1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_mmio.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
25 static pgd_t
*boot_hyp_pgd
;
26 static pgd_t
*hyp_pgd
;
27 static pgd_t
*merged_hyp_pgd
;
28 static DEFINE_MUTEX(kvm_hyp_pgd_mutex
);
30 static unsigned long hyp_idmap_start
;
31 static unsigned long hyp_idmap_end
;
32 static phys_addr_t hyp_idmap_vector
;
34 static unsigned long io_map_base
;
36 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
38 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
39 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
41 static bool is_iomap(unsigned long flags
)
43 return flags
& KVM_S2PTE_FLAG_IS_IOMAP
;
46 static bool memslot_is_logging(struct kvm_memory_slot
*memslot
)
48 return memslot
->dirty_bitmap
&& !(memslot
->flags
& KVM_MEM_READONLY
);
52 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
53 * @kvm: pointer to kvm structure.
55 * Interface to HYP function to flush all VM TLB entries
57 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
59 kvm_call_hyp(__kvm_tlb_flush_vmid
, kvm
);
62 static void kvm_tlb_flush_vmid_ipa(struct kvm
*kvm
, phys_addr_t ipa
)
64 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa
, kvm
, ipa
);
68 * D-Cache management functions. They take the page table entries by
69 * value, as they are flushing the cache using the kernel mapping (or
72 static void kvm_flush_dcache_pte(pte_t pte
)
74 __kvm_flush_dcache_pte(pte
);
77 static void kvm_flush_dcache_pmd(pmd_t pmd
)
79 __kvm_flush_dcache_pmd(pmd
);
82 static void kvm_flush_dcache_pud(pud_t pud
)
84 __kvm_flush_dcache_pud(pud
);
87 static bool kvm_is_device_pfn(unsigned long pfn
)
89 return !pfn_valid(pfn
);
93 * stage2_dissolve_pmd() - clear and flush huge PMD entry
94 * @kvm: pointer to kvm structure.
96 * @pmd: pmd pointer for IPA
98 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
100 static void stage2_dissolve_pmd(struct kvm
*kvm
, phys_addr_t addr
, pmd_t
*pmd
)
102 if (!pmd_thp_or_huge(*pmd
))
106 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
107 put_page(virt_to_page(pmd
));
111 * stage2_dissolve_pud() - clear and flush huge PUD entry
112 * @kvm: pointer to kvm structure.
114 * @pud: pud pointer for IPA
116 * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
118 static void stage2_dissolve_pud(struct kvm
*kvm
, phys_addr_t addr
, pud_t
*pudp
)
120 if (!stage2_pud_huge(kvm
, *pudp
))
123 stage2_pud_clear(kvm
, pudp
);
124 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
125 put_page(virt_to_page(pudp
));
128 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
133 BUG_ON(max
> KVM_NR_MEM_OBJS
);
134 if (cache
->nobjs
>= min
)
136 while (cache
->nobjs
< max
) {
137 page
= (void *)__get_free_page(GFP_PGTABLE_USER
);
140 cache
->objects
[cache
->nobjs
++] = page
;
145 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
)
148 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
151 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
)
155 BUG_ON(!mc
|| !mc
->nobjs
);
156 p
= mc
->objects
[--mc
->nobjs
];
160 static void clear_stage2_pgd_entry(struct kvm
*kvm
, pgd_t
*pgd
, phys_addr_t addr
)
162 pud_t
*pud_table __maybe_unused
= stage2_pud_offset(kvm
, pgd
, 0UL);
163 stage2_pgd_clear(kvm
, pgd
);
164 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
165 stage2_pud_free(kvm
, pud_table
);
166 put_page(virt_to_page(pgd
));
169 static void clear_stage2_pud_entry(struct kvm
*kvm
, pud_t
*pud
, phys_addr_t addr
)
171 pmd_t
*pmd_table __maybe_unused
= stage2_pmd_offset(kvm
, pud
, 0);
172 VM_BUG_ON(stage2_pud_huge(kvm
, *pud
));
173 stage2_pud_clear(kvm
, pud
);
174 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
175 stage2_pmd_free(kvm
, pmd_table
);
176 put_page(virt_to_page(pud
));
179 static void clear_stage2_pmd_entry(struct kvm
*kvm
, pmd_t
*pmd
, phys_addr_t addr
)
181 pte_t
*pte_table
= pte_offset_kernel(pmd
, 0);
182 VM_BUG_ON(pmd_thp_or_huge(*pmd
));
184 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
185 free_page((unsigned long)pte_table
);
186 put_page(virt_to_page(pmd
));
189 static inline void kvm_set_pte(pte_t
*ptep
, pte_t new_pte
)
191 WRITE_ONCE(*ptep
, new_pte
);
195 static inline void kvm_set_pmd(pmd_t
*pmdp
, pmd_t new_pmd
)
197 WRITE_ONCE(*pmdp
, new_pmd
);
201 static inline void kvm_pmd_populate(pmd_t
*pmdp
, pte_t
*ptep
)
203 kvm_set_pmd(pmdp
, kvm_mk_pmd(ptep
));
206 static inline void kvm_pud_populate(pud_t
*pudp
, pmd_t
*pmdp
)
208 WRITE_ONCE(*pudp
, kvm_mk_pud(pmdp
));
212 static inline void kvm_pgd_populate(pgd_t
*pgdp
, pud_t
*pudp
)
214 WRITE_ONCE(*pgdp
, kvm_mk_pgd(pudp
));
219 * Unmapping vs dcache management:
221 * If a guest maps certain memory pages as uncached, all writes will
222 * bypass the data cache and go directly to RAM. However, the CPUs
223 * can still speculate reads (not writes) and fill cache lines with
226 * Those cache lines will be *clean* cache lines though, so a
227 * clean+invalidate operation is equivalent to an invalidate
228 * operation, because no cache lines are marked dirty.
230 * Those clean cache lines could be filled prior to an uncached write
231 * by the guest, and the cache coherent IO subsystem would therefore
232 * end up writing old data to disk.
234 * This is why right after unmapping a page/section and invalidating
235 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
236 * the IO subsystem will never hit in the cache.
238 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
239 * we then fully enforce cacheability of RAM, no matter what the guest
242 static void unmap_stage2_ptes(struct kvm
*kvm
, pmd_t
*pmd
,
243 phys_addr_t addr
, phys_addr_t end
)
245 phys_addr_t start_addr
= addr
;
246 pte_t
*pte
, *start_pte
;
248 start_pte
= pte
= pte_offset_kernel(pmd
, addr
);
250 if (!pte_none(*pte
)) {
251 pte_t old_pte
= *pte
;
253 kvm_set_pte(pte
, __pte(0));
254 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
256 /* No need to invalidate the cache for device mappings */
257 if (!kvm_is_device_pfn(pte_pfn(old_pte
)))
258 kvm_flush_dcache_pte(old_pte
);
260 put_page(virt_to_page(pte
));
262 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
264 if (stage2_pte_table_empty(kvm
, start_pte
))
265 clear_stage2_pmd_entry(kvm
, pmd
, start_addr
);
268 static void unmap_stage2_pmds(struct kvm
*kvm
, pud_t
*pud
,
269 phys_addr_t addr
, phys_addr_t end
)
271 phys_addr_t next
, start_addr
= addr
;
272 pmd_t
*pmd
, *start_pmd
;
274 start_pmd
= pmd
= stage2_pmd_offset(kvm
, pud
, addr
);
276 next
= stage2_pmd_addr_end(kvm
, addr
, end
);
277 if (!pmd_none(*pmd
)) {
278 if (pmd_thp_or_huge(*pmd
)) {
279 pmd_t old_pmd
= *pmd
;
282 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
284 kvm_flush_dcache_pmd(old_pmd
);
286 put_page(virt_to_page(pmd
));
288 unmap_stage2_ptes(kvm
, pmd
, addr
, next
);
291 } while (pmd
++, addr
= next
, addr
!= end
);
293 if (stage2_pmd_table_empty(kvm
, start_pmd
))
294 clear_stage2_pud_entry(kvm
, pud
, start_addr
);
297 static void unmap_stage2_puds(struct kvm
*kvm
, pgd_t
*pgd
,
298 phys_addr_t addr
, phys_addr_t end
)
300 phys_addr_t next
, start_addr
= addr
;
301 pud_t
*pud
, *start_pud
;
303 start_pud
= pud
= stage2_pud_offset(kvm
, pgd
, addr
);
305 next
= stage2_pud_addr_end(kvm
, addr
, end
);
306 if (!stage2_pud_none(kvm
, *pud
)) {
307 if (stage2_pud_huge(kvm
, *pud
)) {
308 pud_t old_pud
= *pud
;
310 stage2_pud_clear(kvm
, pud
);
311 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
312 kvm_flush_dcache_pud(old_pud
);
313 put_page(virt_to_page(pud
));
315 unmap_stage2_pmds(kvm
, pud
, addr
, next
);
318 } while (pud
++, addr
= next
, addr
!= end
);
320 if (stage2_pud_table_empty(kvm
, start_pud
))
321 clear_stage2_pgd_entry(kvm
, pgd
, start_addr
);
325 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
326 * @kvm: The VM pointer
327 * @start: The intermediate physical base address of the range to unmap
328 * @size: The size of the area to unmap
330 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
331 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
332 * destroying the VM), otherwise another faulting VCPU may come in and mess
333 * with things behind our backs.
335 static void unmap_stage2_range(struct kvm
*kvm
, phys_addr_t start
, u64 size
)
338 phys_addr_t addr
= start
, end
= start
+ size
;
341 assert_spin_locked(&kvm
->mmu_lock
);
342 WARN_ON(size
& ~PAGE_MASK
);
344 pgd
= kvm
->arch
.pgd
+ stage2_pgd_index(kvm
, addr
);
347 * Make sure the page table is still active, as another thread
348 * could have possibly freed the page table, while we released
351 if (!READ_ONCE(kvm
->arch
.pgd
))
353 next
= stage2_pgd_addr_end(kvm
, addr
, end
);
354 if (!stage2_pgd_none(kvm
, *pgd
))
355 unmap_stage2_puds(kvm
, pgd
, addr
, next
);
357 * If the range is too large, release the kvm->mmu_lock
358 * to prevent starvation and lockup detector warnings.
361 cond_resched_lock(&kvm
->mmu_lock
);
362 } while (pgd
++, addr
= next
, addr
!= end
);
365 static void stage2_flush_ptes(struct kvm
*kvm
, pmd_t
*pmd
,
366 phys_addr_t addr
, phys_addr_t end
)
370 pte
= pte_offset_kernel(pmd
, addr
);
372 if (!pte_none(*pte
) && !kvm_is_device_pfn(pte_pfn(*pte
)))
373 kvm_flush_dcache_pte(*pte
);
374 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
377 static void stage2_flush_pmds(struct kvm
*kvm
, pud_t
*pud
,
378 phys_addr_t addr
, phys_addr_t end
)
383 pmd
= stage2_pmd_offset(kvm
, pud
, addr
);
385 next
= stage2_pmd_addr_end(kvm
, addr
, end
);
386 if (!pmd_none(*pmd
)) {
387 if (pmd_thp_or_huge(*pmd
))
388 kvm_flush_dcache_pmd(*pmd
);
390 stage2_flush_ptes(kvm
, pmd
, addr
, next
);
392 } while (pmd
++, addr
= next
, addr
!= end
);
395 static void stage2_flush_puds(struct kvm
*kvm
, pgd_t
*pgd
,
396 phys_addr_t addr
, phys_addr_t end
)
401 pud
= stage2_pud_offset(kvm
, pgd
, addr
);
403 next
= stage2_pud_addr_end(kvm
, addr
, end
);
404 if (!stage2_pud_none(kvm
, *pud
)) {
405 if (stage2_pud_huge(kvm
, *pud
))
406 kvm_flush_dcache_pud(*pud
);
408 stage2_flush_pmds(kvm
, pud
, addr
, next
);
410 } while (pud
++, addr
= next
, addr
!= end
);
413 static void stage2_flush_memslot(struct kvm
*kvm
,
414 struct kvm_memory_slot
*memslot
)
416 phys_addr_t addr
= memslot
->base_gfn
<< PAGE_SHIFT
;
417 phys_addr_t end
= addr
+ PAGE_SIZE
* memslot
->npages
;
421 pgd
= kvm
->arch
.pgd
+ stage2_pgd_index(kvm
, addr
);
423 next
= stage2_pgd_addr_end(kvm
, addr
, end
);
424 if (!stage2_pgd_none(kvm
, *pgd
))
425 stage2_flush_puds(kvm
, pgd
, addr
, next
);
426 } while (pgd
++, addr
= next
, addr
!= end
);
430 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
431 * @kvm: The struct kvm pointer
433 * Go through the stage 2 page tables and invalidate any cache lines
434 * backing memory already mapped to the VM.
436 static void stage2_flush_vm(struct kvm
*kvm
)
438 struct kvm_memslots
*slots
;
439 struct kvm_memory_slot
*memslot
;
442 idx
= srcu_read_lock(&kvm
->srcu
);
443 spin_lock(&kvm
->mmu_lock
);
445 slots
= kvm_memslots(kvm
);
446 kvm_for_each_memslot(memslot
, slots
)
447 stage2_flush_memslot(kvm
, memslot
);
449 spin_unlock(&kvm
->mmu_lock
);
450 srcu_read_unlock(&kvm
->srcu
, idx
);
453 static void clear_hyp_pgd_entry(pgd_t
*pgd
)
455 pud_t
*pud_table __maybe_unused
= pud_offset(pgd
, 0UL);
457 pud_free(NULL
, pud_table
);
458 put_page(virt_to_page(pgd
));
461 static void clear_hyp_pud_entry(pud_t
*pud
)
463 pmd_t
*pmd_table __maybe_unused
= pmd_offset(pud
, 0);
464 VM_BUG_ON(pud_huge(*pud
));
466 pmd_free(NULL
, pmd_table
);
467 put_page(virt_to_page(pud
));
470 static void clear_hyp_pmd_entry(pmd_t
*pmd
)
472 pte_t
*pte_table
= pte_offset_kernel(pmd
, 0);
473 VM_BUG_ON(pmd_thp_or_huge(*pmd
));
475 pte_free_kernel(NULL
, pte_table
);
476 put_page(virt_to_page(pmd
));
479 static void unmap_hyp_ptes(pmd_t
*pmd
, phys_addr_t addr
, phys_addr_t end
)
481 pte_t
*pte
, *start_pte
;
483 start_pte
= pte
= pte_offset_kernel(pmd
, addr
);
485 if (!pte_none(*pte
)) {
486 kvm_set_pte(pte
, __pte(0));
487 put_page(virt_to_page(pte
));
489 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
491 if (hyp_pte_table_empty(start_pte
))
492 clear_hyp_pmd_entry(pmd
);
495 static void unmap_hyp_pmds(pud_t
*pud
, phys_addr_t addr
, phys_addr_t end
)
498 pmd_t
*pmd
, *start_pmd
;
500 start_pmd
= pmd
= pmd_offset(pud
, addr
);
502 next
= pmd_addr_end(addr
, end
);
503 /* Hyp doesn't use huge pmds */
505 unmap_hyp_ptes(pmd
, addr
, next
);
506 } while (pmd
++, addr
= next
, addr
!= end
);
508 if (hyp_pmd_table_empty(start_pmd
))
509 clear_hyp_pud_entry(pud
);
512 static void unmap_hyp_puds(pgd_t
*pgd
, phys_addr_t addr
, phys_addr_t end
)
515 pud_t
*pud
, *start_pud
;
517 start_pud
= pud
= pud_offset(pgd
, addr
);
519 next
= pud_addr_end(addr
, end
);
520 /* Hyp doesn't use huge puds */
522 unmap_hyp_pmds(pud
, addr
, next
);
523 } while (pud
++, addr
= next
, addr
!= end
);
525 if (hyp_pud_table_empty(start_pud
))
526 clear_hyp_pgd_entry(pgd
);
529 static unsigned int kvm_pgd_index(unsigned long addr
, unsigned int ptrs_per_pgd
)
531 return (addr
>> PGDIR_SHIFT
) & (ptrs_per_pgd
- 1);
534 static void __unmap_hyp_range(pgd_t
*pgdp
, unsigned long ptrs_per_pgd
,
535 phys_addr_t start
, u64 size
)
538 phys_addr_t addr
= start
, end
= start
+ size
;
542 * We don't unmap anything from HYP, except at the hyp tear down.
543 * Hence, we don't have to invalidate the TLBs here.
545 pgd
= pgdp
+ kvm_pgd_index(addr
, ptrs_per_pgd
);
547 next
= pgd_addr_end(addr
, end
);
549 unmap_hyp_puds(pgd
, addr
, next
);
550 } while (pgd
++, addr
= next
, addr
!= end
);
553 static void unmap_hyp_range(pgd_t
*pgdp
, phys_addr_t start
, u64 size
)
555 __unmap_hyp_range(pgdp
, PTRS_PER_PGD
, start
, size
);
558 static void unmap_hyp_idmap_range(pgd_t
*pgdp
, phys_addr_t start
, u64 size
)
560 __unmap_hyp_range(pgdp
, __kvm_idmap_ptrs_per_pgd(), start
, size
);
564 * free_hyp_pgds - free Hyp-mode page tables
566 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
567 * therefore contains either mappings in the kernel memory area (above
568 * PAGE_OFFSET), or device mappings in the idmap range.
570 * boot_hyp_pgd should only map the idmap range, and is only used in
571 * the extended idmap case.
573 void free_hyp_pgds(void)
577 mutex_lock(&kvm_hyp_pgd_mutex
);
579 id_pgd
= boot_hyp_pgd
? boot_hyp_pgd
: hyp_pgd
;
582 /* In case we never called hyp_mmu_init() */
584 io_map_base
= hyp_idmap_start
;
585 unmap_hyp_idmap_range(id_pgd
, io_map_base
,
586 hyp_idmap_start
+ PAGE_SIZE
- io_map_base
);
590 free_pages((unsigned long)boot_hyp_pgd
, hyp_pgd_order
);
595 unmap_hyp_range(hyp_pgd
, kern_hyp_va(PAGE_OFFSET
),
596 (uintptr_t)high_memory
- PAGE_OFFSET
);
598 free_pages((unsigned long)hyp_pgd
, hyp_pgd_order
);
601 if (merged_hyp_pgd
) {
602 clear_page(merged_hyp_pgd
);
603 free_page((unsigned long)merged_hyp_pgd
);
604 merged_hyp_pgd
= NULL
;
607 mutex_unlock(&kvm_hyp_pgd_mutex
);
610 static void create_hyp_pte_mappings(pmd_t
*pmd
, unsigned long start
,
611 unsigned long end
, unsigned long pfn
,
619 pte
= pte_offset_kernel(pmd
, addr
);
620 kvm_set_pte(pte
, kvm_pfn_pte(pfn
, prot
));
621 get_page(virt_to_page(pte
));
623 } while (addr
+= PAGE_SIZE
, addr
!= end
);
626 static int create_hyp_pmd_mappings(pud_t
*pud
, unsigned long start
,
627 unsigned long end
, unsigned long pfn
,
632 unsigned long addr
, next
;
636 pmd
= pmd_offset(pud
, addr
);
638 BUG_ON(pmd_sect(*pmd
));
640 if (pmd_none(*pmd
)) {
641 pte
= pte_alloc_one_kernel(NULL
);
643 kvm_err("Cannot allocate Hyp pte\n");
646 kvm_pmd_populate(pmd
, pte
);
647 get_page(virt_to_page(pmd
));
650 next
= pmd_addr_end(addr
, end
);
652 create_hyp_pte_mappings(pmd
, addr
, next
, pfn
, prot
);
653 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
654 } while (addr
= next
, addr
!= end
);
659 static int create_hyp_pud_mappings(pgd_t
*pgd
, unsigned long start
,
660 unsigned long end
, unsigned long pfn
,
665 unsigned long addr
, next
;
670 pud
= pud_offset(pgd
, addr
);
672 if (pud_none_or_clear_bad(pud
)) {
673 pmd
= pmd_alloc_one(NULL
, addr
);
675 kvm_err("Cannot allocate Hyp pmd\n");
678 kvm_pud_populate(pud
, pmd
);
679 get_page(virt_to_page(pud
));
682 next
= pud_addr_end(addr
, end
);
683 ret
= create_hyp_pmd_mappings(pud
, addr
, next
, pfn
, prot
);
686 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
687 } while (addr
= next
, addr
!= end
);
692 static int __create_hyp_mappings(pgd_t
*pgdp
, unsigned long ptrs_per_pgd
,
693 unsigned long start
, unsigned long end
,
694 unsigned long pfn
, pgprot_t prot
)
698 unsigned long addr
, next
;
701 mutex_lock(&kvm_hyp_pgd_mutex
);
702 addr
= start
& PAGE_MASK
;
703 end
= PAGE_ALIGN(end
);
705 pgd
= pgdp
+ kvm_pgd_index(addr
, ptrs_per_pgd
);
707 if (pgd_none(*pgd
)) {
708 pud
= pud_alloc_one(NULL
, addr
);
710 kvm_err("Cannot allocate Hyp pud\n");
714 kvm_pgd_populate(pgd
, pud
);
715 get_page(virt_to_page(pgd
));
718 next
= pgd_addr_end(addr
, end
);
719 err
= create_hyp_pud_mappings(pgd
, addr
, next
, pfn
, prot
);
722 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
723 } while (addr
= next
, addr
!= end
);
725 mutex_unlock(&kvm_hyp_pgd_mutex
);
729 static phys_addr_t
kvm_kaddr_to_phys(void *kaddr
)
731 if (!is_vmalloc_addr(kaddr
)) {
732 BUG_ON(!virt_addr_valid(kaddr
));
735 return page_to_phys(vmalloc_to_page(kaddr
)) +
736 offset_in_page(kaddr
);
741 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
742 * @from: The virtual kernel start address of the range
743 * @to: The virtual kernel end address of the range (exclusive)
744 * @prot: The protection to be applied to this range
746 * The same virtual address as the kernel virtual address is also used
747 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
750 int create_hyp_mappings(void *from
, void *to
, pgprot_t prot
)
752 phys_addr_t phys_addr
;
753 unsigned long virt_addr
;
754 unsigned long start
= kern_hyp_va((unsigned long)from
);
755 unsigned long end
= kern_hyp_va((unsigned long)to
);
757 if (is_kernel_in_hyp_mode())
760 start
= start
& PAGE_MASK
;
761 end
= PAGE_ALIGN(end
);
763 for (virt_addr
= start
; virt_addr
< end
; virt_addr
+= PAGE_SIZE
) {
766 phys_addr
= kvm_kaddr_to_phys(from
+ virt_addr
- start
);
767 err
= __create_hyp_mappings(hyp_pgd
, PTRS_PER_PGD
,
768 virt_addr
, virt_addr
+ PAGE_SIZE
,
769 __phys_to_pfn(phys_addr
),
778 static int __create_hyp_private_mapping(phys_addr_t phys_addr
, size_t size
,
779 unsigned long *haddr
, pgprot_t prot
)
781 pgd_t
*pgd
= hyp_pgd
;
785 mutex_lock(&kvm_hyp_pgd_mutex
);
788 * This assumes that we we have enough space below the idmap
789 * page to allocate our VAs. If not, the check below will
790 * kick. A potential alternative would be to detect that
791 * overflow and switch to an allocation above the idmap.
793 * The allocated size is always a multiple of PAGE_SIZE.
795 size
= PAGE_ALIGN(size
+ offset_in_page(phys_addr
));
796 base
= io_map_base
- size
;
799 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
800 * allocating the new area, as it would indicate we've
801 * overflowed the idmap/IO address range.
803 if ((base
^ io_map_base
) & BIT(VA_BITS
- 1))
808 mutex_unlock(&kvm_hyp_pgd_mutex
);
813 if (__kvm_cpu_uses_extended_idmap())
816 ret
= __create_hyp_mappings(pgd
, __kvm_idmap_ptrs_per_pgd(),
818 __phys_to_pfn(phys_addr
), prot
);
822 *haddr
= base
+ offset_in_page(phys_addr
);
829 * create_hyp_io_mappings - Map IO into both kernel and HYP
830 * @phys_addr: The physical start address which gets mapped
831 * @size: Size of the region being mapped
832 * @kaddr: Kernel VA for this mapping
833 * @haddr: HYP VA for this mapping
835 int create_hyp_io_mappings(phys_addr_t phys_addr
, size_t size
,
836 void __iomem
**kaddr
,
837 void __iomem
**haddr
)
842 *kaddr
= ioremap(phys_addr
, size
);
846 if (is_kernel_in_hyp_mode()) {
851 ret
= __create_hyp_private_mapping(phys_addr
, size
,
852 &addr
, PAGE_HYP_DEVICE
);
860 *haddr
= (void __iomem
*)addr
;
865 * create_hyp_exec_mappings - Map an executable range into HYP
866 * @phys_addr: The physical start address which gets mapped
867 * @size: Size of the region being mapped
868 * @haddr: HYP VA for this mapping
870 int create_hyp_exec_mappings(phys_addr_t phys_addr
, size_t size
,
876 BUG_ON(is_kernel_in_hyp_mode());
878 ret
= __create_hyp_private_mapping(phys_addr
, size
,
879 &addr
, PAGE_HYP_EXEC
);
885 *haddr
= (void *)addr
;
890 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
891 * @kvm: The KVM struct pointer for the VM.
893 * Allocates only the stage-2 HW PGD level table(s) of size defined by
894 * stage2_pgd_size(kvm).
896 * Note we don't need locking here as this is only called when the VM is
897 * created, which can only be done once.
899 int kvm_alloc_stage2_pgd(struct kvm
*kvm
)
901 phys_addr_t pgd_phys
;
904 if (kvm
->arch
.pgd
!= NULL
) {
905 kvm_err("kvm_arch already initialized?\n");
909 /* Allocate the HW PGD, making sure that each page gets its own refcount */
910 pgd
= alloc_pages_exact(stage2_pgd_size(kvm
), GFP_KERNEL
| __GFP_ZERO
);
914 pgd_phys
= virt_to_phys(pgd
);
915 if (WARN_ON(pgd_phys
& ~kvm_vttbr_baddr_mask(kvm
)))
919 kvm
->arch
.pgd_phys
= pgd_phys
;
923 static void stage2_unmap_memslot(struct kvm
*kvm
,
924 struct kvm_memory_slot
*memslot
)
926 hva_t hva
= memslot
->userspace_addr
;
927 phys_addr_t addr
= memslot
->base_gfn
<< PAGE_SHIFT
;
928 phys_addr_t size
= PAGE_SIZE
* memslot
->npages
;
929 hva_t reg_end
= hva
+ size
;
932 * A memory region could potentially cover multiple VMAs, and any holes
933 * between them, so iterate over all of them to find out if we should
936 * +--------------------------------------------+
937 * +---------------+----------------+ +----------------+
938 * | : VMA 1 | VMA 2 | | VMA 3 : |
939 * +---------------+----------------+ +----------------+
941 * +--------------------------------------------+
944 struct vm_area_struct
*vma
= find_vma(current
->mm
, hva
);
945 hva_t vm_start
, vm_end
;
947 if (!vma
|| vma
->vm_start
>= reg_end
)
951 * Take the intersection of this VMA with the memory region
953 vm_start
= max(hva
, vma
->vm_start
);
954 vm_end
= min(reg_end
, vma
->vm_end
);
956 if (!(vma
->vm_flags
& VM_PFNMAP
)) {
957 gpa_t gpa
= addr
+ (vm_start
- memslot
->userspace_addr
);
958 unmap_stage2_range(kvm
, gpa
, vm_end
- vm_start
);
961 } while (hva
< reg_end
);
965 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
966 * @kvm: The struct kvm pointer
968 * Go through the memregions and unmap any reguler RAM
969 * backing memory already mapped to the VM.
971 void stage2_unmap_vm(struct kvm
*kvm
)
973 struct kvm_memslots
*slots
;
974 struct kvm_memory_slot
*memslot
;
977 idx
= srcu_read_lock(&kvm
->srcu
);
978 down_read(¤t
->mm
->mmap_sem
);
979 spin_lock(&kvm
->mmu_lock
);
981 slots
= kvm_memslots(kvm
);
982 kvm_for_each_memslot(memslot
, slots
)
983 stage2_unmap_memslot(kvm
, memslot
);
985 spin_unlock(&kvm
->mmu_lock
);
986 up_read(¤t
->mm
->mmap_sem
);
987 srcu_read_unlock(&kvm
->srcu
, idx
);
991 * kvm_free_stage2_pgd - free all stage-2 tables
992 * @kvm: The KVM struct pointer for the VM.
994 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
995 * underlying level-2 and level-3 tables before freeing the actual level-1 table
996 * and setting the struct pointer to NULL.
998 void kvm_free_stage2_pgd(struct kvm
*kvm
)
1002 spin_lock(&kvm
->mmu_lock
);
1003 if (kvm
->arch
.pgd
) {
1004 unmap_stage2_range(kvm
, 0, kvm_phys_size(kvm
));
1005 pgd
= READ_ONCE(kvm
->arch
.pgd
);
1006 kvm
->arch
.pgd
= NULL
;
1007 kvm
->arch
.pgd_phys
= 0;
1009 spin_unlock(&kvm
->mmu_lock
);
1011 /* Free the HW pgd, one page at a time */
1013 free_pages_exact(pgd
, stage2_pgd_size(kvm
));
1016 static pud_t
*stage2_get_pud(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
1022 pgd
= kvm
->arch
.pgd
+ stage2_pgd_index(kvm
, addr
);
1023 if (stage2_pgd_none(kvm
, *pgd
)) {
1026 pud
= mmu_memory_cache_alloc(cache
);
1027 stage2_pgd_populate(kvm
, pgd
, pud
);
1028 get_page(virt_to_page(pgd
));
1031 return stage2_pud_offset(kvm
, pgd
, addr
);
1034 static pmd_t
*stage2_get_pmd(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
1040 pud
= stage2_get_pud(kvm
, cache
, addr
);
1041 if (!pud
|| stage2_pud_huge(kvm
, *pud
))
1044 if (stage2_pud_none(kvm
, *pud
)) {
1047 pmd
= mmu_memory_cache_alloc(cache
);
1048 stage2_pud_populate(kvm
, pud
, pmd
);
1049 get_page(virt_to_page(pud
));
1052 return stage2_pmd_offset(kvm
, pud
, addr
);
1055 static int stage2_set_pmd_huge(struct kvm
*kvm
, struct kvm_mmu_memory_cache
1056 *cache
, phys_addr_t addr
, const pmd_t
*new_pmd
)
1058 pmd_t
*pmd
, old_pmd
;
1061 pmd
= stage2_get_pmd(kvm
, cache
, addr
);
1066 * Multiple vcpus faulting on the same PMD entry, can
1067 * lead to them sequentially updating the PMD with the
1068 * same value. Following the break-before-make
1069 * (pmd_clear() followed by tlb_flush()) process can
1070 * hinder forward progress due to refaults generated
1071 * on missing translations.
1073 * Skip updating the page table if the entry is
1076 if (pmd_val(old_pmd
) == pmd_val(*new_pmd
))
1079 if (pmd_present(old_pmd
)) {
1081 * If we already have PTE level mapping for this block,
1082 * we must unmap it to avoid inconsistent TLB state and
1083 * leaking the table page. We could end up in this situation
1084 * if the memory slot was marked for dirty logging and was
1085 * reverted, leaving PTE level mappings for the pages accessed
1086 * during the period. So, unmap the PTE level mapping for this
1087 * block and retry, as we could have released the upper level
1088 * table in the process.
1090 * Normal THP split/merge follows mmu_notifier callbacks and do
1091 * get handled accordingly.
1093 if (!pmd_thp_or_huge(old_pmd
)) {
1094 unmap_stage2_range(kvm
, addr
& S2_PMD_MASK
, S2_PMD_SIZE
);
1098 * Mapping in huge pages should only happen through a
1099 * fault. If a page is merged into a transparent huge
1100 * page, the individual subpages of that huge page
1101 * should be unmapped through MMU notifiers before we
1104 * Merging of CompoundPages is not supported; they
1105 * should become splitting first, unmapped, merged,
1106 * and mapped back in on-demand.
1108 WARN_ON_ONCE(pmd_pfn(old_pmd
) != pmd_pfn(*new_pmd
));
1110 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
1112 get_page(virt_to_page(pmd
));
1115 kvm_set_pmd(pmd
, *new_pmd
);
1119 static int stage2_set_pud_huge(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
1120 phys_addr_t addr
, const pud_t
*new_pudp
)
1122 pud_t
*pudp
, old_pud
;
1125 pudp
= stage2_get_pud(kvm
, cache
, addr
);
1131 * A large number of vcpus faulting on the same stage 2 entry,
1132 * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
1133 * Skip updating the page tables if there is no change.
1135 if (pud_val(old_pud
) == pud_val(*new_pudp
))
1138 if (stage2_pud_present(kvm
, old_pud
)) {
1140 * If we already have table level mapping for this block, unmap
1141 * the range for this block and retry.
1143 if (!stage2_pud_huge(kvm
, old_pud
)) {
1144 unmap_stage2_range(kvm
, addr
& S2_PUD_MASK
, S2_PUD_SIZE
);
1148 WARN_ON_ONCE(kvm_pud_pfn(old_pud
) != kvm_pud_pfn(*new_pudp
));
1149 stage2_pud_clear(kvm
, pudp
);
1150 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
1152 get_page(virt_to_page(pudp
));
1155 kvm_set_pud(pudp
, *new_pudp
);
1160 * stage2_get_leaf_entry - walk the stage2 VM page tables and return
1161 * true if a valid and present leaf-entry is found. A pointer to the
1162 * leaf-entry is returned in the appropriate level variable - pudpp,
1165 static bool stage2_get_leaf_entry(struct kvm
*kvm
, phys_addr_t addr
,
1166 pud_t
**pudpp
, pmd_t
**pmdpp
, pte_t
**ptepp
)
1176 pudp
= stage2_get_pud(kvm
, NULL
, addr
);
1177 if (!pudp
|| stage2_pud_none(kvm
, *pudp
) || !stage2_pud_present(kvm
, *pudp
))
1180 if (stage2_pud_huge(kvm
, *pudp
)) {
1185 pmdp
= stage2_pmd_offset(kvm
, pudp
, addr
);
1186 if (!pmdp
|| pmd_none(*pmdp
) || !pmd_present(*pmdp
))
1189 if (pmd_thp_or_huge(*pmdp
)) {
1194 ptep
= pte_offset_kernel(pmdp
, addr
);
1195 if (!ptep
|| pte_none(*ptep
) || !pte_present(*ptep
))
1202 static bool stage2_is_exec(struct kvm
*kvm
, phys_addr_t addr
)
1209 found
= stage2_get_leaf_entry(kvm
, addr
, &pudp
, &pmdp
, &ptep
);
1214 return kvm_s2pud_exec(pudp
);
1216 return kvm_s2pmd_exec(pmdp
);
1218 return kvm_s2pte_exec(ptep
);
1221 static int stage2_set_pte(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
1222 phys_addr_t addr
, const pte_t
*new_pte
,
1223 unsigned long flags
)
1227 pte_t
*pte
, old_pte
;
1228 bool iomap
= flags
& KVM_S2PTE_FLAG_IS_IOMAP
;
1229 bool logging_active
= flags
& KVM_S2_FLAG_LOGGING_ACTIVE
;
1231 VM_BUG_ON(logging_active
&& !cache
);
1233 /* Create stage-2 page table mapping - Levels 0 and 1 */
1234 pud
= stage2_get_pud(kvm
, cache
, addr
);
1237 * Ignore calls from kvm_set_spte_hva for unallocated
1244 * While dirty page logging - dissolve huge PUD, then continue
1245 * on to allocate page.
1248 stage2_dissolve_pud(kvm
, addr
, pud
);
1250 if (stage2_pud_none(kvm
, *pud
)) {
1252 return 0; /* ignore calls from kvm_set_spte_hva */
1253 pmd
= mmu_memory_cache_alloc(cache
);
1254 stage2_pud_populate(kvm
, pud
, pmd
);
1255 get_page(virt_to_page(pud
));
1258 pmd
= stage2_pmd_offset(kvm
, pud
, addr
);
1261 * Ignore calls from kvm_set_spte_hva for unallocated
1268 * While dirty page logging - dissolve huge PMD, then continue on to
1272 stage2_dissolve_pmd(kvm
, addr
, pmd
);
1274 /* Create stage-2 page mappings - Level 2 */
1275 if (pmd_none(*pmd
)) {
1277 return 0; /* ignore calls from kvm_set_spte_hva */
1278 pte
= mmu_memory_cache_alloc(cache
);
1279 kvm_pmd_populate(pmd
, pte
);
1280 get_page(virt_to_page(pmd
));
1283 pte
= pte_offset_kernel(pmd
, addr
);
1285 if (iomap
&& pte_present(*pte
))
1288 /* Create 2nd stage page table mapping - Level 3 */
1290 if (pte_present(old_pte
)) {
1291 /* Skip page table update if there is no change */
1292 if (pte_val(old_pte
) == pte_val(*new_pte
))
1295 kvm_set_pte(pte
, __pte(0));
1296 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
1298 get_page(virt_to_page(pte
));
1301 kvm_set_pte(pte
, *new_pte
);
1305 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1306 static int stage2_ptep_test_and_clear_young(pte_t
*pte
)
1308 if (pte_young(*pte
)) {
1309 *pte
= pte_mkold(*pte
);
1315 static int stage2_ptep_test_and_clear_young(pte_t
*pte
)
1317 return __ptep_test_and_clear_young(pte
);
1321 static int stage2_pmdp_test_and_clear_young(pmd_t
*pmd
)
1323 return stage2_ptep_test_and_clear_young((pte_t
*)pmd
);
1326 static int stage2_pudp_test_and_clear_young(pud_t
*pud
)
1328 return stage2_ptep_test_and_clear_young((pte_t
*)pud
);
1332 * kvm_phys_addr_ioremap - map a device range to guest IPA
1334 * @kvm: The KVM pointer
1335 * @guest_ipa: The IPA at which to insert the mapping
1336 * @pa: The physical address of the device
1337 * @size: The size of the mapping
1339 int kvm_phys_addr_ioremap(struct kvm
*kvm
, phys_addr_t guest_ipa
,
1340 phys_addr_t pa
, unsigned long size
, bool writable
)
1342 phys_addr_t addr
, end
;
1345 struct kvm_mmu_memory_cache cache
= { 0, };
1347 end
= (guest_ipa
+ size
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1348 pfn
= __phys_to_pfn(pa
);
1350 for (addr
= guest_ipa
; addr
< end
; addr
+= PAGE_SIZE
) {
1351 pte_t pte
= kvm_pfn_pte(pfn
, PAGE_S2_DEVICE
);
1354 pte
= kvm_s2pte_mkwrite(pte
);
1356 ret
= mmu_topup_memory_cache(&cache
,
1357 kvm_mmu_cache_min_pages(kvm
),
1361 spin_lock(&kvm
->mmu_lock
);
1362 ret
= stage2_set_pte(kvm
, &cache
, addr
, &pte
,
1363 KVM_S2PTE_FLAG_IS_IOMAP
);
1364 spin_unlock(&kvm
->mmu_lock
);
1372 mmu_free_memory_cache(&cache
);
1376 static bool transparent_hugepage_adjust(kvm_pfn_t
*pfnp
, phys_addr_t
*ipap
)
1378 kvm_pfn_t pfn
= *pfnp
;
1379 gfn_t gfn
= *ipap
>> PAGE_SHIFT
;
1380 struct page
*page
= pfn_to_page(pfn
);
1383 * PageTransCompoundMap() returns true for THP and
1384 * hugetlbfs. Make sure the adjustment is done only for THP
1387 if (!PageHuge(page
) && PageTransCompoundMap(page
)) {
1390 * The address we faulted on is backed by a transparent huge
1391 * page. However, because we map the compound huge page and
1392 * not the individual tail page, we need to transfer the
1393 * refcount to the head page. We have to be careful that the
1394 * THP doesn't start to split while we are adjusting the
1397 * We are sure this doesn't happen, because mmu_notifier_retry
1398 * was successful and we are holding the mmu_lock, so if this
1399 * THP is trying to split, it will be blocked in the mmu
1400 * notifier before touching any of the pages, specifically
1401 * before being able to call __split_huge_page_refcount().
1403 * We can therefore safely transfer the refcount from PG_tail
1404 * to PG_head and switch the pfn from a tail page to the head
1407 mask
= PTRS_PER_PMD
- 1;
1408 VM_BUG_ON((gfn
& mask
) != (pfn
& mask
));
1411 kvm_release_pfn_clean(pfn
);
1424 * stage2_wp_ptes - write protect PMD range
1425 * @pmd: pointer to pmd entry
1426 * @addr: range start address
1427 * @end: range end address
1429 static void stage2_wp_ptes(pmd_t
*pmd
, phys_addr_t addr
, phys_addr_t end
)
1433 pte
= pte_offset_kernel(pmd
, addr
);
1435 if (!pte_none(*pte
)) {
1436 if (!kvm_s2pte_readonly(pte
))
1437 kvm_set_s2pte_readonly(pte
);
1439 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1443 * stage2_wp_pmds - write protect PUD range
1444 * kvm: kvm instance for the VM
1445 * @pud: pointer to pud entry
1446 * @addr: range start address
1447 * @end: range end address
1449 static void stage2_wp_pmds(struct kvm
*kvm
, pud_t
*pud
,
1450 phys_addr_t addr
, phys_addr_t end
)
1455 pmd
= stage2_pmd_offset(kvm
, pud
, addr
);
1458 next
= stage2_pmd_addr_end(kvm
, addr
, end
);
1459 if (!pmd_none(*pmd
)) {
1460 if (pmd_thp_or_huge(*pmd
)) {
1461 if (!kvm_s2pmd_readonly(pmd
))
1462 kvm_set_s2pmd_readonly(pmd
);
1464 stage2_wp_ptes(pmd
, addr
, next
);
1467 } while (pmd
++, addr
= next
, addr
!= end
);
1471 * stage2_wp_puds - write protect PGD range
1472 * @pgd: pointer to pgd entry
1473 * @addr: range start address
1474 * @end: range end address
1476 static void stage2_wp_puds(struct kvm
*kvm
, pgd_t
*pgd
,
1477 phys_addr_t addr
, phys_addr_t end
)
1482 pud
= stage2_pud_offset(kvm
, pgd
, addr
);
1484 next
= stage2_pud_addr_end(kvm
, addr
, end
);
1485 if (!stage2_pud_none(kvm
, *pud
)) {
1486 if (stage2_pud_huge(kvm
, *pud
)) {
1487 if (!kvm_s2pud_readonly(pud
))
1488 kvm_set_s2pud_readonly(pud
);
1490 stage2_wp_pmds(kvm
, pud
, addr
, next
);
1493 } while (pud
++, addr
= next
, addr
!= end
);
1497 * stage2_wp_range() - write protect stage2 memory region range
1498 * @kvm: The KVM pointer
1499 * @addr: Start address of range
1500 * @end: End address of range
1502 static void stage2_wp_range(struct kvm
*kvm
, phys_addr_t addr
, phys_addr_t end
)
1507 pgd
= kvm
->arch
.pgd
+ stage2_pgd_index(kvm
, addr
);
1510 * Release kvm_mmu_lock periodically if the memory region is
1511 * large. Otherwise, we may see kernel panics with
1512 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1513 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1514 * will also starve other vCPUs. We have to also make sure
1515 * that the page tables are not freed while we released
1518 cond_resched_lock(&kvm
->mmu_lock
);
1519 if (!READ_ONCE(kvm
->arch
.pgd
))
1521 next
= stage2_pgd_addr_end(kvm
, addr
, end
);
1522 if (stage2_pgd_present(kvm
, *pgd
))
1523 stage2_wp_puds(kvm
, pgd
, addr
, next
);
1524 } while (pgd
++, addr
= next
, addr
!= end
);
1528 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1529 * @kvm: The KVM pointer
1530 * @slot: The memory slot to write protect
1532 * Called to start logging dirty pages after memory region
1533 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1534 * all present PUD, PMD and PTEs are write protected in the memory region.
1535 * Afterwards read of dirty page log can be called.
1537 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1538 * serializing operations for VM memory regions.
1540 void kvm_mmu_wp_memory_region(struct kvm
*kvm
, int slot
)
1542 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1543 struct kvm_memory_slot
*memslot
= id_to_memslot(slots
, slot
);
1544 phys_addr_t start
= memslot
->base_gfn
<< PAGE_SHIFT
;
1545 phys_addr_t end
= (memslot
->base_gfn
+ memslot
->npages
) << PAGE_SHIFT
;
1547 spin_lock(&kvm
->mmu_lock
);
1548 stage2_wp_range(kvm
, start
, end
);
1549 spin_unlock(&kvm
->mmu_lock
);
1550 kvm_flush_remote_tlbs(kvm
);
1554 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1555 * @kvm: The KVM pointer
1556 * @slot: The memory slot associated with mask
1557 * @gfn_offset: The gfn offset in memory slot
1558 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1559 * slot to be write protected
1561 * Walks bits set in mask write protects the associated pte's. Caller must
1562 * acquire kvm_mmu_lock.
1564 static void kvm_mmu_write_protect_pt_masked(struct kvm
*kvm
,
1565 struct kvm_memory_slot
*slot
,
1566 gfn_t gfn_offset
, unsigned long mask
)
1568 phys_addr_t base_gfn
= slot
->base_gfn
+ gfn_offset
;
1569 phys_addr_t start
= (base_gfn
+ __ffs(mask
)) << PAGE_SHIFT
;
1570 phys_addr_t end
= (base_gfn
+ __fls(mask
) + 1) << PAGE_SHIFT
;
1572 stage2_wp_range(kvm
, start
, end
);
1576 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1579 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1580 * enable dirty logging for them.
1582 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm
*kvm
,
1583 struct kvm_memory_slot
*slot
,
1584 gfn_t gfn_offset
, unsigned long mask
)
1586 kvm_mmu_write_protect_pt_masked(kvm
, slot
, gfn_offset
, mask
);
1589 static void clean_dcache_guest_page(kvm_pfn_t pfn
, unsigned long size
)
1591 __clean_dcache_guest_page(pfn
, size
);
1594 static void invalidate_icache_guest_page(kvm_pfn_t pfn
, unsigned long size
)
1596 __invalidate_icache_guest_page(pfn
, size
);
1599 static void kvm_send_hwpoison_signal(unsigned long address
,
1600 struct vm_area_struct
*vma
)
1604 if (is_vm_hugetlb_page(vma
))
1605 lsb
= huge_page_shift(hstate_vma(vma
));
1609 send_sig_mceerr(BUS_MCEERR_AR
, (void __user
*)address
, lsb
, current
);
1612 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot
*memslot
,
1614 unsigned long map_size
)
1617 hva_t uaddr_start
, uaddr_end
;
1620 size
= memslot
->npages
* PAGE_SIZE
;
1622 gpa_start
= memslot
->base_gfn
<< PAGE_SHIFT
;
1624 uaddr_start
= memslot
->userspace_addr
;
1625 uaddr_end
= uaddr_start
+ size
;
1628 * Pages belonging to memslots that don't have the same alignment
1629 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1630 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1632 * Consider a layout like the following:
1634 * memslot->userspace_addr:
1635 * +-----+--------------------+--------------------+---+
1636 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
1637 * +-----+--------------------+--------------------+---+
1639 * memslot->base_gfn << PAGE_SIZE:
1640 * +---+--------------------+--------------------+-----+
1641 * |abc|def Stage-2 block | Stage-2 block |tvxyz|
1642 * +---+--------------------+--------------------+-----+
1644 * If we create those stage-2 blocks, we'll end up with this incorrect
1650 if ((gpa_start
& (map_size
- 1)) != (uaddr_start
& (map_size
- 1)))
1654 * Next, let's make sure we're not trying to map anything not covered
1655 * by the memslot. This means we have to prohibit block size mappings
1656 * for the beginning and end of a non-block aligned and non-block sized
1657 * memory slot (illustrated by the head and tail parts of the
1658 * userspace view above containing pages 'abcde' and 'xyz',
1661 * Note that it doesn't matter if we do the check using the
1662 * userspace_addr or the base_gfn, as both are equally aligned (per
1663 * the check above) and equally sized.
1665 return (hva
& ~(map_size
- 1)) >= uaddr_start
&&
1666 (hva
& ~(map_size
- 1)) + map_size
<= uaddr_end
;
1669 static int user_mem_abort(struct kvm_vcpu
*vcpu
, phys_addr_t fault_ipa
,
1670 struct kvm_memory_slot
*memslot
, unsigned long hva
,
1671 unsigned long fault_status
)
1674 bool write_fault
, writable
, force_pte
= false;
1675 bool exec_fault
, needs_exec
;
1676 unsigned long mmu_seq
;
1677 gfn_t gfn
= fault_ipa
>> PAGE_SHIFT
;
1678 struct kvm
*kvm
= vcpu
->kvm
;
1679 struct kvm_mmu_memory_cache
*memcache
= &vcpu
->arch
.mmu_page_cache
;
1680 struct vm_area_struct
*vma
;
1682 pgprot_t mem_type
= PAGE_S2
;
1683 bool logging_active
= memslot_is_logging(memslot
);
1684 unsigned long vma_pagesize
, flags
= 0;
1686 write_fault
= kvm_is_write_fault(vcpu
);
1687 exec_fault
= kvm_vcpu_trap_is_iabt(vcpu
);
1688 VM_BUG_ON(write_fault
&& exec_fault
);
1690 if (fault_status
== FSC_PERM
&& !write_fault
&& !exec_fault
) {
1691 kvm_err("Unexpected L2 read permission error\n");
1695 /* Let's check if we will get back a huge page backed by hugetlbfs */
1696 down_read(¤t
->mm
->mmap_sem
);
1697 vma
= find_vma_intersection(current
->mm
, hva
, hva
+ 1);
1698 if (unlikely(!vma
)) {
1699 kvm_err("Failed to find VMA for hva 0x%lx\n", hva
);
1700 up_read(¤t
->mm
->mmap_sem
);
1704 vma_pagesize
= vma_kernel_pagesize(vma
);
1705 if (logging_active
||
1706 (vma
->vm_flags
& VM_PFNMAP
) ||
1707 !fault_supports_stage2_huge_mapping(memslot
, hva
, vma_pagesize
)) {
1709 vma_pagesize
= PAGE_SIZE
;
1713 * The stage2 has a minimum of 2 level table (For arm64 see
1714 * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
1715 * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
1716 * As for PUD huge maps, we must make sure that we have at least
1717 * 3 levels, i.e, PMD is not folded.
1719 if (vma_pagesize
== PMD_SIZE
||
1720 (vma_pagesize
== PUD_SIZE
&& kvm_stage2_has_pmd(kvm
)))
1721 gfn
= (fault_ipa
& huge_page_mask(hstate_vma(vma
))) >> PAGE_SHIFT
;
1722 up_read(¤t
->mm
->mmap_sem
);
1724 /* We need minimum second+third level pages */
1725 ret
= mmu_topup_memory_cache(memcache
, kvm_mmu_cache_min_pages(kvm
),
1730 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
1732 * Ensure the read of mmu_notifier_seq happens before we call
1733 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1734 * the page we just got a reference to gets unmapped before we have a
1735 * chance to grab the mmu_lock, which ensure that if the page gets
1736 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1737 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1738 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1742 pfn
= gfn_to_pfn_prot(kvm
, gfn
, write_fault
, &writable
);
1743 if (pfn
== KVM_PFN_ERR_HWPOISON
) {
1744 kvm_send_hwpoison_signal(hva
, vma
);
1747 if (is_error_noslot_pfn(pfn
))
1750 if (kvm_is_device_pfn(pfn
)) {
1751 mem_type
= PAGE_S2_DEVICE
;
1752 flags
|= KVM_S2PTE_FLAG_IS_IOMAP
;
1753 } else if (logging_active
) {
1755 * Faults on pages in a memslot with logging enabled
1756 * should not be mapped with huge pages (it introduces churn
1757 * and performance degradation), so force a pte mapping.
1759 flags
|= KVM_S2_FLAG_LOGGING_ACTIVE
;
1762 * Only actually map the page as writable if this was a write
1769 if (exec_fault
&& is_iomap(flags
))
1772 spin_lock(&kvm
->mmu_lock
);
1773 if (mmu_notifier_retry(kvm
, mmu_seq
))
1776 if (vma_pagesize
== PAGE_SIZE
&& !force_pte
) {
1778 * Only PMD_SIZE transparent hugepages(THP) are
1779 * currently supported. This code will need to be
1780 * updated to support other THP sizes.
1782 * Make sure the host VA and the guest IPA are sufficiently
1783 * aligned and that the block is contained within the memslot.
1785 if (fault_supports_stage2_huge_mapping(memslot
, hva
, PMD_SIZE
) &&
1786 transparent_hugepage_adjust(&pfn
, &fault_ipa
))
1787 vma_pagesize
= PMD_SIZE
;
1791 kvm_set_pfn_dirty(pfn
);
1793 if (fault_status
!= FSC_PERM
&& !is_iomap(flags
))
1794 clean_dcache_guest_page(pfn
, vma_pagesize
);
1797 invalidate_icache_guest_page(pfn
, vma_pagesize
);
1800 * If we took an execution fault we have made the
1801 * icache/dcache coherent above and should now let the s2
1802 * mapping be executable.
1804 * Write faults (!exec_fault && FSC_PERM) are orthogonal to
1805 * execute permissions, and we preserve whatever we have.
1807 needs_exec
= exec_fault
||
1808 (fault_status
== FSC_PERM
&& stage2_is_exec(kvm
, fault_ipa
));
1810 if (vma_pagesize
== PUD_SIZE
) {
1811 pud_t new_pud
= kvm_pfn_pud(pfn
, mem_type
);
1813 new_pud
= kvm_pud_mkhuge(new_pud
);
1815 new_pud
= kvm_s2pud_mkwrite(new_pud
);
1818 new_pud
= kvm_s2pud_mkexec(new_pud
);
1820 ret
= stage2_set_pud_huge(kvm
, memcache
, fault_ipa
, &new_pud
);
1821 } else if (vma_pagesize
== PMD_SIZE
) {
1822 pmd_t new_pmd
= kvm_pfn_pmd(pfn
, mem_type
);
1824 new_pmd
= kvm_pmd_mkhuge(new_pmd
);
1827 new_pmd
= kvm_s2pmd_mkwrite(new_pmd
);
1830 new_pmd
= kvm_s2pmd_mkexec(new_pmd
);
1832 ret
= stage2_set_pmd_huge(kvm
, memcache
, fault_ipa
, &new_pmd
);
1834 pte_t new_pte
= kvm_pfn_pte(pfn
, mem_type
);
1837 new_pte
= kvm_s2pte_mkwrite(new_pte
);
1838 mark_page_dirty(kvm
, gfn
);
1842 new_pte
= kvm_s2pte_mkexec(new_pte
);
1844 ret
= stage2_set_pte(kvm
, memcache
, fault_ipa
, &new_pte
, flags
);
1848 spin_unlock(&kvm
->mmu_lock
);
1849 kvm_set_pfn_accessed(pfn
);
1850 kvm_release_pfn_clean(pfn
);
1855 * Resolve the access fault by making the page young again.
1856 * Note that because the faulting entry is guaranteed not to be
1857 * cached in the TLB, we don't need to invalidate anything.
1858 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1859 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1861 static void handle_access_fault(struct kvm_vcpu
*vcpu
, phys_addr_t fault_ipa
)
1867 bool pfn_valid
= false;
1869 trace_kvm_access_fault(fault_ipa
);
1871 spin_lock(&vcpu
->kvm
->mmu_lock
);
1873 if (!stage2_get_leaf_entry(vcpu
->kvm
, fault_ipa
, &pud
, &pmd
, &pte
))
1876 if (pud
) { /* HugeTLB */
1877 *pud
= kvm_s2pud_mkyoung(*pud
);
1878 pfn
= kvm_pud_pfn(*pud
);
1880 } else if (pmd
) { /* THP, HugeTLB */
1881 *pmd
= pmd_mkyoung(*pmd
);
1882 pfn
= pmd_pfn(*pmd
);
1885 *pte
= pte_mkyoung(*pte
); /* Just a page... */
1886 pfn
= pte_pfn(*pte
);
1891 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1893 kvm_set_pfn_accessed(pfn
);
1897 * kvm_handle_guest_abort - handles all 2nd stage aborts
1898 * @vcpu: the VCPU pointer
1899 * @run: the kvm_run structure
1901 * Any abort that gets to the host is almost guaranteed to be caused by a
1902 * missing second stage translation table entry, which can mean that either the
1903 * guest simply needs more memory and we must allocate an appropriate page or it
1904 * can mean that the guest tried to access I/O memory, which is emulated by user
1905 * space. The distinction is based on the IPA causing the fault and whether this
1906 * memory region has been registered as standard RAM by user space.
1908 int kvm_handle_guest_abort(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1910 unsigned long fault_status
;
1911 phys_addr_t fault_ipa
;
1912 struct kvm_memory_slot
*memslot
;
1914 bool is_iabt
, write_fault
, writable
;
1918 fault_status
= kvm_vcpu_trap_get_fault_type(vcpu
);
1920 fault_ipa
= kvm_vcpu_get_fault_ipa(vcpu
);
1921 is_iabt
= kvm_vcpu_trap_is_iabt(vcpu
);
1923 /* Synchronous External Abort? */
1924 if (kvm_vcpu_dabt_isextabt(vcpu
)) {
1926 * For RAS the host kernel may handle this abort.
1927 * There is no need to pass the error into the guest.
1929 if (!kvm_handle_guest_sea(fault_ipa
, kvm_vcpu_get_hsr(vcpu
)))
1932 if (unlikely(!is_iabt
)) {
1933 kvm_inject_vabt(vcpu
);
1938 trace_kvm_guest_fault(*vcpu_pc(vcpu
), kvm_vcpu_get_hsr(vcpu
),
1939 kvm_vcpu_get_hfar(vcpu
), fault_ipa
);
1941 /* Check the stage-2 fault is trans. fault or write fault */
1942 if (fault_status
!= FSC_FAULT
&& fault_status
!= FSC_PERM
&&
1943 fault_status
!= FSC_ACCESS
) {
1944 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1945 kvm_vcpu_trap_get_class(vcpu
),
1946 (unsigned long)kvm_vcpu_trap_get_fault(vcpu
),
1947 (unsigned long)kvm_vcpu_get_hsr(vcpu
));
1951 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
1953 gfn
= fault_ipa
>> PAGE_SHIFT
;
1954 memslot
= gfn_to_memslot(vcpu
->kvm
, gfn
);
1955 hva
= gfn_to_hva_memslot_prot(memslot
, gfn
, &writable
);
1956 write_fault
= kvm_is_write_fault(vcpu
);
1957 if (kvm_is_error_hva(hva
) || (write_fault
&& !writable
)) {
1959 /* Prefetch Abort on I/O address */
1965 * Check for a cache maintenance operation. Since we
1966 * ended-up here, we know it is outside of any memory
1967 * slot. But we can't find out if that is for a device,
1968 * or if the guest is just being stupid. The only thing
1969 * we know for sure is that this range cannot be cached.
1971 * So let's assume that the guest is just being
1972 * cautious, and skip the instruction.
1974 if (kvm_vcpu_dabt_is_cm(vcpu
)) {
1975 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
1981 * The IPA is reported as [MAX:12], so we need to
1982 * complement it with the bottom 12 bits from the
1983 * faulting VA. This is always 12 bits, irrespective
1986 fault_ipa
|= kvm_vcpu_get_hfar(vcpu
) & ((1 << 12) - 1);
1987 ret
= io_mem_abort(vcpu
, run
, fault_ipa
);
1991 /* Userspace should not be able to register out-of-bounds IPAs */
1992 VM_BUG_ON(fault_ipa
>= kvm_phys_size(vcpu
->kvm
));
1994 if (fault_status
== FSC_ACCESS
) {
1995 handle_access_fault(vcpu
, fault_ipa
);
2000 ret
= user_mem_abort(vcpu
, fault_ipa
, memslot
, hva
, fault_status
);
2004 if (ret
== -ENOEXEC
) {
2005 kvm_inject_pabt(vcpu
, kvm_vcpu_get_hfar(vcpu
));
2009 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2013 static int handle_hva_to_gpa(struct kvm
*kvm
,
2014 unsigned long start
,
2016 int (*handler
)(struct kvm
*kvm
,
2017 gpa_t gpa
, u64 size
,
2021 struct kvm_memslots
*slots
;
2022 struct kvm_memory_slot
*memslot
;
2025 slots
= kvm_memslots(kvm
);
2027 /* we only care about the pages that the guest sees */
2028 kvm_for_each_memslot(memslot
, slots
) {
2029 unsigned long hva_start
, hva_end
;
2032 hva_start
= max(start
, memslot
->userspace_addr
);
2033 hva_end
= min(end
, memslot
->userspace_addr
+
2034 (memslot
->npages
<< PAGE_SHIFT
));
2035 if (hva_start
>= hva_end
)
2038 gpa
= hva_to_gfn_memslot(hva_start
, memslot
) << PAGE_SHIFT
;
2039 ret
|= handler(kvm
, gpa
, (u64
)(hva_end
- hva_start
), data
);
2045 static int kvm_unmap_hva_handler(struct kvm
*kvm
, gpa_t gpa
, u64 size
, void *data
)
2047 unmap_stage2_range(kvm
, gpa
, size
);
2051 int kvm_unmap_hva_range(struct kvm
*kvm
,
2052 unsigned long start
, unsigned long end
)
2057 trace_kvm_unmap_hva_range(start
, end
);
2058 handle_hva_to_gpa(kvm
, start
, end
, &kvm_unmap_hva_handler
, NULL
);
2062 static int kvm_set_spte_handler(struct kvm
*kvm
, gpa_t gpa
, u64 size
, void *data
)
2064 pte_t
*pte
= (pte_t
*)data
;
2066 WARN_ON(size
!= PAGE_SIZE
);
2068 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
2069 * flag clear because MMU notifiers will have unmapped a huge PMD before
2070 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
2071 * therefore stage2_set_pte() never needs to clear out a huge PMD
2072 * through this calling path.
2074 stage2_set_pte(kvm
, NULL
, gpa
, pte
, 0);
2079 int kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
2081 unsigned long end
= hva
+ PAGE_SIZE
;
2082 kvm_pfn_t pfn
= pte_pfn(pte
);
2088 trace_kvm_set_spte_hva(hva
);
2091 * We've moved a page around, probably through CoW, so let's treat it
2092 * just like a translation fault and clean the cache to the PoC.
2094 clean_dcache_guest_page(pfn
, PAGE_SIZE
);
2095 stage2_pte
= kvm_pfn_pte(pfn
, PAGE_S2
);
2096 handle_hva_to_gpa(kvm
, hva
, end
, &kvm_set_spte_handler
, &stage2_pte
);
2101 static int kvm_age_hva_handler(struct kvm
*kvm
, gpa_t gpa
, u64 size
, void *data
)
2107 WARN_ON(size
!= PAGE_SIZE
&& size
!= PMD_SIZE
&& size
!= PUD_SIZE
);
2108 if (!stage2_get_leaf_entry(kvm
, gpa
, &pud
, &pmd
, &pte
))
2112 return stage2_pudp_test_and_clear_young(pud
);
2114 return stage2_pmdp_test_and_clear_young(pmd
);
2116 return stage2_ptep_test_and_clear_young(pte
);
2119 static int kvm_test_age_hva_handler(struct kvm
*kvm
, gpa_t gpa
, u64 size
, void *data
)
2125 WARN_ON(size
!= PAGE_SIZE
&& size
!= PMD_SIZE
&& size
!= PUD_SIZE
);
2126 if (!stage2_get_leaf_entry(kvm
, gpa
, &pud
, &pmd
, &pte
))
2130 return kvm_s2pud_young(*pud
);
2132 return pmd_young(*pmd
);
2134 return pte_young(*pte
);
2137 int kvm_age_hva(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
2141 trace_kvm_age_hva(start
, end
);
2142 return handle_hva_to_gpa(kvm
, start
, end
, kvm_age_hva_handler
, NULL
);
2145 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
2149 trace_kvm_test_age_hva(hva
);
2150 return handle_hva_to_gpa(kvm
, hva
, hva
, kvm_test_age_hva_handler
, NULL
);
2153 void kvm_mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
2155 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_cache
);
2158 phys_addr_t
kvm_mmu_get_httbr(void)
2160 if (__kvm_cpu_uses_extended_idmap())
2161 return virt_to_phys(merged_hyp_pgd
);
2163 return virt_to_phys(hyp_pgd
);
2166 phys_addr_t
kvm_get_idmap_vector(void)
2168 return hyp_idmap_vector
;
2171 static int kvm_map_idmap_text(pgd_t
*pgd
)
2175 /* Create the idmap in the boot page tables */
2176 err
= __create_hyp_mappings(pgd
, __kvm_idmap_ptrs_per_pgd(),
2177 hyp_idmap_start
, hyp_idmap_end
,
2178 __phys_to_pfn(hyp_idmap_start
),
2181 kvm_err("Failed to idmap %lx-%lx\n",
2182 hyp_idmap_start
, hyp_idmap_end
);
2187 int kvm_mmu_init(void)
2191 hyp_idmap_start
= kvm_virt_to_phys(__hyp_idmap_text_start
);
2192 hyp_idmap_start
= ALIGN_DOWN(hyp_idmap_start
, PAGE_SIZE
);
2193 hyp_idmap_end
= kvm_virt_to_phys(__hyp_idmap_text_end
);
2194 hyp_idmap_end
= ALIGN(hyp_idmap_end
, PAGE_SIZE
);
2195 hyp_idmap_vector
= kvm_virt_to_phys(__kvm_hyp_init
);
2198 * We rely on the linker script to ensure at build time that the HYP
2199 * init code does not cross a page boundary.
2201 BUG_ON((hyp_idmap_start
^ (hyp_idmap_end
- 1)) & PAGE_MASK
);
2203 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start
);
2204 kvm_debug("HYP VA range: %lx:%lx\n",
2205 kern_hyp_va(PAGE_OFFSET
),
2206 kern_hyp_va((unsigned long)high_memory
- 1));
2208 if (hyp_idmap_start
>= kern_hyp_va(PAGE_OFFSET
) &&
2209 hyp_idmap_start
< kern_hyp_va((unsigned long)high_memory
- 1) &&
2210 hyp_idmap_start
!= (unsigned long)__hyp_idmap_text_start
) {
2212 * The idmap page is intersecting with the VA space,
2213 * it is not safe to continue further.
2215 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2220 hyp_pgd
= (pgd_t
*)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
, hyp_pgd_order
);
2222 kvm_err("Hyp mode PGD not allocated\n");
2227 if (__kvm_cpu_uses_extended_idmap()) {
2228 boot_hyp_pgd
= (pgd_t
*)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
,
2230 if (!boot_hyp_pgd
) {
2231 kvm_err("Hyp boot PGD not allocated\n");
2236 err
= kvm_map_idmap_text(boot_hyp_pgd
);
2240 merged_hyp_pgd
= (pgd_t
*)__get_free_page(GFP_KERNEL
| __GFP_ZERO
);
2241 if (!merged_hyp_pgd
) {
2242 kvm_err("Failed to allocate extra HYP pgd\n");
2245 __kvm_extend_hypmap(boot_hyp_pgd
, hyp_pgd
, merged_hyp_pgd
,
2248 err
= kvm_map_idmap_text(hyp_pgd
);
2253 io_map_base
= hyp_idmap_start
;
2260 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
2261 const struct kvm_userspace_memory_region
*mem
,
2262 const struct kvm_memory_slot
*old
,
2263 const struct kvm_memory_slot
*new,
2264 enum kvm_mr_change change
)
2267 * At this point memslot has been committed and there is an
2268 * allocated dirty_bitmap[], dirty pages will be be tracked while the
2269 * memory slot is write protected.
2271 if (change
!= KVM_MR_DELETE
&& mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
)
2272 kvm_mmu_wp_memory_region(kvm
, mem
->slot
);
2275 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
2276 struct kvm_memory_slot
*memslot
,
2277 const struct kvm_userspace_memory_region
*mem
,
2278 enum kvm_mr_change change
)
2280 hva_t hva
= mem
->userspace_addr
;
2281 hva_t reg_end
= hva
+ mem
->memory_size
;
2282 bool writable
= !(mem
->flags
& KVM_MEM_READONLY
);
2285 if (change
!= KVM_MR_CREATE
&& change
!= KVM_MR_MOVE
&&
2286 change
!= KVM_MR_FLAGS_ONLY
)
2290 * Prevent userspace from creating a memory region outside of the IPA
2291 * space addressable by the KVM guest IPA space.
2293 if (memslot
->base_gfn
+ memslot
->npages
>=
2294 (kvm_phys_size(kvm
) >> PAGE_SHIFT
))
2297 down_read(¤t
->mm
->mmap_sem
);
2299 * A memory region could potentially cover multiple VMAs, and any holes
2300 * between them, so iterate over all of them to find out if we can map
2301 * any of them right now.
2303 * +--------------------------------------------+
2304 * +---------------+----------------+ +----------------+
2305 * | : VMA 1 | VMA 2 | | VMA 3 : |
2306 * +---------------+----------------+ +----------------+
2308 * +--------------------------------------------+
2311 struct vm_area_struct
*vma
= find_vma(current
->mm
, hva
);
2312 hva_t vm_start
, vm_end
;
2314 if (!vma
|| vma
->vm_start
>= reg_end
)
2318 * Take the intersection of this VMA with the memory region
2320 vm_start
= max(hva
, vma
->vm_start
);
2321 vm_end
= min(reg_end
, vma
->vm_end
);
2323 if (vma
->vm_flags
& VM_PFNMAP
) {
2324 gpa_t gpa
= mem
->guest_phys_addr
+
2325 (vm_start
- mem
->userspace_addr
);
2328 pa
= (phys_addr_t
)vma
->vm_pgoff
<< PAGE_SHIFT
;
2329 pa
+= vm_start
- vma
->vm_start
;
2331 /* IO region dirty page logging not allowed */
2332 if (memslot
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
2337 ret
= kvm_phys_addr_ioremap(kvm
, gpa
, pa
,
2344 } while (hva
< reg_end
);
2346 if (change
== KVM_MR_FLAGS_ONLY
)
2349 spin_lock(&kvm
->mmu_lock
);
2351 unmap_stage2_range(kvm
, mem
->guest_phys_addr
, mem
->memory_size
);
2353 stage2_flush_memslot(kvm
, memslot
);
2354 spin_unlock(&kvm
->mmu_lock
);
2356 up_read(¤t
->mm
->mmap_sem
);
2360 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
2361 struct kvm_memory_slot
*dont
)
2365 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
2366 unsigned long npages
)
2371 void kvm_arch_memslots_updated(struct kvm
*kvm
, u64 gen
)
2375 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
2377 kvm_free_stage2_pgd(kvm
);
2380 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
2381 struct kvm_memory_slot
*slot
)
2383 gpa_t gpa
= slot
->base_gfn
<< PAGE_SHIFT
;
2384 phys_addr_t size
= slot
->npages
<< PAGE_SHIFT
;
2386 spin_lock(&kvm
->mmu_lock
);
2387 unmap_stage2_range(kvm
, gpa
, size
);
2388 spin_unlock(&kvm
->mmu_lock
);
2392 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2395 * - S/W ops are local to a CPU (not broadcast)
2396 * - We have line migration behind our back (speculation)
2397 * - System caches don't support S/W at all (damn!)
2399 * In the face of the above, the best we can do is to try and convert
2400 * S/W ops to VA ops. Because the guest is not allowed to infer the
2401 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2402 * which is a rather good thing for us.
2404 * Also, it is only used when turning caches on/off ("The expected
2405 * usage of the cache maintenance instructions that operate by set/way
2406 * is associated with the cache maintenance instructions associated
2407 * with the powerdown and powerup of caches, if this is required by
2408 * the implementation.").
2410 * We use the following policy:
2412 * - If we trap a S/W operation, we enable VM trapping to detect
2413 * caches being turned on/off, and do a full clean.
2415 * - We flush the caches on both caches being turned on and off.
2417 * - Once the caches are enabled, we stop trapping VM ops.
2419 void kvm_set_way_flush(struct kvm_vcpu
*vcpu
)
2421 unsigned long hcr
= *vcpu_hcr(vcpu
);
2424 * If this is the first time we do a S/W operation
2425 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2428 * Otherwise, rely on the VM trapping to wait for the MMU +
2429 * Caches to be turned off. At that point, we'll be able to
2430 * clean the caches again.
2432 if (!(hcr
& HCR_TVM
)) {
2433 trace_kvm_set_way_flush(*vcpu_pc(vcpu
),
2434 vcpu_has_cache_enabled(vcpu
));
2435 stage2_flush_vm(vcpu
->kvm
);
2436 *vcpu_hcr(vcpu
) = hcr
| HCR_TVM
;
2440 void kvm_toggle_cache(struct kvm_vcpu
*vcpu
, bool was_enabled
)
2442 bool now_enabled
= vcpu_has_cache_enabled(vcpu
);
2445 * If switching the MMU+caches on, need to invalidate the caches.
2446 * If switching it off, need to clean the caches.
2447 * Clean + invalidate does the trick always.
2449 if (now_enabled
!= was_enabled
)
2450 stage2_flush_vm(vcpu
->kvm
);
2452 /* Caches are now on, stop trapping VM ops (until a S/W op) */
2454 *vcpu_hcr(vcpu
) &= ~HCR_TVM
;
2456 trace_kvm_toggle_cache(*vcpu_pc(vcpu
), was_enabled
, now_enabled
);