netrom: fix locking in nr_find_socket()
[linux/fpc-iii.git] / mm / slab_common.c
blob13f1926f8fcd41b0339ba76f09a148791209adbe
1 /*
2 * Slab allocator functions that are independent of the allocator strategy
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6 #include <linux/slab.h>
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
26 #include "slab.h"
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
34 * Set of flags that will prevent slab merging
36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
38 SLAB_FAILSLAB | SLAB_KASAN)
40 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
41 SLAB_NOTRACK | SLAB_ACCOUNT)
44 * Merge control. If this is set then no merging of slab caches will occur.
45 * (Could be removed. This was introduced to pacify the merge skeptics.)
47 static int slab_nomerge;
49 static int __init setup_slab_nomerge(char *str)
51 slab_nomerge = 1;
52 return 1;
55 #ifdef CONFIG_SLUB
56 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
57 #endif
59 __setup("slab_nomerge", setup_slab_nomerge);
62 * Determine the size of a slab object
64 unsigned int kmem_cache_size(struct kmem_cache *s)
66 return s->object_size;
68 EXPORT_SYMBOL(kmem_cache_size);
70 #ifdef CONFIG_DEBUG_VM
71 static int kmem_cache_sanity_check(const char *name, size_t size)
73 struct kmem_cache *s = NULL;
75 if (!name || in_interrupt() || size < sizeof(void *) ||
76 size > KMALLOC_MAX_SIZE) {
77 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
78 return -EINVAL;
81 list_for_each_entry(s, &slab_caches, list) {
82 char tmp;
83 int res;
86 * This happens when the module gets unloaded and doesn't
87 * destroy its slab cache and no-one else reuses the vmalloc
88 * area of the module. Print a warning.
90 res = probe_kernel_address(s->name, tmp);
91 if (res) {
92 pr_err("Slab cache with size %d has lost its name\n",
93 s->object_size);
94 continue;
98 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
99 return 0;
101 #else
102 static inline int kmem_cache_sanity_check(const char *name, size_t size)
104 return 0;
106 #endif
108 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
110 size_t i;
112 for (i = 0; i < nr; i++) {
113 if (s)
114 kmem_cache_free(s, p[i]);
115 else
116 kfree(p[i]);
120 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
121 void **p)
123 size_t i;
125 for (i = 0; i < nr; i++) {
126 void *x = p[i] = kmem_cache_alloc(s, flags);
127 if (!x) {
128 __kmem_cache_free_bulk(s, i, p);
129 return 0;
132 return i;
135 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
136 void slab_init_memcg_params(struct kmem_cache *s)
138 s->memcg_params.is_root_cache = true;
139 INIT_LIST_HEAD(&s->memcg_params.list);
140 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
143 static int init_memcg_params(struct kmem_cache *s,
144 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
146 struct memcg_cache_array *arr;
148 if (memcg) {
149 s->memcg_params.is_root_cache = false;
150 s->memcg_params.memcg = memcg;
151 s->memcg_params.root_cache = root_cache;
152 return 0;
155 slab_init_memcg_params(s);
157 if (!memcg_nr_cache_ids)
158 return 0;
160 arr = kzalloc(sizeof(struct memcg_cache_array) +
161 memcg_nr_cache_ids * sizeof(void *),
162 GFP_KERNEL);
163 if (!arr)
164 return -ENOMEM;
166 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
167 return 0;
170 static void destroy_memcg_params(struct kmem_cache *s)
172 if (is_root_cache(s))
173 kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
176 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
178 struct memcg_cache_array *old, *new;
180 if (!is_root_cache(s))
181 return 0;
183 new = kzalloc(sizeof(struct memcg_cache_array) +
184 new_array_size * sizeof(void *), GFP_KERNEL);
185 if (!new)
186 return -ENOMEM;
188 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
189 lockdep_is_held(&slab_mutex));
190 if (old)
191 memcpy(new->entries, old->entries,
192 memcg_nr_cache_ids * sizeof(void *));
194 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
195 if (old)
196 kfree_rcu(old, rcu);
197 return 0;
200 int memcg_update_all_caches(int num_memcgs)
202 struct kmem_cache *s;
203 int ret = 0;
205 mutex_lock(&slab_mutex);
206 list_for_each_entry(s, &slab_caches, list) {
207 ret = update_memcg_params(s, num_memcgs);
209 * Instead of freeing the memory, we'll just leave the caches
210 * up to this point in an updated state.
212 if (ret)
213 break;
215 mutex_unlock(&slab_mutex);
216 return ret;
218 #else
219 static inline int init_memcg_params(struct kmem_cache *s,
220 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
222 return 0;
225 static inline void destroy_memcg_params(struct kmem_cache *s)
228 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
231 * Find a mergeable slab cache
233 int slab_unmergeable(struct kmem_cache *s)
235 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
236 return 1;
238 if (!is_root_cache(s))
239 return 1;
241 if (s->ctor)
242 return 1;
245 * We may have set a slab to be unmergeable during bootstrap.
247 if (s->refcount < 0)
248 return 1;
250 return 0;
253 struct kmem_cache *find_mergeable(size_t size, size_t align,
254 unsigned long flags, const char *name, void (*ctor)(void *))
256 struct kmem_cache *s;
258 if (slab_nomerge)
259 return NULL;
261 if (ctor)
262 return NULL;
264 size = ALIGN(size, sizeof(void *));
265 align = calculate_alignment(flags, align, size);
266 size = ALIGN(size, align);
267 flags = kmem_cache_flags(size, flags, name, NULL);
269 if (flags & SLAB_NEVER_MERGE)
270 return NULL;
272 list_for_each_entry_reverse(s, &slab_caches, list) {
273 if (slab_unmergeable(s))
274 continue;
276 if (size > s->size)
277 continue;
279 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
280 continue;
282 * Check if alignment is compatible.
283 * Courtesy of Adrian Drzewiecki
285 if ((s->size & ~(align - 1)) != s->size)
286 continue;
288 if (s->size - size >= sizeof(void *))
289 continue;
291 if (IS_ENABLED(CONFIG_SLAB) && align &&
292 (align > s->align || s->align % align))
293 continue;
295 return s;
297 return NULL;
301 * Figure out what the alignment of the objects will be given a set of
302 * flags, a user specified alignment and the size of the objects.
304 unsigned long calculate_alignment(unsigned long flags,
305 unsigned long align, unsigned long size)
308 * If the user wants hardware cache aligned objects then follow that
309 * suggestion if the object is sufficiently large.
311 * The hardware cache alignment cannot override the specified
312 * alignment though. If that is greater then use it.
314 if (flags & SLAB_HWCACHE_ALIGN) {
315 unsigned long ralign = cache_line_size();
316 while (size <= ralign / 2)
317 ralign /= 2;
318 align = max(align, ralign);
321 if (align < ARCH_SLAB_MINALIGN)
322 align = ARCH_SLAB_MINALIGN;
324 return ALIGN(align, sizeof(void *));
327 static struct kmem_cache *create_cache(const char *name,
328 size_t object_size, size_t size, size_t align,
329 unsigned long flags, void (*ctor)(void *),
330 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
332 struct kmem_cache *s;
333 int err;
335 err = -ENOMEM;
336 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
337 if (!s)
338 goto out;
340 s->name = name;
341 s->object_size = object_size;
342 s->size = size;
343 s->align = align;
344 s->ctor = ctor;
346 err = init_memcg_params(s, memcg, root_cache);
347 if (err)
348 goto out_free_cache;
350 err = __kmem_cache_create(s, flags);
351 if (err)
352 goto out_free_cache;
354 s->refcount = 1;
355 list_add(&s->list, &slab_caches);
356 out:
357 if (err)
358 return ERR_PTR(err);
359 return s;
361 out_free_cache:
362 destroy_memcg_params(s);
363 kmem_cache_free(kmem_cache, s);
364 goto out;
368 * kmem_cache_create - Create a cache.
369 * @name: A string which is used in /proc/slabinfo to identify this cache.
370 * @size: The size of objects to be created in this cache.
371 * @align: The required alignment for the objects.
372 * @flags: SLAB flags
373 * @ctor: A constructor for the objects.
375 * Returns a ptr to the cache on success, NULL on failure.
376 * Cannot be called within a interrupt, but can be interrupted.
377 * The @ctor is run when new pages are allocated by the cache.
379 * The flags are
381 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
382 * to catch references to uninitialised memory.
384 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
385 * for buffer overruns.
387 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
388 * cacheline. This can be beneficial if you're counting cycles as closely
389 * as davem.
391 struct kmem_cache *
392 kmem_cache_create(const char *name, size_t size, size_t align,
393 unsigned long flags, void (*ctor)(void *))
395 struct kmem_cache *s = NULL;
396 const char *cache_name;
397 int err;
399 get_online_cpus();
400 get_online_mems();
401 memcg_get_cache_ids();
403 mutex_lock(&slab_mutex);
405 err = kmem_cache_sanity_check(name, size);
406 if (err) {
407 goto out_unlock;
411 * Some allocators will constraint the set of valid flags to a subset
412 * of all flags. We expect them to define CACHE_CREATE_MASK in this
413 * case, and we'll just provide them with a sanitized version of the
414 * passed flags.
416 flags &= CACHE_CREATE_MASK;
418 s = __kmem_cache_alias(name, size, align, flags, ctor);
419 if (s)
420 goto out_unlock;
422 cache_name = kstrdup_const(name, GFP_KERNEL);
423 if (!cache_name) {
424 err = -ENOMEM;
425 goto out_unlock;
428 s = create_cache(cache_name, size, size,
429 calculate_alignment(flags, align, size),
430 flags, ctor, NULL, NULL);
431 if (IS_ERR(s)) {
432 err = PTR_ERR(s);
433 kfree_const(cache_name);
436 out_unlock:
437 mutex_unlock(&slab_mutex);
439 memcg_put_cache_ids();
440 put_online_mems();
441 put_online_cpus();
443 if (err) {
444 if (flags & SLAB_PANIC)
445 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
446 name, err);
447 else {
448 pr_warn("kmem_cache_create(%s) failed with error %d\n",
449 name, err);
450 dump_stack();
452 return NULL;
454 return s;
456 EXPORT_SYMBOL(kmem_cache_create);
458 static int shutdown_cache(struct kmem_cache *s,
459 struct list_head *release, bool *need_rcu_barrier)
461 if (__kmem_cache_shutdown(s) != 0)
462 return -EBUSY;
464 if (s->flags & SLAB_DESTROY_BY_RCU)
465 *need_rcu_barrier = true;
467 list_move(&s->list, release);
468 return 0;
471 static void release_caches(struct list_head *release, bool need_rcu_barrier)
473 struct kmem_cache *s, *s2;
475 if (need_rcu_barrier)
476 rcu_barrier();
478 list_for_each_entry_safe(s, s2, release, list) {
479 #ifdef SLAB_SUPPORTS_SYSFS
480 sysfs_slab_remove(s);
481 #else
482 slab_kmem_cache_release(s);
483 #endif
487 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
489 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
490 * @memcg: The memory cgroup the new cache is for.
491 * @root_cache: The parent of the new cache.
493 * This function attempts to create a kmem cache that will serve allocation
494 * requests going from @memcg to @root_cache. The new cache inherits properties
495 * from its parent.
497 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
498 struct kmem_cache *root_cache)
500 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
501 struct cgroup_subsys_state *css = &memcg->css;
502 struct memcg_cache_array *arr;
503 struct kmem_cache *s = NULL;
504 char *cache_name;
505 int idx;
507 get_online_cpus();
508 get_online_mems();
510 mutex_lock(&slab_mutex);
513 * The memory cgroup could have been offlined while the cache
514 * creation work was pending.
516 if (memcg->kmem_state != KMEM_ONLINE)
517 goto out_unlock;
519 idx = memcg_cache_id(memcg);
520 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
521 lockdep_is_held(&slab_mutex));
524 * Since per-memcg caches are created asynchronously on first
525 * allocation (see memcg_kmem_get_cache()), several threads can try to
526 * create the same cache, but only one of them may succeed.
528 if (arr->entries[idx])
529 goto out_unlock;
531 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
532 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
533 css->serial_nr, memcg_name_buf);
534 if (!cache_name)
535 goto out_unlock;
537 s = create_cache(cache_name, root_cache->object_size,
538 root_cache->size, root_cache->align,
539 root_cache->flags & CACHE_CREATE_MASK,
540 root_cache->ctor, memcg, root_cache);
542 * If we could not create a memcg cache, do not complain, because
543 * that's not critical at all as we can always proceed with the root
544 * cache.
546 if (IS_ERR(s)) {
547 kfree(cache_name);
548 goto out_unlock;
551 list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
554 * Since readers won't lock (see cache_from_memcg_idx()), we need a
555 * barrier here to ensure nobody will see the kmem_cache partially
556 * initialized.
558 smp_wmb();
559 arr->entries[idx] = s;
561 out_unlock:
562 mutex_unlock(&slab_mutex);
564 put_online_mems();
565 put_online_cpus();
568 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
570 int idx;
571 struct memcg_cache_array *arr;
572 struct kmem_cache *s, *c;
574 idx = memcg_cache_id(memcg);
576 get_online_cpus();
577 get_online_mems();
579 #ifdef CONFIG_SLUB
581 * In case of SLUB, we need to disable empty slab caching to
582 * avoid pinning the offline memory cgroup by freeable kmem
583 * pages charged to it. SLAB doesn't need this, as it
584 * periodically purges unused slabs.
586 mutex_lock(&slab_mutex);
587 list_for_each_entry(s, &slab_caches, list) {
588 c = is_root_cache(s) ? cache_from_memcg_idx(s, idx) : NULL;
589 if (c) {
590 c->cpu_partial = 0;
591 c->min_partial = 0;
594 mutex_unlock(&slab_mutex);
596 * kmem_cache->cpu_partial is checked locklessly (see
597 * put_cpu_partial()). Make sure the change is visible.
599 synchronize_sched();
600 #endif
602 mutex_lock(&slab_mutex);
603 list_for_each_entry(s, &slab_caches, list) {
604 if (!is_root_cache(s))
605 continue;
607 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
608 lockdep_is_held(&slab_mutex));
609 c = arr->entries[idx];
610 if (!c)
611 continue;
613 __kmem_cache_shrink(c);
614 arr->entries[idx] = NULL;
616 mutex_unlock(&slab_mutex);
618 put_online_mems();
619 put_online_cpus();
622 static int __shutdown_memcg_cache(struct kmem_cache *s,
623 struct list_head *release, bool *need_rcu_barrier)
625 BUG_ON(is_root_cache(s));
627 if (shutdown_cache(s, release, need_rcu_barrier))
628 return -EBUSY;
630 list_del(&s->memcg_params.list);
631 return 0;
634 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
636 LIST_HEAD(release);
637 bool need_rcu_barrier = false;
638 struct kmem_cache *s, *s2;
640 get_online_cpus();
641 get_online_mems();
643 mutex_lock(&slab_mutex);
644 list_for_each_entry_safe(s, s2, &slab_caches, list) {
645 if (is_root_cache(s) || s->memcg_params.memcg != memcg)
646 continue;
648 * The cgroup is about to be freed and therefore has no charges
649 * left. Hence, all its caches must be empty by now.
651 BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier));
653 mutex_unlock(&slab_mutex);
655 put_online_mems();
656 put_online_cpus();
658 release_caches(&release, need_rcu_barrier);
661 static int shutdown_memcg_caches(struct kmem_cache *s,
662 struct list_head *release, bool *need_rcu_barrier)
664 struct memcg_cache_array *arr;
665 struct kmem_cache *c, *c2;
666 LIST_HEAD(busy);
667 int i;
669 BUG_ON(!is_root_cache(s));
672 * First, shutdown active caches, i.e. caches that belong to online
673 * memory cgroups.
675 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
676 lockdep_is_held(&slab_mutex));
677 for_each_memcg_cache_index(i) {
678 c = arr->entries[i];
679 if (!c)
680 continue;
681 if (__shutdown_memcg_cache(c, release, need_rcu_barrier))
683 * The cache still has objects. Move it to a temporary
684 * list so as not to try to destroy it for a second
685 * time while iterating over inactive caches below.
687 list_move(&c->memcg_params.list, &busy);
688 else
690 * The cache is empty and will be destroyed soon. Clear
691 * the pointer to it in the memcg_caches array so that
692 * it will never be accessed even if the root cache
693 * stays alive.
695 arr->entries[i] = NULL;
699 * Second, shutdown all caches left from memory cgroups that are now
700 * offline.
702 list_for_each_entry_safe(c, c2, &s->memcg_params.list,
703 memcg_params.list)
704 __shutdown_memcg_cache(c, release, need_rcu_barrier);
706 list_splice(&busy, &s->memcg_params.list);
709 * A cache being destroyed must be empty. In particular, this means
710 * that all per memcg caches attached to it must be empty too.
712 if (!list_empty(&s->memcg_params.list))
713 return -EBUSY;
714 return 0;
716 #else
717 static inline int shutdown_memcg_caches(struct kmem_cache *s,
718 struct list_head *release, bool *need_rcu_barrier)
720 return 0;
722 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
724 void slab_kmem_cache_release(struct kmem_cache *s)
726 __kmem_cache_release(s);
727 destroy_memcg_params(s);
728 kfree_const(s->name);
729 kmem_cache_free(kmem_cache, s);
732 void kmem_cache_destroy(struct kmem_cache *s)
734 LIST_HEAD(release);
735 bool need_rcu_barrier = false;
736 int err;
738 if (unlikely(!s))
739 return;
741 get_online_cpus();
742 get_online_mems();
744 kasan_cache_destroy(s);
745 mutex_lock(&slab_mutex);
747 s->refcount--;
748 if (s->refcount)
749 goto out_unlock;
751 err = shutdown_memcg_caches(s, &release, &need_rcu_barrier);
752 if (!err)
753 err = shutdown_cache(s, &release, &need_rcu_barrier);
755 if (err) {
756 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
757 s->name);
758 dump_stack();
760 out_unlock:
761 mutex_unlock(&slab_mutex);
763 put_online_mems();
764 put_online_cpus();
766 release_caches(&release, need_rcu_barrier);
768 EXPORT_SYMBOL(kmem_cache_destroy);
771 * kmem_cache_shrink - Shrink a cache.
772 * @cachep: The cache to shrink.
774 * Releases as many slabs as possible for a cache.
775 * To help debugging, a zero exit status indicates all slabs were released.
777 int kmem_cache_shrink(struct kmem_cache *cachep)
779 int ret;
781 get_online_cpus();
782 get_online_mems();
783 kasan_cache_shrink(cachep);
784 ret = __kmem_cache_shrink(cachep);
785 put_online_mems();
786 put_online_cpus();
787 return ret;
789 EXPORT_SYMBOL(kmem_cache_shrink);
791 bool slab_is_available(void)
793 return slab_state >= UP;
796 #ifndef CONFIG_SLOB
797 /* Create a cache during boot when no slab services are available yet */
798 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
799 unsigned long flags)
801 int err;
803 s->name = name;
804 s->size = s->object_size = size;
805 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
807 slab_init_memcg_params(s);
809 err = __kmem_cache_create(s, flags);
811 if (err)
812 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
813 name, size, err);
815 s->refcount = -1; /* Exempt from merging for now */
818 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
819 unsigned long flags)
821 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
823 if (!s)
824 panic("Out of memory when creating slab %s\n", name);
826 create_boot_cache(s, name, size, flags);
827 list_add(&s->list, &slab_caches);
828 s->refcount = 1;
829 return s;
832 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
833 EXPORT_SYMBOL(kmalloc_caches);
835 #ifdef CONFIG_ZONE_DMA
836 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
837 EXPORT_SYMBOL(kmalloc_dma_caches);
838 #endif
841 * Conversion table for small slabs sizes / 8 to the index in the
842 * kmalloc array. This is necessary for slabs < 192 since we have non power
843 * of two cache sizes there. The size of larger slabs can be determined using
844 * fls.
846 static s8 size_index[24] = {
847 3, /* 8 */
848 4, /* 16 */
849 5, /* 24 */
850 5, /* 32 */
851 6, /* 40 */
852 6, /* 48 */
853 6, /* 56 */
854 6, /* 64 */
855 1, /* 72 */
856 1, /* 80 */
857 1, /* 88 */
858 1, /* 96 */
859 7, /* 104 */
860 7, /* 112 */
861 7, /* 120 */
862 7, /* 128 */
863 2, /* 136 */
864 2, /* 144 */
865 2, /* 152 */
866 2, /* 160 */
867 2, /* 168 */
868 2, /* 176 */
869 2, /* 184 */
870 2 /* 192 */
873 static inline int size_index_elem(size_t bytes)
875 return (bytes - 1) / 8;
879 * Find the kmem_cache structure that serves a given size of
880 * allocation
882 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
884 int index;
886 if (size <= 192) {
887 if (!size)
888 return ZERO_SIZE_PTR;
890 index = size_index[size_index_elem(size)];
891 } else {
892 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
893 WARN_ON(1);
894 return NULL;
896 index = fls(size - 1);
899 #ifdef CONFIG_ZONE_DMA
900 if (unlikely((flags & GFP_DMA)))
901 return kmalloc_dma_caches[index];
903 #endif
904 return kmalloc_caches[index];
908 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
909 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
910 * kmalloc-67108864.
912 static struct {
913 const char *name;
914 unsigned long size;
915 } const kmalloc_info[] __initconst = {
916 {NULL, 0}, {"kmalloc-96", 96},
917 {"kmalloc-192", 192}, {"kmalloc-8", 8},
918 {"kmalloc-16", 16}, {"kmalloc-32", 32},
919 {"kmalloc-64", 64}, {"kmalloc-128", 128},
920 {"kmalloc-256", 256}, {"kmalloc-512", 512},
921 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
922 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
923 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
924 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
925 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
926 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
927 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
928 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
929 {"kmalloc-67108864", 67108864}
933 * Patch up the size_index table if we have strange large alignment
934 * requirements for the kmalloc array. This is only the case for
935 * MIPS it seems. The standard arches will not generate any code here.
937 * Largest permitted alignment is 256 bytes due to the way we
938 * handle the index determination for the smaller caches.
940 * Make sure that nothing crazy happens if someone starts tinkering
941 * around with ARCH_KMALLOC_MINALIGN
943 void __init setup_kmalloc_cache_index_table(void)
945 int i;
947 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
948 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
950 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
951 int elem = size_index_elem(i);
953 if (elem >= ARRAY_SIZE(size_index))
954 break;
955 size_index[elem] = KMALLOC_SHIFT_LOW;
958 if (KMALLOC_MIN_SIZE >= 64) {
960 * The 96 byte size cache is not used if the alignment
961 * is 64 byte.
963 for (i = 64 + 8; i <= 96; i += 8)
964 size_index[size_index_elem(i)] = 7;
968 if (KMALLOC_MIN_SIZE >= 128) {
970 * The 192 byte sized cache is not used if the alignment
971 * is 128 byte. Redirect kmalloc to use the 256 byte cache
972 * instead.
974 for (i = 128 + 8; i <= 192; i += 8)
975 size_index[size_index_elem(i)] = 8;
979 static void __init new_kmalloc_cache(int idx, unsigned long flags)
981 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
982 kmalloc_info[idx].size, flags);
986 * Create the kmalloc array. Some of the regular kmalloc arrays
987 * may already have been created because they were needed to
988 * enable allocations for slab creation.
990 void __init create_kmalloc_caches(unsigned long flags)
992 int i;
994 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
995 if (!kmalloc_caches[i])
996 new_kmalloc_cache(i, flags);
999 * Caches that are not of the two-to-the-power-of size.
1000 * These have to be created immediately after the
1001 * earlier power of two caches
1003 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1004 new_kmalloc_cache(1, flags);
1005 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1006 new_kmalloc_cache(2, flags);
1009 /* Kmalloc array is now usable */
1010 slab_state = UP;
1012 #ifdef CONFIG_ZONE_DMA
1013 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1014 struct kmem_cache *s = kmalloc_caches[i];
1016 if (s) {
1017 int size = kmalloc_size(i);
1018 char *n = kasprintf(GFP_NOWAIT,
1019 "dma-kmalloc-%d", size);
1021 BUG_ON(!n);
1022 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1023 size, SLAB_CACHE_DMA | flags);
1026 #endif
1028 #endif /* !CONFIG_SLOB */
1031 * To avoid unnecessary overhead, we pass through large allocation requests
1032 * directly to the page allocator. We use __GFP_COMP, because we will need to
1033 * know the allocation order to free the pages properly in kfree.
1035 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1037 void *ret;
1038 struct page *page;
1040 flags |= __GFP_COMP;
1041 page = alloc_pages(flags, order);
1042 ret = page ? page_address(page) : NULL;
1043 kmemleak_alloc(ret, size, 1, flags);
1044 kasan_kmalloc_large(ret, size, flags);
1045 return ret;
1047 EXPORT_SYMBOL(kmalloc_order);
1049 #ifdef CONFIG_TRACING
1050 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1052 void *ret = kmalloc_order(size, flags, order);
1053 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1054 return ret;
1056 EXPORT_SYMBOL(kmalloc_order_trace);
1057 #endif
1059 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1060 /* Randomize a generic freelist */
1061 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1062 size_t count)
1064 size_t i;
1065 unsigned int rand;
1067 for (i = 0; i < count; i++)
1068 list[i] = i;
1070 /* Fisher-Yates shuffle */
1071 for (i = count - 1; i > 0; i--) {
1072 rand = prandom_u32_state(state);
1073 rand %= (i + 1);
1074 swap(list[i], list[rand]);
1078 /* Create a random sequence per cache */
1079 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1080 gfp_t gfp)
1082 struct rnd_state state;
1084 if (count < 2 || cachep->random_seq)
1085 return 0;
1087 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1088 if (!cachep->random_seq)
1089 return -ENOMEM;
1091 /* Get best entropy at this stage of boot */
1092 prandom_seed_state(&state, get_random_long());
1094 freelist_randomize(&state, cachep->random_seq, count);
1095 return 0;
1098 /* Destroy the per-cache random freelist sequence */
1099 void cache_random_seq_destroy(struct kmem_cache *cachep)
1101 kfree(cachep->random_seq);
1102 cachep->random_seq = NULL;
1104 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1106 #ifdef CONFIG_SLABINFO
1108 #ifdef CONFIG_SLAB
1109 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1110 #else
1111 #define SLABINFO_RIGHTS S_IRUSR
1112 #endif
1114 static void print_slabinfo_header(struct seq_file *m)
1117 * Output format version, so at least we can change it
1118 * without _too_ many complaints.
1120 #ifdef CONFIG_DEBUG_SLAB
1121 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1122 #else
1123 seq_puts(m, "slabinfo - version: 2.1\n");
1124 #endif
1125 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1126 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1127 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1128 #ifdef CONFIG_DEBUG_SLAB
1129 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1130 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1131 #endif
1132 seq_putc(m, '\n');
1135 void *slab_start(struct seq_file *m, loff_t *pos)
1137 mutex_lock(&slab_mutex);
1138 return seq_list_start(&slab_caches, *pos);
1141 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1143 return seq_list_next(p, &slab_caches, pos);
1146 void slab_stop(struct seq_file *m, void *p)
1148 mutex_unlock(&slab_mutex);
1151 static void
1152 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1154 struct kmem_cache *c;
1155 struct slabinfo sinfo;
1157 if (!is_root_cache(s))
1158 return;
1160 for_each_memcg_cache(c, s) {
1161 memset(&sinfo, 0, sizeof(sinfo));
1162 get_slabinfo(c, &sinfo);
1164 info->active_slabs += sinfo.active_slabs;
1165 info->num_slabs += sinfo.num_slabs;
1166 info->shared_avail += sinfo.shared_avail;
1167 info->active_objs += sinfo.active_objs;
1168 info->num_objs += sinfo.num_objs;
1172 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1174 struct slabinfo sinfo;
1176 memset(&sinfo, 0, sizeof(sinfo));
1177 get_slabinfo(s, &sinfo);
1179 memcg_accumulate_slabinfo(s, &sinfo);
1181 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1182 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1183 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1185 seq_printf(m, " : tunables %4u %4u %4u",
1186 sinfo.limit, sinfo.batchcount, sinfo.shared);
1187 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1188 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1189 slabinfo_show_stats(m, s);
1190 seq_putc(m, '\n');
1193 static int slab_show(struct seq_file *m, void *p)
1195 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1197 if (p == slab_caches.next)
1198 print_slabinfo_header(m);
1199 if (is_root_cache(s))
1200 cache_show(s, m);
1201 return 0;
1204 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1205 int memcg_slab_show(struct seq_file *m, void *p)
1207 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1208 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1210 if (p == slab_caches.next)
1211 print_slabinfo_header(m);
1212 if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1213 cache_show(s, m);
1214 return 0;
1216 #endif
1219 * slabinfo_op - iterator that generates /proc/slabinfo
1221 * Output layout:
1222 * cache-name
1223 * num-active-objs
1224 * total-objs
1225 * object size
1226 * num-active-slabs
1227 * total-slabs
1228 * num-pages-per-slab
1229 * + further values on SMP and with statistics enabled
1231 static const struct seq_operations slabinfo_op = {
1232 .start = slab_start,
1233 .next = slab_next,
1234 .stop = slab_stop,
1235 .show = slab_show,
1238 static int slabinfo_open(struct inode *inode, struct file *file)
1240 return seq_open(file, &slabinfo_op);
1243 static const struct file_operations proc_slabinfo_operations = {
1244 .open = slabinfo_open,
1245 .read = seq_read,
1246 .write = slabinfo_write,
1247 .llseek = seq_lseek,
1248 .release = seq_release,
1251 static int __init slab_proc_init(void)
1253 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1254 &proc_slabinfo_operations);
1255 return 0;
1257 module_init(slab_proc_init);
1258 #endif /* CONFIG_SLABINFO */
1260 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1261 gfp_t flags)
1263 void *ret;
1264 size_t ks = 0;
1266 if (p)
1267 ks = ksize(p);
1269 if (ks >= new_size) {
1270 kasan_krealloc((void *)p, new_size, flags);
1271 return (void *)p;
1274 ret = kmalloc_track_caller(new_size, flags);
1275 if (ret && p)
1276 memcpy(ret, p, ks);
1278 return ret;
1282 * __krealloc - like krealloc() but don't free @p.
1283 * @p: object to reallocate memory for.
1284 * @new_size: how many bytes of memory are required.
1285 * @flags: the type of memory to allocate.
1287 * This function is like krealloc() except it never frees the originally
1288 * allocated buffer. Use this if you don't want to free the buffer immediately
1289 * like, for example, with RCU.
1291 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1293 if (unlikely(!new_size))
1294 return ZERO_SIZE_PTR;
1296 return __do_krealloc(p, new_size, flags);
1299 EXPORT_SYMBOL(__krealloc);
1302 * krealloc - reallocate memory. The contents will remain unchanged.
1303 * @p: object to reallocate memory for.
1304 * @new_size: how many bytes of memory are required.
1305 * @flags: the type of memory to allocate.
1307 * The contents of the object pointed to are preserved up to the
1308 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1309 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1310 * %NULL pointer, the object pointed to is freed.
1312 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1314 void *ret;
1316 if (unlikely(!new_size)) {
1317 kfree(p);
1318 return ZERO_SIZE_PTR;
1321 ret = __do_krealloc(p, new_size, flags);
1322 if (ret && p != ret)
1323 kfree(p);
1325 return ret;
1327 EXPORT_SYMBOL(krealloc);
1330 * kzfree - like kfree but zero memory
1331 * @p: object to free memory of
1333 * The memory of the object @p points to is zeroed before freed.
1334 * If @p is %NULL, kzfree() does nothing.
1336 * Note: this function zeroes the whole allocated buffer which can be a good
1337 * deal bigger than the requested buffer size passed to kmalloc(). So be
1338 * careful when using this function in performance sensitive code.
1340 void kzfree(const void *p)
1342 size_t ks;
1343 void *mem = (void *)p;
1345 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1346 return;
1347 ks = ksize(mem);
1348 memset(mem, 0, ks);
1349 kfree(mem);
1351 EXPORT_SYMBOL(kzfree);
1353 /* Tracepoints definitions. */
1354 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1355 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1356 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1357 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1358 EXPORT_TRACEPOINT_SYMBOL(kfree);
1359 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);