dm writecache: fix incorrect flush sequence when doing SSD mode commit
[linux/fpc-iii.git] / virt / kvm / arm / mmu.c
blob0b32a904a1bb3a5636363803eceb34a45766cd25
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_mmio.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
23 #include "trace.h"
25 static pgd_t *boot_hyp_pgd;
26 static pgd_t *hyp_pgd;
27 static pgd_t *merged_hyp_pgd;
28 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
30 static unsigned long hyp_idmap_start;
31 static unsigned long hyp_idmap_end;
32 static phys_addr_t hyp_idmap_vector;
34 static unsigned long io_map_base;
36 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
38 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
39 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
41 static bool is_iomap(unsigned long flags)
43 return flags & KVM_S2PTE_FLAG_IS_IOMAP;
46 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
48 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
51 /**
52 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
53 * @kvm: pointer to kvm structure.
55 * Interface to HYP function to flush all VM TLB entries
57 void kvm_flush_remote_tlbs(struct kvm *kvm)
59 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
62 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
64 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
68 * D-Cache management functions. They take the page table entries by
69 * value, as they are flushing the cache using the kernel mapping (or
70 * kmap on 32bit).
72 static void kvm_flush_dcache_pte(pte_t pte)
74 __kvm_flush_dcache_pte(pte);
77 static void kvm_flush_dcache_pmd(pmd_t pmd)
79 __kvm_flush_dcache_pmd(pmd);
82 static void kvm_flush_dcache_pud(pud_t pud)
84 __kvm_flush_dcache_pud(pud);
87 static bool kvm_is_device_pfn(unsigned long pfn)
89 return !pfn_valid(pfn);
92 /**
93 * stage2_dissolve_pmd() - clear and flush huge PMD entry
94 * @kvm: pointer to kvm structure.
95 * @addr: IPA
96 * @pmd: pmd pointer for IPA
98 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
100 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
102 if (!pmd_thp_or_huge(*pmd))
103 return;
105 pmd_clear(pmd);
106 kvm_tlb_flush_vmid_ipa(kvm, addr);
107 put_page(virt_to_page(pmd));
111 * stage2_dissolve_pud() - clear and flush huge PUD entry
112 * @kvm: pointer to kvm structure.
113 * @addr: IPA
114 * @pud: pud pointer for IPA
116 * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
118 static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
120 if (!stage2_pud_huge(kvm, *pudp))
121 return;
123 stage2_pud_clear(kvm, pudp);
124 kvm_tlb_flush_vmid_ipa(kvm, addr);
125 put_page(virt_to_page(pudp));
128 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
129 int min, int max)
131 void *page;
133 BUG_ON(max > KVM_NR_MEM_OBJS);
134 if (cache->nobjs >= min)
135 return 0;
136 while (cache->nobjs < max) {
137 page = (void *)__get_free_page(GFP_PGTABLE_USER);
138 if (!page)
139 return -ENOMEM;
140 cache->objects[cache->nobjs++] = page;
142 return 0;
145 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
147 while (mc->nobjs)
148 free_page((unsigned long)mc->objects[--mc->nobjs]);
151 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
153 void *p;
155 BUG_ON(!mc || !mc->nobjs);
156 p = mc->objects[--mc->nobjs];
157 return p;
160 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
162 pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, pgd, 0UL);
163 stage2_pgd_clear(kvm, pgd);
164 kvm_tlb_flush_vmid_ipa(kvm, addr);
165 stage2_pud_free(kvm, pud_table);
166 put_page(virt_to_page(pgd));
169 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
171 pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
172 VM_BUG_ON(stage2_pud_huge(kvm, *pud));
173 stage2_pud_clear(kvm, pud);
174 kvm_tlb_flush_vmid_ipa(kvm, addr);
175 stage2_pmd_free(kvm, pmd_table);
176 put_page(virt_to_page(pud));
179 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
181 pte_t *pte_table = pte_offset_kernel(pmd, 0);
182 VM_BUG_ON(pmd_thp_or_huge(*pmd));
183 pmd_clear(pmd);
184 kvm_tlb_flush_vmid_ipa(kvm, addr);
185 free_page((unsigned long)pte_table);
186 put_page(virt_to_page(pmd));
189 static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
191 WRITE_ONCE(*ptep, new_pte);
192 dsb(ishst);
195 static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
197 WRITE_ONCE(*pmdp, new_pmd);
198 dsb(ishst);
201 static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
203 kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
206 static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
208 WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
209 dsb(ishst);
212 static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp)
214 WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp));
215 dsb(ishst);
219 * Unmapping vs dcache management:
221 * If a guest maps certain memory pages as uncached, all writes will
222 * bypass the data cache and go directly to RAM. However, the CPUs
223 * can still speculate reads (not writes) and fill cache lines with
224 * data.
226 * Those cache lines will be *clean* cache lines though, so a
227 * clean+invalidate operation is equivalent to an invalidate
228 * operation, because no cache lines are marked dirty.
230 * Those clean cache lines could be filled prior to an uncached write
231 * by the guest, and the cache coherent IO subsystem would therefore
232 * end up writing old data to disk.
234 * This is why right after unmapping a page/section and invalidating
235 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
236 * the IO subsystem will never hit in the cache.
238 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
239 * we then fully enforce cacheability of RAM, no matter what the guest
240 * does.
242 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
243 phys_addr_t addr, phys_addr_t end)
245 phys_addr_t start_addr = addr;
246 pte_t *pte, *start_pte;
248 start_pte = pte = pte_offset_kernel(pmd, addr);
249 do {
250 if (!pte_none(*pte)) {
251 pte_t old_pte = *pte;
253 kvm_set_pte(pte, __pte(0));
254 kvm_tlb_flush_vmid_ipa(kvm, addr);
256 /* No need to invalidate the cache for device mappings */
257 if (!kvm_is_device_pfn(pte_pfn(old_pte)))
258 kvm_flush_dcache_pte(old_pte);
260 put_page(virt_to_page(pte));
262 } while (pte++, addr += PAGE_SIZE, addr != end);
264 if (stage2_pte_table_empty(kvm, start_pte))
265 clear_stage2_pmd_entry(kvm, pmd, start_addr);
268 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
269 phys_addr_t addr, phys_addr_t end)
271 phys_addr_t next, start_addr = addr;
272 pmd_t *pmd, *start_pmd;
274 start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
275 do {
276 next = stage2_pmd_addr_end(kvm, addr, end);
277 if (!pmd_none(*pmd)) {
278 if (pmd_thp_or_huge(*pmd)) {
279 pmd_t old_pmd = *pmd;
281 pmd_clear(pmd);
282 kvm_tlb_flush_vmid_ipa(kvm, addr);
284 kvm_flush_dcache_pmd(old_pmd);
286 put_page(virt_to_page(pmd));
287 } else {
288 unmap_stage2_ptes(kvm, pmd, addr, next);
291 } while (pmd++, addr = next, addr != end);
293 if (stage2_pmd_table_empty(kvm, start_pmd))
294 clear_stage2_pud_entry(kvm, pud, start_addr);
297 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
298 phys_addr_t addr, phys_addr_t end)
300 phys_addr_t next, start_addr = addr;
301 pud_t *pud, *start_pud;
303 start_pud = pud = stage2_pud_offset(kvm, pgd, addr);
304 do {
305 next = stage2_pud_addr_end(kvm, addr, end);
306 if (!stage2_pud_none(kvm, *pud)) {
307 if (stage2_pud_huge(kvm, *pud)) {
308 pud_t old_pud = *pud;
310 stage2_pud_clear(kvm, pud);
311 kvm_tlb_flush_vmid_ipa(kvm, addr);
312 kvm_flush_dcache_pud(old_pud);
313 put_page(virt_to_page(pud));
314 } else {
315 unmap_stage2_pmds(kvm, pud, addr, next);
318 } while (pud++, addr = next, addr != end);
320 if (stage2_pud_table_empty(kvm, start_pud))
321 clear_stage2_pgd_entry(kvm, pgd, start_addr);
325 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
326 * @kvm: The VM pointer
327 * @start: The intermediate physical base address of the range to unmap
328 * @size: The size of the area to unmap
330 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
331 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
332 * destroying the VM), otherwise another faulting VCPU may come in and mess
333 * with things behind our backs.
335 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
337 pgd_t *pgd;
338 phys_addr_t addr = start, end = start + size;
339 phys_addr_t next;
341 assert_spin_locked(&kvm->mmu_lock);
342 WARN_ON(size & ~PAGE_MASK);
344 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
345 do {
347 * Make sure the page table is still active, as another thread
348 * could have possibly freed the page table, while we released
349 * the lock.
351 if (!READ_ONCE(kvm->arch.pgd))
352 break;
353 next = stage2_pgd_addr_end(kvm, addr, end);
354 if (!stage2_pgd_none(kvm, *pgd))
355 unmap_stage2_puds(kvm, pgd, addr, next);
357 * If the range is too large, release the kvm->mmu_lock
358 * to prevent starvation and lockup detector warnings.
360 if (next != end)
361 cond_resched_lock(&kvm->mmu_lock);
362 } while (pgd++, addr = next, addr != end);
365 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
366 phys_addr_t addr, phys_addr_t end)
368 pte_t *pte;
370 pte = pte_offset_kernel(pmd, addr);
371 do {
372 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
373 kvm_flush_dcache_pte(*pte);
374 } while (pte++, addr += PAGE_SIZE, addr != end);
377 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
378 phys_addr_t addr, phys_addr_t end)
380 pmd_t *pmd;
381 phys_addr_t next;
383 pmd = stage2_pmd_offset(kvm, pud, addr);
384 do {
385 next = stage2_pmd_addr_end(kvm, addr, end);
386 if (!pmd_none(*pmd)) {
387 if (pmd_thp_or_huge(*pmd))
388 kvm_flush_dcache_pmd(*pmd);
389 else
390 stage2_flush_ptes(kvm, pmd, addr, next);
392 } while (pmd++, addr = next, addr != end);
395 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
396 phys_addr_t addr, phys_addr_t end)
398 pud_t *pud;
399 phys_addr_t next;
401 pud = stage2_pud_offset(kvm, pgd, addr);
402 do {
403 next = stage2_pud_addr_end(kvm, addr, end);
404 if (!stage2_pud_none(kvm, *pud)) {
405 if (stage2_pud_huge(kvm, *pud))
406 kvm_flush_dcache_pud(*pud);
407 else
408 stage2_flush_pmds(kvm, pud, addr, next);
410 } while (pud++, addr = next, addr != end);
413 static void stage2_flush_memslot(struct kvm *kvm,
414 struct kvm_memory_slot *memslot)
416 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
417 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
418 phys_addr_t next;
419 pgd_t *pgd;
421 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
422 do {
423 next = stage2_pgd_addr_end(kvm, addr, end);
424 if (!stage2_pgd_none(kvm, *pgd))
425 stage2_flush_puds(kvm, pgd, addr, next);
426 } while (pgd++, addr = next, addr != end);
430 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
431 * @kvm: The struct kvm pointer
433 * Go through the stage 2 page tables and invalidate any cache lines
434 * backing memory already mapped to the VM.
436 static void stage2_flush_vm(struct kvm *kvm)
438 struct kvm_memslots *slots;
439 struct kvm_memory_slot *memslot;
440 int idx;
442 idx = srcu_read_lock(&kvm->srcu);
443 spin_lock(&kvm->mmu_lock);
445 slots = kvm_memslots(kvm);
446 kvm_for_each_memslot(memslot, slots)
447 stage2_flush_memslot(kvm, memslot);
449 spin_unlock(&kvm->mmu_lock);
450 srcu_read_unlock(&kvm->srcu, idx);
453 static void clear_hyp_pgd_entry(pgd_t *pgd)
455 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
456 pgd_clear(pgd);
457 pud_free(NULL, pud_table);
458 put_page(virt_to_page(pgd));
461 static void clear_hyp_pud_entry(pud_t *pud)
463 pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
464 VM_BUG_ON(pud_huge(*pud));
465 pud_clear(pud);
466 pmd_free(NULL, pmd_table);
467 put_page(virt_to_page(pud));
470 static void clear_hyp_pmd_entry(pmd_t *pmd)
472 pte_t *pte_table = pte_offset_kernel(pmd, 0);
473 VM_BUG_ON(pmd_thp_or_huge(*pmd));
474 pmd_clear(pmd);
475 pte_free_kernel(NULL, pte_table);
476 put_page(virt_to_page(pmd));
479 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
481 pte_t *pte, *start_pte;
483 start_pte = pte = pte_offset_kernel(pmd, addr);
484 do {
485 if (!pte_none(*pte)) {
486 kvm_set_pte(pte, __pte(0));
487 put_page(virt_to_page(pte));
489 } while (pte++, addr += PAGE_SIZE, addr != end);
491 if (hyp_pte_table_empty(start_pte))
492 clear_hyp_pmd_entry(pmd);
495 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
497 phys_addr_t next;
498 pmd_t *pmd, *start_pmd;
500 start_pmd = pmd = pmd_offset(pud, addr);
501 do {
502 next = pmd_addr_end(addr, end);
503 /* Hyp doesn't use huge pmds */
504 if (!pmd_none(*pmd))
505 unmap_hyp_ptes(pmd, addr, next);
506 } while (pmd++, addr = next, addr != end);
508 if (hyp_pmd_table_empty(start_pmd))
509 clear_hyp_pud_entry(pud);
512 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
514 phys_addr_t next;
515 pud_t *pud, *start_pud;
517 start_pud = pud = pud_offset(pgd, addr);
518 do {
519 next = pud_addr_end(addr, end);
520 /* Hyp doesn't use huge puds */
521 if (!pud_none(*pud))
522 unmap_hyp_pmds(pud, addr, next);
523 } while (pud++, addr = next, addr != end);
525 if (hyp_pud_table_empty(start_pud))
526 clear_hyp_pgd_entry(pgd);
529 static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
531 return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
534 static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
535 phys_addr_t start, u64 size)
537 pgd_t *pgd;
538 phys_addr_t addr = start, end = start + size;
539 phys_addr_t next;
542 * We don't unmap anything from HYP, except at the hyp tear down.
543 * Hence, we don't have to invalidate the TLBs here.
545 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
546 do {
547 next = pgd_addr_end(addr, end);
548 if (!pgd_none(*pgd))
549 unmap_hyp_puds(pgd, addr, next);
550 } while (pgd++, addr = next, addr != end);
553 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
555 __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
558 static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
560 __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
564 * free_hyp_pgds - free Hyp-mode page tables
566 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
567 * therefore contains either mappings in the kernel memory area (above
568 * PAGE_OFFSET), or device mappings in the idmap range.
570 * boot_hyp_pgd should only map the idmap range, and is only used in
571 * the extended idmap case.
573 void free_hyp_pgds(void)
575 pgd_t *id_pgd;
577 mutex_lock(&kvm_hyp_pgd_mutex);
579 id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
581 if (id_pgd) {
582 /* In case we never called hyp_mmu_init() */
583 if (!io_map_base)
584 io_map_base = hyp_idmap_start;
585 unmap_hyp_idmap_range(id_pgd, io_map_base,
586 hyp_idmap_start + PAGE_SIZE - io_map_base);
589 if (boot_hyp_pgd) {
590 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
591 boot_hyp_pgd = NULL;
594 if (hyp_pgd) {
595 unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
596 (uintptr_t)high_memory - PAGE_OFFSET);
598 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
599 hyp_pgd = NULL;
601 if (merged_hyp_pgd) {
602 clear_page(merged_hyp_pgd);
603 free_page((unsigned long)merged_hyp_pgd);
604 merged_hyp_pgd = NULL;
607 mutex_unlock(&kvm_hyp_pgd_mutex);
610 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
611 unsigned long end, unsigned long pfn,
612 pgprot_t prot)
614 pte_t *pte;
615 unsigned long addr;
617 addr = start;
618 do {
619 pte = pte_offset_kernel(pmd, addr);
620 kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
621 get_page(virt_to_page(pte));
622 pfn++;
623 } while (addr += PAGE_SIZE, addr != end);
626 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
627 unsigned long end, unsigned long pfn,
628 pgprot_t prot)
630 pmd_t *pmd;
631 pte_t *pte;
632 unsigned long addr, next;
634 addr = start;
635 do {
636 pmd = pmd_offset(pud, addr);
638 BUG_ON(pmd_sect(*pmd));
640 if (pmd_none(*pmd)) {
641 pte = pte_alloc_one_kernel(NULL);
642 if (!pte) {
643 kvm_err("Cannot allocate Hyp pte\n");
644 return -ENOMEM;
646 kvm_pmd_populate(pmd, pte);
647 get_page(virt_to_page(pmd));
650 next = pmd_addr_end(addr, end);
652 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
653 pfn += (next - addr) >> PAGE_SHIFT;
654 } while (addr = next, addr != end);
656 return 0;
659 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
660 unsigned long end, unsigned long pfn,
661 pgprot_t prot)
663 pud_t *pud;
664 pmd_t *pmd;
665 unsigned long addr, next;
666 int ret;
668 addr = start;
669 do {
670 pud = pud_offset(pgd, addr);
672 if (pud_none_or_clear_bad(pud)) {
673 pmd = pmd_alloc_one(NULL, addr);
674 if (!pmd) {
675 kvm_err("Cannot allocate Hyp pmd\n");
676 return -ENOMEM;
678 kvm_pud_populate(pud, pmd);
679 get_page(virt_to_page(pud));
682 next = pud_addr_end(addr, end);
683 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
684 if (ret)
685 return ret;
686 pfn += (next - addr) >> PAGE_SHIFT;
687 } while (addr = next, addr != end);
689 return 0;
692 static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
693 unsigned long start, unsigned long end,
694 unsigned long pfn, pgprot_t prot)
696 pgd_t *pgd;
697 pud_t *pud;
698 unsigned long addr, next;
699 int err = 0;
701 mutex_lock(&kvm_hyp_pgd_mutex);
702 addr = start & PAGE_MASK;
703 end = PAGE_ALIGN(end);
704 do {
705 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
707 if (pgd_none(*pgd)) {
708 pud = pud_alloc_one(NULL, addr);
709 if (!pud) {
710 kvm_err("Cannot allocate Hyp pud\n");
711 err = -ENOMEM;
712 goto out;
714 kvm_pgd_populate(pgd, pud);
715 get_page(virt_to_page(pgd));
718 next = pgd_addr_end(addr, end);
719 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
720 if (err)
721 goto out;
722 pfn += (next - addr) >> PAGE_SHIFT;
723 } while (addr = next, addr != end);
724 out:
725 mutex_unlock(&kvm_hyp_pgd_mutex);
726 return err;
729 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
731 if (!is_vmalloc_addr(kaddr)) {
732 BUG_ON(!virt_addr_valid(kaddr));
733 return __pa(kaddr);
734 } else {
735 return page_to_phys(vmalloc_to_page(kaddr)) +
736 offset_in_page(kaddr);
741 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
742 * @from: The virtual kernel start address of the range
743 * @to: The virtual kernel end address of the range (exclusive)
744 * @prot: The protection to be applied to this range
746 * The same virtual address as the kernel virtual address is also used
747 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
748 * physical pages.
750 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
752 phys_addr_t phys_addr;
753 unsigned long virt_addr;
754 unsigned long start = kern_hyp_va((unsigned long)from);
755 unsigned long end = kern_hyp_va((unsigned long)to);
757 if (is_kernel_in_hyp_mode())
758 return 0;
760 start = start & PAGE_MASK;
761 end = PAGE_ALIGN(end);
763 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
764 int err;
766 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
767 err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
768 virt_addr, virt_addr + PAGE_SIZE,
769 __phys_to_pfn(phys_addr),
770 prot);
771 if (err)
772 return err;
775 return 0;
778 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
779 unsigned long *haddr, pgprot_t prot)
781 pgd_t *pgd = hyp_pgd;
782 unsigned long base;
783 int ret = 0;
785 mutex_lock(&kvm_hyp_pgd_mutex);
788 * This assumes that we we have enough space below the idmap
789 * page to allocate our VAs. If not, the check below will
790 * kick. A potential alternative would be to detect that
791 * overflow and switch to an allocation above the idmap.
793 * The allocated size is always a multiple of PAGE_SIZE.
795 size = PAGE_ALIGN(size + offset_in_page(phys_addr));
796 base = io_map_base - size;
799 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
800 * allocating the new area, as it would indicate we've
801 * overflowed the idmap/IO address range.
803 if ((base ^ io_map_base) & BIT(VA_BITS - 1))
804 ret = -ENOMEM;
805 else
806 io_map_base = base;
808 mutex_unlock(&kvm_hyp_pgd_mutex);
810 if (ret)
811 goto out;
813 if (__kvm_cpu_uses_extended_idmap())
814 pgd = boot_hyp_pgd;
816 ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
817 base, base + size,
818 __phys_to_pfn(phys_addr), prot);
819 if (ret)
820 goto out;
822 *haddr = base + offset_in_page(phys_addr);
824 out:
825 return ret;
829 * create_hyp_io_mappings - Map IO into both kernel and HYP
830 * @phys_addr: The physical start address which gets mapped
831 * @size: Size of the region being mapped
832 * @kaddr: Kernel VA for this mapping
833 * @haddr: HYP VA for this mapping
835 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
836 void __iomem **kaddr,
837 void __iomem **haddr)
839 unsigned long addr;
840 int ret;
842 *kaddr = ioremap(phys_addr, size);
843 if (!*kaddr)
844 return -ENOMEM;
846 if (is_kernel_in_hyp_mode()) {
847 *haddr = *kaddr;
848 return 0;
851 ret = __create_hyp_private_mapping(phys_addr, size,
852 &addr, PAGE_HYP_DEVICE);
853 if (ret) {
854 iounmap(*kaddr);
855 *kaddr = NULL;
856 *haddr = NULL;
857 return ret;
860 *haddr = (void __iomem *)addr;
861 return 0;
865 * create_hyp_exec_mappings - Map an executable range into HYP
866 * @phys_addr: The physical start address which gets mapped
867 * @size: Size of the region being mapped
868 * @haddr: HYP VA for this mapping
870 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
871 void **haddr)
873 unsigned long addr;
874 int ret;
876 BUG_ON(is_kernel_in_hyp_mode());
878 ret = __create_hyp_private_mapping(phys_addr, size,
879 &addr, PAGE_HYP_EXEC);
880 if (ret) {
881 *haddr = NULL;
882 return ret;
885 *haddr = (void *)addr;
886 return 0;
890 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
891 * @kvm: The KVM struct pointer for the VM.
893 * Allocates only the stage-2 HW PGD level table(s) of size defined by
894 * stage2_pgd_size(kvm).
896 * Note we don't need locking here as this is only called when the VM is
897 * created, which can only be done once.
899 int kvm_alloc_stage2_pgd(struct kvm *kvm)
901 phys_addr_t pgd_phys;
902 pgd_t *pgd;
904 if (kvm->arch.pgd != NULL) {
905 kvm_err("kvm_arch already initialized?\n");
906 return -EINVAL;
909 /* Allocate the HW PGD, making sure that each page gets its own refcount */
910 pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
911 if (!pgd)
912 return -ENOMEM;
914 pgd_phys = virt_to_phys(pgd);
915 if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
916 return -EINVAL;
918 kvm->arch.pgd = pgd;
919 kvm->arch.pgd_phys = pgd_phys;
920 return 0;
923 static void stage2_unmap_memslot(struct kvm *kvm,
924 struct kvm_memory_slot *memslot)
926 hva_t hva = memslot->userspace_addr;
927 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
928 phys_addr_t size = PAGE_SIZE * memslot->npages;
929 hva_t reg_end = hva + size;
932 * A memory region could potentially cover multiple VMAs, and any holes
933 * between them, so iterate over all of them to find out if we should
934 * unmap any of them.
936 * +--------------------------------------------+
937 * +---------------+----------------+ +----------------+
938 * | : VMA 1 | VMA 2 | | VMA 3 : |
939 * +---------------+----------------+ +----------------+
940 * | memory region |
941 * +--------------------------------------------+
943 do {
944 struct vm_area_struct *vma = find_vma(current->mm, hva);
945 hva_t vm_start, vm_end;
947 if (!vma || vma->vm_start >= reg_end)
948 break;
951 * Take the intersection of this VMA with the memory region
953 vm_start = max(hva, vma->vm_start);
954 vm_end = min(reg_end, vma->vm_end);
956 if (!(vma->vm_flags & VM_PFNMAP)) {
957 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
958 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
960 hva = vm_end;
961 } while (hva < reg_end);
965 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
966 * @kvm: The struct kvm pointer
968 * Go through the memregions and unmap any reguler RAM
969 * backing memory already mapped to the VM.
971 void stage2_unmap_vm(struct kvm *kvm)
973 struct kvm_memslots *slots;
974 struct kvm_memory_slot *memslot;
975 int idx;
977 idx = srcu_read_lock(&kvm->srcu);
978 down_read(&current->mm->mmap_sem);
979 spin_lock(&kvm->mmu_lock);
981 slots = kvm_memslots(kvm);
982 kvm_for_each_memslot(memslot, slots)
983 stage2_unmap_memslot(kvm, memslot);
985 spin_unlock(&kvm->mmu_lock);
986 up_read(&current->mm->mmap_sem);
987 srcu_read_unlock(&kvm->srcu, idx);
991 * kvm_free_stage2_pgd - free all stage-2 tables
992 * @kvm: The KVM struct pointer for the VM.
994 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
995 * underlying level-2 and level-3 tables before freeing the actual level-1 table
996 * and setting the struct pointer to NULL.
998 void kvm_free_stage2_pgd(struct kvm *kvm)
1000 void *pgd = NULL;
1002 spin_lock(&kvm->mmu_lock);
1003 if (kvm->arch.pgd) {
1004 unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
1005 pgd = READ_ONCE(kvm->arch.pgd);
1006 kvm->arch.pgd = NULL;
1007 kvm->arch.pgd_phys = 0;
1009 spin_unlock(&kvm->mmu_lock);
1011 /* Free the HW pgd, one page at a time */
1012 if (pgd)
1013 free_pages_exact(pgd, stage2_pgd_size(kvm));
1016 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1017 phys_addr_t addr)
1019 pgd_t *pgd;
1020 pud_t *pud;
1022 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1023 if (stage2_pgd_none(kvm, *pgd)) {
1024 if (!cache)
1025 return NULL;
1026 pud = mmu_memory_cache_alloc(cache);
1027 stage2_pgd_populate(kvm, pgd, pud);
1028 get_page(virt_to_page(pgd));
1031 return stage2_pud_offset(kvm, pgd, addr);
1034 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1035 phys_addr_t addr)
1037 pud_t *pud;
1038 pmd_t *pmd;
1040 pud = stage2_get_pud(kvm, cache, addr);
1041 if (!pud || stage2_pud_huge(kvm, *pud))
1042 return NULL;
1044 if (stage2_pud_none(kvm, *pud)) {
1045 if (!cache)
1046 return NULL;
1047 pmd = mmu_memory_cache_alloc(cache);
1048 stage2_pud_populate(kvm, pud, pmd);
1049 get_page(virt_to_page(pud));
1052 return stage2_pmd_offset(kvm, pud, addr);
1055 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
1056 *cache, phys_addr_t addr, const pmd_t *new_pmd)
1058 pmd_t *pmd, old_pmd;
1060 retry:
1061 pmd = stage2_get_pmd(kvm, cache, addr);
1062 VM_BUG_ON(!pmd);
1064 old_pmd = *pmd;
1066 * Multiple vcpus faulting on the same PMD entry, can
1067 * lead to them sequentially updating the PMD with the
1068 * same value. Following the break-before-make
1069 * (pmd_clear() followed by tlb_flush()) process can
1070 * hinder forward progress due to refaults generated
1071 * on missing translations.
1073 * Skip updating the page table if the entry is
1074 * unchanged.
1076 if (pmd_val(old_pmd) == pmd_val(*new_pmd))
1077 return 0;
1079 if (pmd_present(old_pmd)) {
1081 * If we already have PTE level mapping for this block,
1082 * we must unmap it to avoid inconsistent TLB state and
1083 * leaking the table page. We could end up in this situation
1084 * if the memory slot was marked for dirty logging and was
1085 * reverted, leaving PTE level mappings for the pages accessed
1086 * during the period. So, unmap the PTE level mapping for this
1087 * block and retry, as we could have released the upper level
1088 * table in the process.
1090 * Normal THP split/merge follows mmu_notifier callbacks and do
1091 * get handled accordingly.
1093 if (!pmd_thp_or_huge(old_pmd)) {
1094 unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE);
1095 goto retry;
1098 * Mapping in huge pages should only happen through a
1099 * fault. If a page is merged into a transparent huge
1100 * page, the individual subpages of that huge page
1101 * should be unmapped through MMU notifiers before we
1102 * get here.
1104 * Merging of CompoundPages is not supported; they
1105 * should become splitting first, unmapped, merged,
1106 * and mapped back in on-demand.
1108 WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1109 pmd_clear(pmd);
1110 kvm_tlb_flush_vmid_ipa(kvm, addr);
1111 } else {
1112 get_page(virt_to_page(pmd));
1115 kvm_set_pmd(pmd, *new_pmd);
1116 return 0;
1119 static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1120 phys_addr_t addr, const pud_t *new_pudp)
1122 pud_t *pudp, old_pud;
1124 retry:
1125 pudp = stage2_get_pud(kvm, cache, addr);
1126 VM_BUG_ON(!pudp);
1128 old_pud = *pudp;
1131 * A large number of vcpus faulting on the same stage 2 entry,
1132 * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
1133 * Skip updating the page tables if there is no change.
1135 if (pud_val(old_pud) == pud_val(*new_pudp))
1136 return 0;
1138 if (stage2_pud_present(kvm, old_pud)) {
1140 * If we already have table level mapping for this block, unmap
1141 * the range for this block and retry.
1143 if (!stage2_pud_huge(kvm, old_pud)) {
1144 unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE);
1145 goto retry;
1148 WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
1149 stage2_pud_clear(kvm, pudp);
1150 kvm_tlb_flush_vmid_ipa(kvm, addr);
1151 } else {
1152 get_page(virt_to_page(pudp));
1155 kvm_set_pud(pudp, *new_pudp);
1156 return 0;
1160 * stage2_get_leaf_entry - walk the stage2 VM page tables and return
1161 * true if a valid and present leaf-entry is found. A pointer to the
1162 * leaf-entry is returned in the appropriate level variable - pudpp,
1163 * pmdpp, ptepp.
1165 static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
1166 pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1168 pud_t *pudp;
1169 pmd_t *pmdp;
1170 pte_t *ptep;
1172 *pudpp = NULL;
1173 *pmdpp = NULL;
1174 *ptepp = NULL;
1176 pudp = stage2_get_pud(kvm, NULL, addr);
1177 if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
1178 return false;
1180 if (stage2_pud_huge(kvm, *pudp)) {
1181 *pudpp = pudp;
1182 return true;
1185 pmdp = stage2_pmd_offset(kvm, pudp, addr);
1186 if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
1187 return false;
1189 if (pmd_thp_or_huge(*pmdp)) {
1190 *pmdpp = pmdp;
1191 return true;
1194 ptep = pte_offset_kernel(pmdp, addr);
1195 if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1196 return false;
1198 *ptepp = ptep;
1199 return true;
1202 static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
1204 pud_t *pudp;
1205 pmd_t *pmdp;
1206 pte_t *ptep;
1207 bool found;
1209 found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
1210 if (!found)
1211 return false;
1213 if (pudp)
1214 return kvm_s2pud_exec(pudp);
1215 else if (pmdp)
1216 return kvm_s2pmd_exec(pmdp);
1217 else
1218 return kvm_s2pte_exec(ptep);
1221 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1222 phys_addr_t addr, const pte_t *new_pte,
1223 unsigned long flags)
1225 pud_t *pud;
1226 pmd_t *pmd;
1227 pte_t *pte, old_pte;
1228 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1229 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1231 VM_BUG_ON(logging_active && !cache);
1233 /* Create stage-2 page table mapping - Levels 0 and 1 */
1234 pud = stage2_get_pud(kvm, cache, addr);
1235 if (!pud) {
1237 * Ignore calls from kvm_set_spte_hva for unallocated
1238 * address ranges.
1240 return 0;
1244 * While dirty page logging - dissolve huge PUD, then continue
1245 * on to allocate page.
1247 if (logging_active)
1248 stage2_dissolve_pud(kvm, addr, pud);
1250 if (stage2_pud_none(kvm, *pud)) {
1251 if (!cache)
1252 return 0; /* ignore calls from kvm_set_spte_hva */
1253 pmd = mmu_memory_cache_alloc(cache);
1254 stage2_pud_populate(kvm, pud, pmd);
1255 get_page(virt_to_page(pud));
1258 pmd = stage2_pmd_offset(kvm, pud, addr);
1259 if (!pmd) {
1261 * Ignore calls from kvm_set_spte_hva for unallocated
1262 * address ranges.
1264 return 0;
1268 * While dirty page logging - dissolve huge PMD, then continue on to
1269 * allocate page.
1271 if (logging_active)
1272 stage2_dissolve_pmd(kvm, addr, pmd);
1274 /* Create stage-2 page mappings - Level 2 */
1275 if (pmd_none(*pmd)) {
1276 if (!cache)
1277 return 0; /* ignore calls from kvm_set_spte_hva */
1278 pte = mmu_memory_cache_alloc(cache);
1279 kvm_pmd_populate(pmd, pte);
1280 get_page(virt_to_page(pmd));
1283 pte = pte_offset_kernel(pmd, addr);
1285 if (iomap && pte_present(*pte))
1286 return -EFAULT;
1288 /* Create 2nd stage page table mapping - Level 3 */
1289 old_pte = *pte;
1290 if (pte_present(old_pte)) {
1291 /* Skip page table update if there is no change */
1292 if (pte_val(old_pte) == pte_val(*new_pte))
1293 return 0;
1295 kvm_set_pte(pte, __pte(0));
1296 kvm_tlb_flush_vmid_ipa(kvm, addr);
1297 } else {
1298 get_page(virt_to_page(pte));
1301 kvm_set_pte(pte, *new_pte);
1302 return 0;
1305 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1306 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1308 if (pte_young(*pte)) {
1309 *pte = pte_mkold(*pte);
1310 return 1;
1312 return 0;
1314 #else
1315 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1317 return __ptep_test_and_clear_young(pte);
1319 #endif
1321 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1323 return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1326 static int stage2_pudp_test_and_clear_young(pud_t *pud)
1328 return stage2_ptep_test_and_clear_young((pte_t *)pud);
1332 * kvm_phys_addr_ioremap - map a device range to guest IPA
1334 * @kvm: The KVM pointer
1335 * @guest_ipa: The IPA at which to insert the mapping
1336 * @pa: The physical address of the device
1337 * @size: The size of the mapping
1339 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1340 phys_addr_t pa, unsigned long size, bool writable)
1342 phys_addr_t addr, end;
1343 int ret = 0;
1344 unsigned long pfn;
1345 struct kvm_mmu_memory_cache cache = { 0, };
1347 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1348 pfn = __phys_to_pfn(pa);
1350 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1351 pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1353 if (writable)
1354 pte = kvm_s2pte_mkwrite(pte);
1356 ret = mmu_topup_memory_cache(&cache,
1357 kvm_mmu_cache_min_pages(kvm),
1358 KVM_NR_MEM_OBJS);
1359 if (ret)
1360 goto out;
1361 spin_lock(&kvm->mmu_lock);
1362 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1363 KVM_S2PTE_FLAG_IS_IOMAP);
1364 spin_unlock(&kvm->mmu_lock);
1365 if (ret)
1366 goto out;
1368 pfn++;
1371 out:
1372 mmu_free_memory_cache(&cache);
1373 return ret;
1376 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1378 kvm_pfn_t pfn = *pfnp;
1379 gfn_t gfn = *ipap >> PAGE_SHIFT;
1380 struct page *page = pfn_to_page(pfn);
1383 * PageTransCompoundMap() returns true for THP and
1384 * hugetlbfs. Make sure the adjustment is done only for THP
1385 * pages.
1387 if (!PageHuge(page) && PageTransCompoundMap(page)) {
1388 unsigned long mask;
1390 * The address we faulted on is backed by a transparent huge
1391 * page. However, because we map the compound huge page and
1392 * not the individual tail page, we need to transfer the
1393 * refcount to the head page. We have to be careful that the
1394 * THP doesn't start to split while we are adjusting the
1395 * refcounts.
1397 * We are sure this doesn't happen, because mmu_notifier_retry
1398 * was successful and we are holding the mmu_lock, so if this
1399 * THP is trying to split, it will be blocked in the mmu
1400 * notifier before touching any of the pages, specifically
1401 * before being able to call __split_huge_page_refcount().
1403 * We can therefore safely transfer the refcount from PG_tail
1404 * to PG_head and switch the pfn from a tail page to the head
1405 * page accordingly.
1407 mask = PTRS_PER_PMD - 1;
1408 VM_BUG_ON((gfn & mask) != (pfn & mask));
1409 if (pfn & mask) {
1410 *ipap &= PMD_MASK;
1411 kvm_release_pfn_clean(pfn);
1412 pfn &= ~mask;
1413 kvm_get_pfn(pfn);
1414 *pfnp = pfn;
1417 return true;
1420 return false;
1424 * stage2_wp_ptes - write protect PMD range
1425 * @pmd: pointer to pmd entry
1426 * @addr: range start address
1427 * @end: range end address
1429 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1431 pte_t *pte;
1433 pte = pte_offset_kernel(pmd, addr);
1434 do {
1435 if (!pte_none(*pte)) {
1436 if (!kvm_s2pte_readonly(pte))
1437 kvm_set_s2pte_readonly(pte);
1439 } while (pte++, addr += PAGE_SIZE, addr != end);
1443 * stage2_wp_pmds - write protect PUD range
1444 * kvm: kvm instance for the VM
1445 * @pud: pointer to pud entry
1446 * @addr: range start address
1447 * @end: range end address
1449 static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
1450 phys_addr_t addr, phys_addr_t end)
1452 pmd_t *pmd;
1453 phys_addr_t next;
1455 pmd = stage2_pmd_offset(kvm, pud, addr);
1457 do {
1458 next = stage2_pmd_addr_end(kvm, addr, end);
1459 if (!pmd_none(*pmd)) {
1460 if (pmd_thp_or_huge(*pmd)) {
1461 if (!kvm_s2pmd_readonly(pmd))
1462 kvm_set_s2pmd_readonly(pmd);
1463 } else {
1464 stage2_wp_ptes(pmd, addr, next);
1467 } while (pmd++, addr = next, addr != end);
1471 * stage2_wp_puds - write protect PGD range
1472 * @pgd: pointer to pgd entry
1473 * @addr: range start address
1474 * @end: range end address
1476 static void stage2_wp_puds(struct kvm *kvm, pgd_t *pgd,
1477 phys_addr_t addr, phys_addr_t end)
1479 pud_t *pud;
1480 phys_addr_t next;
1482 pud = stage2_pud_offset(kvm, pgd, addr);
1483 do {
1484 next = stage2_pud_addr_end(kvm, addr, end);
1485 if (!stage2_pud_none(kvm, *pud)) {
1486 if (stage2_pud_huge(kvm, *pud)) {
1487 if (!kvm_s2pud_readonly(pud))
1488 kvm_set_s2pud_readonly(pud);
1489 } else {
1490 stage2_wp_pmds(kvm, pud, addr, next);
1493 } while (pud++, addr = next, addr != end);
1497 * stage2_wp_range() - write protect stage2 memory region range
1498 * @kvm: The KVM pointer
1499 * @addr: Start address of range
1500 * @end: End address of range
1502 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1504 pgd_t *pgd;
1505 phys_addr_t next;
1507 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1508 do {
1510 * Release kvm_mmu_lock periodically if the memory region is
1511 * large. Otherwise, we may see kernel panics with
1512 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1513 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1514 * will also starve other vCPUs. We have to also make sure
1515 * that the page tables are not freed while we released
1516 * the lock.
1518 cond_resched_lock(&kvm->mmu_lock);
1519 if (!READ_ONCE(kvm->arch.pgd))
1520 break;
1521 next = stage2_pgd_addr_end(kvm, addr, end);
1522 if (stage2_pgd_present(kvm, *pgd))
1523 stage2_wp_puds(kvm, pgd, addr, next);
1524 } while (pgd++, addr = next, addr != end);
1528 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1529 * @kvm: The KVM pointer
1530 * @slot: The memory slot to write protect
1532 * Called to start logging dirty pages after memory region
1533 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1534 * all present PUD, PMD and PTEs are write protected in the memory region.
1535 * Afterwards read of dirty page log can be called.
1537 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1538 * serializing operations for VM memory regions.
1540 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1542 struct kvm_memslots *slots = kvm_memslots(kvm);
1543 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1544 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1545 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1547 spin_lock(&kvm->mmu_lock);
1548 stage2_wp_range(kvm, start, end);
1549 spin_unlock(&kvm->mmu_lock);
1550 kvm_flush_remote_tlbs(kvm);
1554 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1555 * @kvm: The KVM pointer
1556 * @slot: The memory slot associated with mask
1557 * @gfn_offset: The gfn offset in memory slot
1558 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1559 * slot to be write protected
1561 * Walks bits set in mask write protects the associated pte's. Caller must
1562 * acquire kvm_mmu_lock.
1564 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1565 struct kvm_memory_slot *slot,
1566 gfn_t gfn_offset, unsigned long mask)
1568 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1569 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1570 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1572 stage2_wp_range(kvm, start, end);
1576 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1577 * dirty pages.
1579 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1580 * enable dirty logging for them.
1582 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1583 struct kvm_memory_slot *slot,
1584 gfn_t gfn_offset, unsigned long mask)
1586 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1589 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1591 __clean_dcache_guest_page(pfn, size);
1594 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1596 __invalidate_icache_guest_page(pfn, size);
1599 static void kvm_send_hwpoison_signal(unsigned long address,
1600 struct vm_area_struct *vma)
1602 short lsb;
1604 if (is_vm_hugetlb_page(vma))
1605 lsb = huge_page_shift(hstate_vma(vma));
1606 else
1607 lsb = PAGE_SHIFT;
1609 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1612 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1613 unsigned long hva,
1614 unsigned long map_size)
1616 gpa_t gpa_start;
1617 hva_t uaddr_start, uaddr_end;
1618 size_t size;
1620 size = memslot->npages * PAGE_SIZE;
1622 gpa_start = memslot->base_gfn << PAGE_SHIFT;
1624 uaddr_start = memslot->userspace_addr;
1625 uaddr_end = uaddr_start + size;
1628 * Pages belonging to memslots that don't have the same alignment
1629 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1630 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1632 * Consider a layout like the following:
1634 * memslot->userspace_addr:
1635 * +-----+--------------------+--------------------+---+
1636 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
1637 * +-----+--------------------+--------------------+---+
1639 * memslot->base_gfn << PAGE_SIZE:
1640 * +---+--------------------+--------------------+-----+
1641 * |abc|def Stage-2 block | Stage-2 block |tvxyz|
1642 * +---+--------------------+--------------------+-----+
1644 * If we create those stage-2 blocks, we'll end up with this incorrect
1645 * mapping:
1646 * d -> f
1647 * e -> g
1648 * f -> h
1650 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1651 return false;
1654 * Next, let's make sure we're not trying to map anything not covered
1655 * by the memslot. This means we have to prohibit block size mappings
1656 * for the beginning and end of a non-block aligned and non-block sized
1657 * memory slot (illustrated by the head and tail parts of the
1658 * userspace view above containing pages 'abcde' and 'xyz',
1659 * respectively).
1661 * Note that it doesn't matter if we do the check using the
1662 * userspace_addr or the base_gfn, as both are equally aligned (per
1663 * the check above) and equally sized.
1665 return (hva & ~(map_size - 1)) >= uaddr_start &&
1666 (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1669 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1670 struct kvm_memory_slot *memslot, unsigned long hva,
1671 unsigned long fault_status)
1673 int ret;
1674 bool write_fault, writable, force_pte = false;
1675 bool exec_fault, needs_exec;
1676 unsigned long mmu_seq;
1677 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1678 struct kvm *kvm = vcpu->kvm;
1679 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1680 struct vm_area_struct *vma;
1681 kvm_pfn_t pfn;
1682 pgprot_t mem_type = PAGE_S2;
1683 bool logging_active = memslot_is_logging(memslot);
1684 unsigned long vma_pagesize, flags = 0;
1686 write_fault = kvm_is_write_fault(vcpu);
1687 exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
1688 VM_BUG_ON(write_fault && exec_fault);
1690 if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1691 kvm_err("Unexpected L2 read permission error\n");
1692 return -EFAULT;
1695 /* Let's check if we will get back a huge page backed by hugetlbfs */
1696 down_read(&current->mm->mmap_sem);
1697 vma = find_vma_intersection(current->mm, hva, hva + 1);
1698 if (unlikely(!vma)) {
1699 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1700 up_read(&current->mm->mmap_sem);
1701 return -EFAULT;
1704 vma_pagesize = vma_kernel_pagesize(vma);
1705 if (logging_active ||
1706 (vma->vm_flags & VM_PFNMAP) ||
1707 !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
1708 force_pte = true;
1709 vma_pagesize = PAGE_SIZE;
1713 * The stage2 has a minimum of 2 level table (For arm64 see
1714 * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
1715 * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
1716 * As for PUD huge maps, we must make sure that we have at least
1717 * 3 levels, i.e, PMD is not folded.
1719 if (vma_pagesize == PMD_SIZE ||
1720 (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
1721 gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1722 up_read(&current->mm->mmap_sem);
1724 /* We need minimum second+third level pages */
1725 ret = mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm),
1726 KVM_NR_MEM_OBJS);
1727 if (ret)
1728 return ret;
1730 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1732 * Ensure the read of mmu_notifier_seq happens before we call
1733 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1734 * the page we just got a reference to gets unmapped before we have a
1735 * chance to grab the mmu_lock, which ensure that if the page gets
1736 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1737 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1738 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1740 smp_rmb();
1742 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1743 if (pfn == KVM_PFN_ERR_HWPOISON) {
1744 kvm_send_hwpoison_signal(hva, vma);
1745 return 0;
1747 if (is_error_noslot_pfn(pfn))
1748 return -EFAULT;
1750 if (kvm_is_device_pfn(pfn)) {
1751 mem_type = PAGE_S2_DEVICE;
1752 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1753 } else if (logging_active) {
1755 * Faults on pages in a memslot with logging enabled
1756 * should not be mapped with huge pages (it introduces churn
1757 * and performance degradation), so force a pte mapping.
1759 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1762 * Only actually map the page as writable if this was a write
1763 * fault.
1765 if (!write_fault)
1766 writable = false;
1769 if (exec_fault && is_iomap(flags))
1770 return -ENOEXEC;
1772 spin_lock(&kvm->mmu_lock);
1773 if (mmu_notifier_retry(kvm, mmu_seq))
1774 goto out_unlock;
1776 if (vma_pagesize == PAGE_SIZE && !force_pte) {
1778 * Only PMD_SIZE transparent hugepages(THP) are
1779 * currently supported. This code will need to be
1780 * updated to support other THP sizes.
1782 * Make sure the host VA and the guest IPA are sufficiently
1783 * aligned and that the block is contained within the memslot.
1785 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
1786 transparent_hugepage_adjust(&pfn, &fault_ipa))
1787 vma_pagesize = PMD_SIZE;
1790 if (writable)
1791 kvm_set_pfn_dirty(pfn);
1793 if (fault_status != FSC_PERM && !is_iomap(flags))
1794 clean_dcache_guest_page(pfn, vma_pagesize);
1796 if (exec_fault)
1797 invalidate_icache_guest_page(pfn, vma_pagesize);
1800 * If we took an execution fault we have made the
1801 * icache/dcache coherent above and should now let the s2
1802 * mapping be executable.
1804 * Write faults (!exec_fault && FSC_PERM) are orthogonal to
1805 * execute permissions, and we preserve whatever we have.
1807 needs_exec = exec_fault ||
1808 (fault_status == FSC_PERM && stage2_is_exec(kvm, fault_ipa));
1810 if (vma_pagesize == PUD_SIZE) {
1811 pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
1813 new_pud = kvm_pud_mkhuge(new_pud);
1814 if (writable)
1815 new_pud = kvm_s2pud_mkwrite(new_pud);
1817 if (needs_exec)
1818 new_pud = kvm_s2pud_mkexec(new_pud);
1820 ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
1821 } else if (vma_pagesize == PMD_SIZE) {
1822 pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
1824 new_pmd = kvm_pmd_mkhuge(new_pmd);
1826 if (writable)
1827 new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1829 if (needs_exec)
1830 new_pmd = kvm_s2pmd_mkexec(new_pmd);
1832 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1833 } else {
1834 pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1836 if (writable) {
1837 new_pte = kvm_s2pte_mkwrite(new_pte);
1838 mark_page_dirty(kvm, gfn);
1841 if (needs_exec)
1842 new_pte = kvm_s2pte_mkexec(new_pte);
1844 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1847 out_unlock:
1848 spin_unlock(&kvm->mmu_lock);
1849 kvm_set_pfn_accessed(pfn);
1850 kvm_release_pfn_clean(pfn);
1851 return ret;
1855 * Resolve the access fault by making the page young again.
1856 * Note that because the faulting entry is guaranteed not to be
1857 * cached in the TLB, we don't need to invalidate anything.
1858 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1859 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1861 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1863 pud_t *pud;
1864 pmd_t *pmd;
1865 pte_t *pte;
1866 kvm_pfn_t pfn;
1867 bool pfn_valid = false;
1869 trace_kvm_access_fault(fault_ipa);
1871 spin_lock(&vcpu->kvm->mmu_lock);
1873 if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
1874 goto out;
1876 if (pud) { /* HugeTLB */
1877 *pud = kvm_s2pud_mkyoung(*pud);
1878 pfn = kvm_pud_pfn(*pud);
1879 pfn_valid = true;
1880 } else if (pmd) { /* THP, HugeTLB */
1881 *pmd = pmd_mkyoung(*pmd);
1882 pfn = pmd_pfn(*pmd);
1883 pfn_valid = true;
1884 } else {
1885 *pte = pte_mkyoung(*pte); /* Just a page... */
1886 pfn = pte_pfn(*pte);
1887 pfn_valid = true;
1890 out:
1891 spin_unlock(&vcpu->kvm->mmu_lock);
1892 if (pfn_valid)
1893 kvm_set_pfn_accessed(pfn);
1897 * kvm_handle_guest_abort - handles all 2nd stage aborts
1898 * @vcpu: the VCPU pointer
1899 * @run: the kvm_run structure
1901 * Any abort that gets to the host is almost guaranteed to be caused by a
1902 * missing second stage translation table entry, which can mean that either the
1903 * guest simply needs more memory and we must allocate an appropriate page or it
1904 * can mean that the guest tried to access I/O memory, which is emulated by user
1905 * space. The distinction is based on the IPA causing the fault and whether this
1906 * memory region has been registered as standard RAM by user space.
1908 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1910 unsigned long fault_status;
1911 phys_addr_t fault_ipa;
1912 struct kvm_memory_slot *memslot;
1913 unsigned long hva;
1914 bool is_iabt, write_fault, writable;
1915 gfn_t gfn;
1916 int ret, idx;
1918 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1920 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1921 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1923 /* Synchronous External Abort? */
1924 if (kvm_vcpu_dabt_isextabt(vcpu)) {
1926 * For RAS the host kernel may handle this abort.
1927 * There is no need to pass the error into the guest.
1929 if (!kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1930 return 1;
1932 if (unlikely(!is_iabt)) {
1933 kvm_inject_vabt(vcpu);
1934 return 1;
1938 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1939 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1941 /* Check the stage-2 fault is trans. fault or write fault */
1942 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1943 fault_status != FSC_ACCESS) {
1944 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1945 kvm_vcpu_trap_get_class(vcpu),
1946 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1947 (unsigned long)kvm_vcpu_get_hsr(vcpu));
1948 return -EFAULT;
1951 idx = srcu_read_lock(&vcpu->kvm->srcu);
1953 gfn = fault_ipa >> PAGE_SHIFT;
1954 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1955 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1956 write_fault = kvm_is_write_fault(vcpu);
1957 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1958 if (is_iabt) {
1959 /* Prefetch Abort on I/O address */
1960 ret = -ENOEXEC;
1961 goto out;
1965 * Check for a cache maintenance operation. Since we
1966 * ended-up here, we know it is outside of any memory
1967 * slot. But we can't find out if that is for a device,
1968 * or if the guest is just being stupid. The only thing
1969 * we know for sure is that this range cannot be cached.
1971 * So let's assume that the guest is just being
1972 * cautious, and skip the instruction.
1974 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1975 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1976 ret = 1;
1977 goto out_unlock;
1981 * The IPA is reported as [MAX:12], so we need to
1982 * complement it with the bottom 12 bits from the
1983 * faulting VA. This is always 12 bits, irrespective
1984 * of the page size.
1986 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1987 ret = io_mem_abort(vcpu, run, fault_ipa);
1988 goto out_unlock;
1991 /* Userspace should not be able to register out-of-bounds IPAs */
1992 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1994 if (fault_status == FSC_ACCESS) {
1995 handle_access_fault(vcpu, fault_ipa);
1996 ret = 1;
1997 goto out_unlock;
2000 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
2001 if (ret == 0)
2002 ret = 1;
2003 out:
2004 if (ret == -ENOEXEC) {
2005 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2006 ret = 1;
2008 out_unlock:
2009 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2010 return ret;
2013 static int handle_hva_to_gpa(struct kvm *kvm,
2014 unsigned long start,
2015 unsigned long end,
2016 int (*handler)(struct kvm *kvm,
2017 gpa_t gpa, u64 size,
2018 void *data),
2019 void *data)
2021 struct kvm_memslots *slots;
2022 struct kvm_memory_slot *memslot;
2023 int ret = 0;
2025 slots = kvm_memslots(kvm);
2027 /* we only care about the pages that the guest sees */
2028 kvm_for_each_memslot(memslot, slots) {
2029 unsigned long hva_start, hva_end;
2030 gfn_t gpa;
2032 hva_start = max(start, memslot->userspace_addr);
2033 hva_end = min(end, memslot->userspace_addr +
2034 (memslot->npages << PAGE_SHIFT));
2035 if (hva_start >= hva_end)
2036 continue;
2038 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
2039 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
2042 return ret;
2045 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2047 unmap_stage2_range(kvm, gpa, size);
2048 return 0;
2051 int kvm_unmap_hva_range(struct kvm *kvm,
2052 unsigned long start, unsigned long end)
2054 if (!kvm->arch.pgd)
2055 return 0;
2057 trace_kvm_unmap_hva_range(start, end);
2058 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
2059 return 0;
2062 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2064 pte_t *pte = (pte_t *)data;
2066 WARN_ON(size != PAGE_SIZE);
2068 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
2069 * flag clear because MMU notifiers will have unmapped a huge PMD before
2070 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
2071 * therefore stage2_set_pte() never needs to clear out a huge PMD
2072 * through this calling path.
2074 stage2_set_pte(kvm, NULL, gpa, pte, 0);
2075 return 0;
2079 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2081 unsigned long end = hva + PAGE_SIZE;
2082 kvm_pfn_t pfn = pte_pfn(pte);
2083 pte_t stage2_pte;
2085 if (!kvm->arch.pgd)
2086 return 0;
2088 trace_kvm_set_spte_hva(hva);
2091 * We've moved a page around, probably through CoW, so let's treat it
2092 * just like a translation fault and clean the cache to the PoC.
2094 clean_dcache_guest_page(pfn, PAGE_SIZE);
2095 stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2096 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
2098 return 0;
2101 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2103 pud_t *pud;
2104 pmd_t *pmd;
2105 pte_t *pte;
2107 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2108 if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2109 return 0;
2111 if (pud)
2112 return stage2_pudp_test_and_clear_young(pud);
2113 else if (pmd)
2114 return stage2_pmdp_test_and_clear_young(pmd);
2115 else
2116 return stage2_ptep_test_and_clear_young(pte);
2119 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2121 pud_t *pud;
2122 pmd_t *pmd;
2123 pte_t *pte;
2125 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2126 if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2127 return 0;
2129 if (pud)
2130 return kvm_s2pud_young(*pud);
2131 else if (pmd)
2132 return pmd_young(*pmd);
2133 else
2134 return pte_young(*pte);
2137 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2139 if (!kvm->arch.pgd)
2140 return 0;
2141 trace_kvm_age_hva(start, end);
2142 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
2145 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2147 if (!kvm->arch.pgd)
2148 return 0;
2149 trace_kvm_test_age_hva(hva);
2150 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
2153 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
2155 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
2158 phys_addr_t kvm_mmu_get_httbr(void)
2160 if (__kvm_cpu_uses_extended_idmap())
2161 return virt_to_phys(merged_hyp_pgd);
2162 else
2163 return virt_to_phys(hyp_pgd);
2166 phys_addr_t kvm_get_idmap_vector(void)
2168 return hyp_idmap_vector;
2171 static int kvm_map_idmap_text(pgd_t *pgd)
2173 int err;
2175 /* Create the idmap in the boot page tables */
2176 err = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2177 hyp_idmap_start, hyp_idmap_end,
2178 __phys_to_pfn(hyp_idmap_start),
2179 PAGE_HYP_EXEC);
2180 if (err)
2181 kvm_err("Failed to idmap %lx-%lx\n",
2182 hyp_idmap_start, hyp_idmap_end);
2184 return err;
2187 int kvm_mmu_init(void)
2189 int err;
2191 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
2192 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2193 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
2194 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2195 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
2198 * We rely on the linker script to ensure at build time that the HYP
2199 * init code does not cross a page boundary.
2201 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2203 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2204 kvm_debug("HYP VA range: %lx:%lx\n",
2205 kern_hyp_va(PAGE_OFFSET),
2206 kern_hyp_va((unsigned long)high_memory - 1));
2208 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2209 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
2210 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2212 * The idmap page is intersecting with the VA space,
2213 * it is not safe to continue further.
2215 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2216 err = -EINVAL;
2217 goto out;
2220 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2221 if (!hyp_pgd) {
2222 kvm_err("Hyp mode PGD not allocated\n");
2223 err = -ENOMEM;
2224 goto out;
2227 if (__kvm_cpu_uses_extended_idmap()) {
2228 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2229 hyp_pgd_order);
2230 if (!boot_hyp_pgd) {
2231 kvm_err("Hyp boot PGD not allocated\n");
2232 err = -ENOMEM;
2233 goto out;
2236 err = kvm_map_idmap_text(boot_hyp_pgd);
2237 if (err)
2238 goto out;
2240 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
2241 if (!merged_hyp_pgd) {
2242 kvm_err("Failed to allocate extra HYP pgd\n");
2243 goto out;
2245 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
2246 hyp_idmap_start);
2247 } else {
2248 err = kvm_map_idmap_text(hyp_pgd);
2249 if (err)
2250 goto out;
2253 io_map_base = hyp_idmap_start;
2254 return 0;
2255 out:
2256 free_hyp_pgds();
2257 return err;
2260 void kvm_arch_commit_memory_region(struct kvm *kvm,
2261 const struct kvm_userspace_memory_region *mem,
2262 const struct kvm_memory_slot *old,
2263 const struct kvm_memory_slot *new,
2264 enum kvm_mr_change change)
2267 * At this point memslot has been committed and there is an
2268 * allocated dirty_bitmap[], dirty pages will be be tracked while the
2269 * memory slot is write protected.
2271 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
2272 kvm_mmu_wp_memory_region(kvm, mem->slot);
2275 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2276 struct kvm_memory_slot *memslot,
2277 const struct kvm_userspace_memory_region *mem,
2278 enum kvm_mr_change change)
2280 hva_t hva = mem->userspace_addr;
2281 hva_t reg_end = hva + mem->memory_size;
2282 bool writable = !(mem->flags & KVM_MEM_READONLY);
2283 int ret = 0;
2285 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2286 change != KVM_MR_FLAGS_ONLY)
2287 return 0;
2290 * Prevent userspace from creating a memory region outside of the IPA
2291 * space addressable by the KVM guest IPA space.
2293 if (memslot->base_gfn + memslot->npages >=
2294 (kvm_phys_size(kvm) >> PAGE_SHIFT))
2295 return -EFAULT;
2297 down_read(&current->mm->mmap_sem);
2299 * A memory region could potentially cover multiple VMAs, and any holes
2300 * between them, so iterate over all of them to find out if we can map
2301 * any of them right now.
2303 * +--------------------------------------------+
2304 * +---------------+----------------+ +----------------+
2305 * | : VMA 1 | VMA 2 | | VMA 3 : |
2306 * +---------------+----------------+ +----------------+
2307 * | memory region |
2308 * +--------------------------------------------+
2310 do {
2311 struct vm_area_struct *vma = find_vma(current->mm, hva);
2312 hva_t vm_start, vm_end;
2314 if (!vma || vma->vm_start >= reg_end)
2315 break;
2318 * Take the intersection of this VMA with the memory region
2320 vm_start = max(hva, vma->vm_start);
2321 vm_end = min(reg_end, vma->vm_end);
2323 if (vma->vm_flags & VM_PFNMAP) {
2324 gpa_t gpa = mem->guest_phys_addr +
2325 (vm_start - mem->userspace_addr);
2326 phys_addr_t pa;
2328 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2329 pa += vm_start - vma->vm_start;
2331 /* IO region dirty page logging not allowed */
2332 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2333 ret = -EINVAL;
2334 goto out;
2337 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2338 vm_end - vm_start,
2339 writable);
2340 if (ret)
2341 break;
2343 hva = vm_end;
2344 } while (hva < reg_end);
2346 if (change == KVM_MR_FLAGS_ONLY)
2347 goto out;
2349 spin_lock(&kvm->mmu_lock);
2350 if (ret)
2351 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2352 else
2353 stage2_flush_memslot(kvm, memslot);
2354 spin_unlock(&kvm->mmu_lock);
2355 out:
2356 up_read(&current->mm->mmap_sem);
2357 return ret;
2360 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
2361 struct kvm_memory_slot *dont)
2365 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
2366 unsigned long npages)
2368 return 0;
2371 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2375 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2377 kvm_free_stage2_pgd(kvm);
2380 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2381 struct kvm_memory_slot *slot)
2383 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2384 phys_addr_t size = slot->npages << PAGE_SHIFT;
2386 spin_lock(&kvm->mmu_lock);
2387 unmap_stage2_range(kvm, gpa, size);
2388 spin_unlock(&kvm->mmu_lock);
2392 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2394 * Main problems:
2395 * - S/W ops are local to a CPU (not broadcast)
2396 * - We have line migration behind our back (speculation)
2397 * - System caches don't support S/W at all (damn!)
2399 * In the face of the above, the best we can do is to try and convert
2400 * S/W ops to VA ops. Because the guest is not allowed to infer the
2401 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2402 * which is a rather good thing for us.
2404 * Also, it is only used when turning caches on/off ("The expected
2405 * usage of the cache maintenance instructions that operate by set/way
2406 * is associated with the cache maintenance instructions associated
2407 * with the powerdown and powerup of caches, if this is required by
2408 * the implementation.").
2410 * We use the following policy:
2412 * - If we trap a S/W operation, we enable VM trapping to detect
2413 * caches being turned on/off, and do a full clean.
2415 * - We flush the caches on both caches being turned on and off.
2417 * - Once the caches are enabled, we stop trapping VM ops.
2419 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2421 unsigned long hcr = *vcpu_hcr(vcpu);
2424 * If this is the first time we do a S/W operation
2425 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2426 * VM trapping.
2428 * Otherwise, rely on the VM trapping to wait for the MMU +
2429 * Caches to be turned off. At that point, we'll be able to
2430 * clean the caches again.
2432 if (!(hcr & HCR_TVM)) {
2433 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2434 vcpu_has_cache_enabled(vcpu));
2435 stage2_flush_vm(vcpu->kvm);
2436 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2440 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2442 bool now_enabled = vcpu_has_cache_enabled(vcpu);
2445 * If switching the MMU+caches on, need to invalidate the caches.
2446 * If switching it off, need to clean the caches.
2447 * Clean + invalidate does the trick always.
2449 if (now_enabled != was_enabled)
2450 stage2_flush_vm(vcpu->kvm);
2452 /* Caches are now on, stop trapping VM ops (until a S/W op) */
2453 if (now_enabled)
2454 *vcpu_hcr(vcpu) &= ~HCR_TVM;
2456 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);