dm writecache: fix incorrect flush sequence when doing SSD mode commit
[linux/fpc-iii.git] / virt / kvm / arm / vgic / vgic-its.c
blob98c7360d9fb700703bd5f328e9e85be262ca22e3
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * GICv3 ITS emulation
5 * Copyright (C) 2015,2016 ARM Ltd.
6 * Author: Andre Przywara <andre.przywara@arm.com>
7 */
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
17 #include <linux/irqchip/arm-gic-v3.h>
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
23 #include "vgic.h"
24 #include "vgic-mmio.h"
26 static int vgic_its_save_tables_v0(struct vgic_its *its);
27 static int vgic_its_restore_tables_v0(struct vgic_its *its);
28 static int vgic_its_commit_v0(struct vgic_its *its);
29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30 struct kvm_vcpu *filter_vcpu, bool needs_inv);
33 * Creates a new (reference to a) struct vgic_irq for a given LPI.
34 * If this LPI is already mapped on another ITS, we increase its refcount
35 * and return a pointer to the existing structure.
36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37 * This function returns a pointer to the _unlocked_ structure.
39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40 struct kvm_vcpu *vcpu)
42 struct vgic_dist *dist = &kvm->arch.vgic;
43 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44 unsigned long flags;
45 int ret;
47 /* In this case there is no put, since we keep the reference. */
48 if (irq)
49 return irq;
51 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
52 if (!irq)
53 return ERR_PTR(-ENOMEM);
55 INIT_LIST_HEAD(&irq->lpi_list);
56 INIT_LIST_HEAD(&irq->ap_list);
57 raw_spin_lock_init(&irq->irq_lock);
59 irq->config = VGIC_CONFIG_EDGE;
60 kref_init(&irq->refcount);
61 irq->intid = intid;
62 irq->target_vcpu = vcpu;
63 irq->group = 1;
65 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
68 * There could be a race with another vgic_add_lpi(), so we need to
69 * check that we don't add a second list entry with the same LPI.
71 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
72 if (oldirq->intid != intid)
73 continue;
75 /* Someone was faster with adding this LPI, lets use that. */
76 kfree(irq);
77 irq = oldirq;
80 * This increases the refcount, the caller is expected to
81 * call vgic_put_irq() on the returned pointer once it's
82 * finished with the IRQ.
84 vgic_get_irq_kref(irq);
86 goto out_unlock;
89 list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
90 dist->lpi_list_count++;
92 out_unlock:
93 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
96 * We "cache" the configuration table entries in our struct vgic_irq's.
97 * However we only have those structs for mapped IRQs, so we read in
98 * the respective config data from memory here upon mapping the LPI.
100 ret = update_lpi_config(kvm, irq, NULL, false);
101 if (ret)
102 return ERR_PTR(ret);
104 ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
105 if (ret)
106 return ERR_PTR(ret);
108 return irq;
111 struct its_device {
112 struct list_head dev_list;
114 /* the head for the list of ITTEs */
115 struct list_head itt_head;
116 u32 num_eventid_bits;
117 gpa_t itt_addr;
118 u32 device_id;
121 #define COLLECTION_NOT_MAPPED ((u32)~0)
123 struct its_collection {
124 struct list_head coll_list;
126 u32 collection_id;
127 u32 target_addr;
130 #define its_is_collection_mapped(coll) ((coll) && \
131 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
133 struct its_ite {
134 struct list_head ite_list;
136 struct vgic_irq *irq;
137 struct its_collection *collection;
138 u32 event_id;
141 struct vgic_translation_cache_entry {
142 struct list_head entry;
143 phys_addr_t db;
144 u32 devid;
145 u32 eventid;
146 struct vgic_irq *irq;
150 * struct vgic_its_abi - ITS abi ops and settings
151 * @cte_esz: collection table entry size
152 * @dte_esz: device table entry size
153 * @ite_esz: interrupt translation table entry size
154 * @save tables: save the ITS tables into guest RAM
155 * @restore_tables: restore the ITS internal structs from tables
156 * stored in guest RAM
157 * @commit: initialize the registers which expose the ABI settings,
158 * especially the entry sizes
160 struct vgic_its_abi {
161 int cte_esz;
162 int dte_esz;
163 int ite_esz;
164 int (*save_tables)(struct vgic_its *its);
165 int (*restore_tables)(struct vgic_its *its);
166 int (*commit)(struct vgic_its *its);
169 #define ABI_0_ESZ 8
170 #define ESZ_MAX ABI_0_ESZ
172 static const struct vgic_its_abi its_table_abi_versions[] = {
173 [0] = {
174 .cte_esz = ABI_0_ESZ,
175 .dte_esz = ABI_0_ESZ,
176 .ite_esz = ABI_0_ESZ,
177 .save_tables = vgic_its_save_tables_v0,
178 .restore_tables = vgic_its_restore_tables_v0,
179 .commit = vgic_its_commit_v0,
183 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
185 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
187 return &its_table_abi_versions[its->abi_rev];
190 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
192 const struct vgic_its_abi *abi;
194 its->abi_rev = rev;
195 abi = vgic_its_get_abi(its);
196 return abi->commit(its);
200 * Find and returns a device in the device table for an ITS.
201 * Must be called with the its_lock mutex held.
203 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
205 struct its_device *device;
207 list_for_each_entry(device, &its->device_list, dev_list)
208 if (device_id == device->device_id)
209 return device;
211 return NULL;
215 * Find and returns an interrupt translation table entry (ITTE) for a given
216 * Device ID/Event ID pair on an ITS.
217 * Must be called with the its_lock mutex held.
219 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
220 u32 event_id)
222 struct its_device *device;
223 struct its_ite *ite;
225 device = find_its_device(its, device_id);
226 if (device == NULL)
227 return NULL;
229 list_for_each_entry(ite, &device->itt_head, ite_list)
230 if (ite->event_id == event_id)
231 return ite;
233 return NULL;
236 /* To be used as an iterator this macro misses the enclosing parentheses */
237 #define for_each_lpi_its(dev, ite, its) \
238 list_for_each_entry(dev, &(its)->device_list, dev_list) \
239 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
241 #define GIC_LPI_OFFSET 8192
243 #define VITS_TYPER_IDBITS 16
244 #define VITS_TYPER_DEVBITS 16
245 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
246 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
249 * Finds and returns a collection in the ITS collection table.
250 * Must be called with the its_lock mutex held.
252 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
254 struct its_collection *collection;
256 list_for_each_entry(collection, &its->collection_list, coll_list) {
257 if (coll_id == collection->collection_id)
258 return collection;
261 return NULL;
264 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
265 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
268 * Reads the configuration data for a given LPI from guest memory and
269 * updates the fields in struct vgic_irq.
270 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
271 * VCPU. Unconditionally applies if filter_vcpu is NULL.
273 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
274 struct kvm_vcpu *filter_vcpu, bool needs_inv)
276 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
277 u8 prop;
278 int ret;
279 unsigned long flags;
281 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
282 &prop, 1);
284 if (ret)
285 return ret;
287 raw_spin_lock_irqsave(&irq->irq_lock, flags);
289 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
290 irq->priority = LPI_PROP_PRIORITY(prop);
291 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
293 if (!irq->hw) {
294 vgic_queue_irq_unlock(kvm, irq, flags);
295 return 0;
299 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
301 if (irq->hw)
302 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
304 return 0;
308 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
309 * enumerate those LPIs without holding any lock.
310 * Returns their number and puts the kmalloc'ed array into intid_ptr.
312 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
314 struct vgic_dist *dist = &kvm->arch.vgic;
315 struct vgic_irq *irq;
316 unsigned long flags;
317 u32 *intids;
318 int irq_count, i = 0;
321 * There is an obvious race between allocating the array and LPIs
322 * being mapped/unmapped. If we ended up here as a result of a
323 * command, we're safe (locks are held, preventing another
324 * command). If coming from another path (such as enabling LPIs),
325 * we must be careful not to overrun the array.
327 irq_count = READ_ONCE(dist->lpi_list_count);
328 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
329 if (!intids)
330 return -ENOMEM;
332 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
333 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
334 if (i == irq_count)
335 break;
336 /* We don't need to "get" the IRQ, as we hold the list lock. */
337 if (vcpu && irq->target_vcpu != vcpu)
338 continue;
339 intids[i++] = irq->intid;
341 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
343 *intid_ptr = intids;
344 return i;
347 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
349 int ret = 0;
350 unsigned long flags;
352 raw_spin_lock_irqsave(&irq->irq_lock, flags);
353 irq->target_vcpu = vcpu;
354 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
356 if (irq->hw) {
357 struct its_vlpi_map map;
359 ret = its_get_vlpi(irq->host_irq, &map);
360 if (ret)
361 return ret;
363 if (map.vpe)
364 atomic_dec(&map.vpe->vlpi_count);
365 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
366 atomic_inc(&map.vpe->vlpi_count);
368 ret = its_map_vlpi(irq->host_irq, &map);
371 return ret;
375 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
376 * is targeting) to the VGIC's view, which deals with target VCPUs.
377 * Needs to be called whenever either the collection for a LPIs has
378 * changed or the collection itself got retargeted.
380 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
382 struct kvm_vcpu *vcpu;
384 if (!its_is_collection_mapped(ite->collection))
385 return;
387 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
388 update_affinity(ite->irq, vcpu);
392 * Updates the target VCPU for every LPI targeting this collection.
393 * Must be called with the its_lock mutex held.
395 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
396 struct its_collection *coll)
398 struct its_device *device;
399 struct its_ite *ite;
401 for_each_lpi_its(device, ite, its) {
402 if (!ite->collection || coll != ite->collection)
403 continue;
405 update_affinity_ite(kvm, ite);
409 static u32 max_lpis_propbaser(u64 propbaser)
411 int nr_idbits = (propbaser & 0x1f) + 1;
413 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
417 * Sync the pending table pending bit of LPIs targeting @vcpu
418 * with our own data structures. This relies on the LPI being
419 * mapped before.
421 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
423 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
424 struct vgic_irq *irq;
425 int last_byte_offset = -1;
426 int ret = 0;
427 u32 *intids;
428 int nr_irqs, i;
429 unsigned long flags;
430 u8 pendmask;
432 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
433 if (nr_irqs < 0)
434 return nr_irqs;
436 for (i = 0; i < nr_irqs; i++) {
437 int byte_offset, bit_nr;
439 byte_offset = intids[i] / BITS_PER_BYTE;
440 bit_nr = intids[i] % BITS_PER_BYTE;
443 * For contiguously allocated LPIs chances are we just read
444 * this very same byte in the last iteration. Reuse that.
446 if (byte_offset != last_byte_offset) {
447 ret = kvm_read_guest_lock(vcpu->kvm,
448 pendbase + byte_offset,
449 &pendmask, 1);
450 if (ret) {
451 kfree(intids);
452 return ret;
454 last_byte_offset = byte_offset;
457 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
458 raw_spin_lock_irqsave(&irq->irq_lock, flags);
459 irq->pending_latch = pendmask & (1U << bit_nr);
460 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
461 vgic_put_irq(vcpu->kvm, irq);
464 kfree(intids);
466 return ret;
469 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
470 struct vgic_its *its,
471 gpa_t addr, unsigned int len)
473 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
474 u64 reg = GITS_TYPER_PLPIS;
477 * We use linear CPU numbers for redistributor addressing,
478 * so GITS_TYPER.PTA is 0.
479 * Also we force all PROPBASER registers to be the same, so
480 * CommonLPIAff is 0 as well.
481 * To avoid memory waste in the guest, we keep the number of IDBits and
482 * DevBits low - as least for the time being.
484 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
485 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
486 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
488 return extract_bytes(reg, addr & 7, len);
491 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
492 struct vgic_its *its,
493 gpa_t addr, unsigned int len)
495 u32 val;
497 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
498 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
499 return val;
502 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
503 struct vgic_its *its,
504 gpa_t addr, unsigned int len,
505 unsigned long val)
507 u32 rev = GITS_IIDR_REV(val);
509 if (rev >= NR_ITS_ABIS)
510 return -EINVAL;
511 return vgic_its_set_abi(its, rev);
514 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
515 struct vgic_its *its,
516 gpa_t addr, unsigned int len)
518 switch (addr & 0xffff) {
519 case GITS_PIDR0:
520 return 0x92; /* part number, bits[7:0] */
521 case GITS_PIDR1:
522 return 0xb4; /* part number, bits[11:8] */
523 case GITS_PIDR2:
524 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
525 case GITS_PIDR4:
526 return 0x40; /* This is a 64K software visible page */
527 /* The following are the ID registers for (any) GIC. */
528 case GITS_CIDR0:
529 return 0x0d;
530 case GITS_CIDR1:
531 return 0xf0;
532 case GITS_CIDR2:
533 return 0x05;
534 case GITS_CIDR3:
535 return 0xb1;
538 return 0;
541 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
542 phys_addr_t db,
543 u32 devid, u32 eventid)
545 struct vgic_translation_cache_entry *cte;
547 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
549 * If we hit a NULL entry, there is nothing after this
550 * point.
552 if (!cte->irq)
553 break;
555 if (cte->db != db || cte->devid != devid ||
556 cte->eventid != eventid)
557 continue;
560 * Move this entry to the head, as it is the most
561 * recently used.
563 if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
564 list_move(&cte->entry, &dist->lpi_translation_cache);
566 return cte->irq;
569 return NULL;
572 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
573 u32 devid, u32 eventid)
575 struct vgic_dist *dist = &kvm->arch.vgic;
576 struct vgic_irq *irq;
577 unsigned long flags;
579 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
580 irq = __vgic_its_check_cache(dist, db, devid, eventid);
581 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
583 return irq;
586 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
587 u32 devid, u32 eventid,
588 struct vgic_irq *irq)
590 struct vgic_dist *dist = &kvm->arch.vgic;
591 struct vgic_translation_cache_entry *cte;
592 unsigned long flags;
593 phys_addr_t db;
595 /* Do not cache a directly injected interrupt */
596 if (irq->hw)
597 return;
599 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
601 if (unlikely(list_empty(&dist->lpi_translation_cache)))
602 goto out;
605 * We could have raced with another CPU caching the same
606 * translation behind our back, so let's check it is not in
607 * already
609 db = its->vgic_its_base + GITS_TRANSLATER;
610 if (__vgic_its_check_cache(dist, db, devid, eventid))
611 goto out;
613 /* Always reuse the last entry (LRU policy) */
614 cte = list_last_entry(&dist->lpi_translation_cache,
615 typeof(*cte), entry);
618 * Caching the translation implies having an extra reference
619 * to the interrupt, so drop the potential reference on what
620 * was in the cache, and increment it on the new interrupt.
622 if (cte->irq)
623 __vgic_put_lpi_locked(kvm, cte->irq);
625 vgic_get_irq_kref(irq);
627 cte->db = db;
628 cte->devid = devid;
629 cte->eventid = eventid;
630 cte->irq = irq;
632 /* Move the new translation to the head of the list */
633 list_move(&cte->entry, &dist->lpi_translation_cache);
635 out:
636 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
639 void vgic_its_invalidate_cache(struct kvm *kvm)
641 struct vgic_dist *dist = &kvm->arch.vgic;
642 struct vgic_translation_cache_entry *cte;
643 unsigned long flags;
645 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
647 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
649 * If we hit a NULL entry, there is nothing after this
650 * point.
652 if (!cte->irq)
653 break;
655 __vgic_put_lpi_locked(kvm, cte->irq);
656 cte->irq = NULL;
659 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
662 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
663 u32 devid, u32 eventid, struct vgic_irq **irq)
665 struct kvm_vcpu *vcpu;
666 struct its_ite *ite;
668 if (!its->enabled)
669 return -EBUSY;
671 ite = find_ite(its, devid, eventid);
672 if (!ite || !its_is_collection_mapped(ite->collection))
673 return E_ITS_INT_UNMAPPED_INTERRUPT;
675 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
676 if (!vcpu)
677 return E_ITS_INT_UNMAPPED_INTERRUPT;
679 if (!vcpu->arch.vgic_cpu.lpis_enabled)
680 return -EBUSY;
682 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
684 *irq = ite->irq;
685 return 0;
688 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
690 u64 address;
691 struct kvm_io_device *kvm_io_dev;
692 struct vgic_io_device *iodev;
694 if (!vgic_has_its(kvm))
695 return ERR_PTR(-ENODEV);
697 if (!(msi->flags & KVM_MSI_VALID_DEVID))
698 return ERR_PTR(-EINVAL);
700 address = (u64)msi->address_hi << 32 | msi->address_lo;
702 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
703 if (!kvm_io_dev)
704 return ERR_PTR(-EINVAL);
706 if (kvm_io_dev->ops != &kvm_io_gic_ops)
707 return ERR_PTR(-EINVAL);
709 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
710 if (iodev->iodev_type != IODEV_ITS)
711 return ERR_PTR(-EINVAL);
713 return iodev->its;
717 * Find the target VCPU and the LPI number for a given devid/eventid pair
718 * and make this IRQ pending, possibly injecting it.
719 * Must be called with the its_lock mutex held.
720 * Returns 0 on success, a positive error value for any ITS mapping
721 * related errors and negative error values for generic errors.
723 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
724 u32 devid, u32 eventid)
726 struct vgic_irq *irq = NULL;
727 unsigned long flags;
728 int err;
730 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
731 if (err)
732 return err;
734 if (irq->hw)
735 return irq_set_irqchip_state(irq->host_irq,
736 IRQCHIP_STATE_PENDING, true);
738 raw_spin_lock_irqsave(&irq->irq_lock, flags);
739 irq->pending_latch = true;
740 vgic_queue_irq_unlock(kvm, irq, flags);
742 return 0;
745 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
747 struct vgic_irq *irq;
748 unsigned long flags;
749 phys_addr_t db;
751 db = (u64)msi->address_hi << 32 | msi->address_lo;
752 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
754 if (!irq)
755 return -1;
757 raw_spin_lock_irqsave(&irq->irq_lock, flags);
758 irq->pending_latch = true;
759 vgic_queue_irq_unlock(kvm, irq, flags);
761 return 0;
765 * Queries the KVM IO bus framework to get the ITS pointer from the given
766 * doorbell address.
767 * We then call vgic_its_trigger_msi() with the decoded data.
768 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
770 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
772 struct vgic_its *its;
773 int ret;
775 if (!vgic_its_inject_cached_translation(kvm, msi))
776 return 1;
778 its = vgic_msi_to_its(kvm, msi);
779 if (IS_ERR(its))
780 return PTR_ERR(its);
782 mutex_lock(&its->its_lock);
783 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
784 mutex_unlock(&its->its_lock);
786 if (ret < 0)
787 return ret;
790 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
791 * if the guest has blocked the MSI. So we map any LPI mapping
792 * related error to that.
794 if (ret)
795 return 0;
796 else
797 return 1;
800 /* Requires the its_lock to be held. */
801 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
803 list_del(&ite->ite_list);
805 /* This put matches the get in vgic_add_lpi. */
806 if (ite->irq) {
807 if (ite->irq->hw)
808 WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
810 vgic_put_irq(kvm, ite->irq);
813 kfree(ite);
816 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
818 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
821 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
822 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
823 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
824 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
825 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
826 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
827 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
828 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
829 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
832 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
833 * Must be called with the its_lock mutex held.
835 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
836 u64 *its_cmd)
838 u32 device_id = its_cmd_get_deviceid(its_cmd);
839 u32 event_id = its_cmd_get_id(its_cmd);
840 struct its_ite *ite;
843 ite = find_ite(its, device_id, event_id);
844 if (ite && ite->collection) {
846 * Though the spec talks about removing the pending state, we
847 * don't bother here since we clear the ITTE anyway and the
848 * pending state is a property of the ITTE struct.
850 vgic_its_invalidate_cache(kvm);
852 its_free_ite(kvm, ite);
853 return 0;
856 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
860 * The MOVI command moves an ITTE to a different collection.
861 * Must be called with the its_lock mutex held.
863 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
864 u64 *its_cmd)
866 u32 device_id = its_cmd_get_deviceid(its_cmd);
867 u32 event_id = its_cmd_get_id(its_cmd);
868 u32 coll_id = its_cmd_get_collection(its_cmd);
869 struct kvm_vcpu *vcpu;
870 struct its_ite *ite;
871 struct its_collection *collection;
873 ite = find_ite(its, device_id, event_id);
874 if (!ite)
875 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
877 if (!its_is_collection_mapped(ite->collection))
878 return E_ITS_MOVI_UNMAPPED_COLLECTION;
880 collection = find_collection(its, coll_id);
881 if (!its_is_collection_mapped(collection))
882 return E_ITS_MOVI_UNMAPPED_COLLECTION;
884 ite->collection = collection;
885 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
887 vgic_its_invalidate_cache(kvm);
889 return update_affinity(ite->irq, vcpu);
893 * Check whether an ID can be stored into the corresponding guest table.
894 * For a direct table this is pretty easy, but gets a bit nasty for
895 * indirect tables. We check whether the resulting guest physical address
896 * is actually valid (covered by a memslot and guest accessible).
897 * For this we have to read the respective first level entry.
899 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
900 gpa_t *eaddr)
902 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
903 u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
904 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
905 int esz = GITS_BASER_ENTRY_SIZE(baser);
906 int index, idx;
907 gfn_t gfn;
908 bool ret;
910 switch (type) {
911 case GITS_BASER_TYPE_DEVICE:
912 if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
913 return false;
914 break;
915 case GITS_BASER_TYPE_COLLECTION:
916 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
917 if (id >= BIT_ULL(16))
918 return false;
919 break;
920 default:
921 return false;
924 if (!(baser & GITS_BASER_INDIRECT)) {
925 phys_addr_t addr;
927 if (id >= (l1_tbl_size / esz))
928 return false;
930 addr = base + id * esz;
931 gfn = addr >> PAGE_SHIFT;
933 if (eaddr)
934 *eaddr = addr;
936 goto out;
939 /* calculate and check the index into the 1st level */
940 index = id / (SZ_64K / esz);
941 if (index >= (l1_tbl_size / sizeof(u64)))
942 return false;
944 /* Each 1st level entry is represented by a 64-bit value. */
945 if (kvm_read_guest_lock(its->dev->kvm,
946 base + index * sizeof(indirect_ptr),
947 &indirect_ptr, sizeof(indirect_ptr)))
948 return false;
950 indirect_ptr = le64_to_cpu(indirect_ptr);
952 /* check the valid bit of the first level entry */
953 if (!(indirect_ptr & BIT_ULL(63)))
954 return false;
956 /* Mask the guest physical address and calculate the frame number. */
957 indirect_ptr &= GENMASK_ULL(51, 16);
959 /* Find the address of the actual entry */
960 index = id % (SZ_64K / esz);
961 indirect_ptr += index * esz;
962 gfn = indirect_ptr >> PAGE_SHIFT;
964 if (eaddr)
965 *eaddr = indirect_ptr;
967 out:
968 idx = srcu_read_lock(&its->dev->kvm->srcu);
969 ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
970 srcu_read_unlock(&its->dev->kvm->srcu, idx);
971 return ret;
974 static int vgic_its_alloc_collection(struct vgic_its *its,
975 struct its_collection **colp,
976 u32 coll_id)
978 struct its_collection *collection;
980 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
981 return E_ITS_MAPC_COLLECTION_OOR;
983 collection = kzalloc(sizeof(*collection), GFP_KERNEL);
984 if (!collection)
985 return -ENOMEM;
987 collection->collection_id = coll_id;
988 collection->target_addr = COLLECTION_NOT_MAPPED;
990 list_add_tail(&collection->coll_list, &its->collection_list);
991 *colp = collection;
993 return 0;
996 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
998 struct its_collection *collection;
999 struct its_device *device;
1000 struct its_ite *ite;
1003 * Clearing the mapping for that collection ID removes the
1004 * entry from the list. If there wasn't any before, we can
1005 * go home early.
1007 collection = find_collection(its, coll_id);
1008 if (!collection)
1009 return;
1011 for_each_lpi_its(device, ite, its)
1012 if (ite->collection &&
1013 ite->collection->collection_id == coll_id)
1014 ite->collection = NULL;
1016 list_del(&collection->coll_list);
1017 kfree(collection);
1020 /* Must be called with its_lock mutex held */
1021 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1022 struct its_collection *collection,
1023 u32 event_id)
1025 struct its_ite *ite;
1027 ite = kzalloc(sizeof(*ite), GFP_KERNEL);
1028 if (!ite)
1029 return ERR_PTR(-ENOMEM);
1031 ite->event_id = event_id;
1032 ite->collection = collection;
1034 list_add_tail(&ite->ite_list, &device->itt_head);
1035 return ite;
1039 * The MAPTI and MAPI commands map LPIs to ITTEs.
1040 * Must be called with its_lock mutex held.
1042 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1043 u64 *its_cmd)
1045 u32 device_id = its_cmd_get_deviceid(its_cmd);
1046 u32 event_id = its_cmd_get_id(its_cmd);
1047 u32 coll_id = its_cmd_get_collection(its_cmd);
1048 struct its_ite *ite;
1049 struct kvm_vcpu *vcpu = NULL;
1050 struct its_device *device;
1051 struct its_collection *collection, *new_coll = NULL;
1052 struct vgic_irq *irq;
1053 int lpi_nr;
1055 device = find_its_device(its, device_id);
1056 if (!device)
1057 return E_ITS_MAPTI_UNMAPPED_DEVICE;
1059 if (event_id >= BIT_ULL(device->num_eventid_bits))
1060 return E_ITS_MAPTI_ID_OOR;
1062 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1063 lpi_nr = its_cmd_get_physical_id(its_cmd);
1064 else
1065 lpi_nr = event_id;
1066 if (lpi_nr < GIC_LPI_OFFSET ||
1067 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1068 return E_ITS_MAPTI_PHYSICALID_OOR;
1070 /* If there is an existing mapping, behavior is UNPREDICTABLE. */
1071 if (find_ite(its, device_id, event_id))
1072 return 0;
1074 collection = find_collection(its, coll_id);
1075 if (!collection) {
1076 int ret = vgic_its_alloc_collection(its, &collection, coll_id);
1077 if (ret)
1078 return ret;
1079 new_coll = collection;
1082 ite = vgic_its_alloc_ite(device, collection, event_id);
1083 if (IS_ERR(ite)) {
1084 if (new_coll)
1085 vgic_its_free_collection(its, coll_id);
1086 return PTR_ERR(ite);
1089 if (its_is_collection_mapped(collection))
1090 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1092 irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1093 if (IS_ERR(irq)) {
1094 if (new_coll)
1095 vgic_its_free_collection(its, coll_id);
1096 its_free_ite(kvm, ite);
1097 return PTR_ERR(irq);
1099 ite->irq = irq;
1101 return 0;
1104 /* Requires the its_lock to be held. */
1105 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1107 struct its_ite *ite, *temp;
1110 * The spec says that unmapping a device with still valid
1111 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1112 * since we cannot leave the memory unreferenced.
1114 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1115 its_free_ite(kvm, ite);
1117 vgic_its_invalidate_cache(kvm);
1119 list_del(&device->dev_list);
1120 kfree(device);
1123 /* its lock must be held */
1124 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1126 struct its_device *cur, *temp;
1128 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1129 vgic_its_free_device(kvm, cur);
1132 /* its lock must be held */
1133 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1135 struct its_collection *cur, *temp;
1137 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1138 vgic_its_free_collection(its, cur->collection_id);
1141 /* Must be called with its_lock mutex held */
1142 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1143 u32 device_id, gpa_t itt_addr,
1144 u8 num_eventid_bits)
1146 struct its_device *device;
1148 device = kzalloc(sizeof(*device), GFP_KERNEL);
1149 if (!device)
1150 return ERR_PTR(-ENOMEM);
1152 device->device_id = device_id;
1153 device->itt_addr = itt_addr;
1154 device->num_eventid_bits = num_eventid_bits;
1155 INIT_LIST_HEAD(&device->itt_head);
1157 list_add_tail(&device->dev_list, &its->device_list);
1158 return device;
1162 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1163 * Must be called with the its_lock mutex held.
1165 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1166 u64 *its_cmd)
1168 u32 device_id = its_cmd_get_deviceid(its_cmd);
1169 bool valid = its_cmd_get_validbit(its_cmd);
1170 u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1171 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1172 struct its_device *device;
1174 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1175 return E_ITS_MAPD_DEVICE_OOR;
1177 if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1178 return E_ITS_MAPD_ITTSIZE_OOR;
1180 device = find_its_device(its, device_id);
1183 * The spec says that calling MAPD on an already mapped device
1184 * invalidates all cached data for this device. We implement this
1185 * by removing the mapping and re-establishing it.
1187 if (device)
1188 vgic_its_free_device(kvm, device);
1191 * The spec does not say whether unmapping a not-mapped device
1192 * is an error, so we are done in any case.
1194 if (!valid)
1195 return 0;
1197 device = vgic_its_alloc_device(its, device_id, itt_addr,
1198 num_eventid_bits);
1200 return PTR_ERR_OR_ZERO(device);
1204 * The MAPC command maps collection IDs to redistributors.
1205 * Must be called with the its_lock mutex held.
1207 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1208 u64 *its_cmd)
1210 u16 coll_id;
1211 u32 target_addr;
1212 struct its_collection *collection;
1213 bool valid;
1215 valid = its_cmd_get_validbit(its_cmd);
1216 coll_id = its_cmd_get_collection(its_cmd);
1217 target_addr = its_cmd_get_target_addr(its_cmd);
1219 if (target_addr >= atomic_read(&kvm->online_vcpus))
1220 return E_ITS_MAPC_PROCNUM_OOR;
1222 if (!valid) {
1223 vgic_its_free_collection(its, coll_id);
1224 vgic_its_invalidate_cache(kvm);
1225 } else {
1226 collection = find_collection(its, coll_id);
1228 if (!collection) {
1229 int ret;
1231 ret = vgic_its_alloc_collection(its, &collection,
1232 coll_id);
1233 if (ret)
1234 return ret;
1235 collection->target_addr = target_addr;
1236 } else {
1237 collection->target_addr = target_addr;
1238 update_affinity_collection(kvm, its, collection);
1242 return 0;
1246 * The CLEAR command removes the pending state for a particular LPI.
1247 * Must be called with the its_lock mutex held.
1249 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1250 u64 *its_cmd)
1252 u32 device_id = its_cmd_get_deviceid(its_cmd);
1253 u32 event_id = its_cmd_get_id(its_cmd);
1254 struct its_ite *ite;
1257 ite = find_ite(its, device_id, event_id);
1258 if (!ite)
1259 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1261 ite->irq->pending_latch = false;
1263 if (ite->irq->hw)
1264 return irq_set_irqchip_state(ite->irq->host_irq,
1265 IRQCHIP_STATE_PENDING, false);
1267 return 0;
1271 * The INV command syncs the configuration bits from the memory table.
1272 * Must be called with the its_lock mutex held.
1274 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1275 u64 *its_cmd)
1277 u32 device_id = its_cmd_get_deviceid(its_cmd);
1278 u32 event_id = its_cmd_get_id(its_cmd);
1279 struct its_ite *ite;
1282 ite = find_ite(its, device_id, event_id);
1283 if (!ite)
1284 return E_ITS_INV_UNMAPPED_INTERRUPT;
1286 return update_lpi_config(kvm, ite->irq, NULL, true);
1290 * The INVALL command requests flushing of all IRQ data in this collection.
1291 * Find the VCPU mapped to that collection, then iterate over the VM's list
1292 * of mapped LPIs and update the configuration for each IRQ which targets
1293 * the specified vcpu. The configuration will be read from the in-memory
1294 * configuration table.
1295 * Must be called with the its_lock mutex held.
1297 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1298 u64 *its_cmd)
1300 u32 coll_id = its_cmd_get_collection(its_cmd);
1301 struct its_collection *collection;
1302 struct kvm_vcpu *vcpu;
1303 struct vgic_irq *irq;
1304 u32 *intids;
1305 int irq_count, i;
1307 collection = find_collection(its, coll_id);
1308 if (!its_is_collection_mapped(collection))
1309 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1311 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1313 irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1314 if (irq_count < 0)
1315 return irq_count;
1317 for (i = 0; i < irq_count; i++) {
1318 irq = vgic_get_irq(kvm, NULL, intids[i]);
1319 if (!irq)
1320 continue;
1321 update_lpi_config(kvm, irq, vcpu, false);
1322 vgic_put_irq(kvm, irq);
1325 kfree(intids);
1327 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1328 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1330 return 0;
1334 * The MOVALL command moves the pending state of all IRQs targeting one
1335 * redistributor to another. We don't hold the pending state in the VCPUs,
1336 * but in the IRQs instead, so there is really not much to do for us here.
1337 * However the spec says that no IRQ must target the old redistributor
1338 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1339 * This command affects all LPIs in the system that target that redistributor.
1341 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1342 u64 *its_cmd)
1344 u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1345 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1346 struct kvm_vcpu *vcpu1, *vcpu2;
1347 struct vgic_irq *irq;
1348 u32 *intids;
1349 int irq_count, i;
1351 if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1352 target2_addr >= atomic_read(&kvm->online_vcpus))
1353 return E_ITS_MOVALL_PROCNUM_OOR;
1355 if (target1_addr == target2_addr)
1356 return 0;
1358 vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1359 vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1361 irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1362 if (irq_count < 0)
1363 return irq_count;
1365 for (i = 0; i < irq_count; i++) {
1366 irq = vgic_get_irq(kvm, NULL, intids[i]);
1368 update_affinity(irq, vcpu2);
1370 vgic_put_irq(kvm, irq);
1373 vgic_its_invalidate_cache(kvm);
1375 kfree(intids);
1376 return 0;
1380 * The INT command injects the LPI associated with that DevID/EvID pair.
1381 * Must be called with the its_lock mutex held.
1383 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1384 u64 *its_cmd)
1386 u32 msi_data = its_cmd_get_id(its_cmd);
1387 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1389 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1393 * This function is called with the its_cmd lock held, but the ITS data
1394 * structure lock dropped.
1396 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1397 u64 *its_cmd)
1399 int ret = -ENODEV;
1401 mutex_lock(&its->its_lock);
1402 switch (its_cmd_get_command(its_cmd)) {
1403 case GITS_CMD_MAPD:
1404 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1405 break;
1406 case GITS_CMD_MAPC:
1407 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1408 break;
1409 case GITS_CMD_MAPI:
1410 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1411 break;
1412 case GITS_CMD_MAPTI:
1413 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1414 break;
1415 case GITS_CMD_MOVI:
1416 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1417 break;
1418 case GITS_CMD_DISCARD:
1419 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1420 break;
1421 case GITS_CMD_CLEAR:
1422 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1423 break;
1424 case GITS_CMD_MOVALL:
1425 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1426 break;
1427 case GITS_CMD_INT:
1428 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1429 break;
1430 case GITS_CMD_INV:
1431 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1432 break;
1433 case GITS_CMD_INVALL:
1434 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1435 break;
1436 case GITS_CMD_SYNC:
1437 /* we ignore this command: we are in sync all of the time */
1438 ret = 0;
1439 break;
1441 mutex_unlock(&its->its_lock);
1443 return ret;
1446 static u64 vgic_sanitise_its_baser(u64 reg)
1448 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1449 GITS_BASER_SHAREABILITY_SHIFT,
1450 vgic_sanitise_shareability);
1451 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1452 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1453 vgic_sanitise_inner_cacheability);
1454 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1455 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1456 vgic_sanitise_outer_cacheability);
1458 /* We support only one (ITS) page size: 64K */
1459 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1461 return reg;
1464 static u64 vgic_sanitise_its_cbaser(u64 reg)
1466 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1467 GITS_CBASER_SHAREABILITY_SHIFT,
1468 vgic_sanitise_shareability);
1469 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1470 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1471 vgic_sanitise_inner_cacheability);
1472 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1473 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1474 vgic_sanitise_outer_cacheability);
1476 /* Sanitise the physical address to be 64k aligned. */
1477 reg &= ~GENMASK_ULL(15, 12);
1479 return reg;
1482 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1483 struct vgic_its *its,
1484 gpa_t addr, unsigned int len)
1486 return extract_bytes(its->cbaser, addr & 7, len);
1489 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1490 gpa_t addr, unsigned int len,
1491 unsigned long val)
1493 /* When GITS_CTLR.Enable is 1, this register is RO. */
1494 if (its->enabled)
1495 return;
1497 mutex_lock(&its->cmd_lock);
1498 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1499 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1500 its->creadr = 0;
1502 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1503 * it to CREADR to make sure we start with an empty command buffer.
1505 its->cwriter = its->creadr;
1506 mutex_unlock(&its->cmd_lock);
1509 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1510 #define ITS_CMD_SIZE 32
1511 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1513 /* Must be called with the cmd_lock held. */
1514 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1516 gpa_t cbaser;
1517 u64 cmd_buf[4];
1519 /* Commands are only processed when the ITS is enabled. */
1520 if (!its->enabled)
1521 return;
1523 cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1525 while (its->cwriter != its->creadr) {
1526 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1527 cmd_buf, ITS_CMD_SIZE);
1529 * If kvm_read_guest() fails, this could be due to the guest
1530 * programming a bogus value in CBASER or something else going
1531 * wrong from which we cannot easily recover.
1532 * According to section 6.3.2 in the GICv3 spec we can just
1533 * ignore that command then.
1535 if (!ret)
1536 vgic_its_handle_command(kvm, its, cmd_buf);
1538 its->creadr += ITS_CMD_SIZE;
1539 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1540 its->creadr = 0;
1545 * By writing to CWRITER the guest announces new commands to be processed.
1546 * To avoid any races in the first place, we take the its_cmd lock, which
1547 * protects our ring buffer variables, so that there is only one user
1548 * per ITS handling commands at a given time.
1550 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1551 gpa_t addr, unsigned int len,
1552 unsigned long val)
1554 u64 reg;
1556 if (!its)
1557 return;
1559 mutex_lock(&its->cmd_lock);
1561 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1562 reg = ITS_CMD_OFFSET(reg);
1563 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1564 mutex_unlock(&its->cmd_lock);
1565 return;
1567 its->cwriter = reg;
1569 vgic_its_process_commands(kvm, its);
1571 mutex_unlock(&its->cmd_lock);
1574 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1575 struct vgic_its *its,
1576 gpa_t addr, unsigned int len)
1578 return extract_bytes(its->cwriter, addr & 0x7, len);
1581 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1582 struct vgic_its *its,
1583 gpa_t addr, unsigned int len)
1585 return extract_bytes(its->creadr, addr & 0x7, len);
1588 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1589 struct vgic_its *its,
1590 gpa_t addr, unsigned int len,
1591 unsigned long val)
1593 u32 cmd_offset;
1594 int ret = 0;
1596 mutex_lock(&its->cmd_lock);
1598 if (its->enabled) {
1599 ret = -EBUSY;
1600 goto out;
1603 cmd_offset = ITS_CMD_OFFSET(val);
1604 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1605 ret = -EINVAL;
1606 goto out;
1609 its->creadr = cmd_offset;
1610 out:
1611 mutex_unlock(&its->cmd_lock);
1612 return ret;
1615 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1616 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1617 struct vgic_its *its,
1618 gpa_t addr, unsigned int len)
1620 u64 reg;
1622 switch (BASER_INDEX(addr)) {
1623 case 0:
1624 reg = its->baser_device_table;
1625 break;
1626 case 1:
1627 reg = its->baser_coll_table;
1628 break;
1629 default:
1630 reg = 0;
1631 break;
1634 return extract_bytes(reg, addr & 7, len);
1637 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1638 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1639 struct vgic_its *its,
1640 gpa_t addr, unsigned int len,
1641 unsigned long val)
1643 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1644 u64 entry_size, table_type;
1645 u64 reg, *regptr, clearbits = 0;
1647 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1648 if (its->enabled)
1649 return;
1651 switch (BASER_INDEX(addr)) {
1652 case 0:
1653 regptr = &its->baser_device_table;
1654 entry_size = abi->dte_esz;
1655 table_type = GITS_BASER_TYPE_DEVICE;
1656 break;
1657 case 1:
1658 regptr = &its->baser_coll_table;
1659 entry_size = abi->cte_esz;
1660 table_type = GITS_BASER_TYPE_COLLECTION;
1661 clearbits = GITS_BASER_INDIRECT;
1662 break;
1663 default:
1664 return;
1667 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1668 reg &= ~GITS_BASER_RO_MASK;
1669 reg &= ~clearbits;
1671 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1672 reg |= table_type << GITS_BASER_TYPE_SHIFT;
1673 reg = vgic_sanitise_its_baser(reg);
1675 *regptr = reg;
1677 if (!(reg & GITS_BASER_VALID)) {
1678 /* Take the its_lock to prevent a race with a save/restore */
1679 mutex_lock(&its->its_lock);
1680 switch (table_type) {
1681 case GITS_BASER_TYPE_DEVICE:
1682 vgic_its_free_device_list(kvm, its);
1683 break;
1684 case GITS_BASER_TYPE_COLLECTION:
1685 vgic_its_free_collection_list(kvm, its);
1686 break;
1688 mutex_unlock(&its->its_lock);
1692 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1693 struct vgic_its *its,
1694 gpa_t addr, unsigned int len)
1696 u32 reg = 0;
1698 mutex_lock(&its->cmd_lock);
1699 if (its->creadr == its->cwriter)
1700 reg |= GITS_CTLR_QUIESCENT;
1701 if (its->enabled)
1702 reg |= GITS_CTLR_ENABLE;
1703 mutex_unlock(&its->cmd_lock);
1705 return reg;
1708 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1709 gpa_t addr, unsigned int len,
1710 unsigned long val)
1712 mutex_lock(&its->cmd_lock);
1715 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1716 * device/collection BASER are invalid
1718 if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1719 (!(its->baser_device_table & GITS_BASER_VALID) ||
1720 !(its->baser_coll_table & GITS_BASER_VALID) ||
1721 !(its->cbaser & GITS_CBASER_VALID)))
1722 goto out;
1724 its->enabled = !!(val & GITS_CTLR_ENABLE);
1725 if (!its->enabled)
1726 vgic_its_invalidate_cache(kvm);
1729 * Try to process any pending commands. This function bails out early
1730 * if the ITS is disabled or no commands have been queued.
1732 vgic_its_process_commands(kvm, its);
1734 out:
1735 mutex_unlock(&its->cmd_lock);
1738 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1740 .reg_offset = off, \
1741 .len = length, \
1742 .access_flags = acc, \
1743 .its_read = rd, \
1744 .its_write = wr, \
1747 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1749 .reg_offset = off, \
1750 .len = length, \
1751 .access_flags = acc, \
1752 .its_read = rd, \
1753 .its_write = wr, \
1754 .uaccess_its_write = uwr, \
1757 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1758 gpa_t addr, unsigned int len, unsigned long val)
1760 /* Ignore */
1763 static struct vgic_register_region its_registers[] = {
1764 REGISTER_ITS_DESC(GITS_CTLR,
1765 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1766 VGIC_ACCESS_32bit),
1767 REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1768 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1769 vgic_mmio_uaccess_write_its_iidr, 4,
1770 VGIC_ACCESS_32bit),
1771 REGISTER_ITS_DESC(GITS_TYPER,
1772 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1773 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1774 REGISTER_ITS_DESC(GITS_CBASER,
1775 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1776 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1777 REGISTER_ITS_DESC(GITS_CWRITER,
1778 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1779 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1780 REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1781 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1782 vgic_mmio_uaccess_write_its_creadr, 8,
1783 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1784 REGISTER_ITS_DESC(GITS_BASER,
1785 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1786 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1787 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1788 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1789 VGIC_ACCESS_32bit),
1792 /* This is called on setting the LPI enable bit in the redistributor. */
1793 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1795 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1796 its_sync_lpi_pending_table(vcpu);
1799 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1800 u64 addr)
1802 struct vgic_io_device *iodev = &its->iodev;
1803 int ret;
1805 mutex_lock(&kvm->slots_lock);
1806 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1807 ret = -EBUSY;
1808 goto out;
1811 its->vgic_its_base = addr;
1812 iodev->regions = its_registers;
1813 iodev->nr_regions = ARRAY_SIZE(its_registers);
1814 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1816 iodev->base_addr = its->vgic_its_base;
1817 iodev->iodev_type = IODEV_ITS;
1818 iodev->its = its;
1819 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1820 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1821 out:
1822 mutex_unlock(&kvm->slots_lock);
1824 return ret;
1827 /* Default is 16 cached LPIs per vcpu */
1828 #define LPI_DEFAULT_PCPU_CACHE_SIZE 16
1830 void vgic_lpi_translation_cache_init(struct kvm *kvm)
1832 struct vgic_dist *dist = &kvm->arch.vgic;
1833 unsigned int sz;
1834 int i;
1836 if (!list_empty(&dist->lpi_translation_cache))
1837 return;
1839 sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1841 for (i = 0; i < sz; i++) {
1842 struct vgic_translation_cache_entry *cte;
1844 /* An allocation failure is not fatal */
1845 cte = kzalloc(sizeof(*cte), GFP_KERNEL);
1846 if (WARN_ON(!cte))
1847 break;
1849 INIT_LIST_HEAD(&cte->entry);
1850 list_add(&cte->entry, &dist->lpi_translation_cache);
1854 void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1856 struct vgic_dist *dist = &kvm->arch.vgic;
1857 struct vgic_translation_cache_entry *cte, *tmp;
1859 vgic_its_invalidate_cache(kvm);
1861 list_for_each_entry_safe(cte, tmp,
1862 &dist->lpi_translation_cache, entry) {
1863 list_del(&cte->entry);
1864 kfree(cte);
1868 #define INITIAL_BASER_VALUE \
1869 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1870 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1871 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1872 GITS_BASER_PAGE_SIZE_64K)
1874 #define INITIAL_PROPBASER_VALUE \
1875 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1876 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1877 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1879 static int vgic_its_create(struct kvm_device *dev, u32 type)
1881 struct vgic_its *its;
1883 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1884 return -ENODEV;
1886 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1887 if (!its)
1888 return -ENOMEM;
1890 if (vgic_initialized(dev->kvm)) {
1891 int ret = vgic_v4_init(dev->kvm);
1892 if (ret < 0) {
1893 kfree(its);
1894 return ret;
1897 vgic_lpi_translation_cache_init(dev->kvm);
1900 mutex_init(&its->its_lock);
1901 mutex_init(&its->cmd_lock);
1903 its->vgic_its_base = VGIC_ADDR_UNDEF;
1905 INIT_LIST_HEAD(&its->device_list);
1906 INIT_LIST_HEAD(&its->collection_list);
1908 dev->kvm->arch.vgic.msis_require_devid = true;
1909 dev->kvm->arch.vgic.has_its = true;
1910 its->enabled = false;
1911 its->dev = dev;
1913 its->baser_device_table = INITIAL_BASER_VALUE |
1914 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1915 its->baser_coll_table = INITIAL_BASER_VALUE |
1916 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1917 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1919 dev->private = its;
1921 return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1924 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1926 struct kvm *kvm = kvm_dev->kvm;
1927 struct vgic_its *its = kvm_dev->private;
1929 mutex_lock(&its->its_lock);
1931 vgic_its_free_device_list(kvm, its);
1932 vgic_its_free_collection_list(kvm, its);
1934 mutex_unlock(&its->its_lock);
1935 kfree(its);
1936 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1939 static int vgic_its_has_attr_regs(struct kvm_device *dev,
1940 struct kvm_device_attr *attr)
1942 const struct vgic_register_region *region;
1943 gpa_t offset = attr->attr;
1944 int align;
1946 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1948 if (offset & align)
1949 return -EINVAL;
1951 region = vgic_find_mmio_region(its_registers,
1952 ARRAY_SIZE(its_registers),
1953 offset);
1954 if (!region)
1955 return -ENXIO;
1957 return 0;
1960 static int vgic_its_attr_regs_access(struct kvm_device *dev,
1961 struct kvm_device_attr *attr,
1962 u64 *reg, bool is_write)
1964 const struct vgic_register_region *region;
1965 struct vgic_its *its;
1966 gpa_t addr, offset;
1967 unsigned int len;
1968 int align, ret = 0;
1970 its = dev->private;
1971 offset = attr->attr;
1974 * Although the spec supports upper/lower 32-bit accesses to
1975 * 64-bit ITS registers, the userspace ABI requires 64-bit
1976 * accesses to all 64-bit wide registers. We therefore only
1977 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1978 * registers
1980 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1981 align = 0x3;
1982 else
1983 align = 0x7;
1985 if (offset & align)
1986 return -EINVAL;
1988 mutex_lock(&dev->kvm->lock);
1990 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1991 ret = -ENXIO;
1992 goto out;
1995 region = vgic_find_mmio_region(its_registers,
1996 ARRAY_SIZE(its_registers),
1997 offset);
1998 if (!region) {
1999 ret = -ENXIO;
2000 goto out;
2003 if (!lock_all_vcpus(dev->kvm)) {
2004 ret = -EBUSY;
2005 goto out;
2008 addr = its->vgic_its_base + offset;
2010 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2012 if (is_write) {
2013 if (region->uaccess_its_write)
2014 ret = region->uaccess_its_write(dev->kvm, its, addr,
2015 len, *reg);
2016 else
2017 region->its_write(dev->kvm, its, addr, len, *reg);
2018 } else {
2019 *reg = region->its_read(dev->kvm, its, addr, len);
2021 unlock_all_vcpus(dev->kvm);
2022 out:
2023 mutex_unlock(&dev->kvm->lock);
2024 return ret;
2027 static u32 compute_next_devid_offset(struct list_head *h,
2028 struct its_device *dev)
2030 struct its_device *next;
2031 u32 next_offset;
2033 if (list_is_last(&dev->dev_list, h))
2034 return 0;
2035 next = list_next_entry(dev, dev_list);
2036 next_offset = next->device_id - dev->device_id;
2038 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2041 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2043 struct its_ite *next;
2044 u32 next_offset;
2046 if (list_is_last(&ite->ite_list, h))
2047 return 0;
2048 next = list_next_entry(ite, ite_list);
2049 next_offset = next->event_id - ite->event_id;
2051 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2055 * entry_fn_t - Callback called on a table entry restore path
2056 * @its: its handle
2057 * @id: id of the entry
2058 * @entry: pointer to the entry
2059 * @opaque: pointer to an opaque data
2061 * Return: < 0 on error, 0 if last element was identified, id offset to next
2062 * element otherwise
2064 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2065 void *opaque);
2068 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2069 * to each entry
2071 * @its: its handle
2072 * @base: base gpa of the table
2073 * @size: size of the table in bytes
2074 * @esz: entry size in bytes
2075 * @start_id: the ID of the first entry in the table
2076 * (non zero for 2d level tables)
2077 * @fn: function to apply on each entry
2079 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2080 * (the last element may not be found on second level tables)
2082 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2083 int start_id, entry_fn_t fn, void *opaque)
2085 struct kvm *kvm = its->dev->kvm;
2086 unsigned long len = size;
2087 int id = start_id;
2088 gpa_t gpa = base;
2089 char entry[ESZ_MAX];
2090 int ret;
2092 memset(entry, 0, esz);
2094 while (len > 0) {
2095 int next_offset;
2096 size_t byte_offset;
2098 ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2099 if (ret)
2100 return ret;
2102 next_offset = fn(its, id, entry, opaque);
2103 if (next_offset <= 0)
2104 return next_offset;
2106 byte_offset = next_offset * esz;
2107 id += next_offset;
2108 gpa += byte_offset;
2109 len -= byte_offset;
2111 return 1;
2115 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2117 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2118 struct its_ite *ite, gpa_t gpa, int ite_esz)
2120 struct kvm *kvm = its->dev->kvm;
2121 u32 next_offset;
2122 u64 val;
2124 next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2125 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2126 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2127 ite->collection->collection_id;
2128 val = cpu_to_le64(val);
2129 return kvm_write_guest_lock(kvm, gpa, &val, ite_esz);
2133 * vgic_its_restore_ite - restore an interrupt translation entry
2134 * @event_id: id used for indexing
2135 * @ptr: pointer to the ITE entry
2136 * @opaque: pointer to the its_device
2138 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2139 void *ptr, void *opaque)
2141 struct its_device *dev = (struct its_device *)opaque;
2142 struct its_collection *collection;
2143 struct kvm *kvm = its->dev->kvm;
2144 struct kvm_vcpu *vcpu = NULL;
2145 u64 val;
2146 u64 *p = (u64 *)ptr;
2147 struct vgic_irq *irq;
2148 u32 coll_id, lpi_id;
2149 struct its_ite *ite;
2150 u32 offset;
2152 val = *p;
2154 val = le64_to_cpu(val);
2156 coll_id = val & KVM_ITS_ITE_ICID_MASK;
2157 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2159 if (!lpi_id)
2160 return 1; /* invalid entry, no choice but to scan next entry */
2162 if (lpi_id < VGIC_MIN_LPI)
2163 return -EINVAL;
2165 offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2166 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2167 return -EINVAL;
2169 collection = find_collection(its, coll_id);
2170 if (!collection)
2171 return -EINVAL;
2173 ite = vgic_its_alloc_ite(dev, collection, event_id);
2174 if (IS_ERR(ite))
2175 return PTR_ERR(ite);
2177 if (its_is_collection_mapped(collection))
2178 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
2180 irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2181 if (IS_ERR(irq))
2182 return PTR_ERR(irq);
2183 ite->irq = irq;
2185 return offset;
2188 static int vgic_its_ite_cmp(void *priv, struct list_head *a,
2189 struct list_head *b)
2191 struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2192 struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2194 if (itea->event_id < iteb->event_id)
2195 return -1;
2196 else
2197 return 1;
2200 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2202 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2203 gpa_t base = device->itt_addr;
2204 struct its_ite *ite;
2205 int ret;
2206 int ite_esz = abi->ite_esz;
2208 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2210 list_for_each_entry(ite, &device->itt_head, ite_list) {
2211 gpa_t gpa = base + ite->event_id * ite_esz;
2214 * If an LPI carries the HW bit, this means that this
2215 * interrupt is controlled by GICv4, and we do not
2216 * have direct access to that state. Let's simply fail
2217 * the save operation...
2219 if (ite->irq->hw)
2220 return -EACCES;
2222 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2223 if (ret)
2224 return ret;
2226 return 0;
2230 * vgic_its_restore_itt - restore the ITT of a device
2232 * @its: its handle
2233 * @dev: device handle
2235 * Return 0 on success, < 0 on error
2237 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2239 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2240 gpa_t base = dev->itt_addr;
2241 int ret;
2242 int ite_esz = abi->ite_esz;
2243 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2245 ret = scan_its_table(its, base, max_size, ite_esz, 0,
2246 vgic_its_restore_ite, dev);
2248 /* scan_its_table returns +1 if all ITEs are invalid */
2249 if (ret > 0)
2250 ret = 0;
2252 return ret;
2256 * vgic_its_save_dte - Save a device table entry at a given GPA
2258 * @its: ITS handle
2259 * @dev: ITS device
2260 * @ptr: GPA
2262 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2263 gpa_t ptr, int dte_esz)
2265 struct kvm *kvm = its->dev->kvm;
2266 u64 val, itt_addr_field;
2267 u32 next_offset;
2269 itt_addr_field = dev->itt_addr >> 8;
2270 next_offset = compute_next_devid_offset(&its->device_list, dev);
2271 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2272 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2273 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2274 (dev->num_eventid_bits - 1));
2275 val = cpu_to_le64(val);
2276 return kvm_write_guest_lock(kvm, ptr, &val, dte_esz);
2280 * vgic_its_restore_dte - restore a device table entry
2282 * @its: its handle
2283 * @id: device id the DTE corresponds to
2284 * @ptr: kernel VA where the 8 byte DTE is located
2285 * @opaque: unused
2287 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2288 * next dte otherwise
2290 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2291 void *ptr, void *opaque)
2293 struct its_device *dev;
2294 gpa_t itt_addr;
2295 u8 num_eventid_bits;
2296 u64 entry = *(u64 *)ptr;
2297 bool valid;
2298 u32 offset;
2299 int ret;
2301 entry = le64_to_cpu(entry);
2303 valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2304 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2305 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2306 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2308 if (!valid)
2309 return 1;
2311 /* dte entry is valid */
2312 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2314 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2315 if (IS_ERR(dev))
2316 return PTR_ERR(dev);
2318 ret = vgic_its_restore_itt(its, dev);
2319 if (ret) {
2320 vgic_its_free_device(its->dev->kvm, dev);
2321 return ret;
2324 return offset;
2327 static int vgic_its_device_cmp(void *priv, struct list_head *a,
2328 struct list_head *b)
2330 struct its_device *deva = container_of(a, struct its_device, dev_list);
2331 struct its_device *devb = container_of(b, struct its_device, dev_list);
2333 if (deva->device_id < devb->device_id)
2334 return -1;
2335 else
2336 return 1;
2340 * vgic_its_save_device_tables - Save the device table and all ITT
2341 * into guest RAM
2343 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2344 * returns the GPA of the device entry
2346 static int vgic_its_save_device_tables(struct vgic_its *its)
2348 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2349 u64 baser = its->baser_device_table;
2350 struct its_device *dev;
2351 int dte_esz = abi->dte_esz;
2353 if (!(baser & GITS_BASER_VALID))
2354 return 0;
2356 list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2358 list_for_each_entry(dev, &its->device_list, dev_list) {
2359 int ret;
2360 gpa_t eaddr;
2362 if (!vgic_its_check_id(its, baser,
2363 dev->device_id, &eaddr))
2364 return -EINVAL;
2366 ret = vgic_its_save_itt(its, dev);
2367 if (ret)
2368 return ret;
2370 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2371 if (ret)
2372 return ret;
2374 return 0;
2378 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2380 * @its: its handle
2381 * @id: index of the entry in the L1 table
2382 * @addr: kernel VA
2383 * @opaque: unused
2385 * L1 table entries are scanned by steps of 1 entry
2386 * Return < 0 if error, 0 if last dte was found when scanning the L2
2387 * table, +1 otherwise (meaning next L1 entry must be scanned)
2389 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2390 void *opaque)
2392 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2393 int l2_start_id = id * (SZ_64K / abi->dte_esz);
2394 u64 entry = *(u64 *)addr;
2395 int dte_esz = abi->dte_esz;
2396 gpa_t gpa;
2397 int ret;
2399 entry = le64_to_cpu(entry);
2401 if (!(entry & KVM_ITS_L1E_VALID_MASK))
2402 return 1;
2404 gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2406 ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2407 l2_start_id, vgic_its_restore_dte, NULL);
2409 return ret;
2413 * vgic_its_restore_device_tables - Restore the device table and all ITT
2414 * from guest RAM to internal data structs
2416 static int vgic_its_restore_device_tables(struct vgic_its *its)
2418 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2419 u64 baser = its->baser_device_table;
2420 int l1_esz, ret;
2421 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2422 gpa_t l1_gpa;
2424 if (!(baser & GITS_BASER_VALID))
2425 return 0;
2427 l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2429 if (baser & GITS_BASER_INDIRECT) {
2430 l1_esz = GITS_LVL1_ENTRY_SIZE;
2431 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2432 handle_l1_dte, NULL);
2433 } else {
2434 l1_esz = abi->dte_esz;
2435 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2436 vgic_its_restore_dte, NULL);
2439 /* scan_its_table returns +1 if all entries are invalid */
2440 if (ret > 0)
2441 ret = 0;
2443 return ret;
2446 static int vgic_its_save_cte(struct vgic_its *its,
2447 struct its_collection *collection,
2448 gpa_t gpa, int esz)
2450 u64 val;
2452 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2453 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2454 collection->collection_id);
2455 val = cpu_to_le64(val);
2456 return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2459 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2461 struct its_collection *collection;
2462 struct kvm *kvm = its->dev->kvm;
2463 u32 target_addr, coll_id;
2464 u64 val;
2465 int ret;
2467 BUG_ON(esz > sizeof(val));
2468 ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2469 if (ret)
2470 return ret;
2471 val = le64_to_cpu(val);
2472 if (!(val & KVM_ITS_CTE_VALID_MASK))
2473 return 0;
2475 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2476 coll_id = val & KVM_ITS_CTE_ICID_MASK;
2478 if (target_addr >= atomic_read(&kvm->online_vcpus))
2479 return -EINVAL;
2481 collection = find_collection(its, coll_id);
2482 if (collection)
2483 return -EEXIST;
2484 ret = vgic_its_alloc_collection(its, &collection, coll_id);
2485 if (ret)
2486 return ret;
2487 collection->target_addr = target_addr;
2488 return 1;
2492 * vgic_its_save_collection_table - Save the collection table into
2493 * guest RAM
2495 static int vgic_its_save_collection_table(struct vgic_its *its)
2497 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2498 u64 baser = its->baser_coll_table;
2499 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2500 struct its_collection *collection;
2501 u64 val;
2502 size_t max_size, filled = 0;
2503 int ret, cte_esz = abi->cte_esz;
2505 if (!(baser & GITS_BASER_VALID))
2506 return 0;
2508 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2510 list_for_each_entry(collection, &its->collection_list, coll_list) {
2511 ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2512 if (ret)
2513 return ret;
2514 gpa += cte_esz;
2515 filled += cte_esz;
2518 if (filled == max_size)
2519 return 0;
2522 * table is not fully filled, add a last dummy element
2523 * with valid bit unset
2525 val = 0;
2526 BUG_ON(cte_esz > sizeof(val));
2527 ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2528 return ret;
2532 * vgic_its_restore_collection_table - reads the collection table
2533 * in guest memory and restores the ITS internal state. Requires the
2534 * BASER registers to be restored before.
2536 static int vgic_its_restore_collection_table(struct vgic_its *its)
2538 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2539 u64 baser = its->baser_coll_table;
2540 int cte_esz = abi->cte_esz;
2541 size_t max_size, read = 0;
2542 gpa_t gpa;
2543 int ret;
2545 if (!(baser & GITS_BASER_VALID))
2546 return 0;
2548 gpa = GITS_BASER_ADDR_48_to_52(baser);
2550 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2552 while (read < max_size) {
2553 ret = vgic_its_restore_cte(its, gpa, cte_esz);
2554 if (ret <= 0)
2555 break;
2556 gpa += cte_esz;
2557 read += cte_esz;
2560 if (ret > 0)
2561 return 0;
2563 return ret;
2567 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2568 * according to v0 ABI
2570 static int vgic_its_save_tables_v0(struct vgic_its *its)
2572 int ret;
2574 ret = vgic_its_save_device_tables(its);
2575 if (ret)
2576 return ret;
2578 return vgic_its_save_collection_table(its);
2582 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2583 * to internal data structs according to V0 ABI
2586 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2588 int ret;
2590 ret = vgic_its_restore_collection_table(its);
2591 if (ret)
2592 return ret;
2594 return vgic_its_restore_device_tables(its);
2597 static int vgic_its_commit_v0(struct vgic_its *its)
2599 const struct vgic_its_abi *abi;
2601 abi = vgic_its_get_abi(its);
2602 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2603 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2605 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2606 << GITS_BASER_ENTRY_SIZE_SHIFT);
2608 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2609 << GITS_BASER_ENTRY_SIZE_SHIFT);
2610 return 0;
2613 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2615 /* We need to keep the ABI specific field values */
2616 its->baser_coll_table &= ~GITS_BASER_VALID;
2617 its->baser_device_table &= ~GITS_BASER_VALID;
2618 its->cbaser = 0;
2619 its->creadr = 0;
2620 its->cwriter = 0;
2621 its->enabled = 0;
2622 vgic_its_free_device_list(kvm, its);
2623 vgic_its_free_collection_list(kvm, its);
2626 static int vgic_its_has_attr(struct kvm_device *dev,
2627 struct kvm_device_attr *attr)
2629 switch (attr->group) {
2630 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2631 switch (attr->attr) {
2632 case KVM_VGIC_ITS_ADDR_TYPE:
2633 return 0;
2635 break;
2636 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2637 switch (attr->attr) {
2638 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2639 return 0;
2640 case KVM_DEV_ARM_ITS_CTRL_RESET:
2641 return 0;
2642 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2643 return 0;
2644 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2645 return 0;
2647 break;
2648 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2649 return vgic_its_has_attr_regs(dev, attr);
2651 return -ENXIO;
2654 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2656 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2657 int ret = 0;
2659 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2660 return 0;
2662 mutex_lock(&kvm->lock);
2663 mutex_lock(&its->its_lock);
2665 if (!lock_all_vcpus(kvm)) {
2666 mutex_unlock(&its->its_lock);
2667 mutex_unlock(&kvm->lock);
2668 return -EBUSY;
2671 switch (attr) {
2672 case KVM_DEV_ARM_ITS_CTRL_RESET:
2673 vgic_its_reset(kvm, its);
2674 break;
2675 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2676 ret = abi->save_tables(its);
2677 break;
2678 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2679 ret = abi->restore_tables(its);
2680 break;
2683 unlock_all_vcpus(kvm);
2684 mutex_unlock(&its->its_lock);
2685 mutex_unlock(&kvm->lock);
2686 return ret;
2689 static int vgic_its_set_attr(struct kvm_device *dev,
2690 struct kvm_device_attr *attr)
2692 struct vgic_its *its = dev->private;
2693 int ret;
2695 switch (attr->group) {
2696 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2697 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2698 unsigned long type = (unsigned long)attr->attr;
2699 u64 addr;
2701 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2702 return -ENODEV;
2704 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2705 return -EFAULT;
2707 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2708 addr, SZ_64K);
2709 if (ret)
2710 return ret;
2712 return vgic_register_its_iodev(dev->kvm, its, addr);
2714 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2715 return vgic_its_ctrl(dev->kvm, its, attr->attr);
2716 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2717 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2718 u64 reg;
2720 if (get_user(reg, uaddr))
2721 return -EFAULT;
2723 return vgic_its_attr_regs_access(dev, attr, &reg, true);
2726 return -ENXIO;
2729 static int vgic_its_get_attr(struct kvm_device *dev,
2730 struct kvm_device_attr *attr)
2732 switch (attr->group) {
2733 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2734 struct vgic_its *its = dev->private;
2735 u64 addr = its->vgic_its_base;
2736 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2737 unsigned long type = (unsigned long)attr->attr;
2739 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2740 return -ENODEV;
2742 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2743 return -EFAULT;
2744 break;
2746 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2747 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2748 u64 reg;
2749 int ret;
2751 ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2752 if (ret)
2753 return ret;
2754 return put_user(reg, uaddr);
2756 default:
2757 return -ENXIO;
2760 return 0;
2763 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2764 .name = "kvm-arm-vgic-its",
2765 .create = vgic_its_create,
2766 .destroy = vgic_its_destroy,
2767 .set_attr = vgic_its_set_attr,
2768 .get_attr = vgic_its_get_attr,
2769 .has_attr = vgic_its_has_attr,
2772 int kvm_vgic_register_its_device(void)
2774 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2775 KVM_DEV_TYPE_ARM_VGIC_ITS);