106 struct kvm_enable_cap *cap)
108 int r;
110 if (cap->flags)
111 return -EINVAL;
113 switch (cap->cap) {
114 case KVM_CAP_ARM_NISV_TO_USER:
115 r = 0;
116 kvm->arch.return_nisv_io_abort_to_user = true;
117 break;
118 default:
119 r = -EINVAL;
120 break;
123 return r;
127 * kvm_arch_init_vm - initializes a VM data structure
128 * @kvm: pointer to the KVM struct
130 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132 int ret, cpu;
134 ret = kvm_arm_setup_stage2(kvm, type);
135 if (ret)
136 return ret;
138 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
139 if (!kvm->arch.last_vcpu_ran)
140 return -ENOMEM;
142 for_each_possible_cpu(cpu)
143 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
145 ret = kvm_alloc_stage2_pgd(kvm);
146 if (ret)
147 goto out_fail_alloc;
149 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
150 if (ret)
151 goto out_free_stage2_pgd;
153 kvm_vgic_early_init(kvm);
155 /* Mark the initial VMID generation invalid */
156 kvm->arch.vmid.vmid_gen = 0;
158 /* The maximum number of VCPUs is limited by the host's GIC model */
159 kvm->arch.max_vcpus = vgic_present ?
160 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
162 return ret;
163 out_free_stage2_pgd:
164 kvm_free_stage2_pgd(kvm);
165 out_fail_alloc:
166 free_percpu(kvm->arch.last_vcpu_ran);
167 kvm->arch.last_vcpu_ran = NULL;
168 return ret;
171 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
173 return 0;
176 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
178 return VM_FAULT_SIGBUS;
183 * kvm_arch_destroy_vm - destroy the VM data structure
184 * @kvm: pointer to the KVM struct
186 void kvm_arch_destroy_vm(struct kvm *kvm)
188 int i;
190 kvm_vgic_destroy(kvm);
192 free_percpu(kvm->arch.last_vcpu_ran);
193 kvm->arch.last_vcpu_ran = NULL;
195 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
196 if (kvm->vcpus[i]) {
197 kvm_arch_vcpu_free(kvm->vcpus[i]);
198 kvm->vcpus[i] = NULL;
201 atomic_set(&kvm->online_vcpus, 0);
204 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
206 int r;
207 switch (ext) {
208 case KVM_CAP_IRQCHIP:
209 r = vgic_present;
210 break;
211 case KVM_CAP_IOEVENTFD:
212 case KVM_CAP_DEVICE_CTRL:
213 case KVM_CAP_USER_MEMORY:
214 case KVM_CAP_SYNC_MMU:
215 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
216 case KVM_CAP_ONE_REG:
217 case KVM_CAP_ARM_PSCI:
218 case KVM_CAP_ARM_PSCI_0_2:
219 case KVM_CAP_READONLY_MEM:
220 case KVM_CAP_MP_STATE:
221 case KVM_CAP_IMMEDIATE_EXIT:
222 case KVM_CAP_VCPU_EVENTS:
223 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
224 case KVM_CAP_ARM_NISV_TO_USER:
225 case KVM_CAP_ARM_INJECT_EXT_DABT:
226 r = 1;
227 break;
228 case KVM_CAP_ARM_SET_DEVICE_ADDR:
229 r = 1;
230 break;
231 case KVM_CAP_NR_VCPUS:
232 r = num_online_cpus();
233 break;
234 case KVM_CAP_MAX_VCPUS:
235 r = KVM_MAX_VCPUS;
236 break;
237 case KVM_CAP_MAX_VCPU_ID:
238 r = KVM_MAX_VCPU_ID;
239 break;
240 case KVM_CAP_MSI_DEVID:
241 if (!kvm)
242 r = -EINVAL;
243 else
244 r = kvm->arch.vgic.msis_require_devid;
245 break;
246 case KVM_CAP_ARM_USER_IRQ:
248 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
249 * (bump this number if adding more devices)
251 r = 1;
252 break;
253 default:
254 r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
255 break;
257 return r;
260 long kvm_arch_dev_ioctl(struct file *filp,
261 unsigned int ioctl, unsigned long arg)
263 return -EINVAL;
266 struct kvm *kvm_arch_alloc_vm(void)
268 if (!has_vhe())
269 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
271 return vzalloc(sizeof(struct kvm));
274 void kvm_arch_free_vm(struct kvm *kvm)
276 if (!has_vhe())
277 kfree(kvm);
278 else
279 vfree(kvm);
282 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
284 int err;
285 struct kvm_vcpu *vcpu;
287 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
288 err = -EBUSY;
289 goto out;
292 if (id >= kvm->arch.max_vcpus) {
293 err = -EINVAL;
294 goto out;
297 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
298 if (!vcpu) {
299 err = -ENOMEM;
300 goto out;
303 err = kvm_vcpu_init(vcpu, kvm, id);
304 if (err)
305 goto free_vcpu;
307 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
308 if (err)
309 goto vcpu_uninit;
311 return vcpu;
312 vcpu_uninit:
313 kvm_vcpu_uninit(vcpu);
314 free_vcpu:
315 kmem_cache_free(kvm_vcpu_cache, vcpu);
316 out:
317 return ERR_PTR(err);
320 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
324 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
326 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
327 static_branch_dec(&userspace_irqchip_in_use);
329 kvm_mmu_free_memory_caches(vcpu);
330 kvm_timer_vcpu_terminate(vcpu);
331 kvm_pmu_vcpu_destroy(vcpu);
332 kvm_vcpu_uninit(vcpu);
333 kmem_cache_free(kvm_vcpu_cache, vcpu);
336 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
338 kvm_arch_vcpu_free(vcpu);
341 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
343 return kvm_timer_is_pending(vcpu);
346 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
349 * If we're about to block (most likely because we've just hit a
350 * WFI), we need to sync back the state of the GIC CPU interface
351 * so that we have the latest PMR and group enables. This ensures
352 * that kvm_arch_vcpu_runnable has up-to-date data to decide
353 * whether we have pending interrupts.
355 * For the same reason, we want to tell GICv4 that we need
356 * doorbells to be signalled, should an interrupt become pending.
358 preempt_disable();
359 kvm_vgic_vmcr_sync(vcpu);
360 vgic_v4_put(vcpu, true);
361 preempt_enable();
364 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
366 preempt_disable();
367 vgic_v4_load(vcpu);
368 preempt_enable();
371 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
373 /* Force users to call KVM_ARM_VCPU_INIT */
374 vcpu->arch.target = -1;
375 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
377 /* Set up the timer */
378 kvm_timer_vcpu_init(vcpu);
380 kvm_pmu_vcpu_init(vcpu);
382 kvm_arm_reset_debug_ptr(vcpu);
384 kvm_arm_pvtime_vcpu_init(&vcpu->arch);
386 return kvm_vgic_vcpu_init(vcpu);
389 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
391 int *last_ran;
392 kvm_host_data_t *cpu_data;
394 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
395 cpu_data = this_cpu_ptr(&kvm_host_data);
398 * We might get preempted before the vCPU actually runs, but
399 * over-invalidation doesn't affect correctness.
401 if (*last_ran != vcpu->vcpu_id) {
402 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
403 *last_ran = vcpu->vcpu_id;
406 vcpu->cpu = cpu;
407 vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
409 kvm_arm_set_running_vcpu(vcpu);
410 kvm_vgic_load(vcpu);
411 kvm_timer_vcpu_load(vcpu);
412 kvm_vcpu_load_sysregs(vcpu);
413 kvm_arch_vcpu_load_fp(vcpu);
414 kvm_vcpu_pmu_restore_guest(vcpu);
415 if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
416 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
418 if (single_task_running())
419 vcpu_clear_wfx_traps(vcpu);
420 else
421 vcpu_set_wfx_traps(vcpu);
423 vcpu_ptrauth_setup_lazy(vcpu);
426 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
428 kvm_arch_vcpu_put_fp(vcpu);
429 kvm_vcpu_put_sysregs(vcpu);
430 kvm_timer_vcpu_put(vcpu);
431 kvm_vgic_put(vcpu);
432 kvm_vcpu_pmu_restore_host(vcpu);
434 vcpu->cpu = -1;
436 kvm_arm_set_running_vcpu(NULL);
439 static void vcpu_power_off(struct kvm_vcpu *vcpu)
441 vcpu->arch.power_off = true;
442 kvm_make_request(KVM_REQ_SLEEP, vcpu);
443 kvm_vcpu_kick(vcpu);
446 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
447 struct kvm_mp_state *mp_state)
449 if (vcpu->arch.power_off)
450 mp_state->mp_state = KVM_MP_STATE_STOPPED;
451 else
452 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
454 return 0;
457 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
458 struct kvm_mp_state *mp_state)
460 int ret = 0;
462 switch (mp_state->mp_state) {
463 case KVM_MP_STATE_RUNNABLE:
464 vcpu->arch.power_off = false;
465 break;
466 case KVM_MP_STATE_STOPPED:
467 vcpu_power_off(vcpu);
468 break;
469 default:
470 ret = -EINVAL;
473 return ret;
477 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
478 * @v: The VCPU pointer
480 * If the guest CPU is not waiting for interrupts or an interrupt line is
481 * asserted, the CPU is by definition runnable.
483 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
485 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
486 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
487 && !v->arch.power_off && !v->arch.pause);
490 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
492 return vcpu_mode_priv(vcpu);
495 /* Just ensure a guest exit from a particular CPU */
496 static void exit_vm_noop(void *info)
500 void force_vm_exit(const cpumask_t *mask)
502 preempt_disable();
503 smp_call_function_many(mask, exit_vm_noop, NULL, true);
504 preempt_enable();
508 * need_new_vmid_gen - check that the VMID is still valid
509 * @vmid: The VMID to check
511 * return true if there is a new generation of VMIDs being used
513 * The hardware supports a limited set of values with the value zero reserved
514 * for the host, so we check if an assigned value belongs to a previous
515 * generation, which which requires us to assign a new value. If we're the
516 * first to use a VMID for the new generation, we must flush necessary caches
517 * and TLBs on all CPUs.
519 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
521 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
522 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
523 return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
527 * update_vmid - Update the vmid with a valid VMID for the current generation
528 * @kvm: The guest that struct vmid belongs to
529 * @vmid: The stage-2 VMID information struct
531 static void update_vmid(struct kvm_vmid *vmid)
533 if (!need_new_vmid_gen(vmid))
534 return;
536 spin_lock(&kvm_vmid_lock);
539 * We need to re-check the vmid_gen here to ensure that if another vcpu
540 * already allocated a valid vmid for this vm, then this vcpu should
541 * use the same vmid.
543 if (!need_new_vmid_gen(vmid)) {
544 spin_unlock(&kvm_vmid_lock);
545 return;
548 /* First user of a new VMID generation? */
549 if (unlikely(kvm_next_vmid == 0)) {
550 atomic64_inc(&kvm_vmid_gen);
551 kvm_next_vmid = 1;
554 * On SMP we know no other CPUs can use this CPU's or each
555 * other's VMID after force_vm_exit returns since the
556 * kvm_vmid_lock blocks them from reentry to the guest.
558 force_vm_exit(cpu_all_mask);
560 * Now broadcast TLB + ICACHE invalidation over the inner
561 * shareable domain to make sure all data structures are
562 * clean.
564 kvm_call_hyp(__kvm_flush_vm_context);
567 vmid->vmid = kvm_next_vmid;
568 kvm_next_vmid++;
569 kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
571 smp_wmb();
572 WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
574 spin_unlock(&kvm_vmid_lock);
577 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
579 struct kvm *kvm = vcpu->kvm;
580 int ret = 0;
582 if (likely(vcpu->arch.has_run_once))
583 return 0;
585 if (!kvm_arm_vcpu_is_finalized(vcpu))
586 return -EPERM;
588 vcpu->arch.has_run_once = true;
590 if (likely(irqchip_in_kernel(kvm))) {
592 * Map the VGIC hardware resources before running a vcpu the
593 * first time on this VM.
595 if (unlikely(!vgic_ready(kvm))) {
596 ret = kvm_vgic_map_resources(kvm);
597 if (ret)
598 return ret;
600 } else {
602 * Tell the rest of the code that there are userspace irqchip
603 * VMs in the wild.
605 static_branch_inc(&userspace_irqchip_in_use);
608 ret = kvm_timer_enable(vcpu);
609 if (ret)
610 return ret;
612 ret = kvm_arm_pmu_v3_enable(vcpu);
614 return ret;
617 bool kvm_arch_intc_initialized(struct kvm *kvm)
619 return vgic_initialized(kvm);
622 void kvm_arm_halt_guest(struct kvm *kvm)
624 int i;
625 struct kvm_vcpu *vcpu;
627 kvm_for_each_vcpu(i, vcpu, kvm)
628 vcpu->arch.pause = true;
629 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
632 void kvm_arm_resume_guest(struct kvm *kvm)
634 int i;
635 struct kvm_vcpu *vcpu;
637 kvm_for_each_vcpu(i, vcpu, kvm) {
638 vcpu->arch.pause = false;
639 swake_up_one(kvm_arch_vcpu_wq(vcpu));
643 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
645 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
647 swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
648 (!vcpu->arch.pause)));
650 if (vcpu->arch.power_off || vcpu->arch.pause) {
651 /* Awaken to handle a signal, request we sleep again later. */
652 kvm_make_request(KVM_REQ_SLEEP, vcpu);
656 * Make sure we will observe a potential reset request if we've
657 * observed a change to the power state. Pairs with the smp_wmb() in
658 * kvm_psci_vcpu_on().
660 smp_rmb();
663 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
665 return vcpu->arch.target >= 0;
668 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
670 if (kvm_request_pending(vcpu)) {
671 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
672 vcpu_req_sleep(vcpu);
674 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
675 kvm_reset_vcpu(vcpu);
678 * Clear IRQ_PENDING requests that were made to guarantee
679 * that a VCPU sees new virtual interrupts.
681 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
683 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
684 kvm_update_stolen_time(vcpu);
689 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
690 * @vcpu: The VCPU pointer
691 * @run: The kvm_run structure pointer used for userspace state exchange
693 * This function is called through the VCPU_RUN ioctl called from user space. It
694 * will execute VM code in a loop until the time slice for the process is used
695 * or some emulation is needed from user space in which case the function will
696 * return with return value 0 and with the kvm_run structure filled in with the
697 * required data for the requested emulation.
699 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
701 int ret;
703 if (unlikely(!kvm_vcpu_initialized(vcpu)))
704 return -ENOEXEC;
706 ret = kvm_vcpu_first_run_init(vcpu);
707 if (ret)
708 return ret;
710 if (run->exit_reason == KVM_EXIT_MMIO) {
711 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
712 if (ret)
713 return ret;
716 if (run->immediate_exit)
717 return -EINTR;
719 vcpu_load(vcpu);
721 kvm_sigset_activate(vcpu);
723 ret = 1;
724 run->exit_reason = KVM_EXIT_UNKNOWN;
725 while (ret > 0) {
727 * Check conditions before entering the guest
729 cond_resched();
731 update_vmid(&vcpu->kvm->arch.vmid);
733 check_vcpu_requests(vcpu);
736 * Preparing the interrupts to be injected also
737 * involves poking the GIC, which must be done in a
738 * non-preemptible context.
740 preempt_disable();
742 kvm_pmu_flush_hwstate(vcpu);
744 local_irq_disable();
746 kvm_vgic_flush_hwstate(vcpu);
749 * Exit if we have a signal pending so that we can deliver the
750 * signal to user space.
752 if (signal_pending(current)) {
753 ret = -EINTR;
754 run->exit_reason = KVM_EXIT_INTR;
758 * If we're using a userspace irqchip, then check if we need
759 * to tell a userspace irqchip about timer or PMU level
760 * changes and if so, exit to userspace (the actual level
761 * state gets updated in kvm_timer_update_run and
762 * kvm_pmu_update_run below).
764 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
765 if (kvm_timer_should_notify_user(vcpu) ||
766 kvm_pmu_should_notify_user(vcpu)) {
767 ret = -EINTR;
768 run->exit_reason = KVM_EXIT_INTR;
773 * Ensure we set mode to IN_GUEST_MODE after we disable
774 * interrupts and before the final VCPU requests check.
775 * See the comment in kvm_vcpu_exiting_guest_mode() and
776 * Documentation/virt/kvm/vcpu-requests.rst
778 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
780 if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
781 kvm_request_pending(vcpu)) {
782 vcpu->mode = OUTSIDE_GUEST_MODE;
783 isb(); /* Ensure work in x_flush_hwstate is committed */
784 kvm_pmu_sync_hwstate(vcpu);
785 if (static_branch_unlikely(&userspace_irqchip_in_use))
786 kvm_timer_sync_hwstate(vcpu);
787 kvm_vgic_sync_hwstate(vcpu);
788 local_irq_enable();
789 preempt_enable();
790 continue;
793 kvm_arm_setup_debug(vcpu);
795 /**************************************************************
796 * Enter the guest
798 trace_kvm_entry(*vcpu_pc(vcpu));
799 guest_enter_irqoff();
801 if (has_vhe()) {
802 kvm_arm_vhe_guest_enter();
803 ret = kvm_vcpu_run_vhe(vcpu);
804 kvm_arm_vhe_guest_exit();
805 } else {
806 ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
809 vcpu->mode = OUTSIDE_GUEST_MODE;
810 vcpu->stat.exits++;
812 * Back from guest
813 *************************************************************/
815 kvm_arm_clear_debug(vcpu);
818 * We must sync the PMU state before the vgic state so
819 * that the vgic can properly sample the updated state of the
820 * interrupt line.
822 kvm_pmu_sync_hwstate(vcpu);
825 * Sync the vgic state before syncing the timer state because
826 * the timer code needs to know if the virtual timer
827 * interrupts are active.
829 kvm_vgic_sync_hwstate(vcpu);
832 * Sync the timer hardware state before enabling interrupts as
833 * we don't want vtimer interrupts to race with syncing the
834 * timer virtual interrupt state.
836 if (static_branch_unlikely(&userspace_irqchip_in_use))
837 kvm_timer_sync_hwstate(vcpu);
839 kvm_arch_vcpu_ctxsync_fp(vcpu);
842 * We may have taken a host interrupt in HYP mode (ie
843 * while executing the guest). This interrupt is still
844 * pending, as we haven't serviced it yet!
846 * We're now back in SVC mode, with interrupts
847 * disabled. Enabling the interrupts now will have
848 * the effect of taking the interrupt again, in SVC
849 * mode this time.
851 local_irq_enable();
854 * We do local_irq_enable() before calling guest_exit() so
855 * that if a timer interrupt hits while running the guest we
856 * account that tick as being spent in the guest. We enable
857 * preemption after calling guest_exit() so that if we get
858 * preempted we make sure ticks after that is not counted as
859 * guest time.
861 guest_exit();
862 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
864 /* Exit types that need handling before we can be preempted */
865 handle_exit_early(vcpu, run, ret);
867 preempt_enable();
869 ret = handle_exit(vcpu, run, ret);
872 /* Tell userspace about in-kernel device output levels */
873 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
874 kvm_timer_update_run(vcpu);
875 kvm_pmu_update_run(vcpu);
878 kvm_sigset_deactivate(vcpu);
880 vcpu_put(vcpu);
881 return ret;
884 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
886 int bit_index;
887 bool set;
888 unsigned long *hcr;
890 if (number == KVM_ARM_IRQ_CPU_IRQ)
891 bit_index = __ffs(HCR_VI);
892 else /* KVM_ARM_IRQ_CPU_FIQ */
893 bit_index = __ffs(HCR_VF);
895 hcr = vcpu_hcr(vcpu);
896 if (level)
897 set = test_and_set_bit(bit_index, hcr);
898 else
899 set = test_and_clear_bit(bit_index, hcr);
902 * If we didn't change anything, no need to wake up or kick other CPUs
904 if (set == level)
905 return 0;
908 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
909 * trigger a world-switch round on the running physical CPU to set the
910 * virtual IRQ/FIQ fields in the HCR appropriately.
912 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
913 kvm_vcpu_kick(vcpu);
915 return 0;
918 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
919 bool line_status)
921 u32 irq = irq_level->irq;
922 unsigned int irq_type, vcpu_idx, irq_num;
923 int nrcpus = atomic_read(&kvm->online_vcpus);
924 struct kvm_vcpu *vcpu = NULL;
925 bool level = irq_level->level;
927 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
928 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
929 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
930 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
932 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
934 switch (irq_type) {
935 case KVM_ARM_IRQ_TYPE_CPU:
936 if (irqchip_in_kernel(kvm))
937 return -ENXIO;
939 if (vcpu_idx >= nrcpus)
940 return -EINVAL;
942 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
943 if (!vcpu)
944 return -EINVAL;
946 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
947 return -EINVAL;
949 return vcpu_interrupt_line(vcpu, irq_num, level);
950 case KVM_ARM_IRQ_TYPE_PPI:
951 if (!irqchip_in_kernel(kvm))
952 return -ENXIO;
954 if (vcpu_idx >= nrcpus)
955 return -EINVAL;
957 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
958 if (!vcpu)
959 return -EINVAL;
961 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
962 return -EINVAL;
964 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
965 case KVM_ARM_IRQ_TYPE_SPI:
966 if (!irqchip_in_kernel(kvm))
967 return -ENXIO;
969 if (irq_num < VGIC_NR_PRIVATE_IRQS)
970 return -EINVAL;
972 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
975 return -EINVAL;
978 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
979 const struct kvm_vcpu_init *init)
981 unsigned int i, ret;
982 int phys_target = kvm_target_cpu();
984 if (init->target != phys_target)
985 return -EINVAL;
988 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
989 * use the same target.
991 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
992 return -EINVAL;
994 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
995 for (i = 0; i < sizeof(init->features) * 8; i++) {
996 bool set = (init->features[i / 32] & (1 << (i % 32)));
998 if (set && i >= KVM_VCPU_MAX_FEATURES)
999 return -ENOENT;
1002 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1003 * use the same feature set.
1005 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1006 test_bit(i, vcpu->arch.features) != set)
1007 return -EINVAL;
1009 if (set)
1010 set_bit(i, vcpu->arch.features);
1013 vcpu->arch.target = phys_target;
1015 /* Now we know what it is, we can reset it. */
1016 ret = kvm_reset_vcpu(vcpu);
1017 if (ret) {
1018 vcpu->arch.target = -1;
1019 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1022 return ret;
1025 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1026 struct kvm_vcpu_init *init)
1028 int ret;
1030 ret = kvm_vcpu_set_target(vcpu, init);
1031 if (ret)
1032 return ret;
1035 * Ensure a rebooted VM will fault in RAM pages and detect if the
1036 * guest MMU is turned off and flush the caches as needed.
1038 if (vcpu->arch.has_run_once)
1039 stage2_unmap_vm(vcpu->kvm);
1041 vcpu_reset_hcr(vcpu);
1044 * Handle the "start in power-off" case.
1046 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1047 vcpu_power_off(vcpu);
1048 else
1049 vcpu->arch.power_off = false;
1051 return 0;
1054 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1055 struct kvm_device_attr *attr)
1057 int ret = -ENXIO;
1059 switch (attr->group) {
1060 default:
1061 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1062 break;
1065 return ret;
1068 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1069 struct kvm_device_attr *attr)
1071 int ret = -ENXIO;
1073 switch (attr->group) {
1074 default:
1075 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1076 break;
1079 return ret;
1082 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1083 struct kvm_device_attr *attr)
1085 int ret = -ENXIO;
1087 switch (attr->group) {
1088 default:
1089 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1090 break;
1093 return ret;
1096 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1097 struct kvm_vcpu_events *events)
1099 memset(events, 0, sizeof(*events));
1101 return __kvm_arm_vcpu_get_events(vcpu, events);
1104 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1105 struct kvm_vcpu_events *events)
1107 int i;
1109 /* check whether the reserved field is zero */
1110 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1111 if (events->reserved[i])
1112 return -EINVAL;
1114 /* check whether the pad field is zero */
1115 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1116 if (events->exception.pad[i])
1117 return -EINVAL;
1119 return __kvm_arm_vcpu_set_events(vcpu, events);
1122 long kvm_arch_vcpu_ioctl(struct file *filp,
1123 unsigned int ioctl, unsigned long arg)
1125 struct kvm_vcpu *vcpu = filp->private_data;
1126 void __user *argp = (void __user *)arg;
1127 struct kvm_device_attr attr;
1128 long r;
1130 switch (ioctl) {
1131 case KVM_ARM_VCPU_INIT: {
1132 struct kvm_vcpu_init init;
1134 r = -EFAULT;
1135 if (copy_from_user(&init, argp, sizeof(init)))
1136 break;
1138 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1139 break;
1141 case KVM_SET_ONE_REG:
1142 case KVM_GET_ONE_REG: {
1143 struct kvm_one_reg reg;
1145 r = -ENOEXEC;
1146 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1147 break;
1149 r = -EFAULT;
1150 if (copy_from_user(&reg, argp, sizeof(reg)))
1151 break;
1153 if (ioctl == KVM_SET_ONE_REG)
1154 r = kvm_arm_set_reg(vcpu, &reg);
1155 else
1156 r = kvm_arm_get_reg(vcpu, &reg);
1157 break;
1159 case KVM_GET_REG_LIST: {
1160 struct kvm_reg_list __user *user_list = argp;
1161 struct kvm_reg_list reg_list;
1162 unsigned n;
1164 r = -ENOEXEC;
1165 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1166 break;
1168 r = -EPERM;
1169 if (!kvm_arm_vcpu_is_finalized(vcpu))
1170 break;
1172 r = -EFAULT;
1173 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1174 break;
1175 n = reg_list.n;
1176 reg_list.n = kvm_arm_num_regs(vcpu);
1177 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1178 break;
1179 r = -E2BIG;
1180 if (n < reg_list.n)
1181 break;
1182 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1183 break;
1185 case KVM_SET_DEVICE_ATTR: {
1186 r = -EFAULT;
1187 if (copy_from_user(&attr, argp, sizeof(attr)))
1188 break;
1189 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1190 break;
1192 case KVM_GET_DEVICE_ATTR: {
1193 r = -EFAULT;
1194 if (copy_from_user(&attr, argp, sizeof(attr)))
1195 break;
1196 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1197 break;
1199 case KVM_HAS_DEVICE_ATTR: {
1200 r = -EFAULT;
1201 if (copy_from_user(&attr, argp, sizeof(attr)))
1202 break;
1203 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1204 break;
1206 case KVM_GET_VCPU_EVENTS: {
1207 struct kvm_vcpu_events events;
1209 if (kvm_arm_vcpu_get_events(vcpu, &events))
1210 return -EINVAL;
1212 if (copy_to_user(argp, &events, sizeof(events)))
1213 return -EFAULT;
1215 return 0;
1217 case KVM_SET_VCPU_EVENTS: {
1218 struct kvm_vcpu_events events;
1220 if (copy_from_user(&events, argp, sizeof(events)))
1221 return -EFAULT;
1223 return kvm_arm_vcpu_set_events(vcpu, &events);
1225 case KVM_ARM_VCPU_FINALIZE: {
1226 int what;
1228 if (!kvm_vcpu_initialized(vcpu))
1229 return -ENOEXEC;
1231 if (get_user(what, (const int __user *)argp))
1232 return -EFAULT;
1234 return kvm_arm_vcpu_finalize(vcpu, what);
1236 default:
1237 r = -EINVAL;
1240 return r;
1244 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1245 * @kvm: kvm instance
1246 * @log: slot id and address to which we copy the log
1248 * Steps 1-4 below provide general overview of dirty page logging. See
1249 * kvm_get_dirty_log_protect() function description for additional details.
1251 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1252 * always flush the TLB (step 4) even if previous step failed and the dirty
1253 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1254 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1255 * writes will be marked dirty for next log read.
1257 * 1. Take a snapshot of the bit and clear it if needed.
1258 * 2. Write protect the corresponding page.
1259 * 3. Copy the snapshot to the userspace.
1260 * 4. Flush TLB's if needed.
1262 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1264 bool flush = false;
1265 int r;
1267 mutex_lock(&kvm->slots_lock);
1269 r = kvm_get_dirty_log_protect(kvm, log, &flush);
1271 if (flush)
1272 kvm_flush_remote_tlbs(kvm);
1274 mutex_unlock(&kvm->slots_lock);
1275 return r;
1278 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1280 bool flush = false;
1281 int r;
1283 mutex_lock(&kvm->slots_lock);
1285 r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1287 if (flush)
1288 kvm_flush_remote_tlbs(kvm);
1290 mutex_unlock(&kvm->slots_lock);
1291 return r;
1294 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1295 struct kvm_arm_device_addr *dev_addr)
1297 unsigned long dev_id, type;
1299 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1300 KVM_ARM_DEVICE_ID_SHIFT;
1301 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1302 KVM_ARM_DEVICE_TYPE_SHIFT;
1304 switch (dev_id) {
1305 case KVM_ARM_DEVICE_VGIC_V2:
1306 if (!vgic_present)
1307 return -ENXIO;
1308 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1309 default:
1310 return -ENODEV;
1314 long kvm_arch_vm_ioctl(struct file *filp,
1315 unsigned int ioctl, unsigned long arg)
1317 struct kvm *kvm = filp->private_data;
1318 void __user *argp = (void __user *)arg;
1320 switch (ioctl) {
1321 case KVM_CREATE_IRQCHIP: {
1322 int ret;
1323 if (!vgic_present)
1324 return -ENXIO;
1325 mutex_lock(&kvm->lock);
1326 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1327 mutex_unlock(&kvm->lock);
1328 return ret;
1330 case KVM_ARM_SET_DEVICE_ADDR: {
1331 struct kvm_arm_device_addr dev_addr;
1333 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1334 return -EFAULT;
1335 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1337 case KVM_ARM_PREFERRED_TARGET: {
1338 int err;
1339 struct kvm_vcpu_init init;
1341 err = kvm_vcpu_preferred_target(&init);
1342 if (err)
1343 return err;
1345 if (copy_to_user(argp, &init, sizeof(init)))
1346 return -EFAULT;
1348 return 0;
1350 default:
1351 return -EINVAL;
1355 static void cpu_init_hyp_mode(void)
1357 phys_addr_t pgd_ptr;
1358 unsigned long hyp_stack_ptr;
1359 unsigned long stack_page;
1360 unsigned long vector_ptr;
1362 /* Switch from the HYP stub to our own HYP init vector */
1363 __hyp_set_vectors(kvm_get_idmap_vector());
1365 pgd_ptr = kvm_mmu_get_httbr();
1366 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1367 hyp_stack_ptr = stack_page + PAGE_SIZE;
1368 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1370 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1371 __cpu_init_stage2();
1374 static void cpu_hyp_reset(void)
1376 if (!is_kernel_in_hyp_mode())
1377 __hyp_reset_vectors();
1380 static void cpu_hyp_reinit(void)
1382 kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);
1384 cpu_hyp_reset();
1386 if (is_kernel_in_hyp_mode())
1387 kvm_timer_init_vhe();
1388 else
1389 cpu_init_hyp_mode();
1391 kvm_arm_init_debug();
1393 if (vgic_present)
1394 kvm_vgic_init_cpu_hardware();
1397 static void _kvm_arch_hardware_enable(void *discard)
1399 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1400 cpu_hyp_reinit();
1401 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1405 int kvm_arch_hardware_enable(void)
1407 _kvm_arch_hardware_enable(NULL);
1408 return 0;
1411 static void _kvm_arch_hardware_disable(void *discard)
1413 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1414 cpu_hyp_reset();
1415 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1419 void kvm_arch_hardware_disable(void)
1421 _kvm_arch_hardware_disable(NULL);
1424 #ifdef CONFIG_CPU_PM
1425 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1426 unsigned long cmd,
1427 void *v)
1430 * kvm_arm_hardware_enabled is left with its old value over
1431 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1432 * re-enable hyp.
1434 switch (cmd) {
1435 case CPU_PM_ENTER:
1436 if (__this_cpu_read(kvm_arm_hardware_enabled))
1438 * don't update kvm_arm_hardware_enabled here
1439 * so that the hardware will be re-enabled
1440 * when we resume. See below.
1442 cpu_hyp_reset();
1444 return NOTIFY_OK;
1445 case CPU_PM_ENTER_FAILED:
1446 case CPU_PM_EXIT:
1447 if (__this_cpu_read(kvm_arm_hardware_enabled))
1448 /* The hardware was enabled before suspend. */
1449 cpu_hyp_reinit();
1451 return NOTIFY_OK;
1453 default:
1454 return NOTIFY_DONE;
1458 static struct notifier_block hyp_init_cpu_pm_nb = {
1459 .notifier_call = hyp_init_cpu_pm_notifier,
1462 static void __init hyp_cpu_pm_init(void)
1464 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1466 static void __init hyp_cpu_pm_exit(void)
1468 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1470 #else
1471 static inline void hyp_cpu_pm_init(void)
1474 static inline void hyp_cpu_pm_exit(void)
1477 #endif
1479 static int init_common_resources(void)
1481 kvm_set_ipa_limit();
1483 return 0;
1486 static int init_subsystems(void)
1488 int err = 0;
1491 * Enable hardware so that subsystem initialisation can access EL2.
1493 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1496 * Register CPU lower-power notifier
1498 hyp_cpu_pm_init();
1501 * Init HYP view of VGIC
1503 err = kvm_vgic_hyp_init();
1504 switch (err) {
1505 case 0:
1506 vgic_present = true;
1507 break;
1508 case -ENODEV:
1509 case -ENXIO:
1510 vgic_present = false;
1511 err = 0;
1512 break;
1513 default:
1514 goto out;
1518 * Init HYP architected timer support
1520 err = kvm_timer_hyp_init(vgic_present);
1521 if (err)
1522 goto out;
1524 kvm_perf_init();
1525 kvm_coproc_table_init();
1527 out:
1528 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1530 return err;
1533 static void teardown_hyp_mode(void)
1535 int cpu;
1537 free_hyp_pgds();
1538 for_each_possible_cpu(cpu)
1539 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1540 hyp_cpu_pm_exit();
1544 * Inits Hyp-mode on all online CPUs
1546 static int init_hyp_mode(void)
1548 int cpu;
1549 int err = 0;
1552 * Allocate Hyp PGD and setup Hyp identity mapping
1554 err = kvm_mmu_init();
1555 if (err)
1556 goto out_err;
1559 * Allocate stack pages for Hypervisor-mode
1561 for_each_possible_cpu(cpu) {
1562 unsigned long stack_page;
1564 stack_page = __get_free_page(GFP_KERNEL);
1565 if (!stack_page) {
1566 err = -ENOMEM;
1567 goto out_err;
1570 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1574 * Map the Hyp-code called directly from the host
1576 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1577 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1578 if (err) {
1579 kvm_err("Cannot map world-switch code\n");
1580 goto out_err;
1583 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1584 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1585 if (err) {
1586 kvm_err("Cannot map rodata section\n");
1587 goto out_err;
1590 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1591 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1592 if (err) {
1593 kvm_err("Cannot map bss section\n");
1594 goto out_err;
1597 err = kvm_map_vectors();
1598 if (err) {
1599 kvm_err("Cannot map vectors\n");
1600 goto out_err;
1604 * Map the Hyp stack pages
1606 for_each_possible_cpu(cpu) {
1607 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1608 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1609 PAGE_HYP);
1611 if (err) {
1612 kvm_err("Cannot map hyp stack\n");
1613 goto out_err;
1617 for_each_possible_cpu(cpu) {
1618 kvm_host_data_t *cpu_data;
1620 cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
1621 err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1623 if (err) {
1624 kvm_err("Cannot map host CPU state: %d\n", err);
1625 goto out_err;
1629 err = hyp_map_aux_data();
1630 if (err)
1631 kvm_err("Cannot map host auxiliary data: %d\n", err);
1633 return 0;
1635 out_err:
1636 teardown_hyp_mode();
1637 kvm_err("error initializing Hyp mode: %d\n", err);
1638 return err;
1641 static void check_kvm_target_cpu(void *ret)
1643 *(int *)ret = kvm_target_cpu();
1646 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1648 struct kvm_vcpu *vcpu;
1649 int i;
1651 mpidr &= MPIDR_HWID_BITMASK;
1652 kvm_for_each_vcpu(i, vcpu, kvm) {
1653 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1654 return vcpu;
1656 return NULL;
1659 bool kvm_arch_has_irq_bypass(void)
1661 return true;
1664 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1665 struct irq_bypass_producer *prod)
1667 struct kvm_kernel_irqfd *irqfd =
1668 container_of(cons, struct kvm_kernel_irqfd, consumer);
1670 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1671 &irqfd->irq_entry);
1673 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1674 struct irq_bypass_producer *prod)
1676 struct kvm_kernel_irqfd *irqfd =
1677 container_of(cons, struct kvm_kernel_irqfd, consumer);
1679 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1680 &irqfd->irq_entry);
1683 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1685 struct kvm_kernel_irqfd *irqfd =
1686 container_of(cons, struct kvm_kernel_irqfd, consumer);
1688 kvm_arm_halt_guest(irqfd->kvm);
1691 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1693 struct kvm_kernel_irqfd *irqfd =
1694 container_of(cons, struct kvm_kernel_irqfd, consumer);
1696 kvm_arm_resume_guest(irqfd->kvm);
1700 * Initialize Hyp-mode and memory mappings on all CPUs.
1702 int kvm_arch_init(void *opaque)
1704 int err;
1705 int ret, cpu;
1706 bool in_hyp_mode;
1708 if (!is_hyp_mode_available()) {
1709 kvm_info("HYP mode not available\n");
1710 return -ENODEV;
1713 in_hyp_mode = is_kernel_in_hyp_mode();
1715 if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1716 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1717 return -ENODEV;
1720 for_each_online_cpu(cpu) {
1721 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1722 if (ret < 0) {
1723 kvm_err("Error, CPU %d not supported!\n", cpu);
1724 return -ENODEV;
1728 err = init_common_resources();
1729 if (err)
1730 return err;
1732 err = kvm_arm_init_sve();
1733 if (err)
1734 return err;
1736 if (!in_hyp_mode) {
1737 err = init_hyp_mode();
1738 if (err)
1739 goto out_err;
1742 err = init_subsystems();
1743 if (err)
1744 goto out_hyp;
1746 if (in_hyp_mode)
1747 kvm_info("VHE mode initialized successfully\n");
1748 else
1749 kvm_info("Hyp mode initialized successfully\n");
1751 return 0;
1753 out_hyp:
1754 if (!in_hyp_mode)
1755 teardown_hyp_mode();
1756 out_err:
1757 return err;
1760 /* NOP: Compiling as a module not supported */
1761 void kvm_arch_exit(void)
1763 kvm_perf_teardown();
1766 static int arm_init(void)
1768 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1769 return rc;
1772 module_init(arm_init);