2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
29 * mm->page_table_lock or pte_lock
30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/slab.h>
53 #include <linux/init.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/rcupdate.h>
57 #include <linux/export.h>
58 #include <linux/memcontrol.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/backing-dev.h>
63 #include <linux/page_idle.h>
65 #include <asm/tlbflush.h>
67 #include <trace/events/tlb.h>
71 static struct kmem_cache
*anon_vma_cachep
;
72 static struct kmem_cache
*anon_vma_chain_cachep
;
74 static inline struct anon_vma
*anon_vma_alloc(void)
76 struct anon_vma
*anon_vma
;
78 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
80 atomic_set(&anon_vma
->refcount
, 1);
81 anon_vma
->degree
= 1; /* Reference for first vma */
82 anon_vma
->parent
= anon_vma
;
84 * Initialise the anon_vma root to point to itself. If called
85 * from fork, the root will be reset to the parents anon_vma.
87 anon_vma
->root
= anon_vma
;
93 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
95 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
98 * Synchronize against page_lock_anon_vma_read() such that
99 * we can safely hold the lock without the anon_vma getting
102 * Relies on the full mb implied by the atomic_dec_and_test() from
103 * put_anon_vma() against the acquire barrier implied by
104 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
106 * page_lock_anon_vma_read() VS put_anon_vma()
107 * down_read_trylock() atomic_dec_and_test()
109 * atomic_read() rwsem_is_locked()
111 * LOCK should suffice since the actual taking of the lock must
112 * happen _before_ what follows.
115 if (rwsem_is_locked(&anon_vma
->root
->rwsem
)) {
116 anon_vma_lock_write(anon_vma
);
117 anon_vma_unlock_write(anon_vma
);
120 kmem_cache_free(anon_vma_cachep
, anon_vma
);
123 static inline struct anon_vma_chain
*anon_vma_chain_alloc(gfp_t gfp
)
125 return kmem_cache_alloc(anon_vma_chain_cachep
, gfp
);
128 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
130 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
133 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
134 struct anon_vma_chain
*avc
,
135 struct anon_vma
*anon_vma
)
138 avc
->anon_vma
= anon_vma
;
139 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
140 anon_vma_interval_tree_insert(avc
, &anon_vma
->rb_root
);
144 * anon_vma_prepare - attach an anon_vma to a memory region
145 * @vma: the memory region in question
147 * This makes sure the memory mapping described by 'vma' has
148 * an 'anon_vma' attached to it, so that we can associate the
149 * anonymous pages mapped into it with that anon_vma.
151 * The common case will be that we already have one, but if
152 * not we either need to find an adjacent mapping that we
153 * can re-use the anon_vma from (very common when the only
154 * reason for splitting a vma has been mprotect()), or we
155 * allocate a new one.
157 * Anon-vma allocations are very subtle, because we may have
158 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
159 * and that may actually touch the spinlock even in the newly
160 * allocated vma (it depends on RCU to make sure that the
161 * anon_vma isn't actually destroyed).
163 * As a result, we need to do proper anon_vma locking even
164 * for the new allocation. At the same time, we do not want
165 * to do any locking for the common case of already having
168 * This must be called with the mmap_sem held for reading.
170 int anon_vma_prepare(struct vm_area_struct
*vma
)
172 struct anon_vma
*anon_vma
= vma
->anon_vma
;
173 struct anon_vma_chain
*avc
;
176 if (unlikely(!anon_vma
)) {
177 struct mm_struct
*mm
= vma
->vm_mm
;
178 struct anon_vma
*allocated
;
180 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
184 anon_vma
= find_mergeable_anon_vma(vma
);
187 anon_vma
= anon_vma_alloc();
188 if (unlikely(!anon_vma
))
189 goto out_enomem_free_avc
;
190 allocated
= anon_vma
;
193 anon_vma_lock_write(anon_vma
);
194 /* page_table_lock to protect against threads */
195 spin_lock(&mm
->page_table_lock
);
196 if (likely(!vma
->anon_vma
)) {
197 vma
->anon_vma
= anon_vma
;
198 anon_vma_chain_link(vma
, avc
, anon_vma
);
199 /* vma reference or self-parent link for new root */
204 spin_unlock(&mm
->page_table_lock
);
205 anon_vma_unlock_write(anon_vma
);
207 if (unlikely(allocated
))
208 put_anon_vma(allocated
);
210 anon_vma_chain_free(avc
);
215 anon_vma_chain_free(avc
);
221 * This is a useful helper function for locking the anon_vma root as
222 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
225 * Such anon_vma's should have the same root, so you'd expect to see
226 * just a single mutex_lock for the whole traversal.
228 static inline struct anon_vma
*lock_anon_vma_root(struct anon_vma
*root
, struct anon_vma
*anon_vma
)
230 struct anon_vma
*new_root
= anon_vma
->root
;
231 if (new_root
!= root
) {
232 if (WARN_ON_ONCE(root
))
233 up_write(&root
->rwsem
);
235 down_write(&root
->rwsem
);
240 static inline void unlock_anon_vma_root(struct anon_vma
*root
)
243 up_write(&root
->rwsem
);
247 * Attach the anon_vmas from src to dst.
248 * Returns 0 on success, -ENOMEM on failure.
250 * If dst->anon_vma is NULL this function tries to find and reuse existing
251 * anon_vma which has no vmas and only one child anon_vma. This prevents
252 * degradation of anon_vma hierarchy to endless linear chain in case of
253 * constantly forking task. On the other hand, an anon_vma with more than one
254 * child isn't reused even if there was no alive vma, thus rmap walker has a
255 * good chance of avoiding scanning the whole hierarchy when it searches where
258 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
260 struct anon_vma_chain
*avc
, *pavc
;
261 struct anon_vma
*root
= NULL
;
263 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
264 struct anon_vma
*anon_vma
;
266 avc
= anon_vma_chain_alloc(GFP_NOWAIT
| __GFP_NOWARN
);
267 if (unlikely(!avc
)) {
268 unlock_anon_vma_root(root
);
270 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
274 anon_vma
= pavc
->anon_vma
;
275 root
= lock_anon_vma_root(root
, anon_vma
);
276 anon_vma_chain_link(dst
, avc
, anon_vma
);
279 * Reuse existing anon_vma if its degree lower than two,
280 * that means it has no vma and only one anon_vma child.
282 * Do not chose parent anon_vma, otherwise first child
283 * will always reuse it. Root anon_vma is never reused:
284 * it has self-parent reference and at least one child.
286 if (!dst
->anon_vma
&& anon_vma
!= src
->anon_vma
&&
287 anon_vma
->degree
< 2)
288 dst
->anon_vma
= anon_vma
;
291 dst
->anon_vma
->degree
++;
292 unlock_anon_vma_root(root
);
297 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
298 * decremented in unlink_anon_vmas().
299 * We can safely do this because callers of anon_vma_clone() don't care
300 * about dst->anon_vma if anon_vma_clone() failed.
302 dst
->anon_vma
= NULL
;
303 unlink_anon_vmas(dst
);
308 * Attach vma to its own anon_vma, as well as to the anon_vmas that
309 * the corresponding VMA in the parent process is attached to.
310 * Returns 0 on success, non-zero on failure.
312 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
314 struct anon_vma_chain
*avc
;
315 struct anon_vma
*anon_vma
;
318 /* Don't bother if the parent process has no anon_vma here. */
322 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
323 vma
->anon_vma
= NULL
;
326 * First, attach the new VMA to the parent VMA's anon_vmas,
327 * so rmap can find non-COWed pages in child processes.
329 error
= anon_vma_clone(vma
, pvma
);
333 /* An existing anon_vma has been reused, all done then. */
337 /* Then add our own anon_vma. */
338 anon_vma
= anon_vma_alloc();
341 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
343 goto out_error_free_anon_vma
;
346 * The root anon_vma's spinlock is the lock actually used when we
347 * lock any of the anon_vmas in this anon_vma tree.
349 anon_vma
->root
= pvma
->anon_vma
->root
;
350 anon_vma
->parent
= pvma
->anon_vma
;
352 * With refcounts, an anon_vma can stay around longer than the
353 * process it belongs to. The root anon_vma needs to be pinned until
354 * this anon_vma is freed, because the lock lives in the root.
356 get_anon_vma(anon_vma
->root
);
357 /* Mark this anon_vma as the one where our new (COWed) pages go. */
358 vma
->anon_vma
= anon_vma
;
359 anon_vma_lock_write(anon_vma
);
360 anon_vma_chain_link(vma
, avc
, anon_vma
);
361 anon_vma
->parent
->degree
++;
362 anon_vma_unlock_write(anon_vma
);
366 out_error_free_anon_vma
:
367 put_anon_vma(anon_vma
);
369 unlink_anon_vmas(vma
);
373 void unlink_anon_vmas(struct vm_area_struct
*vma
)
375 struct anon_vma_chain
*avc
, *next
;
376 struct anon_vma
*root
= NULL
;
379 * Unlink each anon_vma chained to the VMA. This list is ordered
380 * from newest to oldest, ensuring the root anon_vma gets freed last.
382 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
383 struct anon_vma
*anon_vma
= avc
->anon_vma
;
385 root
= lock_anon_vma_root(root
, anon_vma
);
386 anon_vma_interval_tree_remove(avc
, &anon_vma
->rb_root
);
389 * Leave empty anon_vmas on the list - we'll need
390 * to free them outside the lock.
392 if (RB_EMPTY_ROOT(&anon_vma
->rb_root
)) {
393 anon_vma
->parent
->degree
--;
397 list_del(&avc
->same_vma
);
398 anon_vma_chain_free(avc
);
401 vma
->anon_vma
->degree
--;
402 unlock_anon_vma_root(root
);
405 * Iterate the list once more, it now only contains empty and unlinked
406 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
407 * needing to write-acquire the anon_vma->root->rwsem.
409 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
410 struct anon_vma
*anon_vma
= avc
->anon_vma
;
412 VM_WARN_ON(anon_vma
->degree
);
413 put_anon_vma(anon_vma
);
415 list_del(&avc
->same_vma
);
416 anon_vma_chain_free(avc
);
420 static void anon_vma_ctor(void *data
)
422 struct anon_vma
*anon_vma
= data
;
424 init_rwsem(&anon_vma
->rwsem
);
425 atomic_set(&anon_vma
->refcount
, 0);
426 anon_vma
->rb_root
= RB_ROOT
;
429 void __init
anon_vma_init(void)
431 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
432 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
|SLAB_ACCOUNT
,
434 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
,
435 SLAB_PANIC
|SLAB_ACCOUNT
);
439 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
441 * Since there is no serialization what so ever against page_remove_rmap()
442 * the best this function can do is return a locked anon_vma that might
443 * have been relevant to this page.
445 * The page might have been remapped to a different anon_vma or the anon_vma
446 * returned may already be freed (and even reused).
448 * In case it was remapped to a different anon_vma, the new anon_vma will be a
449 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
450 * ensure that any anon_vma obtained from the page will still be valid for as
451 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
453 * All users of this function must be very careful when walking the anon_vma
454 * chain and verify that the page in question is indeed mapped in it
455 * [ something equivalent to page_mapped_in_vma() ].
457 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
458 * that the anon_vma pointer from page->mapping is valid if there is a
459 * mapcount, we can dereference the anon_vma after observing those.
461 struct anon_vma
*page_get_anon_vma(struct page
*page
)
463 struct anon_vma
*anon_vma
= NULL
;
464 unsigned long anon_mapping
;
467 anon_mapping
= (unsigned long)READ_ONCE(page
->mapping
);
468 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
470 if (!page_mapped(page
))
473 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
474 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
480 * If this page is still mapped, then its anon_vma cannot have been
481 * freed. But if it has been unmapped, we have no security against the
482 * anon_vma structure being freed and reused (for another anon_vma:
483 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
484 * above cannot corrupt).
486 if (!page_mapped(page
)) {
488 put_anon_vma(anon_vma
);
498 * Similar to page_get_anon_vma() except it locks the anon_vma.
500 * Its a little more complex as it tries to keep the fast path to a single
501 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
502 * reference like with page_get_anon_vma() and then block on the mutex.
504 struct anon_vma
*page_lock_anon_vma_read(struct page
*page
)
506 struct anon_vma
*anon_vma
= NULL
;
507 struct anon_vma
*root_anon_vma
;
508 unsigned long anon_mapping
;
511 anon_mapping
= (unsigned long)READ_ONCE(page
->mapping
);
512 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
514 if (!page_mapped(page
))
517 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
518 root_anon_vma
= READ_ONCE(anon_vma
->root
);
519 if (down_read_trylock(&root_anon_vma
->rwsem
)) {
521 * If the page is still mapped, then this anon_vma is still
522 * its anon_vma, and holding the mutex ensures that it will
523 * not go away, see anon_vma_free().
525 if (!page_mapped(page
)) {
526 up_read(&root_anon_vma
->rwsem
);
532 /* trylock failed, we got to sleep */
533 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
538 if (!page_mapped(page
)) {
540 put_anon_vma(anon_vma
);
544 /* we pinned the anon_vma, its safe to sleep */
546 anon_vma_lock_read(anon_vma
);
548 if (atomic_dec_and_test(&anon_vma
->refcount
)) {
550 * Oops, we held the last refcount, release the lock
551 * and bail -- can't simply use put_anon_vma() because
552 * we'll deadlock on the anon_vma_lock_write() recursion.
554 anon_vma_unlock_read(anon_vma
);
555 __put_anon_vma(anon_vma
);
566 void page_unlock_anon_vma_read(struct anon_vma
*anon_vma
)
568 anon_vma_unlock_read(anon_vma
);
571 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
573 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
574 * important if a PTE was dirty when it was unmapped that it's flushed
575 * before any IO is initiated on the page to prevent lost writes. Similarly,
576 * it must be flushed before freeing to prevent data leakage.
578 void try_to_unmap_flush(void)
580 struct tlbflush_unmap_batch
*tlb_ubc
= ¤t
->tlb_ubc
;
583 if (!tlb_ubc
->flush_required
)
588 if (cpumask_test_cpu(cpu
, &tlb_ubc
->cpumask
)) {
589 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL
);
591 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN
, TLB_FLUSH_ALL
);
594 if (cpumask_any_but(&tlb_ubc
->cpumask
, cpu
) < nr_cpu_ids
)
595 flush_tlb_others(&tlb_ubc
->cpumask
, NULL
, 0, TLB_FLUSH_ALL
);
596 cpumask_clear(&tlb_ubc
->cpumask
);
597 tlb_ubc
->flush_required
= false;
598 tlb_ubc
->writable
= false;
602 /* Flush iff there are potentially writable TLB entries that can race with IO */
603 void try_to_unmap_flush_dirty(void)
605 struct tlbflush_unmap_batch
*tlb_ubc
= ¤t
->tlb_ubc
;
607 if (tlb_ubc
->writable
)
608 try_to_unmap_flush();
611 static void set_tlb_ubc_flush_pending(struct mm_struct
*mm
,
612 struct page
*page
, bool writable
)
614 struct tlbflush_unmap_batch
*tlb_ubc
= ¤t
->tlb_ubc
;
616 cpumask_or(&tlb_ubc
->cpumask
, &tlb_ubc
->cpumask
, mm_cpumask(mm
));
617 tlb_ubc
->flush_required
= true;
620 * Ensure compiler does not re-order the setting of tlb_flush_batched
621 * before the PTE is cleared.
624 mm
->tlb_flush_batched
= true;
627 * If the PTE was dirty then it's best to assume it's writable. The
628 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
629 * before the page is queued for IO.
632 tlb_ubc
->writable
= true;
636 * Returns true if the TLB flush should be deferred to the end of a batch of
637 * unmap operations to reduce IPIs.
639 static bool should_defer_flush(struct mm_struct
*mm
, enum ttu_flags flags
)
641 bool should_defer
= false;
643 if (!(flags
& TTU_BATCH_FLUSH
))
646 /* If remote CPUs need to be flushed then defer batch the flush */
647 if (cpumask_any_but(mm_cpumask(mm
), get_cpu()) < nr_cpu_ids
)
655 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
656 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
657 * operation such as mprotect or munmap to race between reclaim unmapping
658 * the page and flushing the page. If this race occurs, it potentially allows
659 * access to data via a stale TLB entry. Tracking all mm's that have TLB
660 * batching in flight would be expensive during reclaim so instead track
661 * whether TLB batching occurred in the past and if so then do a flush here
662 * if required. This will cost one additional flush per reclaim cycle paid
663 * by the first operation at risk such as mprotect and mumap.
665 * This must be called under the PTL so that an access to tlb_flush_batched
666 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
669 void flush_tlb_batched_pending(struct mm_struct
*mm
)
671 if (mm
->tlb_flush_batched
) {
675 * Do not allow the compiler to re-order the clearing of
676 * tlb_flush_batched before the tlb is flushed.
679 mm
->tlb_flush_batched
= false;
683 static void set_tlb_ubc_flush_pending(struct mm_struct
*mm
,
684 struct page
*page
, bool writable
)
688 static bool should_defer_flush(struct mm_struct
*mm
, enum ttu_flags flags
)
692 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
695 * At what user virtual address is page expected in vma?
696 * Caller should check the page is actually part of the vma.
698 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
700 unsigned long address
;
701 if (PageAnon(page
)) {
702 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
704 * Note: swapoff's unuse_vma() is more efficient with this
705 * check, and needs it to match anon_vma when KSM is active.
707 if (!vma
->anon_vma
|| !page__anon_vma
||
708 vma
->anon_vma
->root
!= page__anon_vma
->root
)
710 } else if (page
->mapping
) {
711 if (!vma
->vm_file
|| vma
->vm_file
->f_mapping
!= page
->mapping
)
715 address
= __vma_address(page
, vma
);
716 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
721 pmd_t
*mm_find_pmd(struct mm_struct
*mm
, unsigned long address
)
728 pgd
= pgd_offset(mm
, address
);
729 if (!pgd_present(*pgd
))
732 pud
= pud_offset(pgd
, address
);
733 if (!pud_present(*pud
))
736 pmd
= pmd_offset(pud
, address
);
738 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
739 * without holding anon_vma lock for write. So when looking for a
740 * genuine pmde (in which to find pte), test present and !THP together.
744 if (!pmd_present(pmde
) || pmd_trans_huge(pmde
))
751 * Check that @page is mapped at @address into @mm.
753 * If @sync is false, page_check_address may perform a racy check to avoid
754 * the page table lock when the pte is not present (helpful when reclaiming
755 * highly shared pages).
757 * On success returns with pte mapped and locked.
759 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
760 unsigned long address
, spinlock_t
**ptlp
, int sync
)
766 if (unlikely(PageHuge(page
))) {
767 /* when pud is not present, pte will be NULL */
768 pte
= huge_pte_offset(mm
, address
);
772 ptl
= huge_pte_lockptr(page_hstate(page
), mm
, pte
);
776 pmd
= mm_find_pmd(mm
, address
);
780 pte
= pte_offset_map(pmd
, address
);
781 /* Make a quick check before getting the lock */
782 if (!sync
&& !pte_present(*pte
)) {
787 ptl
= pte_lockptr(mm
, pmd
);
790 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
794 pte_unmap_unlock(pte
, ptl
);
799 * page_mapped_in_vma - check whether a page is really mapped in a VMA
800 * @page: the page to test
801 * @vma: the VMA to test
803 * Returns 1 if the page is mapped into the page tables of the VMA, 0
804 * if the page is not mapped into the page tables of this VMA. Only
805 * valid for normal file or anonymous VMAs.
807 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
809 unsigned long address
;
813 address
= __vma_address(page
, vma
);
814 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
816 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
817 if (!pte
) /* the page is not in this mm */
819 pte_unmap_unlock(pte
, ptl
);
824 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
826 * Check that @page is mapped at @address into @mm. In contrast to
827 * page_check_address(), this function can handle transparent huge pages.
829 * On success returns true with pte mapped and locked. For PMD-mapped
830 * transparent huge pages *@ptep is set to NULL.
832 bool page_check_address_transhuge(struct page
*page
, struct mm_struct
*mm
,
833 unsigned long address
, pmd_t
**pmdp
,
834 pte_t
**ptep
, spinlock_t
**ptlp
)
842 if (unlikely(PageHuge(page
))) {
843 /* when pud is not present, pte will be NULL */
844 pte
= huge_pte_offset(mm
, address
);
848 ptl
= huge_pte_lockptr(page_hstate(page
), mm
, pte
);
853 pgd
= pgd_offset(mm
, address
);
854 if (!pgd_present(*pgd
))
856 pud
= pud_offset(pgd
, address
);
857 if (!pud_present(*pud
))
859 pmd
= pmd_offset(pud
, address
);
861 if (pmd_trans_huge(*pmd
)) {
862 ptl
= pmd_lock(mm
, pmd
);
863 if (!pmd_present(*pmd
))
865 if (unlikely(!pmd_trans_huge(*pmd
))) {
870 if (pmd_page(*pmd
) != page
)
882 if (!pmd_present(pmde
) || pmd_trans_huge(pmde
))
886 pte
= pte_offset_map(pmd
, address
);
887 if (!pte_present(*pte
)) {
892 ptl
= pte_lockptr(mm
, pmd
);
896 if (!pte_present(*pte
)) {
897 pte_unmap_unlock(pte
, ptl
);
901 /* THP can be referenced by any subpage */
902 if (pte_pfn(*pte
) - page_to_pfn(page
) >= hpage_nr_pages(page
)) {
903 pte_unmap_unlock(pte
, ptl
);
912 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
914 struct page_referenced_arg
{
917 unsigned long vm_flags
;
918 struct mem_cgroup
*memcg
;
921 * arg: page_referenced_arg will be passed
923 static int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
924 unsigned long address
, void *arg
)
926 struct mm_struct
*mm
= vma
->vm_mm
;
927 struct page_referenced_arg
*pra
= arg
;
933 if (!page_check_address_transhuge(page
, mm
, address
, &pmd
, &pte
, &ptl
))
936 if (vma
->vm_flags
& VM_LOCKED
) {
940 pra
->vm_flags
|= VM_LOCKED
;
941 return SWAP_FAIL
; /* To break the loop */
945 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
947 * Don't treat a reference through a sequentially read
948 * mapping as such. If the page has been used in
949 * another mapping, we will catch it; if this other
950 * mapping is already gone, the unmap path will have
951 * set PG_referenced or activated the page.
953 if (likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
957 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
)) {
958 if (pmdp_clear_flush_young_notify(vma
, address
, pmd
))
961 /* unexpected pmd-mapped page? */
967 clear_page_idle(page
);
968 if (test_and_clear_page_young(page
))
973 pra
->vm_flags
|= vma
->vm_flags
;
978 return SWAP_SUCCESS
; /* To break the loop */
983 static bool invalid_page_referenced_vma(struct vm_area_struct
*vma
, void *arg
)
985 struct page_referenced_arg
*pra
= arg
;
986 struct mem_cgroup
*memcg
= pra
->memcg
;
988 if (!mm_match_cgroup(vma
->vm_mm
, memcg
))
995 * page_referenced - test if the page was referenced
996 * @page: the page to test
997 * @is_locked: caller holds lock on the page
998 * @memcg: target memory cgroup
999 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1001 * Quick test_and_clear_referenced for all mappings to a page,
1002 * returns the number of ptes which referenced the page.
1004 int page_referenced(struct page
*page
,
1006 struct mem_cgroup
*memcg
,
1007 unsigned long *vm_flags
)
1011 struct page_referenced_arg pra
= {
1012 .mapcount
= total_mapcount(page
),
1015 struct rmap_walk_control rwc
= {
1016 .rmap_one
= page_referenced_one
,
1017 .arg
= (void *)&pra
,
1018 .anon_lock
= page_lock_anon_vma_read
,
1022 if (!page_mapped(page
))
1025 if (!page_rmapping(page
))
1028 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
1029 we_locked
= trylock_page(page
);
1035 * If we are reclaiming on behalf of a cgroup, skip
1036 * counting on behalf of references from different
1040 rwc
.invalid_vma
= invalid_page_referenced_vma
;
1043 ret
= rmap_walk(page
, &rwc
);
1044 *vm_flags
= pra
.vm_flags
;
1049 return pra
.referenced
;
1052 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
1053 unsigned long address
, void *arg
)
1055 struct mm_struct
*mm
= vma
->vm_mm
;
1061 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
1065 if (pte_dirty(*pte
) || pte_write(*pte
)) {
1068 flush_cache_page(vma
, address
, pte_pfn(*pte
));
1069 entry
= ptep_clear_flush(vma
, address
, pte
);
1070 entry
= pte_wrprotect(entry
);
1071 entry
= pte_mkclean(entry
);
1072 set_pte_at(mm
, address
, pte
, entry
);
1076 pte_unmap_unlock(pte
, ptl
);
1079 mmu_notifier_invalidate_page(mm
, address
);
1086 static bool invalid_mkclean_vma(struct vm_area_struct
*vma
, void *arg
)
1088 if (vma
->vm_flags
& VM_SHARED
)
1094 int page_mkclean(struct page
*page
)
1097 struct address_space
*mapping
;
1098 struct rmap_walk_control rwc
= {
1099 .arg
= (void *)&cleaned
,
1100 .rmap_one
= page_mkclean_one
,
1101 .invalid_vma
= invalid_mkclean_vma
,
1104 BUG_ON(!PageLocked(page
));
1106 if (!page_mapped(page
))
1109 mapping
= page_mapping(page
);
1113 rmap_walk(page
, &rwc
);
1117 EXPORT_SYMBOL_GPL(page_mkclean
);
1120 * page_move_anon_rmap - move a page to our anon_vma
1121 * @page: the page to move to our anon_vma
1122 * @vma: the vma the page belongs to
1124 * When a page belongs exclusively to one process after a COW event,
1125 * that page can be moved into the anon_vma that belongs to just that
1126 * process, so the rmap code will not search the parent or sibling
1129 void page_move_anon_rmap(struct page
*page
, struct vm_area_struct
*vma
)
1131 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1133 page
= compound_head(page
);
1135 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1136 VM_BUG_ON_VMA(!anon_vma
, vma
);
1138 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1140 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1141 * simultaneously, so a concurrent reader (eg page_referenced()'s
1142 * PageAnon()) will not see one without the other.
1144 WRITE_ONCE(page
->mapping
, (struct address_space
*) anon_vma
);
1148 * __page_set_anon_rmap - set up new anonymous rmap
1149 * @page: Page to add to rmap
1150 * @vma: VM area to add page to.
1151 * @address: User virtual address of the mapping
1152 * @exclusive: the page is exclusively owned by the current process
1154 static void __page_set_anon_rmap(struct page
*page
,
1155 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1157 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1165 * If the page isn't exclusively mapped into this vma,
1166 * we must use the _oldest_ possible anon_vma for the
1170 anon_vma
= anon_vma
->root
;
1172 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1173 page
->mapping
= (struct address_space
*) anon_vma
;
1174 page
->index
= linear_page_index(vma
, address
);
1178 * __page_check_anon_rmap - sanity check anonymous rmap addition
1179 * @page: the page to add the mapping to
1180 * @vma: the vm area in which the mapping is added
1181 * @address: the user virtual address mapped
1183 static void __page_check_anon_rmap(struct page
*page
,
1184 struct vm_area_struct
*vma
, unsigned long address
)
1186 #ifdef CONFIG_DEBUG_VM
1188 * The page's anon-rmap details (mapping and index) are guaranteed to
1189 * be set up correctly at this point.
1191 * We have exclusion against page_add_anon_rmap because the caller
1192 * always holds the page locked, except if called from page_dup_rmap,
1193 * in which case the page is already known to be setup.
1195 * We have exclusion against page_add_new_anon_rmap because those pages
1196 * are initially only visible via the pagetables, and the pte is locked
1197 * over the call to page_add_new_anon_rmap.
1199 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
1200 BUG_ON(page_to_pgoff(page
) != linear_page_index(vma
, address
));
1205 * page_add_anon_rmap - add pte mapping to an anonymous page
1206 * @page: the page to add the mapping to
1207 * @vma: the vm area in which the mapping is added
1208 * @address: the user virtual address mapped
1209 * @compound: charge the page as compound or small page
1211 * The caller needs to hold the pte lock, and the page must be locked in
1212 * the anon_vma case: to serialize mapping,index checking after setting,
1213 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1214 * (but PageKsm is never downgraded to PageAnon).
1216 void page_add_anon_rmap(struct page
*page
,
1217 struct vm_area_struct
*vma
, unsigned long address
, bool compound
)
1219 do_page_add_anon_rmap(page
, vma
, address
, compound
? RMAP_COMPOUND
: 0);
1223 * Special version of the above for do_swap_page, which often runs
1224 * into pages that are exclusively owned by the current process.
1225 * Everybody else should continue to use page_add_anon_rmap above.
1227 void do_page_add_anon_rmap(struct page
*page
,
1228 struct vm_area_struct
*vma
, unsigned long address
, int flags
)
1230 bool compound
= flags
& RMAP_COMPOUND
;
1235 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1236 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
1237 mapcount
= compound_mapcount_ptr(page
);
1238 first
= atomic_inc_and_test(mapcount
);
1240 first
= atomic_inc_and_test(&page
->_mapcount
);
1244 int nr
= compound
? hpage_nr_pages(page
) : 1;
1246 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1247 * these counters are not modified in interrupt context, and
1248 * pte lock(a spinlock) is held, which implies preemption
1252 __inc_node_page_state(page
, NR_ANON_THPS
);
1253 __mod_node_page_state(page_pgdat(page
), NR_ANON_MAPPED
, nr
);
1255 if (unlikely(PageKsm(page
)))
1258 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1260 /* address might be in next vma when migration races vma_adjust */
1262 __page_set_anon_rmap(page
, vma
, address
,
1263 flags
& RMAP_EXCLUSIVE
);
1265 __page_check_anon_rmap(page
, vma
, address
);
1269 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1270 * @page: the page to add the mapping to
1271 * @vma: the vm area in which the mapping is added
1272 * @address: the user virtual address mapped
1273 * @compound: charge the page as compound or small page
1275 * Same as page_add_anon_rmap but must only be called on *new* pages.
1276 * This means the inc-and-test can be bypassed.
1277 * Page does not have to be locked.
1279 void page_add_new_anon_rmap(struct page
*page
,
1280 struct vm_area_struct
*vma
, unsigned long address
, bool compound
)
1282 int nr
= compound
? hpage_nr_pages(page
) : 1;
1284 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
1285 __SetPageSwapBacked(page
);
1287 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
1288 /* increment count (starts at -1) */
1289 atomic_set(compound_mapcount_ptr(page
), 0);
1290 __inc_node_page_state(page
, NR_ANON_THPS
);
1292 /* Anon THP always mapped first with PMD */
1293 VM_BUG_ON_PAGE(PageTransCompound(page
), page
);
1294 /* increment count (starts at -1) */
1295 atomic_set(&page
->_mapcount
, 0);
1297 __mod_node_page_state(page_pgdat(page
), NR_ANON_MAPPED
, nr
);
1298 __page_set_anon_rmap(page
, vma
, address
, 1);
1302 * page_add_file_rmap - add pte mapping to a file page
1303 * @page: the page to add the mapping to
1305 * The caller needs to hold the pte lock.
1307 void page_add_file_rmap(struct page
*page
, bool compound
)
1311 VM_BUG_ON_PAGE(compound
&& !PageTransHuge(page
), page
);
1312 lock_page_memcg(page
);
1313 if (compound
&& PageTransHuge(page
)) {
1314 for (i
= 0, nr
= 0; i
< HPAGE_PMD_NR
; i
++) {
1315 if (atomic_inc_and_test(&page
[i
]._mapcount
))
1318 if (!atomic_inc_and_test(compound_mapcount_ptr(page
)))
1320 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
1321 __inc_node_page_state(page
, NR_SHMEM_PMDMAPPED
);
1323 if (PageTransCompound(page
) && page_mapping(page
)) {
1324 VM_WARN_ON_ONCE(!PageLocked(page
));
1326 SetPageDoubleMap(compound_head(page
));
1327 if (PageMlocked(page
))
1328 clear_page_mlock(compound_head(page
));
1330 if (!atomic_inc_and_test(&page
->_mapcount
))
1333 __mod_node_page_state(page_pgdat(page
), NR_FILE_MAPPED
, nr
);
1334 mem_cgroup_update_page_stat(page
, MEM_CGROUP_STAT_FILE_MAPPED
, nr
);
1336 unlock_page_memcg(page
);
1339 static void page_remove_file_rmap(struct page
*page
, bool compound
)
1343 VM_BUG_ON_PAGE(compound
&& !PageHead(page
), page
);
1344 lock_page_memcg(page
);
1346 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1347 if (unlikely(PageHuge(page
))) {
1348 /* hugetlb pages are always mapped with pmds */
1349 atomic_dec(compound_mapcount_ptr(page
));
1353 /* page still mapped by someone else? */
1354 if (compound
&& PageTransHuge(page
)) {
1355 for (i
= 0, nr
= 0; i
< HPAGE_PMD_NR
; i
++) {
1356 if (atomic_add_negative(-1, &page
[i
]._mapcount
))
1359 if (!atomic_add_negative(-1, compound_mapcount_ptr(page
)))
1361 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
1362 __dec_node_page_state(page
, NR_SHMEM_PMDMAPPED
);
1364 if (!atomic_add_negative(-1, &page
->_mapcount
))
1369 * We use the irq-unsafe __{inc|mod}_zone_page_state because
1370 * these counters are not modified in interrupt context, and
1371 * pte lock(a spinlock) is held, which implies preemption disabled.
1373 __mod_node_page_state(page_pgdat(page
), NR_FILE_MAPPED
, -nr
);
1374 mem_cgroup_update_page_stat(page
, MEM_CGROUP_STAT_FILE_MAPPED
, -nr
);
1376 if (unlikely(PageMlocked(page
)))
1377 clear_page_mlock(page
);
1379 unlock_page_memcg(page
);
1382 static void page_remove_anon_compound_rmap(struct page
*page
)
1386 if (!atomic_add_negative(-1, compound_mapcount_ptr(page
)))
1389 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1390 if (unlikely(PageHuge(page
)))
1393 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
))
1396 __dec_node_page_state(page
, NR_ANON_THPS
);
1398 if (TestClearPageDoubleMap(page
)) {
1400 * Subpages can be mapped with PTEs too. Check how many of
1401 * themi are still mapped.
1403 for (i
= 0, nr
= 0; i
< HPAGE_PMD_NR
; i
++) {
1404 if (atomic_add_negative(-1, &page
[i
]._mapcount
))
1411 if (unlikely(PageMlocked(page
)))
1412 clear_page_mlock(page
);
1415 __mod_node_page_state(page_pgdat(page
), NR_ANON_MAPPED
, -nr
);
1416 deferred_split_huge_page(page
);
1421 * page_remove_rmap - take down pte mapping from a page
1422 * @page: page to remove mapping from
1423 * @compound: uncharge the page as compound or small page
1425 * The caller needs to hold the pte lock.
1427 void page_remove_rmap(struct page
*page
, bool compound
)
1429 if (!PageAnon(page
))
1430 return page_remove_file_rmap(page
, compound
);
1433 return page_remove_anon_compound_rmap(page
);
1435 /* page still mapped by someone else? */
1436 if (!atomic_add_negative(-1, &page
->_mapcount
))
1440 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1441 * these counters are not modified in interrupt context, and
1442 * pte lock(a spinlock) is held, which implies preemption disabled.
1444 __dec_node_page_state(page
, NR_ANON_MAPPED
);
1446 if (unlikely(PageMlocked(page
)))
1447 clear_page_mlock(page
);
1449 if (PageTransCompound(page
))
1450 deferred_split_huge_page(compound_head(page
));
1453 * It would be tidy to reset the PageAnon mapping here,
1454 * but that might overwrite a racing page_add_anon_rmap
1455 * which increments mapcount after us but sets mapping
1456 * before us: so leave the reset to free_hot_cold_page,
1457 * and remember that it's only reliable while mapped.
1458 * Leaving it set also helps swapoff to reinstate ptes
1459 * faster for those pages still in swapcache.
1463 struct rmap_private
{
1464 enum ttu_flags flags
;
1469 * @arg: enum ttu_flags will be passed to this argument
1471 static int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1472 unsigned long address
, void *arg
)
1474 struct mm_struct
*mm
= vma
->vm_mm
;
1478 int ret
= SWAP_AGAIN
;
1479 unsigned long sh_address
;
1480 bool pmd_sharing_possible
= false;
1481 unsigned long spmd_start
, spmd_end
;
1482 struct rmap_private
*rp
= arg
;
1483 enum ttu_flags flags
= rp
->flags
;
1485 /* munlock has nothing to gain from examining un-locked vmas */
1486 if ((flags
& TTU_MUNLOCK
) && !(vma
->vm_flags
& VM_LOCKED
))
1489 if (flags
& TTU_SPLIT_HUGE_PMD
) {
1490 split_huge_pmd_address(vma
, address
,
1491 flags
& TTU_MIGRATION
, page
);
1492 /* check if we have anything to do after split */
1493 if (page_mapcount(page
) == 0)
1498 * Only use the range_start/end mmu notifiers if huge pmd sharing
1499 * is possible. In the normal case, mmu_notifier_invalidate_page
1500 * is sufficient as we only unmap a page. However, if we unshare
1501 * a pmd, we will unmap a PUD_SIZE range.
1503 if (PageHuge(page
)) {
1504 spmd_start
= address
;
1505 spmd_end
= spmd_start
+ vma_mmu_pagesize(vma
);
1508 * Check if pmd sharing is possible. If possible, we could
1509 * unmap a PUD_SIZE range. spmd_start/spmd_end will be
1510 * modified if sharing is possible.
1512 adjust_range_if_pmd_sharing_possible(vma
, &spmd_start
,
1514 if (spmd_end
- spmd_start
!= vma_mmu_pagesize(vma
)) {
1515 sh_address
= address
;
1517 pmd_sharing_possible
= true;
1518 mmu_notifier_invalidate_range_start(vma
->vm_mm
,
1519 spmd_start
, spmd_end
);
1523 pte
= page_check_address(page
, mm
, address
, &ptl
,
1524 PageTransCompound(page
));
1529 * If the page is mlock()d, we cannot swap it out.
1530 * If it's recently referenced (perhaps page_referenced
1531 * skipped over this mm) then we should reactivate it.
1533 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1534 if (vma
->vm_flags
& VM_LOCKED
) {
1535 /* PTE-mapped THP are never mlocked */
1536 if (!PageTransCompound(page
)) {
1538 * Holding pte lock, we do *not* need
1541 mlock_vma_page(page
);
1546 if (flags
& TTU_MUNLOCK
)
1549 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1550 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1557 * Call huge_pmd_unshare to potentially unshare a huge pmd. Pass
1558 * sh_address as it will be modified if unsharing is successful.
1560 if (PageHuge(page
) && huge_pmd_unshare(mm
, &sh_address
, pte
)) {
1562 * huge_pmd_unshare unmapped an entire PMD page. There is
1563 * no way of knowing exactly which PMDs may be cached for
1564 * this mm, so flush them all. spmd_start/spmd_end cover
1565 * this PUD_SIZE range.
1567 flush_cache_range(vma
, spmd_start
, spmd_end
);
1568 flush_tlb_range(vma
, spmd_start
, spmd_end
);
1571 * The ref count of the PMD page was dropped which is part
1572 * of the way map counting is done for shared PMDs. When
1573 * there is no other sharing, huge_pmd_unshare returns false
1574 * and we will unmap the actual page and drop map count
1580 /* Nuke the page table entry. */
1581 flush_cache_page(vma
, address
, page_to_pfn(page
));
1582 if (should_defer_flush(mm
, flags
)) {
1584 * We clear the PTE but do not flush so potentially a remote
1585 * CPU could still be writing to the page. If the entry was
1586 * previously clean then the architecture must guarantee that
1587 * a clear->dirty transition on a cached TLB entry is written
1588 * through and traps if the PTE is unmapped.
1590 pteval
= ptep_get_and_clear(mm
, address
, pte
);
1592 set_tlb_ubc_flush_pending(mm
, page
, pte_dirty(pteval
));
1594 pteval
= ptep_clear_flush(vma
, address
, pte
);
1597 /* Move the dirty bit to the physical page now the pte is gone. */
1598 if (pte_dirty(pteval
))
1599 set_page_dirty(page
);
1601 /* Update high watermark before we lower rss */
1602 update_hiwater_rss(mm
);
1604 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1605 if (PageHuge(page
)) {
1606 hugetlb_count_sub(1 << compound_order(page
), mm
);
1608 dec_mm_counter(mm
, mm_counter(page
));
1610 set_pte_at(mm
, address
, pte
,
1611 swp_entry_to_pte(make_hwpoison_entry(page
)));
1612 } else if (pte_unused(pteval
)) {
1614 * The guest indicated that the page content is of no
1615 * interest anymore. Simply discard the pte, vmscan
1616 * will take care of the rest.
1618 dec_mm_counter(mm
, mm_counter(page
));
1619 } else if (IS_ENABLED(CONFIG_MIGRATION
) && (flags
& TTU_MIGRATION
)) {
1623 * Store the pfn of the page in a special migration
1624 * pte. do_swap_page() will wait until the migration
1625 * pte is removed and then restart fault handling.
1627 entry
= make_migration_entry(page
, pte_write(pteval
));
1628 swp_pte
= swp_entry_to_pte(entry
);
1629 if (pte_soft_dirty(pteval
))
1630 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1631 set_pte_at(mm
, address
, pte
, swp_pte
);
1632 } else if (PageAnon(page
)) {
1633 swp_entry_t entry
= { .val
= page_private(page
) };
1636 * Store the swap location in the pte.
1637 * See handle_pte_fault() ...
1639 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
1641 if (!PageDirty(page
) && (flags
& TTU_LZFREE
)) {
1642 /* It's a freeable page by MADV_FREE */
1643 dec_mm_counter(mm
, MM_ANONPAGES
);
1648 if (swap_duplicate(entry
) < 0) {
1649 set_pte_at(mm
, address
, pte
, pteval
);
1653 if (list_empty(&mm
->mmlist
)) {
1654 spin_lock(&mmlist_lock
);
1655 if (list_empty(&mm
->mmlist
))
1656 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1657 spin_unlock(&mmlist_lock
);
1659 dec_mm_counter(mm
, MM_ANONPAGES
);
1660 inc_mm_counter(mm
, MM_SWAPENTS
);
1661 swp_pte
= swp_entry_to_pte(entry
);
1662 if (pte_soft_dirty(pteval
))
1663 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1664 set_pte_at(mm
, address
, pte
, swp_pte
);
1666 dec_mm_counter(mm
, mm_counter_file(page
));
1669 page_remove_rmap(page
, PageHuge(page
));
1673 pte_unmap_unlock(pte
, ptl
);
1674 if (ret
!= SWAP_FAIL
&& ret
!= SWAP_MLOCK
&& !(flags
& TTU_MUNLOCK
))
1675 mmu_notifier_invalidate_page(mm
, address
);
1677 if (pmd_sharing_possible
)
1678 mmu_notifier_invalidate_range_end(vma
->vm_mm
,
1679 spmd_start
, spmd_end
);
1683 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1685 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1690 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1691 VM_STACK_INCOMPLETE_SETUP
)
1697 static bool invalid_migration_vma(struct vm_area_struct
*vma
, void *arg
)
1699 return is_vma_temporary_stack(vma
);
1702 static int page_mapcount_is_zero(struct page
*page
)
1704 return !page_mapcount(page
);
1708 * try_to_unmap - try to remove all page table mappings to a page
1709 * @page: the page to get unmapped
1710 * @flags: action and flags
1712 * Tries to remove all the page table entries which are mapping this
1713 * page, used in the pageout path. Caller must hold the page lock.
1714 * Return values are:
1716 * SWAP_SUCCESS - we succeeded in removing all mappings
1717 * SWAP_AGAIN - we missed a mapping, try again later
1718 * SWAP_FAIL - the page is unswappable
1719 * SWAP_MLOCK - page is mlocked.
1721 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1724 struct rmap_private rp
= {
1729 struct rmap_walk_control rwc
= {
1730 .rmap_one
= try_to_unmap_one
,
1732 .done
= page_mapcount_is_zero
,
1733 .anon_lock
= page_lock_anon_vma_read
,
1737 * During exec, a temporary VMA is setup and later moved.
1738 * The VMA is moved under the anon_vma lock but not the
1739 * page tables leading to a race where migration cannot
1740 * find the migration ptes. Rather than increasing the
1741 * locking requirements of exec(), migration skips
1742 * temporary VMAs until after exec() completes.
1744 if ((flags
& TTU_MIGRATION
) && !PageKsm(page
) && PageAnon(page
))
1745 rwc
.invalid_vma
= invalid_migration_vma
;
1747 if (flags
& TTU_RMAP_LOCKED
)
1748 ret
= rmap_walk_locked(page
, &rwc
);
1750 ret
= rmap_walk(page
, &rwc
);
1752 if (ret
!= SWAP_MLOCK
&& !page_mapcount(page
)) {
1754 if (rp
.lazyfreed
&& !PageDirty(page
))
1760 static int page_not_mapped(struct page
*page
)
1762 return !page_mapped(page
);
1766 * try_to_munlock - try to munlock a page
1767 * @page: the page to be munlocked
1769 * Called from munlock code. Checks all of the VMAs mapping the page
1770 * to make sure nobody else has this page mlocked. The page will be
1771 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1773 * Return values are:
1775 * SWAP_AGAIN - no vma is holding page mlocked, or,
1776 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1777 * SWAP_FAIL - page cannot be located at present
1778 * SWAP_MLOCK - page is now mlocked.
1780 int try_to_munlock(struct page
*page
)
1783 struct rmap_private rp
= {
1784 .flags
= TTU_MUNLOCK
,
1788 struct rmap_walk_control rwc
= {
1789 .rmap_one
= try_to_unmap_one
,
1791 .done
= page_not_mapped
,
1792 .anon_lock
= page_lock_anon_vma_read
,
1796 VM_BUG_ON_PAGE(!PageLocked(page
) || PageLRU(page
), page
);
1798 ret
= rmap_walk(page
, &rwc
);
1802 void __put_anon_vma(struct anon_vma
*anon_vma
)
1804 struct anon_vma
*root
= anon_vma
->root
;
1806 anon_vma_free(anon_vma
);
1807 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1808 anon_vma_free(root
);
1811 static struct anon_vma
*rmap_walk_anon_lock(struct page
*page
,
1812 struct rmap_walk_control
*rwc
)
1814 struct anon_vma
*anon_vma
;
1817 return rwc
->anon_lock(page
);
1820 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1821 * because that depends on page_mapped(); but not all its usages
1822 * are holding mmap_sem. Users without mmap_sem are required to
1823 * take a reference count to prevent the anon_vma disappearing
1825 anon_vma
= page_anon_vma(page
);
1829 anon_vma_lock_read(anon_vma
);
1834 * rmap_walk_anon - do something to anonymous page using the object-based
1836 * @page: the page to be handled
1837 * @rwc: control variable according to each walk type
1839 * Find all the mappings of a page using the mapping pointer and the vma chains
1840 * contained in the anon_vma struct it points to.
1842 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1843 * where the page was found will be held for write. So, we won't recheck
1844 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1847 static int rmap_walk_anon(struct page
*page
, struct rmap_walk_control
*rwc
,
1850 struct anon_vma
*anon_vma
;
1852 struct anon_vma_chain
*avc
;
1853 int ret
= SWAP_AGAIN
;
1856 anon_vma
= page_anon_vma(page
);
1857 /* anon_vma disappear under us? */
1858 VM_BUG_ON_PAGE(!anon_vma
, page
);
1860 anon_vma
= rmap_walk_anon_lock(page
, rwc
);
1865 pgoff
= page_to_pgoff(page
);
1866 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1867 struct vm_area_struct
*vma
= avc
->vma
;
1868 unsigned long address
= vma_address(page
, vma
);
1872 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1875 ret
= rwc
->rmap_one(page
, vma
, address
, rwc
->arg
);
1876 if (ret
!= SWAP_AGAIN
)
1878 if (rwc
->done
&& rwc
->done(page
))
1883 anon_vma_unlock_read(anon_vma
);
1888 * rmap_walk_file - do something to file page using the object-based rmap method
1889 * @page: the page to be handled
1890 * @rwc: control variable according to each walk type
1892 * Find all the mappings of a page using the mapping pointer and the vma chains
1893 * contained in the address_space struct it points to.
1895 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1896 * where the page was found will be held for write. So, we won't recheck
1897 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1900 static int rmap_walk_file(struct page
*page
, struct rmap_walk_control
*rwc
,
1903 struct address_space
*mapping
= page_mapping(page
);
1905 struct vm_area_struct
*vma
;
1906 int ret
= SWAP_AGAIN
;
1909 * The page lock not only makes sure that page->mapping cannot
1910 * suddenly be NULLified by truncation, it makes sure that the
1911 * structure at mapping cannot be freed and reused yet,
1912 * so we can safely take mapping->i_mmap_rwsem.
1914 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1919 pgoff
= page_to_pgoff(page
);
1921 i_mmap_lock_read(mapping
);
1922 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1923 unsigned long address
= vma_address(page
, vma
);
1927 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1930 ret
= rwc
->rmap_one(page
, vma
, address
, rwc
->arg
);
1931 if (ret
!= SWAP_AGAIN
)
1933 if (rwc
->done
&& rwc
->done(page
))
1939 i_mmap_unlock_read(mapping
);
1943 int rmap_walk(struct page
*page
, struct rmap_walk_control
*rwc
)
1945 if (unlikely(PageKsm(page
)))
1946 return rmap_walk_ksm(page
, rwc
);
1947 else if (PageAnon(page
))
1948 return rmap_walk_anon(page
, rwc
, false);
1950 return rmap_walk_file(page
, rwc
, false);
1953 /* Like rmap_walk, but caller holds relevant rmap lock */
1954 int rmap_walk_locked(struct page
*page
, struct rmap_walk_control
*rwc
)
1956 /* no ksm support for now */
1957 VM_BUG_ON_PAGE(PageKsm(page
), page
);
1959 return rmap_walk_anon(page
, rwc
, true);
1961 return rmap_walk_file(page
, rwc
, true);
1964 #ifdef CONFIG_HUGETLB_PAGE
1966 * The following three functions are for anonymous (private mapped) hugepages.
1967 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1968 * and no lru code, because we handle hugepages differently from common pages.
1970 static void __hugepage_set_anon_rmap(struct page
*page
,
1971 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1973 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1980 anon_vma
= anon_vma
->root
;
1982 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1983 page
->mapping
= (struct address_space
*) anon_vma
;
1984 page
->index
= linear_page_index(vma
, address
);
1987 void hugepage_add_anon_rmap(struct page
*page
,
1988 struct vm_area_struct
*vma
, unsigned long address
)
1990 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1993 BUG_ON(!PageLocked(page
));
1995 /* address might be in next vma when migration races vma_adjust */
1996 first
= atomic_inc_and_test(compound_mapcount_ptr(page
));
1998 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
2001 void hugepage_add_new_anon_rmap(struct page
*page
,
2002 struct vm_area_struct
*vma
, unsigned long address
)
2004 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
2005 atomic_set(compound_mapcount_ptr(page
), 0);
2006 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
2008 #endif /* CONFIG_HUGETLB_PAGE */