1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
62 #include <net/tcp_memcontrol.h>
65 #include <asm/uaccess.h>
67 #include <trace/events/vmscan.h>
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
70 EXPORT_SYMBOL(memory_cgrp_subsys
);
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup
*root_mem_cgroup __read_mostly
;
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly
;
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata
= 1;
83 static int really_do_swap_account __initdata
;
87 #define do_swap_account 0
91 static const char * const mem_cgroup_stat_names
[] = {
100 enum mem_cgroup_events_index
{
101 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS
,
108 static const char * const mem_cgroup_events_names
[] = {
115 static const char * const mem_cgroup_lru_names
[] = {
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
129 enum mem_cgroup_events_target
{
130 MEM_CGROUP_TARGET_THRESH
,
131 MEM_CGROUP_TARGET_SOFTLIMIT
,
132 MEM_CGROUP_TARGET_NUMAINFO
,
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
139 struct mem_cgroup_stat_cpu
{
140 long count
[MEM_CGROUP_STAT_NSTATS
];
141 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
142 unsigned long nr_page_events
;
143 unsigned long targets
[MEM_CGROUP_NTARGETS
];
146 struct mem_cgroup_reclaim_iter
{
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
151 struct mem_cgroup
*last_visited
;
154 /* scan generation, increased every round-trip */
155 unsigned int generation
;
159 * per-zone information in memory controller.
161 struct mem_cgroup_per_zone
{
162 struct lruvec lruvec
;
163 unsigned long lru_size
[NR_LRU_LISTS
];
165 struct mem_cgroup_reclaim_iter reclaim_iter
[DEF_PRIORITY
+ 1];
167 struct rb_node tree_node
; /* RB tree node */
168 unsigned long long usage_in_excess
;/* Set to the value by which */
169 /* the soft limit is exceeded*/
171 struct mem_cgroup
*memcg
; /* Back pointer, we cannot */
172 /* use container_of */
175 struct mem_cgroup_per_node
{
176 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
184 struct mem_cgroup_tree_per_zone
{
185 struct rb_root rb_root
;
189 struct mem_cgroup_tree_per_node
{
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
193 struct mem_cgroup_tree
{
194 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
199 struct mem_cgroup_threshold
{
200 struct eventfd_ctx
*eventfd
;
205 struct mem_cgroup_threshold_ary
{
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold
;
208 /* Size of entries[] */
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries
[0];
214 struct mem_cgroup_thresholds
{
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary
*primary
;
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
222 struct mem_cgroup_threshold_ary
*spare
;
226 struct mem_cgroup_eventfd_list
{
227 struct list_head list
;
228 struct eventfd_ctx
*eventfd
;
232 * cgroup_event represents events which userspace want to receive.
234 struct mem_cgroup_event
{
236 * memcg which the event belongs to.
238 struct mem_cgroup
*memcg
;
240 * eventfd to signal userspace about the event.
242 struct eventfd_ctx
*eventfd
;
244 * Each of these stored in a list by the cgroup.
246 struct list_head list
;
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
252 int (*register_event
)(struct mem_cgroup
*memcg
,
253 struct eventfd_ctx
*eventfd
, const char *args
);
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
259 void (*unregister_event
)(struct mem_cgroup
*memcg
,
260 struct eventfd_ctx
*eventfd
);
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
266 wait_queue_head_t
*wqh
;
268 struct work_struct remove
;
271 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
272 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
286 struct cgroup_subsys_state css
;
288 * the counter to account for memory usage
290 struct res_counter res
;
292 /* vmpressure notifications */
293 struct vmpressure vmpressure
;
295 /* css_online() has been completed */
299 * the counter to account for mem+swap usage.
301 struct res_counter memsw
;
304 * the counter to account for kernel memory usage.
306 struct res_counter kmem
;
308 * Should the accounting and control be hierarchical, per subtree?
311 unsigned long kmem_account_flags
; /* See KMEM_ACCOUNTED_*, below */
315 atomic_t oom_wakeups
;
318 /* OOM-Killer disable */
319 int oom_kill_disable
;
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock
;
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds
;
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds
;
330 /* For oom notifier event fd */
331 struct list_head oom_notify
;
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
337 unsigned long move_charge_at_immigrate
;
339 * set > 0 if pages under this cgroup are moving to other cgroup.
341 atomic_t moving_account
;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock
;
347 struct mem_cgroup_stat_cpu __percpu
*stat
;
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
352 struct mem_cgroup_stat_cpu nocpu_base
;
353 spinlock_t pcp_counter_lock
;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem
;
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
362 struct list_head memcg_slab_caches
;
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
367 int last_scanned_node
;
369 nodemask_t scan_nodes
;
370 atomic_t numainfo_events
;
371 atomic_t numainfo_updating
;
374 /* List of events which userspace want to receive */
375 struct list_head event_list
;
376 spinlock_t event_list_lock
;
378 struct mem_cgroup_per_node
*nodeinfo
[0];
379 /* WARNING: nodeinfo must be the last member here */
382 /* internal only representation about the status of kmem accounting. */
384 KMEM_ACCOUNTED_ACTIVE
, /* accounted by this cgroup itself */
385 KMEM_ACCOUNTED_DEAD
, /* dead memcg with pending kmem charges */
388 #ifdef CONFIG_MEMCG_KMEM
389 static inline void memcg_kmem_set_active(struct mem_cgroup
*memcg
)
391 set_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
);
394 static bool memcg_kmem_is_active(struct mem_cgroup
*memcg
)
396 return test_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
);
399 static void memcg_kmem_mark_dead(struct mem_cgroup
*memcg
)
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
))
407 set_bit(KMEM_ACCOUNTED_DEAD
, &memcg
->kmem_account_flags
);
410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup
*memcg
)
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD
,
413 &memcg
->kmem_account_flags
);
417 /* Stuffs for move charges at task migration. */
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
423 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
424 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct
{
430 spinlock_t lock
; /* for from, to */
431 struct mem_cgroup
*from
;
432 struct mem_cgroup
*to
;
433 unsigned long immigrate_flags
;
434 unsigned long precharge
;
435 unsigned long moved_charge
;
436 unsigned long moved_swap
;
437 struct task_struct
*moving_task
; /* a task moving charges */
438 wait_queue_head_t waitq
; /* a waitq for other context */
440 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
441 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
444 static bool move_anon(void)
446 return test_bit(MOVE_CHARGE_TYPE_ANON
, &mc
.immigrate_flags
);
449 static bool move_file(void)
451 return test_bit(MOVE_CHARGE_TYPE_FILE
, &mc
.immigrate_flags
);
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
458 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
459 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
462 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
463 MEM_CGROUP_CHARGE_TYPE_ANON
,
464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
465 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
469 /* for encoding cft->private value on file */
477 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val) ((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL (0)
484 * The memcg_create_mutex will be held whenever a new cgroup is created.
485 * As a consequence, any change that needs to protect against new child cgroups
486 * appearing has to hold it as well.
488 static DEFINE_MUTEX(memcg_create_mutex
);
490 struct mem_cgroup
*mem_cgroup_from_css(struct cgroup_subsys_state
*s
)
492 return s
? container_of(s
, struct mem_cgroup
, css
) : NULL
;
495 /* Some nice accessors for the vmpressure. */
496 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
499 memcg
= root_mem_cgroup
;
500 return &memcg
->vmpressure
;
503 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
505 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
508 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
510 return (memcg
== root_mem_cgroup
);
514 * We restrict the id in the range of [1, 65535], so it can fit into
517 #define MEM_CGROUP_ID_MAX USHRT_MAX
519 static inline unsigned short mem_cgroup_id(struct mem_cgroup
*memcg
)
521 return memcg
->css
.id
;
524 static inline struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
526 struct cgroup_subsys_state
*css
;
528 css
= css_from_id(id
, &memory_cgrp_subsys
);
529 return mem_cgroup_from_css(css
);
532 /* Writing them here to avoid exposing memcg's inner layout */
533 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
535 void sock_update_memcg(struct sock
*sk
)
537 if (mem_cgroup_sockets_enabled
) {
538 struct mem_cgroup
*memcg
;
539 struct cg_proto
*cg_proto
;
541 BUG_ON(!sk
->sk_prot
->proto_cgroup
);
543 /* Socket cloning can throw us here with sk_cgrp already
544 * filled. It won't however, necessarily happen from
545 * process context. So the test for root memcg given
546 * the current task's memcg won't help us in this case.
548 * Respecting the original socket's memcg is a better
549 * decision in this case.
552 BUG_ON(mem_cgroup_is_root(sk
->sk_cgrp
->memcg
));
553 css_get(&sk
->sk_cgrp
->memcg
->css
);
558 memcg
= mem_cgroup_from_task(current
);
559 cg_proto
= sk
->sk_prot
->proto_cgroup(memcg
);
560 if (!mem_cgroup_is_root(memcg
) &&
561 memcg_proto_active(cg_proto
) &&
562 css_tryget_online(&memcg
->css
)) {
563 sk
->sk_cgrp
= cg_proto
;
568 EXPORT_SYMBOL(sock_update_memcg
);
570 void sock_release_memcg(struct sock
*sk
)
572 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
573 struct mem_cgroup
*memcg
;
574 WARN_ON(!sk
->sk_cgrp
->memcg
);
575 memcg
= sk
->sk_cgrp
->memcg
;
576 css_put(&sk
->sk_cgrp
->memcg
->css
);
580 struct cg_proto
*tcp_proto_cgroup(struct mem_cgroup
*memcg
)
582 if (!memcg
|| mem_cgroup_is_root(memcg
))
585 return &memcg
->tcp_mem
;
587 EXPORT_SYMBOL(tcp_proto_cgroup
);
589 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
591 if (!memcg_proto_activated(&memcg
->tcp_mem
))
593 static_key_slow_dec(&memcg_socket_limit_enabled
);
596 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
601 #ifdef CONFIG_MEMCG_KMEM
603 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
604 * The main reason for not using cgroup id for this:
605 * this works better in sparse environments, where we have a lot of memcgs,
606 * but only a few kmem-limited. Or also, if we have, for instance, 200
607 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
608 * 200 entry array for that.
610 * The current size of the caches array is stored in
611 * memcg_limited_groups_array_size. It will double each time we have to
614 static DEFINE_IDA(kmem_limited_groups
);
615 int memcg_limited_groups_array_size
;
618 * MIN_SIZE is different than 1, because we would like to avoid going through
619 * the alloc/free process all the time. In a small machine, 4 kmem-limited
620 * cgroups is a reasonable guess. In the future, it could be a parameter or
621 * tunable, but that is strictly not necessary.
623 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
624 * this constant directly from cgroup, but it is understandable that this is
625 * better kept as an internal representation in cgroup.c. In any case, the
626 * cgrp_id space is not getting any smaller, and we don't have to necessarily
627 * increase ours as well if it increases.
629 #define MEMCG_CACHES_MIN_SIZE 4
630 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
633 * A lot of the calls to the cache allocation functions are expected to be
634 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
635 * conditional to this static branch, we'll have to allow modules that does
636 * kmem_cache_alloc and the such to see this symbol as well
638 struct static_key memcg_kmem_enabled_key
;
639 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
641 static void memcg_free_cache_id(int id
);
643 static void disarm_kmem_keys(struct mem_cgroup
*memcg
)
645 if (memcg_kmem_is_active(memcg
)) {
646 static_key_slow_dec(&memcg_kmem_enabled_key
);
647 memcg_free_cache_id(memcg
->kmemcg_id
);
650 * This check can't live in kmem destruction function,
651 * since the charges will outlive the cgroup
653 WARN_ON(res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) != 0);
656 static void disarm_kmem_keys(struct mem_cgroup
*memcg
)
659 #endif /* CONFIG_MEMCG_KMEM */
661 static void disarm_static_keys(struct mem_cgroup
*memcg
)
663 disarm_sock_keys(memcg
);
664 disarm_kmem_keys(memcg
);
667 static void drain_all_stock_async(struct mem_cgroup
*memcg
);
669 static struct mem_cgroup_per_zone
*
670 mem_cgroup_zone_zoneinfo(struct mem_cgroup
*memcg
, struct zone
*zone
)
672 int nid
= zone_to_nid(zone
);
673 int zid
= zone_idx(zone
);
675 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
678 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*memcg
)
683 static struct mem_cgroup_per_zone
*
684 mem_cgroup_page_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
686 int nid
= page_to_nid(page
);
687 int zid
= page_zonenum(page
);
689 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
692 static struct mem_cgroup_tree_per_zone
*
693 soft_limit_tree_node_zone(int nid
, int zid
)
695 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
698 static struct mem_cgroup_tree_per_zone
*
699 soft_limit_tree_from_page(struct page
*page
)
701 int nid
= page_to_nid(page
);
702 int zid
= page_zonenum(page
);
704 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
707 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone
*mz
,
708 struct mem_cgroup_tree_per_zone
*mctz
,
709 unsigned long long new_usage_in_excess
)
711 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
712 struct rb_node
*parent
= NULL
;
713 struct mem_cgroup_per_zone
*mz_node
;
718 mz
->usage_in_excess
= new_usage_in_excess
;
719 if (!mz
->usage_in_excess
)
723 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
725 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
728 * We can't avoid mem cgroups that are over their soft
729 * limit by the same amount
731 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
734 rb_link_node(&mz
->tree_node
, parent
, p
);
735 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
739 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
740 struct mem_cgroup_tree_per_zone
*mctz
)
744 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
748 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
749 struct mem_cgroup_tree_per_zone
*mctz
)
753 spin_lock_irqsave(&mctz
->lock
, flags
);
754 __mem_cgroup_remove_exceeded(mz
, mctz
);
755 spin_unlock_irqrestore(&mctz
->lock
, flags
);
759 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
761 unsigned long long excess
;
762 struct mem_cgroup_per_zone
*mz
;
763 struct mem_cgroup_tree_per_zone
*mctz
;
765 mctz
= soft_limit_tree_from_page(page
);
767 * Necessary to update all ancestors when hierarchy is used.
768 * because their event counter is not touched.
770 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
771 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
772 excess
= res_counter_soft_limit_excess(&memcg
->res
);
774 * We have to update the tree if mz is on RB-tree or
775 * mem is over its softlimit.
777 if (excess
|| mz
->on_tree
) {
780 spin_lock_irqsave(&mctz
->lock
, flags
);
781 /* if on-tree, remove it */
783 __mem_cgroup_remove_exceeded(mz
, mctz
);
785 * Insert again. mz->usage_in_excess will be updated.
786 * If excess is 0, no tree ops.
788 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
789 spin_unlock_irqrestore(&mctz
->lock
, flags
);
794 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
796 struct mem_cgroup_tree_per_zone
*mctz
;
797 struct mem_cgroup_per_zone
*mz
;
801 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
802 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
803 mctz
= soft_limit_tree_node_zone(nid
, zid
);
804 mem_cgroup_remove_exceeded(mz
, mctz
);
809 static struct mem_cgroup_per_zone
*
810 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
812 struct rb_node
*rightmost
= NULL
;
813 struct mem_cgroup_per_zone
*mz
;
817 rightmost
= rb_last(&mctz
->rb_root
);
819 goto done
; /* Nothing to reclaim from */
821 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
823 * Remove the node now but someone else can add it back,
824 * we will to add it back at the end of reclaim to its correct
825 * position in the tree.
827 __mem_cgroup_remove_exceeded(mz
, mctz
);
828 if (!res_counter_soft_limit_excess(&mz
->memcg
->res
) ||
829 !css_tryget_online(&mz
->memcg
->css
))
835 static struct mem_cgroup_per_zone
*
836 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
838 struct mem_cgroup_per_zone
*mz
;
840 spin_lock_irq(&mctz
->lock
);
841 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
842 spin_unlock_irq(&mctz
->lock
);
847 * Implementation Note: reading percpu statistics for memcg.
849 * Both of vmstat[] and percpu_counter has threshold and do periodic
850 * synchronization to implement "quick" read. There are trade-off between
851 * reading cost and precision of value. Then, we may have a chance to implement
852 * a periodic synchronizion of counter in memcg's counter.
854 * But this _read() function is used for user interface now. The user accounts
855 * memory usage by memory cgroup and he _always_ requires exact value because
856 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
857 * have to visit all online cpus and make sum. So, for now, unnecessary
858 * synchronization is not implemented. (just implemented for cpu hotplug)
860 * If there are kernel internal actions which can make use of some not-exact
861 * value, and reading all cpu value can be performance bottleneck in some
862 * common workload, threashold and synchonization as vmstat[] should be
865 static long mem_cgroup_read_stat(struct mem_cgroup
*memcg
,
866 enum mem_cgroup_stat_index idx
)
872 for_each_online_cpu(cpu
)
873 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
874 #ifdef CONFIG_HOTPLUG_CPU
875 spin_lock(&memcg
->pcp_counter_lock
);
876 val
+= memcg
->nocpu_base
.count
[idx
];
877 spin_unlock(&memcg
->pcp_counter_lock
);
883 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
884 enum mem_cgroup_events_index idx
)
886 unsigned long val
= 0;
890 for_each_online_cpu(cpu
)
891 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
892 #ifdef CONFIG_HOTPLUG_CPU
893 spin_lock(&memcg
->pcp_counter_lock
);
894 val
+= memcg
->nocpu_base
.events
[idx
];
895 spin_unlock(&memcg
->pcp_counter_lock
);
901 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
906 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
907 * counted as CACHE even if it's on ANON LRU.
910 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
913 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
916 if (PageTransHuge(page
))
917 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
920 /* pagein of a big page is an event. So, ignore page size */
922 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
924 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
925 nr_pages
= -nr_pages
; /* for event */
928 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
931 unsigned long mem_cgroup_get_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
933 struct mem_cgroup_per_zone
*mz
;
935 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
936 return mz
->lru_size
[lru
];
939 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
941 unsigned int lru_mask
)
943 unsigned long nr
= 0;
946 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
948 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
949 struct mem_cgroup_per_zone
*mz
;
953 if (!(BIT(lru
) & lru_mask
))
955 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
956 nr
+= mz
->lru_size
[lru
];
962 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
963 unsigned int lru_mask
)
965 unsigned long nr
= 0;
968 for_each_node_state(nid
, N_MEMORY
)
969 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
973 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
974 enum mem_cgroup_events_target target
)
976 unsigned long val
, next
;
978 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
979 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
980 /* from time_after() in jiffies.h */
981 if ((long)next
- (long)val
< 0) {
983 case MEM_CGROUP_TARGET_THRESH
:
984 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
986 case MEM_CGROUP_TARGET_SOFTLIMIT
:
987 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
989 case MEM_CGROUP_TARGET_NUMAINFO
:
990 next
= val
+ NUMAINFO_EVENTS_TARGET
;
995 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
1002 * Check events in order.
1005 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
1007 /* threshold event is triggered in finer grain than soft limit */
1008 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
1009 MEM_CGROUP_TARGET_THRESH
))) {
1011 bool do_numainfo __maybe_unused
;
1013 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
1014 MEM_CGROUP_TARGET_SOFTLIMIT
);
1015 #if MAX_NUMNODES > 1
1016 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
1017 MEM_CGROUP_TARGET_NUMAINFO
);
1019 mem_cgroup_threshold(memcg
);
1020 if (unlikely(do_softlimit
))
1021 mem_cgroup_update_tree(memcg
, page
);
1022 #if MAX_NUMNODES > 1
1023 if (unlikely(do_numainfo
))
1024 atomic_inc(&memcg
->numainfo_events
);
1029 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
1032 * mm_update_next_owner() may clear mm->owner to NULL
1033 * if it races with swapoff, page migration, etc.
1034 * So this can be called with p == NULL.
1039 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
1042 static struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
1044 struct mem_cgroup
*memcg
= NULL
;
1049 * Page cache insertions can happen withou an
1050 * actual mm context, e.g. during disk probing
1051 * on boot, loopback IO, acct() writes etc.
1054 memcg
= root_mem_cgroup
;
1056 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1057 if (unlikely(!memcg
))
1058 memcg
= root_mem_cgroup
;
1060 } while (!css_tryget_online(&memcg
->css
));
1066 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1067 * ref. count) or NULL if the whole root's subtree has been visited.
1069 * helper function to be used by mem_cgroup_iter
1071 static struct mem_cgroup
*__mem_cgroup_iter_next(struct mem_cgroup
*root
,
1072 struct mem_cgroup
*last_visited
)
1074 struct cgroup_subsys_state
*prev_css
, *next_css
;
1076 prev_css
= last_visited
? &last_visited
->css
: NULL
;
1078 next_css
= css_next_descendant_pre(prev_css
, &root
->css
);
1081 * Even if we found a group we have to make sure it is
1082 * alive. css && !memcg means that the groups should be
1083 * skipped and we should continue the tree walk.
1084 * last_visited css is safe to use because it is
1085 * protected by css_get and the tree walk is rcu safe.
1087 * We do not take a reference on the root of the tree walk
1088 * because we might race with the root removal when it would
1089 * be the only node in the iterated hierarchy and mem_cgroup_iter
1090 * would end up in an endless loop because it expects that at
1091 * least one valid node will be returned. Root cannot disappear
1092 * because caller of the iterator should hold it already so
1093 * skipping css reference should be safe.
1096 struct mem_cgroup
*memcg
= mem_cgroup_from_css(next_css
);
1098 if (next_css
== &root
->css
)
1101 if (css_tryget_online(next_css
)) {
1103 * Make sure the memcg is initialized:
1104 * mem_cgroup_css_online() orders the the
1105 * initialization against setting the flag.
1107 if (smp_load_acquire(&memcg
->initialized
))
1112 prev_css
= next_css
;
1119 static void mem_cgroup_iter_invalidate(struct mem_cgroup
*root
)
1122 * When a group in the hierarchy below root is destroyed, the
1123 * hierarchy iterator can no longer be trusted since it might
1124 * have pointed to the destroyed group. Invalidate it.
1126 atomic_inc(&root
->dead_count
);
1129 static struct mem_cgroup
*
1130 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter
*iter
,
1131 struct mem_cgroup
*root
,
1134 struct mem_cgroup
*position
= NULL
;
1136 * A cgroup destruction happens in two stages: offlining and
1137 * release. They are separated by a RCU grace period.
1139 * If the iterator is valid, we may still race with an
1140 * offlining. The RCU lock ensures the object won't be
1141 * released, tryget will fail if we lost the race.
1143 *sequence
= atomic_read(&root
->dead_count
);
1144 if (iter
->last_dead_count
== *sequence
) {
1146 position
= iter
->last_visited
;
1149 * We cannot take a reference to root because we might race
1150 * with root removal and returning NULL would end up in
1151 * an endless loop on the iterator user level when root
1152 * would be returned all the time.
1154 if (position
&& position
!= root
&&
1155 !css_tryget_online(&position
->css
))
1161 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter
*iter
,
1162 struct mem_cgroup
*last_visited
,
1163 struct mem_cgroup
*new_position
,
1164 struct mem_cgroup
*root
,
1167 /* root reference counting symmetric to mem_cgroup_iter_load */
1168 if (last_visited
&& last_visited
!= root
)
1169 css_put(&last_visited
->css
);
1171 * We store the sequence count from the time @last_visited was
1172 * loaded successfully instead of rereading it here so that we
1173 * don't lose destruction events in between. We could have
1174 * raced with the destruction of @new_position after all.
1176 iter
->last_visited
= new_position
;
1178 iter
->last_dead_count
= sequence
;
1182 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1183 * @root: hierarchy root
1184 * @prev: previously returned memcg, NULL on first invocation
1185 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1187 * Returns references to children of the hierarchy below @root, or
1188 * @root itself, or %NULL after a full round-trip.
1190 * Caller must pass the return value in @prev on subsequent
1191 * invocations for reference counting, or use mem_cgroup_iter_break()
1192 * to cancel a hierarchy walk before the round-trip is complete.
1194 * Reclaimers can specify a zone and a priority level in @reclaim to
1195 * divide up the memcgs in the hierarchy among all concurrent
1196 * reclaimers operating on the same zone and priority.
1198 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
1199 struct mem_cgroup
*prev
,
1200 struct mem_cgroup_reclaim_cookie
*reclaim
)
1202 struct mem_cgroup
*memcg
= NULL
;
1203 struct mem_cgroup
*last_visited
= NULL
;
1205 if (mem_cgroup_disabled())
1209 root
= root_mem_cgroup
;
1211 if (prev
&& !reclaim
)
1212 last_visited
= prev
;
1214 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
1222 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
1223 int uninitialized_var(seq
);
1226 struct mem_cgroup_per_zone
*mz
;
1228 mz
= mem_cgroup_zone_zoneinfo(root
, reclaim
->zone
);
1229 iter
= &mz
->reclaim_iter
[reclaim
->priority
];
1230 if (prev
&& reclaim
->generation
!= iter
->generation
) {
1231 iter
->last_visited
= NULL
;
1235 last_visited
= mem_cgroup_iter_load(iter
, root
, &seq
);
1238 memcg
= __mem_cgroup_iter_next(root
, last_visited
);
1241 mem_cgroup_iter_update(iter
, last_visited
, memcg
, root
,
1246 else if (!prev
&& memcg
)
1247 reclaim
->generation
= iter
->generation
;
1256 if (prev
&& prev
!= root
)
1257 css_put(&prev
->css
);
1263 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1264 * @root: hierarchy root
1265 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1267 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
1268 struct mem_cgroup
*prev
)
1271 root
= root_mem_cgroup
;
1272 if (prev
&& prev
!= root
)
1273 css_put(&prev
->css
);
1277 * Iteration constructs for visiting all cgroups (under a tree). If
1278 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1279 * be used for reference counting.
1281 #define for_each_mem_cgroup_tree(iter, root) \
1282 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1284 iter = mem_cgroup_iter(root, iter, NULL))
1286 #define for_each_mem_cgroup(iter) \
1287 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1289 iter = mem_cgroup_iter(NULL, iter, NULL))
1291 void __mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
1293 struct mem_cgroup
*memcg
;
1296 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1297 if (unlikely(!memcg
))
1302 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
]);
1305 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
1313 EXPORT_SYMBOL(__mem_cgroup_count_vm_event
);
1316 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1317 * @zone: zone of the wanted lruvec
1318 * @memcg: memcg of the wanted lruvec
1320 * Returns the lru list vector holding pages for the given @zone and
1321 * @mem. This can be the global zone lruvec, if the memory controller
1324 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
1325 struct mem_cgroup
*memcg
)
1327 struct mem_cgroup_per_zone
*mz
;
1328 struct lruvec
*lruvec
;
1330 if (mem_cgroup_disabled()) {
1331 lruvec
= &zone
->lruvec
;
1335 mz
= mem_cgroup_zone_zoneinfo(memcg
, zone
);
1336 lruvec
= &mz
->lruvec
;
1339 * Since a node can be onlined after the mem_cgroup was created,
1340 * we have to be prepared to initialize lruvec->zone here;
1341 * and if offlined then reonlined, we need to reinitialize it.
1343 if (unlikely(lruvec
->zone
!= zone
))
1344 lruvec
->zone
= zone
;
1349 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1351 * @zone: zone of the page
1353 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct zone
*zone
)
1355 struct mem_cgroup_per_zone
*mz
;
1356 struct mem_cgroup
*memcg
;
1357 struct page_cgroup
*pc
;
1358 struct lruvec
*lruvec
;
1360 if (mem_cgroup_disabled()) {
1361 lruvec
= &zone
->lruvec
;
1365 pc
= lookup_page_cgroup(page
);
1366 memcg
= pc
->mem_cgroup
;
1369 * Surreptitiously switch any uncharged offlist page to root:
1370 * an uncharged page off lru does nothing to secure
1371 * its former mem_cgroup from sudden removal.
1373 * Our caller holds lru_lock, and PageCgroupUsed is updated
1374 * under page_cgroup lock: between them, they make all uses
1375 * of pc->mem_cgroup safe.
1377 if (!PageLRU(page
) && !PageCgroupUsed(pc
) && memcg
!= root_mem_cgroup
)
1378 pc
->mem_cgroup
= memcg
= root_mem_cgroup
;
1380 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
1381 lruvec
= &mz
->lruvec
;
1384 * Since a node can be onlined after the mem_cgroup was created,
1385 * we have to be prepared to initialize lruvec->zone here;
1386 * and if offlined then reonlined, we need to reinitialize it.
1388 if (unlikely(lruvec
->zone
!= zone
))
1389 lruvec
->zone
= zone
;
1394 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1395 * @lruvec: mem_cgroup per zone lru vector
1396 * @lru: index of lru list the page is sitting on
1397 * @nr_pages: positive when adding or negative when removing
1399 * This function must be called when a page is added to or removed from an
1402 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1405 struct mem_cgroup_per_zone
*mz
;
1406 unsigned long *lru_size
;
1408 if (mem_cgroup_disabled())
1411 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1412 lru_size
= mz
->lru_size
+ lru
;
1413 *lru_size
+= nr_pages
;
1414 VM_BUG_ON((long)(*lru_size
) < 0);
1418 * Checks whether given mem is same or in the root_mem_cgroup's
1421 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1422 struct mem_cgroup
*memcg
)
1424 if (root_memcg
== memcg
)
1426 if (!root_memcg
->use_hierarchy
|| !memcg
)
1428 return cgroup_is_descendant(memcg
->css
.cgroup
, root_memcg
->css
.cgroup
);
1431 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1432 struct mem_cgroup
*memcg
)
1437 ret
= __mem_cgroup_same_or_subtree(root_memcg
, memcg
);
1442 bool task_in_mem_cgroup(struct task_struct
*task
,
1443 const struct mem_cgroup
*memcg
)
1445 struct mem_cgroup
*curr
= NULL
;
1446 struct task_struct
*p
;
1449 p
= find_lock_task_mm(task
);
1451 curr
= get_mem_cgroup_from_mm(p
->mm
);
1455 * All threads may have already detached their mm's, but the oom
1456 * killer still needs to detect if they have already been oom
1457 * killed to prevent needlessly killing additional tasks.
1460 curr
= mem_cgroup_from_task(task
);
1462 css_get(&curr
->css
);
1466 * We should check use_hierarchy of "memcg" not "curr". Because checking
1467 * use_hierarchy of "curr" here make this function true if hierarchy is
1468 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1469 * hierarchy(even if use_hierarchy is disabled in "memcg").
1471 ret
= mem_cgroup_same_or_subtree(memcg
, curr
);
1472 css_put(&curr
->css
);
1476 int mem_cgroup_inactive_anon_is_low(struct lruvec
*lruvec
)
1478 unsigned long inactive_ratio
;
1479 unsigned long inactive
;
1480 unsigned long active
;
1483 inactive
= mem_cgroup_get_lru_size(lruvec
, LRU_INACTIVE_ANON
);
1484 active
= mem_cgroup_get_lru_size(lruvec
, LRU_ACTIVE_ANON
);
1486 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1488 inactive_ratio
= int_sqrt(10 * gb
);
1492 return inactive
* inactive_ratio
< active
;
1495 #define mem_cgroup_from_res_counter(counter, member) \
1496 container_of(counter, struct mem_cgroup, member)
1499 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1500 * @memcg: the memory cgroup
1502 * Returns the maximum amount of memory @mem can be charged with, in
1505 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1507 unsigned long long margin
;
1509 margin
= res_counter_margin(&memcg
->res
);
1510 if (do_swap_account
)
1511 margin
= min(margin
, res_counter_margin(&memcg
->memsw
));
1512 return margin
>> PAGE_SHIFT
;
1515 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1518 if (mem_cgroup_disabled() || !memcg
->css
.parent
)
1519 return vm_swappiness
;
1521 return memcg
->swappiness
;
1525 * memcg->moving_account is used for checking possibility that some thread is
1526 * calling move_account(). When a thread on CPU-A starts moving pages under
1527 * a memcg, other threads should check memcg->moving_account under
1528 * rcu_read_lock(), like this:
1532 * memcg->moving_account+1 if (memcg->mocing_account)
1534 * synchronize_rcu() update something.
1539 static void mem_cgroup_start_move(struct mem_cgroup
*memcg
)
1541 atomic_inc(&memcg
->moving_account
);
1545 static void mem_cgroup_end_move(struct mem_cgroup
*memcg
)
1548 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1549 * We check NULL in callee rather than caller.
1552 atomic_dec(&memcg
->moving_account
);
1556 * A routine for checking "mem" is under move_account() or not.
1558 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1559 * moving cgroups. This is for waiting at high-memory pressure
1562 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1564 struct mem_cgroup
*from
;
1565 struct mem_cgroup
*to
;
1568 * Unlike task_move routines, we access mc.to, mc.from not under
1569 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1571 spin_lock(&mc
.lock
);
1577 ret
= mem_cgroup_same_or_subtree(memcg
, from
)
1578 || mem_cgroup_same_or_subtree(memcg
, to
);
1580 spin_unlock(&mc
.lock
);
1584 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1586 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1587 if (mem_cgroup_under_move(memcg
)) {
1589 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1590 /* moving charge context might have finished. */
1593 finish_wait(&mc
.waitq
, &wait
);
1601 * Take this lock when
1602 * - a code tries to modify page's memcg while it's USED.
1603 * - a code tries to modify page state accounting in a memcg.
1605 static void move_lock_mem_cgroup(struct mem_cgroup
*memcg
,
1606 unsigned long *flags
)
1608 spin_lock_irqsave(&memcg
->move_lock
, *flags
);
1611 static void move_unlock_mem_cgroup(struct mem_cgroup
*memcg
,
1612 unsigned long *flags
)
1614 spin_unlock_irqrestore(&memcg
->move_lock
, *flags
);
1617 #define K(x) ((x) << (PAGE_SHIFT-10))
1619 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1620 * @memcg: The memory cgroup that went over limit
1621 * @p: Task that is going to be killed
1623 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1626 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1628 /* oom_info_lock ensures that parallel ooms do not interleave */
1629 static DEFINE_MUTEX(oom_info_lock
);
1630 struct mem_cgroup
*iter
;
1636 mutex_lock(&oom_info_lock
);
1639 pr_info("Task in ");
1640 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1641 pr_info(" killed as a result of limit of ");
1642 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1647 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1648 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1649 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1650 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1651 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1652 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1653 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1654 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1655 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1656 res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) >> 10,
1657 res_counter_read_u64(&memcg
->kmem
, RES_LIMIT
) >> 10,
1658 res_counter_read_u64(&memcg
->kmem
, RES_FAILCNT
));
1660 for_each_mem_cgroup_tree(iter
, memcg
) {
1661 pr_info("Memory cgroup stats for ");
1662 pr_cont_cgroup_path(iter
->css
.cgroup
);
1665 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
1666 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
1668 pr_cont(" %s:%ldKB", mem_cgroup_stat_names
[i
],
1669 K(mem_cgroup_read_stat(iter
, i
)));
1672 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1673 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1674 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1678 mutex_unlock(&oom_info_lock
);
1682 * This function returns the number of memcg under hierarchy tree. Returns
1683 * 1(self count) if no children.
1685 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1688 struct mem_cgroup
*iter
;
1690 for_each_mem_cgroup_tree(iter
, memcg
)
1696 * Return the memory (and swap, if configured) limit for a memcg.
1698 static u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1702 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1705 * Do not consider swap space if we cannot swap due to swappiness
1707 if (mem_cgroup_swappiness(memcg
)) {
1710 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1711 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1714 * If memsw is finite and limits the amount of swap space
1715 * available to this memcg, return that limit.
1717 limit
= min(limit
, memsw
);
1723 static void mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1726 struct mem_cgroup
*iter
;
1727 unsigned long chosen_points
= 0;
1728 unsigned long totalpages
;
1729 unsigned int points
= 0;
1730 struct task_struct
*chosen
= NULL
;
1733 * If current has a pending SIGKILL or is exiting, then automatically
1734 * select it. The goal is to allow it to allocate so that it may
1735 * quickly exit and free its memory.
1737 if (fatal_signal_pending(current
) || current
->flags
& PF_EXITING
) {
1738 set_thread_flag(TIF_MEMDIE
);
1742 check_panic_on_oom(CONSTRAINT_MEMCG
, gfp_mask
, order
, NULL
);
1743 totalpages
= mem_cgroup_get_limit(memcg
) >> PAGE_SHIFT
? : 1;
1744 for_each_mem_cgroup_tree(iter
, memcg
) {
1745 struct css_task_iter it
;
1746 struct task_struct
*task
;
1748 css_task_iter_start(&iter
->css
, &it
);
1749 while ((task
= css_task_iter_next(&it
))) {
1750 switch (oom_scan_process_thread(task
, totalpages
, NULL
,
1752 case OOM_SCAN_SELECT
:
1754 put_task_struct(chosen
);
1756 chosen_points
= ULONG_MAX
;
1757 get_task_struct(chosen
);
1759 case OOM_SCAN_CONTINUE
:
1761 case OOM_SCAN_ABORT
:
1762 css_task_iter_end(&it
);
1763 mem_cgroup_iter_break(memcg
, iter
);
1765 put_task_struct(chosen
);
1770 points
= oom_badness(task
, memcg
, NULL
, totalpages
);
1771 if (!points
|| points
< chosen_points
)
1773 /* Prefer thread group leaders for display purposes */
1774 if (points
== chosen_points
&&
1775 thread_group_leader(chosen
))
1779 put_task_struct(chosen
);
1781 chosen_points
= points
;
1782 get_task_struct(chosen
);
1784 css_task_iter_end(&it
);
1789 points
= chosen_points
* 1000 / totalpages
;
1790 oom_kill_process(chosen
, gfp_mask
, order
, points
, totalpages
, memcg
,
1791 NULL
, "Memory cgroup out of memory");
1795 * test_mem_cgroup_node_reclaimable
1796 * @memcg: the target memcg
1797 * @nid: the node ID to be checked.
1798 * @noswap : specify true here if the user wants flle only information.
1800 * This function returns whether the specified memcg contains any
1801 * reclaimable pages on a node. Returns true if there are any reclaimable
1802 * pages in the node.
1804 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1805 int nid
, bool noswap
)
1807 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1809 if (noswap
|| !total_swap_pages
)
1811 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1816 #if MAX_NUMNODES > 1
1819 * Always updating the nodemask is not very good - even if we have an empty
1820 * list or the wrong list here, we can start from some node and traverse all
1821 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1824 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1828 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1829 * pagein/pageout changes since the last update.
1831 if (!atomic_read(&memcg
->numainfo_events
))
1833 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1836 /* make a nodemask where this memcg uses memory from */
1837 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1839 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1841 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1842 node_clear(nid
, memcg
->scan_nodes
);
1845 atomic_set(&memcg
->numainfo_events
, 0);
1846 atomic_set(&memcg
->numainfo_updating
, 0);
1850 * Selecting a node where we start reclaim from. Because what we need is just
1851 * reducing usage counter, start from anywhere is O,K. Considering
1852 * memory reclaim from current node, there are pros. and cons.
1854 * Freeing memory from current node means freeing memory from a node which
1855 * we'll use or we've used. So, it may make LRU bad. And if several threads
1856 * hit limits, it will see a contention on a node. But freeing from remote
1857 * node means more costs for memory reclaim because of memory latency.
1859 * Now, we use round-robin. Better algorithm is welcomed.
1861 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1865 mem_cgroup_may_update_nodemask(memcg
);
1866 node
= memcg
->last_scanned_node
;
1868 node
= next_node(node
, memcg
->scan_nodes
);
1869 if (node
== MAX_NUMNODES
)
1870 node
= first_node(memcg
->scan_nodes
);
1872 * We call this when we hit limit, not when pages are added to LRU.
1873 * No LRU may hold pages because all pages are UNEVICTABLE or
1874 * memcg is too small and all pages are not on LRU. In that case,
1875 * we use curret node.
1877 if (unlikely(node
== MAX_NUMNODES
))
1878 node
= numa_node_id();
1880 memcg
->last_scanned_node
= node
;
1885 * Check all nodes whether it contains reclaimable pages or not.
1886 * For quick scan, we make use of scan_nodes. This will allow us to skip
1887 * unused nodes. But scan_nodes is lazily updated and may not cotain
1888 * enough new information. We need to do double check.
1890 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1895 * quick check...making use of scan_node.
1896 * We can skip unused nodes.
1898 if (!nodes_empty(memcg
->scan_nodes
)) {
1899 for (nid
= first_node(memcg
->scan_nodes
);
1901 nid
= next_node(nid
, memcg
->scan_nodes
)) {
1903 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1908 * Check rest of nodes.
1910 for_each_node_state(nid
, N_MEMORY
) {
1911 if (node_isset(nid
, memcg
->scan_nodes
))
1913 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1920 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1925 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1927 return test_mem_cgroup_node_reclaimable(memcg
, 0, noswap
);
1931 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1934 unsigned long *total_scanned
)
1936 struct mem_cgroup
*victim
= NULL
;
1939 unsigned long excess
;
1940 unsigned long nr_scanned
;
1941 struct mem_cgroup_reclaim_cookie reclaim
= {
1946 excess
= res_counter_soft_limit_excess(&root_memcg
->res
) >> PAGE_SHIFT
;
1949 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1954 * If we have not been able to reclaim
1955 * anything, it might because there are
1956 * no reclaimable pages under this hierarchy
1961 * We want to do more targeted reclaim.
1962 * excess >> 2 is not to excessive so as to
1963 * reclaim too much, nor too less that we keep
1964 * coming back to reclaim from this cgroup
1966 if (total
>= (excess
>> 2) ||
1967 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1972 if (!mem_cgroup_reclaimable(victim
, false))
1974 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
1976 *total_scanned
+= nr_scanned
;
1977 if (!res_counter_soft_limit_excess(&root_memcg
->res
))
1980 mem_cgroup_iter_break(root_memcg
, victim
);
1984 #ifdef CONFIG_LOCKDEP
1985 static struct lockdep_map memcg_oom_lock_dep_map
= {
1986 .name
= "memcg_oom_lock",
1990 static DEFINE_SPINLOCK(memcg_oom_lock
);
1993 * Check OOM-Killer is already running under our hierarchy.
1994 * If someone is running, return false.
1996 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1998 struct mem_cgroup
*iter
, *failed
= NULL
;
2000 spin_lock(&memcg_oom_lock
);
2002 for_each_mem_cgroup_tree(iter
, memcg
) {
2003 if (iter
->oom_lock
) {
2005 * this subtree of our hierarchy is already locked
2006 * so we cannot give a lock.
2009 mem_cgroup_iter_break(memcg
, iter
);
2012 iter
->oom_lock
= true;
2017 * OK, we failed to lock the whole subtree so we have
2018 * to clean up what we set up to the failing subtree
2020 for_each_mem_cgroup_tree(iter
, memcg
) {
2021 if (iter
== failed
) {
2022 mem_cgroup_iter_break(memcg
, iter
);
2025 iter
->oom_lock
= false;
2028 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
2030 spin_unlock(&memcg_oom_lock
);
2035 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
2037 struct mem_cgroup
*iter
;
2039 spin_lock(&memcg_oom_lock
);
2040 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
2041 for_each_mem_cgroup_tree(iter
, memcg
)
2042 iter
->oom_lock
= false;
2043 spin_unlock(&memcg_oom_lock
);
2046 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
2048 struct mem_cgroup
*iter
;
2050 for_each_mem_cgroup_tree(iter
, memcg
)
2051 atomic_inc(&iter
->under_oom
);
2054 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
2056 struct mem_cgroup
*iter
;
2059 * When a new child is created while the hierarchy is under oom,
2060 * mem_cgroup_oom_lock() may not be called. We have to use
2061 * atomic_add_unless() here.
2063 for_each_mem_cgroup_tree(iter
, memcg
)
2064 atomic_add_unless(&iter
->under_oom
, -1, 0);
2067 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
2069 struct oom_wait_info
{
2070 struct mem_cgroup
*memcg
;
2074 static int memcg_oom_wake_function(wait_queue_t
*wait
,
2075 unsigned mode
, int sync
, void *arg
)
2077 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
2078 struct mem_cgroup
*oom_wait_memcg
;
2079 struct oom_wait_info
*oom_wait_info
;
2081 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
2082 oom_wait_memcg
= oom_wait_info
->memcg
;
2085 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2086 * Then we can use css_is_ancestor without taking care of RCU.
2088 if (!mem_cgroup_same_or_subtree(oom_wait_memcg
, wake_memcg
)
2089 && !mem_cgroup_same_or_subtree(wake_memcg
, oom_wait_memcg
))
2091 return autoremove_wake_function(wait
, mode
, sync
, arg
);
2094 static void memcg_wakeup_oom(struct mem_cgroup
*memcg
)
2096 atomic_inc(&memcg
->oom_wakeups
);
2097 /* for filtering, pass "memcg" as argument. */
2098 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
2101 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
2103 if (memcg
&& atomic_read(&memcg
->under_oom
))
2104 memcg_wakeup_oom(memcg
);
2107 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
2109 if (!current
->memcg_oom
.may_oom
)
2112 * We are in the middle of the charge context here, so we
2113 * don't want to block when potentially sitting on a callstack
2114 * that holds all kinds of filesystem and mm locks.
2116 * Also, the caller may handle a failed allocation gracefully
2117 * (like optional page cache readahead) and so an OOM killer
2118 * invocation might not even be necessary.
2120 * That's why we don't do anything here except remember the
2121 * OOM context and then deal with it at the end of the page
2122 * fault when the stack is unwound, the locks are released,
2123 * and when we know whether the fault was overall successful.
2125 css_get(&memcg
->css
);
2126 current
->memcg_oom
.memcg
= memcg
;
2127 current
->memcg_oom
.gfp_mask
= mask
;
2128 current
->memcg_oom
.order
= order
;
2132 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2133 * @handle: actually kill/wait or just clean up the OOM state
2135 * This has to be called at the end of a page fault if the memcg OOM
2136 * handler was enabled.
2138 * Memcg supports userspace OOM handling where failed allocations must
2139 * sleep on a waitqueue until the userspace task resolves the
2140 * situation. Sleeping directly in the charge context with all kinds
2141 * of locks held is not a good idea, instead we remember an OOM state
2142 * in the task and mem_cgroup_oom_synchronize() has to be called at
2143 * the end of the page fault to complete the OOM handling.
2145 * Returns %true if an ongoing memcg OOM situation was detected and
2146 * completed, %false otherwise.
2148 bool mem_cgroup_oom_synchronize(bool handle
)
2150 struct mem_cgroup
*memcg
= current
->memcg_oom
.memcg
;
2151 struct oom_wait_info owait
;
2154 /* OOM is global, do not handle */
2161 owait
.memcg
= memcg
;
2162 owait
.wait
.flags
= 0;
2163 owait
.wait
.func
= memcg_oom_wake_function
;
2164 owait
.wait
.private = current
;
2165 INIT_LIST_HEAD(&owait
.wait
.task_list
);
2167 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
2168 mem_cgroup_mark_under_oom(memcg
);
2170 locked
= mem_cgroup_oom_trylock(memcg
);
2173 mem_cgroup_oom_notify(memcg
);
2175 if (locked
&& !memcg
->oom_kill_disable
) {
2176 mem_cgroup_unmark_under_oom(memcg
);
2177 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
2178 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom
.gfp_mask
,
2179 current
->memcg_oom
.order
);
2182 mem_cgroup_unmark_under_oom(memcg
);
2183 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
2187 mem_cgroup_oom_unlock(memcg
);
2189 * There is no guarantee that an OOM-lock contender
2190 * sees the wakeups triggered by the OOM kill
2191 * uncharges. Wake any sleepers explicitely.
2193 memcg_oom_recover(memcg
);
2196 current
->memcg_oom
.memcg
= NULL
;
2197 css_put(&memcg
->css
);
2202 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
2203 * @page: page that is going to change accounted state
2204 * @locked: &memcg->move_lock slowpath was taken
2205 * @flags: IRQ-state flags for &memcg->move_lock
2207 * This function must mark the beginning of an accounted page state
2208 * change to prevent double accounting when the page is concurrently
2209 * being moved to another memcg:
2211 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2212 * if (TestClearPageState(page))
2213 * mem_cgroup_update_page_stat(memcg, state, -1);
2214 * mem_cgroup_end_page_stat(memcg, locked, flags);
2216 * The RCU lock is held throughout the transaction. The fast path can
2217 * get away without acquiring the memcg->move_lock (@locked is false)
2218 * because page moving starts with an RCU grace period.
2220 * The RCU lock also protects the memcg from being freed when the page
2221 * state that is going to change is the only thing preventing the page
2222 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2223 * which allows migration to go ahead and uncharge the page before the
2224 * account transaction might be complete.
2226 struct mem_cgroup
*mem_cgroup_begin_page_stat(struct page
*page
,
2228 unsigned long *flags
)
2230 struct mem_cgroup
*memcg
;
2231 struct page_cgroup
*pc
;
2235 if (mem_cgroup_disabled())
2238 pc
= lookup_page_cgroup(page
);
2240 memcg
= pc
->mem_cgroup
;
2241 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2245 if (atomic_read(&memcg
->moving_account
) <= 0)
2248 move_lock_mem_cgroup(memcg
, flags
);
2249 if (memcg
!= pc
->mem_cgroup
|| !PageCgroupUsed(pc
)) {
2250 move_unlock_mem_cgroup(memcg
, flags
);
2259 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2260 * @memcg: the memcg that was accounted against
2261 * @locked: value received from mem_cgroup_begin_page_stat()
2262 * @flags: value received from mem_cgroup_begin_page_stat()
2264 void mem_cgroup_end_page_stat(struct mem_cgroup
*memcg
, bool locked
,
2265 unsigned long flags
)
2267 if (memcg
&& locked
)
2268 move_unlock_mem_cgroup(memcg
, &flags
);
2274 * mem_cgroup_update_page_stat - update page state statistics
2275 * @memcg: memcg to account against
2276 * @idx: page state item to account
2277 * @val: number of pages (positive or negative)
2279 * See mem_cgroup_begin_page_stat() for locking requirements.
2281 void mem_cgroup_update_page_stat(struct mem_cgroup
*memcg
,
2282 enum mem_cgroup_stat_index idx
, int val
)
2284 VM_BUG_ON(!rcu_read_lock_held());
2287 this_cpu_add(memcg
->stat
->count
[idx
], val
);
2291 * size of first charge trial. "32" comes from vmscan.c's magic value.
2292 * TODO: maybe necessary to use big numbers in big irons.
2294 #define CHARGE_BATCH 32U
2295 struct memcg_stock_pcp
{
2296 struct mem_cgroup
*cached
; /* this never be root cgroup */
2297 unsigned int nr_pages
;
2298 struct work_struct work
;
2299 unsigned long flags
;
2300 #define FLUSHING_CACHED_CHARGE 0
2302 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2303 static DEFINE_MUTEX(percpu_charge_mutex
);
2306 * consume_stock: Try to consume stocked charge on this cpu.
2307 * @memcg: memcg to consume from.
2308 * @nr_pages: how many pages to charge.
2310 * The charges will only happen if @memcg matches the current cpu's memcg
2311 * stock, and at least @nr_pages are available in that stock. Failure to
2312 * service an allocation will refill the stock.
2314 * returns true if successful, false otherwise.
2316 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2318 struct memcg_stock_pcp
*stock
;
2321 if (nr_pages
> CHARGE_BATCH
)
2324 stock
= &get_cpu_var(memcg_stock
);
2325 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
)
2326 stock
->nr_pages
-= nr_pages
;
2327 else /* need to call res_counter_charge */
2329 put_cpu_var(memcg_stock
);
2334 * Returns stocks cached in percpu to res_counter and reset cached information.
2336 static void drain_stock(struct memcg_stock_pcp
*stock
)
2338 struct mem_cgroup
*old
= stock
->cached
;
2340 if (stock
->nr_pages
) {
2341 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
2343 res_counter_uncharge(&old
->res
, bytes
);
2344 if (do_swap_account
)
2345 res_counter_uncharge(&old
->memsw
, bytes
);
2346 stock
->nr_pages
= 0;
2348 stock
->cached
= NULL
;
2352 * This must be called under preempt disabled or must be called by
2353 * a thread which is pinned to local cpu.
2355 static void drain_local_stock(struct work_struct
*dummy
)
2357 struct memcg_stock_pcp
*stock
= this_cpu_ptr(&memcg_stock
);
2359 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2362 static void __init
memcg_stock_init(void)
2366 for_each_possible_cpu(cpu
) {
2367 struct memcg_stock_pcp
*stock
=
2368 &per_cpu(memcg_stock
, cpu
);
2369 INIT_WORK(&stock
->work
, drain_local_stock
);
2374 * Cache charges(val) which is from res_counter, to local per_cpu area.
2375 * This will be consumed by consume_stock() function, later.
2377 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2379 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2381 if (stock
->cached
!= memcg
) { /* reset if necessary */
2383 stock
->cached
= memcg
;
2385 stock
->nr_pages
+= nr_pages
;
2386 put_cpu_var(memcg_stock
);
2390 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2391 * of the hierarchy under it. sync flag says whether we should block
2392 * until the work is done.
2394 static void drain_all_stock(struct mem_cgroup
*root_memcg
, bool sync
)
2398 /* Notify other cpus that system-wide "drain" is running */
2401 for_each_online_cpu(cpu
) {
2402 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2403 struct mem_cgroup
*memcg
;
2405 memcg
= stock
->cached
;
2406 if (!memcg
|| !stock
->nr_pages
)
2408 if (!mem_cgroup_same_or_subtree(root_memcg
, memcg
))
2410 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2412 drain_local_stock(&stock
->work
);
2414 schedule_work_on(cpu
, &stock
->work
);
2422 for_each_online_cpu(cpu
) {
2423 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2424 if (test_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2425 flush_work(&stock
->work
);
2432 * Tries to drain stocked charges in other cpus. This function is asynchronous
2433 * and just put a work per cpu for draining localy on each cpu. Caller can
2434 * expects some charges will be back to res_counter later but cannot wait for
2437 static void drain_all_stock_async(struct mem_cgroup
*root_memcg
)
2440 * If someone calls draining, avoid adding more kworker runs.
2442 if (!mutex_trylock(&percpu_charge_mutex
))
2444 drain_all_stock(root_memcg
, false);
2445 mutex_unlock(&percpu_charge_mutex
);
2448 /* This is a synchronous drain interface. */
2449 static void drain_all_stock_sync(struct mem_cgroup
*root_memcg
)
2451 /* called when force_empty is called */
2452 mutex_lock(&percpu_charge_mutex
);
2453 drain_all_stock(root_memcg
, true);
2454 mutex_unlock(&percpu_charge_mutex
);
2458 * This function drains percpu counter value from DEAD cpu and
2459 * move it to local cpu. Note that this function can be preempted.
2461 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*memcg
, int cpu
)
2465 spin_lock(&memcg
->pcp_counter_lock
);
2466 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
2467 long x
= per_cpu(memcg
->stat
->count
[i
], cpu
);
2469 per_cpu(memcg
->stat
->count
[i
], cpu
) = 0;
2470 memcg
->nocpu_base
.count
[i
] += x
;
2472 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2473 unsigned long x
= per_cpu(memcg
->stat
->events
[i
], cpu
);
2475 per_cpu(memcg
->stat
->events
[i
], cpu
) = 0;
2476 memcg
->nocpu_base
.events
[i
] += x
;
2478 spin_unlock(&memcg
->pcp_counter_lock
);
2481 static int memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2482 unsigned long action
,
2485 int cpu
= (unsigned long)hcpu
;
2486 struct memcg_stock_pcp
*stock
;
2487 struct mem_cgroup
*iter
;
2489 if (action
== CPU_ONLINE
)
2492 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
2495 for_each_mem_cgroup(iter
)
2496 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2498 stock
= &per_cpu(memcg_stock
, cpu
);
2503 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2504 unsigned int nr_pages
)
2506 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2507 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2508 struct mem_cgroup
*mem_over_limit
;
2509 struct res_counter
*fail_res
;
2510 unsigned long nr_reclaimed
;
2511 unsigned long long size
;
2512 bool may_swap
= true;
2513 bool drained
= false;
2516 if (mem_cgroup_is_root(memcg
))
2519 if (consume_stock(memcg
, nr_pages
))
2522 size
= batch
* PAGE_SIZE
;
2523 if (!do_swap_account
||
2524 !res_counter_charge(&memcg
->memsw
, size
, &fail_res
)) {
2525 if (!res_counter_charge(&memcg
->res
, size
, &fail_res
))
2527 if (do_swap_account
)
2528 res_counter_uncharge(&memcg
->memsw
, size
);
2529 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2531 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2535 if (batch
> nr_pages
) {
2541 * Unlike in global OOM situations, memcg is not in a physical
2542 * memory shortage. Allow dying and OOM-killed tasks to
2543 * bypass the last charges so that they can exit quickly and
2544 * free their memory.
2546 if (unlikely(test_thread_flag(TIF_MEMDIE
) ||
2547 fatal_signal_pending(current
) ||
2548 current
->flags
& PF_EXITING
))
2551 if (unlikely(task_in_memcg_oom(current
)))
2554 if (!(gfp_mask
& __GFP_WAIT
))
2557 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
2558 gfp_mask
, may_swap
);
2560 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2564 drain_all_stock_async(mem_over_limit
);
2569 if (gfp_mask
& __GFP_NORETRY
)
2572 * Even though the limit is exceeded at this point, reclaim
2573 * may have been able to free some pages. Retry the charge
2574 * before killing the task.
2576 * Only for regular pages, though: huge pages are rather
2577 * unlikely to succeed so close to the limit, and we fall back
2578 * to regular pages anyway in case of failure.
2580 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
2583 * At task move, charge accounts can be doubly counted. So, it's
2584 * better to wait until the end of task_move if something is going on.
2586 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2592 if (gfp_mask
& __GFP_NOFAIL
)
2595 if (fatal_signal_pending(current
))
2598 mem_cgroup_oom(mem_over_limit
, gfp_mask
, get_order(nr_pages
));
2600 if (!(gfp_mask
& __GFP_NOFAIL
))
2606 if (batch
> nr_pages
)
2607 refill_stock(memcg
, batch
- nr_pages
);
2612 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2614 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2616 if (mem_cgroup_is_root(memcg
))
2619 res_counter_uncharge(&memcg
->res
, bytes
);
2620 if (do_swap_account
)
2621 res_counter_uncharge(&memcg
->memsw
, bytes
);
2625 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2626 * This is useful when moving usage to parent cgroup.
2628 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup
*memcg
,
2629 unsigned int nr_pages
)
2631 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2633 if (mem_cgroup_is_root(memcg
))
2636 res_counter_uncharge_until(&memcg
->res
, memcg
->res
.parent
, bytes
);
2637 if (do_swap_account
)
2638 res_counter_uncharge_until(&memcg
->memsw
,
2639 memcg
->memsw
.parent
, bytes
);
2643 * A helper function to get mem_cgroup from ID. must be called under
2644 * rcu_read_lock(). The caller is responsible for calling
2645 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2646 * refcnt from swap can be called against removed memcg.)
2648 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2650 /* ID 0 is unused ID */
2653 return mem_cgroup_from_id(id
);
2657 * try_get_mem_cgroup_from_page - look up page's memcg association
2660 * Look up, get a css reference, and return the memcg that owns @page.
2662 * The page must be locked to prevent racing with swap-in and page
2663 * cache charges. If coming from an unlocked page table, the caller
2664 * must ensure the page is on the LRU or this can race with charging.
2666 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2668 struct mem_cgroup
*memcg
= NULL
;
2669 struct page_cgroup
*pc
;
2673 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2675 pc
= lookup_page_cgroup(page
);
2676 if (PageCgroupUsed(pc
)) {
2677 memcg
= pc
->mem_cgroup
;
2678 if (memcg
&& !css_tryget_online(&memcg
->css
))
2680 } else if (PageSwapCache(page
)) {
2681 ent
.val
= page_private(page
);
2682 id
= lookup_swap_cgroup_id(ent
);
2684 memcg
= mem_cgroup_lookup(id
);
2685 if (memcg
&& !css_tryget_online(&memcg
->css
))
2692 static void lock_page_lru(struct page
*page
, int *isolated
)
2694 struct zone
*zone
= page_zone(page
);
2696 spin_lock_irq(&zone
->lru_lock
);
2697 if (PageLRU(page
)) {
2698 struct lruvec
*lruvec
;
2700 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
2702 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2708 static void unlock_page_lru(struct page
*page
, int isolated
)
2710 struct zone
*zone
= page_zone(page
);
2713 struct lruvec
*lruvec
;
2715 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
2716 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2718 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2720 spin_unlock_irq(&zone
->lru_lock
);
2723 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2726 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2729 VM_BUG_ON_PAGE(PageCgroupUsed(pc
), page
);
2731 * we don't need page_cgroup_lock about tail pages, becase they are not
2732 * accessed by any other context at this point.
2736 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2737 * may already be on some other mem_cgroup's LRU. Take care of it.
2740 lock_page_lru(page
, &isolated
);
2743 * Nobody should be changing or seriously looking at
2744 * pc->mem_cgroup and pc->flags at this point:
2746 * - the page is uncharged
2748 * - the page is off-LRU
2750 * - an anonymous fault has exclusive page access, except for
2751 * a locked page table
2753 * - a page cache insertion, a swapin fault, or a migration
2754 * have the page locked
2756 pc
->mem_cgroup
= memcg
;
2757 pc
->flags
= PCG_USED
| PCG_MEM
| (do_swap_account
? PCG_MEMSW
: 0);
2760 unlock_page_lru(page
, isolated
);
2763 static DEFINE_MUTEX(set_limit_mutex
);
2765 #ifdef CONFIG_MEMCG_KMEM
2767 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2768 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2770 static DEFINE_MUTEX(memcg_slab_mutex
);
2772 static DEFINE_MUTEX(activate_kmem_mutex
);
2775 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2776 * in the memcg_cache_params struct.
2778 static struct kmem_cache
*memcg_params_to_cache(struct memcg_cache_params
*p
)
2780 struct kmem_cache
*cachep
;
2782 VM_BUG_ON(p
->is_root_cache
);
2783 cachep
= p
->root_cache
;
2784 return cache_from_memcg_idx(cachep
, memcg_cache_id(p
->memcg
));
2787 #ifdef CONFIG_SLABINFO
2788 static int mem_cgroup_slabinfo_read(struct seq_file
*m
, void *v
)
2790 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
2791 struct memcg_cache_params
*params
;
2793 if (!memcg_kmem_is_active(memcg
))
2796 print_slabinfo_header(m
);
2798 mutex_lock(&memcg_slab_mutex
);
2799 list_for_each_entry(params
, &memcg
->memcg_slab_caches
, list
)
2800 cache_show(memcg_params_to_cache(params
), m
);
2801 mutex_unlock(&memcg_slab_mutex
);
2807 static int memcg_charge_kmem(struct mem_cgroup
*memcg
, gfp_t gfp
, u64 size
)
2809 struct res_counter
*fail_res
;
2812 ret
= res_counter_charge(&memcg
->kmem
, size
, &fail_res
);
2816 ret
= try_charge(memcg
, gfp
, size
>> PAGE_SHIFT
);
2817 if (ret
== -EINTR
) {
2819 * try_charge() chose to bypass to root due to OOM kill or
2820 * fatal signal. Since our only options are to either fail
2821 * the allocation or charge it to this cgroup, do it as a
2822 * temporary condition. But we can't fail. From a kmem/slab
2823 * perspective, the cache has already been selected, by
2824 * mem_cgroup_kmem_get_cache(), so it is too late to change
2827 * This condition will only trigger if the task entered
2828 * memcg_charge_kmem in a sane state, but was OOM-killed
2829 * during try_charge() above. Tasks that were already dying
2830 * when the allocation triggers should have been already
2831 * directed to the root cgroup in memcontrol.h
2833 res_counter_charge_nofail(&memcg
->res
, size
, &fail_res
);
2834 if (do_swap_account
)
2835 res_counter_charge_nofail(&memcg
->memsw
, size
,
2839 res_counter_uncharge(&memcg
->kmem
, size
);
2844 static void memcg_uncharge_kmem(struct mem_cgroup
*memcg
, u64 size
)
2846 res_counter_uncharge(&memcg
->res
, size
);
2847 if (do_swap_account
)
2848 res_counter_uncharge(&memcg
->memsw
, size
);
2851 if (res_counter_uncharge(&memcg
->kmem
, size
))
2855 * Releases a reference taken in kmem_cgroup_css_offline in case
2856 * this last uncharge is racing with the offlining code or it is
2857 * outliving the memcg existence.
2859 * The memory barrier imposed by test&clear is paired with the
2860 * explicit one in memcg_kmem_mark_dead().
2862 if (memcg_kmem_test_and_clear_dead(memcg
))
2863 css_put(&memcg
->css
);
2867 * helper for acessing a memcg's index. It will be used as an index in the
2868 * child cache array in kmem_cache, and also to derive its name. This function
2869 * will return -1 when this is not a kmem-limited memcg.
2871 int memcg_cache_id(struct mem_cgroup
*memcg
)
2873 return memcg
? memcg
->kmemcg_id
: -1;
2876 static int memcg_alloc_cache_id(void)
2881 id
= ida_simple_get(&kmem_limited_groups
,
2882 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2886 if (id
< memcg_limited_groups_array_size
)
2890 * There's no space for the new id in memcg_caches arrays,
2891 * so we have to grow them.
2894 size
= 2 * (id
+ 1);
2895 if (size
< MEMCG_CACHES_MIN_SIZE
)
2896 size
= MEMCG_CACHES_MIN_SIZE
;
2897 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2898 size
= MEMCG_CACHES_MAX_SIZE
;
2900 mutex_lock(&memcg_slab_mutex
);
2901 err
= memcg_update_all_caches(size
);
2902 mutex_unlock(&memcg_slab_mutex
);
2905 ida_simple_remove(&kmem_limited_groups
, id
);
2911 static void memcg_free_cache_id(int id
)
2913 ida_simple_remove(&kmem_limited_groups
, id
);
2917 * We should update the current array size iff all caches updates succeed. This
2918 * can only be done from the slab side. The slab mutex needs to be held when
2921 void memcg_update_array_size(int num
)
2923 memcg_limited_groups_array_size
= num
;
2926 static void memcg_register_cache(struct mem_cgroup
*memcg
,
2927 struct kmem_cache
*root_cache
)
2929 static char memcg_name_buf
[NAME_MAX
+ 1]; /* protected by
2931 struct kmem_cache
*cachep
;
2934 lockdep_assert_held(&memcg_slab_mutex
);
2936 id
= memcg_cache_id(memcg
);
2939 * Since per-memcg caches are created asynchronously on first
2940 * allocation (see memcg_kmem_get_cache()), several threads can try to
2941 * create the same cache, but only one of them may succeed.
2943 if (cache_from_memcg_idx(root_cache
, id
))
2946 cgroup_name(memcg
->css
.cgroup
, memcg_name_buf
, NAME_MAX
+ 1);
2947 cachep
= memcg_create_kmem_cache(memcg
, root_cache
, memcg_name_buf
);
2949 * If we could not create a memcg cache, do not complain, because
2950 * that's not critical at all as we can always proceed with the root
2956 css_get(&memcg
->css
);
2957 list_add(&cachep
->memcg_params
->list
, &memcg
->memcg_slab_caches
);
2960 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2961 * barrier here to ensure nobody will see the kmem_cache partially
2966 BUG_ON(root_cache
->memcg_params
->memcg_caches
[id
]);
2967 root_cache
->memcg_params
->memcg_caches
[id
] = cachep
;
2970 static void memcg_unregister_cache(struct kmem_cache
*cachep
)
2972 struct kmem_cache
*root_cache
;
2973 struct mem_cgroup
*memcg
;
2976 lockdep_assert_held(&memcg_slab_mutex
);
2978 BUG_ON(is_root_cache(cachep
));
2980 root_cache
= cachep
->memcg_params
->root_cache
;
2981 memcg
= cachep
->memcg_params
->memcg
;
2982 id
= memcg_cache_id(memcg
);
2984 BUG_ON(root_cache
->memcg_params
->memcg_caches
[id
] != cachep
);
2985 root_cache
->memcg_params
->memcg_caches
[id
] = NULL
;
2987 list_del(&cachep
->memcg_params
->list
);
2989 kmem_cache_destroy(cachep
);
2991 /* drop the reference taken in memcg_register_cache */
2992 css_put(&memcg
->css
);
2996 * During the creation a new cache, we need to disable our accounting mechanism
2997 * altogether. This is true even if we are not creating, but rather just
2998 * enqueing new caches to be created.
3000 * This is because that process will trigger allocations; some visible, like
3001 * explicit kmallocs to auxiliary data structures, name strings and internal
3002 * cache structures; some well concealed, like INIT_WORK() that can allocate
3003 * objects during debug.
3005 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3006 * to it. This may not be a bounded recursion: since the first cache creation
3007 * failed to complete (waiting on the allocation), we'll just try to create the
3008 * cache again, failing at the same point.
3010 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3011 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3012 * inside the following two functions.
3014 static inline void memcg_stop_kmem_account(void)
3016 VM_BUG_ON(!current
->mm
);
3017 current
->memcg_kmem_skip_account
++;
3020 static inline void memcg_resume_kmem_account(void)
3022 VM_BUG_ON(!current
->mm
);
3023 current
->memcg_kmem_skip_account
--;
3026 int __memcg_cleanup_cache_params(struct kmem_cache
*s
)
3028 struct kmem_cache
*c
;
3031 mutex_lock(&memcg_slab_mutex
);
3032 for_each_memcg_cache_index(i
) {
3033 c
= cache_from_memcg_idx(s
, i
);
3037 memcg_unregister_cache(c
);
3039 if (cache_from_memcg_idx(s
, i
))
3042 mutex_unlock(&memcg_slab_mutex
);
3046 static void memcg_unregister_all_caches(struct mem_cgroup
*memcg
)
3048 struct kmem_cache
*cachep
;
3049 struct memcg_cache_params
*params
, *tmp
;
3051 if (!memcg_kmem_is_active(memcg
))
3054 mutex_lock(&memcg_slab_mutex
);
3055 list_for_each_entry_safe(params
, tmp
, &memcg
->memcg_slab_caches
, list
) {
3056 cachep
= memcg_params_to_cache(params
);
3057 kmem_cache_shrink(cachep
);
3058 if (atomic_read(&cachep
->memcg_params
->nr_pages
) == 0)
3059 memcg_unregister_cache(cachep
);
3061 mutex_unlock(&memcg_slab_mutex
);
3064 struct memcg_register_cache_work
{
3065 struct mem_cgroup
*memcg
;
3066 struct kmem_cache
*cachep
;
3067 struct work_struct work
;
3070 static void memcg_register_cache_func(struct work_struct
*w
)
3072 struct memcg_register_cache_work
*cw
=
3073 container_of(w
, struct memcg_register_cache_work
, work
);
3074 struct mem_cgroup
*memcg
= cw
->memcg
;
3075 struct kmem_cache
*cachep
= cw
->cachep
;
3077 mutex_lock(&memcg_slab_mutex
);
3078 memcg_register_cache(memcg
, cachep
);
3079 mutex_unlock(&memcg_slab_mutex
);
3081 css_put(&memcg
->css
);
3086 * Enqueue the creation of a per-memcg kmem_cache.
3088 static void __memcg_schedule_register_cache(struct mem_cgroup
*memcg
,
3089 struct kmem_cache
*cachep
)
3091 struct memcg_register_cache_work
*cw
;
3093 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
);
3095 css_put(&memcg
->css
);
3100 cw
->cachep
= cachep
;
3102 INIT_WORK(&cw
->work
, memcg_register_cache_func
);
3103 schedule_work(&cw
->work
);
3106 static void memcg_schedule_register_cache(struct mem_cgroup
*memcg
,
3107 struct kmem_cache
*cachep
)
3110 * We need to stop accounting when we kmalloc, because if the
3111 * corresponding kmalloc cache is not yet created, the first allocation
3112 * in __memcg_schedule_register_cache will recurse.
3114 * However, it is better to enclose the whole function. Depending on
3115 * the debugging options enabled, INIT_WORK(), for instance, can
3116 * trigger an allocation. This too, will make us recurse. Because at
3117 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3118 * the safest choice is to do it like this, wrapping the whole function.
3120 memcg_stop_kmem_account();
3121 __memcg_schedule_register_cache(memcg
, cachep
);
3122 memcg_resume_kmem_account();
3125 int __memcg_charge_slab(struct kmem_cache
*cachep
, gfp_t gfp
, int order
)
3129 res
= memcg_charge_kmem(cachep
->memcg_params
->memcg
, gfp
,
3130 PAGE_SIZE
<< order
);
3132 atomic_add(1 << order
, &cachep
->memcg_params
->nr_pages
);
3136 void __memcg_uncharge_slab(struct kmem_cache
*cachep
, int order
)
3138 memcg_uncharge_kmem(cachep
->memcg_params
->memcg
, PAGE_SIZE
<< order
);
3139 atomic_sub(1 << order
, &cachep
->memcg_params
->nr_pages
);
3143 * Return the kmem_cache we're supposed to use for a slab allocation.
3144 * We try to use the current memcg's version of the cache.
3146 * If the cache does not exist yet, if we are the first user of it,
3147 * we either create it immediately, if possible, or create it asynchronously
3149 * In the latter case, we will let the current allocation go through with
3150 * the original cache.
3152 * Can't be called in interrupt context or from kernel threads.
3153 * This function needs to be called with rcu_read_lock() held.
3155 struct kmem_cache
*__memcg_kmem_get_cache(struct kmem_cache
*cachep
,
3158 struct mem_cgroup
*memcg
;
3159 struct kmem_cache
*memcg_cachep
;
3161 VM_BUG_ON(!cachep
->memcg_params
);
3162 VM_BUG_ON(!cachep
->memcg_params
->is_root_cache
);
3164 if (!current
->mm
|| current
->memcg_kmem_skip_account
)
3168 memcg
= mem_cgroup_from_task(rcu_dereference(current
->mm
->owner
));
3170 if (!memcg_kmem_is_active(memcg
))
3173 memcg_cachep
= cache_from_memcg_idx(cachep
, memcg_cache_id(memcg
));
3174 if (likely(memcg_cachep
)) {
3175 cachep
= memcg_cachep
;
3179 /* The corresponding put will be done in the workqueue. */
3180 if (!css_tryget_online(&memcg
->css
))
3185 * If we are in a safe context (can wait, and not in interrupt
3186 * context), we could be be predictable and return right away.
3187 * This would guarantee that the allocation being performed
3188 * already belongs in the new cache.
3190 * However, there are some clashes that can arrive from locking.
3191 * For instance, because we acquire the slab_mutex while doing
3192 * memcg_create_kmem_cache, this means no further allocation
3193 * could happen with the slab_mutex held. So it's better to
3196 memcg_schedule_register_cache(memcg
, cachep
);
3204 * We need to verify if the allocation against current->mm->owner's memcg is
3205 * possible for the given order. But the page is not allocated yet, so we'll
3206 * need a further commit step to do the final arrangements.
3208 * It is possible for the task to switch cgroups in this mean time, so at
3209 * commit time, we can't rely on task conversion any longer. We'll then use
3210 * the handle argument to return to the caller which cgroup we should commit
3211 * against. We could also return the memcg directly and avoid the pointer
3212 * passing, but a boolean return value gives better semantics considering
3213 * the compiled-out case as well.
3215 * Returning true means the allocation is possible.
3218 __memcg_kmem_newpage_charge(gfp_t gfp
, struct mem_cgroup
**_memcg
, int order
)
3220 struct mem_cgroup
*memcg
;
3226 * Disabling accounting is only relevant for some specific memcg
3227 * internal allocations. Therefore we would initially not have such
3228 * check here, since direct calls to the page allocator that are
3229 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3230 * outside memcg core. We are mostly concerned with cache allocations,
3231 * and by having this test at memcg_kmem_get_cache, we are already able
3232 * to relay the allocation to the root cache and bypass the memcg cache
3235 * There is one exception, though: the SLUB allocator does not create
3236 * large order caches, but rather service large kmallocs directly from
3237 * the page allocator. Therefore, the following sequence when backed by
3238 * the SLUB allocator:
3240 * memcg_stop_kmem_account();
3241 * kmalloc(<large_number>)
3242 * memcg_resume_kmem_account();
3244 * would effectively ignore the fact that we should skip accounting,
3245 * since it will drive us directly to this function without passing
3246 * through the cache selector memcg_kmem_get_cache. Such large
3247 * allocations are extremely rare but can happen, for instance, for the
3248 * cache arrays. We bring this test here.
3250 if (!current
->mm
|| current
->memcg_kmem_skip_account
)
3253 memcg
= get_mem_cgroup_from_mm(current
->mm
);
3255 if (!memcg_kmem_is_active(memcg
)) {
3256 css_put(&memcg
->css
);
3260 ret
= memcg_charge_kmem(memcg
, gfp
, PAGE_SIZE
<< order
);
3264 css_put(&memcg
->css
);
3268 void __memcg_kmem_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
3271 struct page_cgroup
*pc
;
3273 VM_BUG_ON(mem_cgroup_is_root(memcg
));
3275 /* The page allocation failed. Revert */
3277 memcg_uncharge_kmem(memcg
, PAGE_SIZE
<< order
);
3281 * The page is freshly allocated and not visible to any
3282 * outside callers yet. Set up pc non-atomically.
3284 pc
= lookup_page_cgroup(page
);
3285 pc
->mem_cgroup
= memcg
;
3286 pc
->flags
= PCG_USED
;
3289 void __memcg_kmem_uncharge_pages(struct page
*page
, int order
)
3291 struct mem_cgroup
*memcg
= NULL
;
3292 struct page_cgroup
*pc
;
3295 pc
= lookup_page_cgroup(page
);
3296 if (!PageCgroupUsed(pc
))
3299 memcg
= pc
->mem_cgroup
;
3303 * We trust that only if there is a memcg associated with the page, it
3304 * is a valid allocation
3309 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
3310 memcg_uncharge_kmem(memcg
, PAGE_SIZE
<< order
);
3313 static inline void memcg_unregister_all_caches(struct mem_cgroup
*memcg
)
3316 #endif /* CONFIG_MEMCG_KMEM */
3318 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3321 * Because tail pages are not marked as "used", set it. We're under
3322 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3323 * charge/uncharge will be never happen and move_account() is done under
3324 * compound_lock(), so we don't have to take care of races.
3326 void mem_cgroup_split_huge_fixup(struct page
*head
)
3328 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
3329 struct page_cgroup
*pc
;
3330 struct mem_cgroup
*memcg
;
3333 if (mem_cgroup_disabled())
3336 memcg
= head_pc
->mem_cgroup
;
3337 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
3339 pc
->mem_cgroup
= memcg
;
3340 pc
->flags
= head_pc
->flags
;
3342 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
3345 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3348 * mem_cgroup_move_account - move account of the page
3350 * @nr_pages: number of regular pages (>1 for huge pages)
3351 * @pc: page_cgroup of the page.
3352 * @from: mem_cgroup which the page is moved from.
3353 * @to: mem_cgroup which the page is moved to. @from != @to.
3355 * The caller must confirm following.
3356 * - page is not on LRU (isolate_page() is useful.)
3357 * - compound_lock is held when nr_pages > 1
3359 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3362 static int mem_cgroup_move_account(struct page
*page
,
3363 unsigned int nr_pages
,
3364 struct page_cgroup
*pc
,
3365 struct mem_cgroup
*from
,
3366 struct mem_cgroup
*to
)
3368 unsigned long flags
;
3371 VM_BUG_ON(from
== to
);
3372 VM_BUG_ON_PAGE(PageLRU(page
), page
);
3374 * The page is isolated from LRU. So, collapse function
3375 * will not handle this page. But page splitting can happen.
3376 * Do this check under compound_page_lock(). The caller should
3380 if (nr_pages
> 1 && !PageTransHuge(page
))
3384 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3385 * of its source page while we change it: page migration takes
3386 * both pages off the LRU, but page cache replacement doesn't.
3388 if (!trylock_page(page
))
3392 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
3395 move_lock_mem_cgroup(from
, &flags
);
3397 if (!PageAnon(page
) && page_mapped(page
)) {
3398 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
3400 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
3404 if (PageWriteback(page
)) {
3405 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
3407 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
3412 * It is safe to change pc->mem_cgroup here because the page
3413 * is referenced, charged, and isolated - we can't race with
3414 * uncharging, charging, migration, or LRU putback.
3417 /* caller should have done css_get */
3418 pc
->mem_cgroup
= to
;
3419 move_unlock_mem_cgroup(from
, &flags
);
3422 local_irq_disable();
3423 mem_cgroup_charge_statistics(to
, page
, nr_pages
);
3424 memcg_check_events(to
, page
);
3425 mem_cgroup_charge_statistics(from
, page
, -nr_pages
);
3426 memcg_check_events(from
, page
);
3435 * mem_cgroup_move_parent - moves page to the parent group
3436 * @page: the page to move
3437 * @pc: page_cgroup of the page
3438 * @child: page's cgroup
3440 * move charges to its parent or the root cgroup if the group has no
3441 * parent (aka use_hierarchy==0).
3442 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3443 * mem_cgroup_move_account fails) the failure is always temporary and
3444 * it signals a race with a page removal/uncharge or migration. In the
3445 * first case the page is on the way out and it will vanish from the LRU
3446 * on the next attempt and the call should be retried later.
3447 * Isolation from the LRU fails only if page has been isolated from
3448 * the LRU since we looked at it and that usually means either global
3449 * reclaim or migration going on. The page will either get back to the
3451 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3452 * (!PageCgroupUsed) or moved to a different group. The page will
3453 * disappear in the next attempt.
3455 static int mem_cgroup_move_parent(struct page
*page
,
3456 struct page_cgroup
*pc
,
3457 struct mem_cgroup
*child
)
3459 struct mem_cgroup
*parent
;
3460 unsigned int nr_pages
;
3461 unsigned long uninitialized_var(flags
);
3464 VM_BUG_ON(mem_cgroup_is_root(child
));
3467 if (!get_page_unless_zero(page
))
3469 if (isolate_lru_page(page
))
3472 nr_pages
= hpage_nr_pages(page
);
3474 parent
= parent_mem_cgroup(child
);
3476 * If no parent, move charges to root cgroup.
3479 parent
= root_mem_cgroup
;
3482 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
3483 flags
= compound_lock_irqsave(page
);
3486 ret
= mem_cgroup_move_account(page
, nr_pages
,
3489 __mem_cgroup_cancel_local_charge(child
, nr_pages
);
3492 compound_unlock_irqrestore(page
, flags
);
3493 putback_lru_page(page
);
3500 #ifdef CONFIG_MEMCG_SWAP
3501 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
3504 int val
= (charge
) ? 1 : -1;
3505 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
3509 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3510 * @entry: swap entry to be moved
3511 * @from: mem_cgroup which the entry is moved from
3512 * @to: mem_cgroup which the entry is moved to
3514 * It succeeds only when the swap_cgroup's record for this entry is the same
3515 * as the mem_cgroup's id of @from.
3517 * Returns 0 on success, -EINVAL on failure.
3519 * The caller must have charged to @to, IOW, called res_counter_charge() about
3520 * both res and memsw, and called css_get().
3522 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
3523 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
3525 unsigned short old_id
, new_id
;
3527 old_id
= mem_cgroup_id(from
);
3528 new_id
= mem_cgroup_id(to
);
3530 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
3531 mem_cgroup_swap_statistics(from
, false);
3532 mem_cgroup_swap_statistics(to
, true);
3534 * This function is only called from task migration context now.
3535 * It postpones res_counter and refcount handling till the end
3536 * of task migration(mem_cgroup_clear_mc()) for performance
3537 * improvement. But we cannot postpone css_get(to) because if
3538 * the process that has been moved to @to does swap-in, the
3539 * refcount of @to might be decreased to 0.
3541 * We are in attach() phase, so the cgroup is guaranteed to be
3542 * alive, so we can just call css_get().
3550 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
3551 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
3557 #ifdef CONFIG_DEBUG_VM
3558 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
3560 struct page_cgroup
*pc
;
3562 pc
= lookup_page_cgroup(page
);
3564 * Can be NULL while feeding pages into the page allocator for
3565 * the first time, i.e. during boot or memory hotplug;
3566 * or when mem_cgroup_disabled().
3568 if (likely(pc
) && PageCgroupUsed(pc
))
3573 bool mem_cgroup_bad_page_check(struct page
*page
)
3575 if (mem_cgroup_disabled())
3578 return lookup_page_cgroup_used(page
) != NULL
;
3581 void mem_cgroup_print_bad_page(struct page
*page
)
3583 struct page_cgroup
*pc
;
3585 pc
= lookup_page_cgroup_used(page
);
3587 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3588 pc
, pc
->flags
, pc
->mem_cgroup
);
3593 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
3594 unsigned long long val
)
3598 int children
= mem_cgroup_count_children(memcg
);
3599 u64 curusage
, oldusage
;
3603 * For keeping hierarchical_reclaim simple, how long we should retry
3604 * is depends on callers. We set our retry-count to be function
3605 * of # of children which we should visit in this loop.
3607 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
3609 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3612 while (retry_count
) {
3613 if (signal_pending(current
)) {
3618 * Rather than hide all in some function, I do this in
3619 * open coded manner. You see what this really does.
3620 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3622 mutex_lock(&set_limit_mutex
);
3623 if (res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) < val
) {
3625 mutex_unlock(&set_limit_mutex
);
3629 if (res_counter_read_u64(&memcg
->res
, RES_LIMIT
) < val
)
3632 ret
= res_counter_set_limit(&memcg
->res
, val
);
3633 mutex_unlock(&set_limit_mutex
);
3638 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, true);
3640 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3641 /* Usage is reduced ? */
3642 if (curusage
>= oldusage
)
3645 oldusage
= curusage
;
3647 if (!ret
&& enlarge
)
3648 memcg_oom_recover(memcg
);
3653 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3654 unsigned long long val
)
3657 u64 oldusage
, curusage
;
3658 int children
= mem_cgroup_count_children(memcg
);
3662 /* see mem_cgroup_resize_res_limit */
3663 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3664 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3665 while (retry_count
) {
3666 if (signal_pending(current
)) {
3671 * Rather than hide all in some function, I do this in
3672 * open coded manner. You see what this really does.
3673 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3675 mutex_lock(&set_limit_mutex
);
3676 if (res_counter_read_u64(&memcg
->res
, RES_LIMIT
) > val
) {
3678 mutex_unlock(&set_limit_mutex
);
3681 if (res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) < val
)
3683 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3684 mutex_unlock(&set_limit_mutex
);
3689 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, false);
3691 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3692 /* Usage is reduced ? */
3693 if (curusage
>= oldusage
)
3696 oldusage
= curusage
;
3698 if (!ret
&& enlarge
)
3699 memcg_oom_recover(memcg
);
3703 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3705 unsigned long *total_scanned
)
3707 unsigned long nr_reclaimed
= 0;
3708 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3709 unsigned long reclaimed
;
3711 struct mem_cgroup_tree_per_zone
*mctz
;
3712 unsigned long long excess
;
3713 unsigned long nr_scanned
;
3718 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3720 * This loop can run a while, specially if mem_cgroup's continuously
3721 * keep exceeding their soft limit and putting the system under
3728 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3733 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, zone
,
3734 gfp_mask
, &nr_scanned
);
3735 nr_reclaimed
+= reclaimed
;
3736 *total_scanned
+= nr_scanned
;
3737 spin_lock_irq(&mctz
->lock
);
3740 * If we failed to reclaim anything from this memory cgroup
3741 * it is time to move on to the next cgroup
3747 * Loop until we find yet another one.
3749 * By the time we get the soft_limit lock
3750 * again, someone might have aded the
3751 * group back on the RB tree. Iterate to
3752 * make sure we get a different mem.
3753 * mem_cgroup_largest_soft_limit_node returns
3754 * NULL if no other cgroup is present on
3758 __mem_cgroup_largest_soft_limit_node(mctz
);
3760 css_put(&next_mz
->memcg
->css
);
3761 else /* next_mz == NULL or other memcg */
3765 __mem_cgroup_remove_exceeded(mz
, mctz
);
3766 excess
= res_counter_soft_limit_excess(&mz
->memcg
->res
);
3768 * One school of thought says that we should not add
3769 * back the node to the tree if reclaim returns 0.
3770 * But our reclaim could return 0, simply because due
3771 * to priority we are exposing a smaller subset of
3772 * memory to reclaim from. Consider this as a longer
3775 /* If excess == 0, no tree ops */
3776 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
3777 spin_unlock_irq(&mctz
->lock
);
3778 css_put(&mz
->memcg
->css
);
3781 * Could not reclaim anything and there are no more
3782 * mem cgroups to try or we seem to be looping without
3783 * reclaiming anything.
3785 if (!nr_reclaimed
&&
3787 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3789 } while (!nr_reclaimed
);
3791 css_put(&next_mz
->memcg
->css
);
3792 return nr_reclaimed
;
3796 * mem_cgroup_force_empty_list - clears LRU of a group
3797 * @memcg: group to clear
3800 * @lru: lru to to clear
3802 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3803 * reclaim the pages page themselves - pages are moved to the parent (or root)
3806 static void mem_cgroup_force_empty_list(struct mem_cgroup
*memcg
,
3807 int node
, int zid
, enum lru_list lru
)
3809 struct lruvec
*lruvec
;
3810 unsigned long flags
;
3811 struct list_head
*list
;
3815 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3816 lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
3817 list
= &lruvec
->lists
[lru
];
3821 struct page_cgroup
*pc
;
3824 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3825 if (list_empty(list
)) {
3826 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3829 page
= list_entry(list
->prev
, struct page
, lru
);
3831 list_move(&page
->lru
, list
);
3833 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3836 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3838 pc
= lookup_page_cgroup(page
);
3840 if (mem_cgroup_move_parent(page
, pc
, memcg
)) {
3841 /* found lock contention or "pc" is obsolete. */
3846 } while (!list_empty(list
));
3850 * make mem_cgroup's charge to be 0 if there is no task by moving
3851 * all the charges and pages to the parent.
3852 * This enables deleting this mem_cgroup.
3854 * Caller is responsible for holding css reference on the memcg.
3856 static void mem_cgroup_reparent_charges(struct mem_cgroup
*memcg
)
3862 /* This is for making all *used* pages to be on LRU. */
3863 lru_add_drain_all();
3864 drain_all_stock_sync(memcg
);
3865 mem_cgroup_start_move(memcg
);
3866 for_each_node_state(node
, N_MEMORY
) {
3867 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
3870 mem_cgroup_force_empty_list(memcg
,
3875 mem_cgroup_end_move(memcg
);
3876 memcg_oom_recover(memcg
);
3880 * Kernel memory may not necessarily be trackable to a specific
3881 * process. So they are not migrated, and therefore we can't
3882 * expect their value to drop to 0 here.
3883 * Having res filled up with kmem only is enough.
3885 * This is a safety check because mem_cgroup_force_empty_list
3886 * could have raced with mem_cgroup_replace_page_cache callers
3887 * so the lru seemed empty but the page could have been added
3888 * right after the check. RES_USAGE should be safe as we always
3889 * charge before adding to the LRU.
3891 usage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
) -
3892 res_counter_read_u64(&memcg
->kmem
, RES_USAGE
);
3893 } while (usage
> 0);
3897 * Test whether @memcg has children, dead or alive. Note that this
3898 * function doesn't care whether @memcg has use_hierarchy enabled and
3899 * returns %true if there are child csses according to the cgroup
3900 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3902 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
3907 * The lock does not prevent addition or deletion of children, but
3908 * it prevents a new child from being initialized based on this
3909 * parent in css_online(), so it's enough to decide whether
3910 * hierarchically inherited attributes can still be changed or not.
3912 lockdep_assert_held(&memcg_create_mutex
);
3915 ret
= css_next_child(NULL
, &memcg
->css
);
3921 * Reclaims as many pages from the given memcg as possible and moves
3922 * the rest to the parent.
3924 * Caller is responsible for holding css reference for memcg.
3926 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
3928 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3930 /* we call try-to-free pages for make this cgroup empty */
3931 lru_add_drain_all();
3932 /* try to free all pages in this cgroup */
3933 while (nr_retries
&& res_counter_read_u64(&memcg
->res
, RES_USAGE
) > 0) {
3936 if (signal_pending(current
))
3939 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
3943 /* maybe some writeback is necessary */
3944 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3952 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
3953 char *buf
, size_t nbytes
,
3956 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3958 if (mem_cgroup_is_root(memcg
))
3960 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
3963 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
3966 return mem_cgroup_from_css(css
)->use_hierarchy
;
3969 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
3970 struct cftype
*cft
, u64 val
)
3973 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3974 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
3976 mutex_lock(&memcg_create_mutex
);
3978 if (memcg
->use_hierarchy
== val
)
3982 * If parent's use_hierarchy is set, we can't make any modifications
3983 * in the child subtrees. If it is unset, then the change can
3984 * occur, provided the current cgroup has no children.
3986 * For the root cgroup, parent_mem is NULL, we allow value to be
3987 * set if there are no children.
3989 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
3990 (val
== 1 || val
== 0)) {
3991 if (!memcg_has_children(memcg
))
3992 memcg
->use_hierarchy
= val
;
3999 mutex_unlock(&memcg_create_mutex
);
4004 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*memcg
,
4005 enum mem_cgroup_stat_index idx
)
4007 struct mem_cgroup
*iter
;
4010 /* Per-cpu values can be negative, use a signed accumulator */
4011 for_each_mem_cgroup_tree(iter
, memcg
)
4012 val
+= mem_cgroup_read_stat(iter
, idx
);
4014 if (val
< 0) /* race ? */
4019 static inline u64
mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
4023 if (!mem_cgroup_is_root(memcg
)) {
4025 return res_counter_read_u64(&memcg
->res
, RES_USAGE
);
4027 return res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
4031 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4032 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4034 val
= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
4035 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_RSS
);
4038 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_SWAP
);
4040 return val
<< PAGE_SHIFT
;
4044 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
4047 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4048 enum res_type type
= MEMFILE_TYPE(cft
->private);
4049 int name
= MEMFILE_ATTR(cft
->private);
4053 if (name
== RES_USAGE
)
4054 return mem_cgroup_usage(memcg
, false);
4055 return res_counter_read_u64(&memcg
->res
, name
);
4057 if (name
== RES_USAGE
)
4058 return mem_cgroup_usage(memcg
, true);
4059 return res_counter_read_u64(&memcg
->memsw
, name
);
4061 return res_counter_read_u64(&memcg
->kmem
, name
);
4068 #ifdef CONFIG_MEMCG_KMEM
4069 /* should be called with activate_kmem_mutex held */
4070 static int __memcg_activate_kmem(struct mem_cgroup
*memcg
,
4071 unsigned long long limit
)
4076 if (memcg_kmem_is_active(memcg
))
4080 * We are going to allocate memory for data shared by all memory
4081 * cgroups so let's stop accounting here.
4083 memcg_stop_kmem_account();
4086 * For simplicity, we won't allow this to be disabled. It also can't
4087 * be changed if the cgroup has children already, or if tasks had
4090 * If tasks join before we set the limit, a person looking at
4091 * kmem.usage_in_bytes will have no way to determine when it took
4092 * place, which makes the value quite meaningless.
4094 * After it first became limited, changes in the value of the limit are
4095 * of course permitted.
4097 mutex_lock(&memcg_create_mutex
);
4098 if (cgroup_has_tasks(memcg
->css
.cgroup
) ||
4099 (memcg
->use_hierarchy
&& memcg_has_children(memcg
)))
4101 mutex_unlock(&memcg_create_mutex
);
4105 memcg_id
= memcg_alloc_cache_id();
4111 memcg
->kmemcg_id
= memcg_id
;
4112 INIT_LIST_HEAD(&memcg
->memcg_slab_caches
);
4115 * We couldn't have accounted to this cgroup, because it hasn't got the
4116 * active bit set yet, so this should succeed.
4118 err
= res_counter_set_limit(&memcg
->kmem
, limit
);
4121 static_key_slow_inc(&memcg_kmem_enabled_key
);
4123 * Setting the active bit after enabling static branching will
4124 * guarantee no one starts accounting before all call sites are
4127 memcg_kmem_set_active(memcg
);
4129 memcg_resume_kmem_account();
4133 static int memcg_activate_kmem(struct mem_cgroup
*memcg
,
4134 unsigned long long limit
)
4138 mutex_lock(&activate_kmem_mutex
);
4139 ret
= __memcg_activate_kmem(memcg
, limit
);
4140 mutex_unlock(&activate_kmem_mutex
);
4144 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
4145 unsigned long long val
)
4149 if (!memcg_kmem_is_active(memcg
))
4150 ret
= memcg_activate_kmem(memcg
, val
);
4152 ret
= res_counter_set_limit(&memcg
->kmem
, val
);
4156 static int memcg_propagate_kmem(struct mem_cgroup
*memcg
)
4159 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
4164 mutex_lock(&activate_kmem_mutex
);
4166 * If the parent cgroup is not kmem-active now, it cannot be activated
4167 * after this point, because it has at least one child already.
4169 if (memcg_kmem_is_active(parent
))
4170 ret
= __memcg_activate_kmem(memcg
, RES_COUNTER_MAX
);
4171 mutex_unlock(&activate_kmem_mutex
);
4175 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
4176 unsigned long long val
)
4180 #endif /* CONFIG_MEMCG_KMEM */
4183 * The user of this function is...
4186 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
4187 char *buf
, size_t nbytes
, loff_t off
)
4189 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
4192 unsigned long long val
;
4195 buf
= strstrip(buf
);
4196 type
= MEMFILE_TYPE(of_cft(of
)->private);
4197 name
= MEMFILE_ATTR(of_cft(of
)->private);
4201 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
4205 /* This function does all necessary parse...reuse it */
4206 ret
= res_counter_memparse_write_strategy(buf
, &val
);
4210 ret
= mem_cgroup_resize_limit(memcg
, val
);
4211 else if (type
== _MEMSWAP
)
4212 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
4213 else if (type
== _KMEM
)
4214 ret
= memcg_update_kmem_limit(memcg
, val
);
4218 case RES_SOFT_LIMIT
:
4219 ret
= res_counter_memparse_write_strategy(buf
, &val
);
4223 * For memsw, soft limits are hard to implement in terms
4224 * of semantics, for now, we support soft limits for
4225 * control without swap
4228 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
4233 ret
= -EINVAL
; /* should be BUG() ? */
4236 return ret
?: nbytes
;
4239 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
4240 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
4242 unsigned long long min_limit
, min_memsw_limit
, tmp
;
4244 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4245 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4246 if (!memcg
->use_hierarchy
)
4249 while (memcg
->css
.parent
) {
4250 memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
4251 if (!memcg
->use_hierarchy
)
4253 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4254 min_limit
= min(min_limit
, tmp
);
4255 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4256 min_memsw_limit
= min(min_memsw_limit
, tmp
);
4259 *mem_limit
= min_limit
;
4260 *memsw_limit
= min_memsw_limit
;
4263 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
4264 size_t nbytes
, loff_t off
)
4266 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
4270 type
= MEMFILE_TYPE(of_cft(of
)->private);
4271 name
= MEMFILE_ATTR(of_cft(of
)->private);
4276 res_counter_reset_max(&memcg
->res
);
4277 else if (type
== _MEMSWAP
)
4278 res_counter_reset_max(&memcg
->memsw
);
4279 else if (type
== _KMEM
)
4280 res_counter_reset_max(&memcg
->kmem
);
4286 res_counter_reset_failcnt(&memcg
->res
);
4287 else if (type
== _MEMSWAP
)
4288 res_counter_reset_failcnt(&memcg
->memsw
);
4289 else if (type
== _KMEM
)
4290 res_counter_reset_failcnt(&memcg
->kmem
);
4299 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
4302 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
4306 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
4307 struct cftype
*cft
, u64 val
)
4309 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4311 if (val
>= (1 << NR_MOVE_TYPE
))
4315 * No kind of locking is needed in here, because ->can_attach() will
4316 * check this value once in the beginning of the process, and then carry
4317 * on with stale data. This means that changes to this value will only
4318 * affect task migrations starting after the change.
4320 memcg
->move_charge_at_immigrate
= val
;
4324 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
4325 struct cftype
*cft
, u64 val
)
4332 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
4336 unsigned int lru_mask
;
4339 static const struct numa_stat stats
[] = {
4340 { "total", LRU_ALL
},
4341 { "file", LRU_ALL_FILE
},
4342 { "anon", LRU_ALL_ANON
},
4343 { "unevictable", BIT(LRU_UNEVICTABLE
) },
4345 const struct numa_stat
*stat
;
4348 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
4350 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
4351 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
4352 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
4353 for_each_node_state(nid
, N_MEMORY
) {
4354 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
4356 seq_printf(m
, " N%d=%lu", nid
, nr
);
4361 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
4362 struct mem_cgroup
*iter
;
4365 for_each_mem_cgroup_tree(iter
, memcg
)
4366 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
4367 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
4368 for_each_node_state(nid
, N_MEMORY
) {
4370 for_each_mem_cgroup_tree(iter
, memcg
)
4371 nr
+= mem_cgroup_node_nr_lru_pages(
4372 iter
, nid
, stat
->lru_mask
);
4373 seq_printf(m
, " N%d=%lu", nid
, nr
);
4380 #endif /* CONFIG_NUMA */
4382 static inline void mem_cgroup_lru_names_not_uptodate(void)
4384 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
4387 static int memcg_stat_show(struct seq_file
*m
, void *v
)
4389 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
4390 struct mem_cgroup
*mi
;
4393 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
4394 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
4396 seq_printf(m
, "%s %ld\n", mem_cgroup_stat_names
[i
],
4397 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
4400 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
4401 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
4402 mem_cgroup_read_events(memcg
, i
));
4404 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
4405 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
4406 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
4408 /* Hierarchical information */
4410 unsigned long long limit
, memsw_limit
;
4411 memcg_get_hierarchical_limit(memcg
, &limit
, &memsw_limit
);
4412 seq_printf(m
, "hierarchical_memory_limit %llu\n", limit
);
4413 if (do_swap_account
)
4414 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
4418 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
4421 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
4423 for_each_mem_cgroup_tree(mi
, memcg
)
4424 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
4425 seq_printf(m
, "total_%s %lld\n", mem_cgroup_stat_names
[i
], val
);
4428 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
4429 unsigned long long val
= 0;
4431 for_each_mem_cgroup_tree(mi
, memcg
)
4432 val
+= mem_cgroup_read_events(mi
, i
);
4433 seq_printf(m
, "total_%s %llu\n",
4434 mem_cgroup_events_names
[i
], val
);
4437 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
4438 unsigned long long val
= 0;
4440 for_each_mem_cgroup_tree(mi
, memcg
)
4441 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
4442 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
4445 #ifdef CONFIG_DEBUG_VM
4448 struct mem_cgroup_per_zone
*mz
;
4449 struct zone_reclaim_stat
*rstat
;
4450 unsigned long recent_rotated
[2] = {0, 0};
4451 unsigned long recent_scanned
[2] = {0, 0};
4453 for_each_online_node(nid
)
4454 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4455 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
4456 rstat
= &mz
->lruvec
.reclaim_stat
;
4458 recent_rotated
[0] += rstat
->recent_rotated
[0];
4459 recent_rotated
[1] += rstat
->recent_rotated
[1];
4460 recent_scanned
[0] += rstat
->recent_scanned
[0];
4461 recent_scanned
[1] += rstat
->recent_scanned
[1];
4463 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
4464 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
4465 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
4466 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
4473 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
4476 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4478 return mem_cgroup_swappiness(memcg
);
4481 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
4482 struct cftype
*cft
, u64 val
)
4484 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4490 memcg
->swappiness
= val
;
4492 vm_swappiness
= val
;
4497 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
4499 struct mem_cgroup_threshold_ary
*t
;
4505 t
= rcu_dereference(memcg
->thresholds
.primary
);
4507 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
4512 usage
= mem_cgroup_usage(memcg
, swap
);
4515 * current_threshold points to threshold just below or equal to usage.
4516 * If it's not true, a threshold was crossed after last
4517 * call of __mem_cgroup_threshold().
4519 i
= t
->current_threshold
;
4522 * Iterate backward over array of thresholds starting from
4523 * current_threshold and check if a threshold is crossed.
4524 * If none of thresholds below usage is crossed, we read
4525 * only one element of the array here.
4527 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
4528 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4530 /* i = current_threshold + 1 */
4534 * Iterate forward over array of thresholds starting from
4535 * current_threshold+1 and check if a threshold is crossed.
4536 * If none of thresholds above usage is crossed, we read
4537 * only one element of the array here.
4539 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
4540 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4542 /* Update current_threshold */
4543 t
->current_threshold
= i
- 1;
4548 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
4551 __mem_cgroup_threshold(memcg
, false);
4552 if (do_swap_account
)
4553 __mem_cgroup_threshold(memcg
, true);
4555 memcg
= parent_mem_cgroup(memcg
);
4559 static int compare_thresholds(const void *a
, const void *b
)
4561 const struct mem_cgroup_threshold
*_a
= a
;
4562 const struct mem_cgroup_threshold
*_b
= b
;
4564 if (_a
->threshold
> _b
->threshold
)
4567 if (_a
->threshold
< _b
->threshold
)
4573 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
4575 struct mem_cgroup_eventfd_list
*ev
;
4577 spin_lock(&memcg_oom_lock
);
4579 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
4580 eventfd_signal(ev
->eventfd
, 1);
4582 spin_unlock(&memcg_oom_lock
);
4586 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
4588 struct mem_cgroup
*iter
;
4590 for_each_mem_cgroup_tree(iter
, memcg
)
4591 mem_cgroup_oom_notify_cb(iter
);
4594 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
4595 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
4597 struct mem_cgroup_thresholds
*thresholds
;
4598 struct mem_cgroup_threshold_ary
*new;
4599 u64 threshold
, usage
;
4602 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
4606 mutex_lock(&memcg
->thresholds_lock
);
4609 thresholds
= &memcg
->thresholds
;
4610 usage
= mem_cgroup_usage(memcg
, false);
4611 } else if (type
== _MEMSWAP
) {
4612 thresholds
= &memcg
->memsw_thresholds
;
4613 usage
= mem_cgroup_usage(memcg
, true);
4617 /* Check if a threshold crossed before adding a new one */
4618 if (thresholds
->primary
)
4619 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4621 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
4623 /* Allocate memory for new array of thresholds */
4624 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
4632 /* Copy thresholds (if any) to new array */
4633 if (thresholds
->primary
) {
4634 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
4635 sizeof(struct mem_cgroup_threshold
));
4638 /* Add new threshold */
4639 new->entries
[size
- 1].eventfd
= eventfd
;
4640 new->entries
[size
- 1].threshold
= threshold
;
4642 /* Sort thresholds. Registering of new threshold isn't time-critical */
4643 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
4644 compare_thresholds
, NULL
);
4646 /* Find current threshold */
4647 new->current_threshold
= -1;
4648 for (i
= 0; i
< size
; i
++) {
4649 if (new->entries
[i
].threshold
<= usage
) {
4651 * new->current_threshold will not be used until
4652 * rcu_assign_pointer(), so it's safe to increment
4655 ++new->current_threshold
;
4660 /* Free old spare buffer and save old primary buffer as spare */
4661 kfree(thresholds
->spare
);
4662 thresholds
->spare
= thresholds
->primary
;
4664 rcu_assign_pointer(thresholds
->primary
, new);
4666 /* To be sure that nobody uses thresholds */
4670 mutex_unlock(&memcg
->thresholds_lock
);
4675 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
4676 struct eventfd_ctx
*eventfd
, const char *args
)
4678 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
4681 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
4682 struct eventfd_ctx
*eventfd
, const char *args
)
4684 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
4687 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
4688 struct eventfd_ctx
*eventfd
, enum res_type type
)
4690 struct mem_cgroup_thresholds
*thresholds
;
4691 struct mem_cgroup_threshold_ary
*new;
4695 mutex_lock(&memcg
->thresholds_lock
);
4698 thresholds
= &memcg
->thresholds
;
4699 usage
= mem_cgroup_usage(memcg
, false);
4700 } else if (type
== _MEMSWAP
) {
4701 thresholds
= &memcg
->memsw_thresholds
;
4702 usage
= mem_cgroup_usage(memcg
, true);
4706 if (!thresholds
->primary
)
4709 /* Check if a threshold crossed before removing */
4710 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4712 /* Calculate new number of threshold */
4714 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4715 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4719 new = thresholds
->spare
;
4721 /* Set thresholds array to NULL if we don't have thresholds */
4730 /* Copy thresholds and find current threshold */
4731 new->current_threshold
= -1;
4732 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4733 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4736 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4737 if (new->entries
[j
].threshold
<= usage
) {
4739 * new->current_threshold will not be used
4740 * until rcu_assign_pointer(), so it's safe to increment
4743 ++new->current_threshold
;
4749 /* Swap primary and spare array */
4750 thresholds
->spare
= thresholds
->primary
;
4751 /* If all events are unregistered, free the spare array */
4753 kfree(thresholds
->spare
);
4754 thresholds
->spare
= NULL
;
4757 rcu_assign_pointer(thresholds
->primary
, new);
4759 /* To be sure that nobody uses thresholds */
4762 mutex_unlock(&memcg
->thresholds_lock
);
4765 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
4766 struct eventfd_ctx
*eventfd
)
4768 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
4771 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
4772 struct eventfd_ctx
*eventfd
)
4774 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
4777 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
4778 struct eventfd_ctx
*eventfd
, const char *args
)
4780 struct mem_cgroup_eventfd_list
*event
;
4782 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4786 spin_lock(&memcg_oom_lock
);
4788 event
->eventfd
= eventfd
;
4789 list_add(&event
->list
, &memcg
->oom_notify
);
4791 /* already in OOM ? */
4792 if (atomic_read(&memcg
->under_oom
))
4793 eventfd_signal(eventfd
, 1);
4794 spin_unlock(&memcg_oom_lock
);
4799 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
4800 struct eventfd_ctx
*eventfd
)
4802 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4804 spin_lock(&memcg_oom_lock
);
4806 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
4807 if (ev
->eventfd
== eventfd
) {
4808 list_del(&ev
->list
);
4813 spin_unlock(&memcg_oom_lock
);
4816 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
4818 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
4820 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
4821 seq_printf(sf
, "under_oom %d\n", (bool)atomic_read(&memcg
->under_oom
));
4825 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
4826 struct cftype
*cft
, u64 val
)
4828 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4830 /* cannot set to root cgroup and only 0 and 1 are allowed */
4831 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
4834 memcg
->oom_kill_disable
= val
;
4836 memcg_oom_recover(memcg
);
4841 #ifdef CONFIG_MEMCG_KMEM
4842 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
4846 memcg
->kmemcg_id
= -1;
4847 ret
= memcg_propagate_kmem(memcg
);
4851 return mem_cgroup_sockets_init(memcg
, ss
);
4854 static void memcg_destroy_kmem(struct mem_cgroup
*memcg
)
4856 mem_cgroup_sockets_destroy(memcg
);
4859 static void kmem_cgroup_css_offline(struct mem_cgroup
*memcg
)
4861 if (!memcg_kmem_is_active(memcg
))
4865 * kmem charges can outlive the cgroup. In the case of slab
4866 * pages, for instance, a page contain objects from various
4867 * processes. As we prevent from taking a reference for every
4868 * such allocation we have to be careful when doing uncharge
4869 * (see memcg_uncharge_kmem) and here during offlining.
4871 * The idea is that that only the _last_ uncharge which sees
4872 * the dead memcg will drop the last reference. An additional
4873 * reference is taken here before the group is marked dead
4874 * which is then paired with css_put during uncharge resp. here.
4876 * Although this might sound strange as this path is called from
4877 * css_offline() when the referencemight have dropped down to 0 and
4878 * shouldn't be incremented anymore (css_tryget_online() would
4879 * fail) we do not have other options because of the kmem
4880 * allocations lifetime.
4882 css_get(&memcg
->css
);
4884 memcg_kmem_mark_dead(memcg
);
4886 if (res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) != 0)
4889 if (memcg_kmem_test_and_clear_dead(memcg
))
4890 css_put(&memcg
->css
);
4893 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
4898 static void memcg_destroy_kmem(struct mem_cgroup
*memcg
)
4902 static void kmem_cgroup_css_offline(struct mem_cgroup
*memcg
)
4908 * DO NOT USE IN NEW FILES.
4910 * "cgroup.event_control" implementation.
4912 * This is way over-engineered. It tries to support fully configurable
4913 * events for each user. Such level of flexibility is completely
4914 * unnecessary especially in the light of the planned unified hierarchy.
4916 * Please deprecate this and replace with something simpler if at all
4921 * Unregister event and free resources.
4923 * Gets called from workqueue.
4925 static void memcg_event_remove(struct work_struct
*work
)
4927 struct mem_cgroup_event
*event
=
4928 container_of(work
, struct mem_cgroup_event
, remove
);
4929 struct mem_cgroup
*memcg
= event
->memcg
;
4931 remove_wait_queue(event
->wqh
, &event
->wait
);
4933 event
->unregister_event(memcg
, event
->eventfd
);
4935 /* Notify userspace the event is going away. */
4936 eventfd_signal(event
->eventfd
, 1);
4938 eventfd_ctx_put(event
->eventfd
);
4940 css_put(&memcg
->css
);
4944 * Gets called on POLLHUP on eventfd when user closes it.
4946 * Called with wqh->lock held and interrupts disabled.
4948 static int memcg_event_wake(wait_queue_t
*wait
, unsigned mode
,
4949 int sync
, void *key
)
4951 struct mem_cgroup_event
*event
=
4952 container_of(wait
, struct mem_cgroup_event
, wait
);
4953 struct mem_cgroup
*memcg
= event
->memcg
;
4954 unsigned long flags
= (unsigned long)key
;
4956 if (flags
& POLLHUP
) {
4958 * If the event has been detached at cgroup removal, we
4959 * can simply return knowing the other side will cleanup
4962 * We can't race against event freeing since the other
4963 * side will require wqh->lock via remove_wait_queue(),
4966 spin_lock(&memcg
->event_list_lock
);
4967 if (!list_empty(&event
->list
)) {
4968 list_del_init(&event
->list
);
4970 * We are in atomic context, but cgroup_event_remove()
4971 * may sleep, so we have to call it in workqueue.
4973 schedule_work(&event
->remove
);
4975 spin_unlock(&memcg
->event_list_lock
);
4981 static void memcg_event_ptable_queue_proc(struct file
*file
,
4982 wait_queue_head_t
*wqh
, poll_table
*pt
)
4984 struct mem_cgroup_event
*event
=
4985 container_of(pt
, struct mem_cgroup_event
, pt
);
4988 add_wait_queue(wqh
, &event
->wait
);
4992 * DO NOT USE IN NEW FILES.
4994 * Parse input and register new cgroup event handler.
4996 * Input must be in format '<event_fd> <control_fd> <args>'.
4997 * Interpretation of args is defined by control file implementation.
4999 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
5000 char *buf
, size_t nbytes
, loff_t off
)
5002 struct cgroup_subsys_state
*css
= of_css(of
);
5003 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5004 struct mem_cgroup_event
*event
;
5005 struct cgroup_subsys_state
*cfile_css
;
5006 unsigned int efd
, cfd
;
5013 buf
= strstrip(buf
);
5015 efd
= simple_strtoul(buf
, &endp
, 10);
5020 cfd
= simple_strtoul(buf
, &endp
, 10);
5021 if ((*endp
!= ' ') && (*endp
!= '\0'))
5025 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
5029 event
->memcg
= memcg
;
5030 INIT_LIST_HEAD(&event
->list
);
5031 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
5032 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
5033 INIT_WORK(&event
->remove
, memcg_event_remove
);
5041 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
5042 if (IS_ERR(event
->eventfd
)) {
5043 ret
= PTR_ERR(event
->eventfd
);
5050 goto out_put_eventfd
;
5053 /* the process need read permission on control file */
5054 /* AV: shouldn't we check that it's been opened for read instead? */
5055 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
5060 * Determine the event callbacks and set them in @event. This used
5061 * to be done via struct cftype but cgroup core no longer knows
5062 * about these events. The following is crude but the whole thing
5063 * is for compatibility anyway.
5065 * DO NOT ADD NEW FILES.
5067 name
= cfile
.file
->f_dentry
->d_name
.name
;
5069 if (!strcmp(name
, "memory.usage_in_bytes")) {
5070 event
->register_event
= mem_cgroup_usage_register_event
;
5071 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
5072 } else if (!strcmp(name
, "memory.oom_control")) {
5073 event
->register_event
= mem_cgroup_oom_register_event
;
5074 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
5075 } else if (!strcmp(name
, "memory.pressure_level")) {
5076 event
->register_event
= vmpressure_register_event
;
5077 event
->unregister_event
= vmpressure_unregister_event
;
5078 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
5079 event
->register_event
= memsw_cgroup_usage_register_event
;
5080 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
5087 * Verify @cfile should belong to @css. Also, remaining events are
5088 * automatically removed on cgroup destruction but the removal is
5089 * asynchronous, so take an extra ref on @css.
5091 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_dentry
->d_parent
,
5092 &memory_cgrp_subsys
);
5094 if (IS_ERR(cfile_css
))
5096 if (cfile_css
!= css
) {
5101 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
5105 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
5107 spin_lock(&memcg
->event_list_lock
);
5108 list_add(&event
->list
, &memcg
->event_list
);
5109 spin_unlock(&memcg
->event_list_lock
);
5121 eventfd_ctx_put(event
->eventfd
);
5130 static struct cftype mem_cgroup_files
[] = {
5132 .name
= "usage_in_bytes",
5133 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
5134 .read_u64
= mem_cgroup_read_u64
,
5137 .name
= "max_usage_in_bytes",
5138 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
5139 .write
= mem_cgroup_reset
,
5140 .read_u64
= mem_cgroup_read_u64
,
5143 .name
= "limit_in_bytes",
5144 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
5145 .write
= mem_cgroup_write
,
5146 .read_u64
= mem_cgroup_read_u64
,
5149 .name
= "soft_limit_in_bytes",
5150 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
5151 .write
= mem_cgroup_write
,
5152 .read_u64
= mem_cgroup_read_u64
,
5156 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
5157 .write
= mem_cgroup_reset
,
5158 .read_u64
= mem_cgroup_read_u64
,
5162 .seq_show
= memcg_stat_show
,
5165 .name
= "force_empty",
5166 .write
= mem_cgroup_force_empty_write
,
5169 .name
= "use_hierarchy",
5170 .write_u64
= mem_cgroup_hierarchy_write
,
5171 .read_u64
= mem_cgroup_hierarchy_read
,
5174 .name
= "cgroup.event_control", /* XXX: for compat */
5175 .write
= memcg_write_event_control
,
5176 .flags
= CFTYPE_NO_PREFIX
,
5180 .name
= "swappiness",
5181 .read_u64
= mem_cgroup_swappiness_read
,
5182 .write_u64
= mem_cgroup_swappiness_write
,
5185 .name
= "move_charge_at_immigrate",
5186 .read_u64
= mem_cgroup_move_charge_read
,
5187 .write_u64
= mem_cgroup_move_charge_write
,
5190 .name
= "oom_control",
5191 .seq_show
= mem_cgroup_oom_control_read
,
5192 .write_u64
= mem_cgroup_oom_control_write
,
5193 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
5196 .name
= "pressure_level",
5200 .name
= "numa_stat",
5201 .seq_show
= memcg_numa_stat_show
,
5204 #ifdef CONFIG_MEMCG_KMEM
5206 .name
= "kmem.limit_in_bytes",
5207 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
5208 .write
= mem_cgroup_write
,
5209 .read_u64
= mem_cgroup_read_u64
,
5212 .name
= "kmem.usage_in_bytes",
5213 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
5214 .read_u64
= mem_cgroup_read_u64
,
5217 .name
= "kmem.failcnt",
5218 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
5219 .write
= mem_cgroup_reset
,
5220 .read_u64
= mem_cgroup_read_u64
,
5223 .name
= "kmem.max_usage_in_bytes",
5224 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
5225 .write
= mem_cgroup_reset
,
5226 .read_u64
= mem_cgroup_read_u64
,
5228 #ifdef CONFIG_SLABINFO
5230 .name
= "kmem.slabinfo",
5231 .seq_show
= mem_cgroup_slabinfo_read
,
5235 { }, /* terminate */
5238 #ifdef CONFIG_MEMCG_SWAP
5239 static struct cftype memsw_cgroup_files
[] = {
5241 .name
= "memsw.usage_in_bytes",
5242 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
5243 .read_u64
= mem_cgroup_read_u64
,
5246 .name
= "memsw.max_usage_in_bytes",
5247 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
5248 .write
= mem_cgroup_reset
,
5249 .read_u64
= mem_cgroup_read_u64
,
5252 .name
= "memsw.limit_in_bytes",
5253 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
5254 .write
= mem_cgroup_write
,
5255 .read_u64
= mem_cgroup_read_u64
,
5258 .name
= "memsw.failcnt",
5259 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
5260 .write
= mem_cgroup_reset
,
5261 .read_u64
= mem_cgroup_read_u64
,
5263 { }, /* terminate */
5266 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
5268 struct mem_cgroup_per_node
*pn
;
5269 struct mem_cgroup_per_zone
*mz
;
5270 int zone
, tmp
= node
;
5272 * This routine is called against possible nodes.
5273 * But it's BUG to call kmalloc() against offline node.
5275 * TODO: this routine can waste much memory for nodes which will
5276 * never be onlined. It's better to use memory hotplug callback
5279 if (!node_state(node
, N_NORMAL_MEMORY
))
5281 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
5285 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
5286 mz
= &pn
->zoneinfo
[zone
];
5287 lruvec_init(&mz
->lruvec
);
5288 mz
->usage_in_excess
= 0;
5289 mz
->on_tree
= false;
5292 memcg
->nodeinfo
[node
] = pn
;
5296 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
5298 kfree(memcg
->nodeinfo
[node
]);
5301 static struct mem_cgroup
*mem_cgroup_alloc(void)
5303 struct mem_cgroup
*memcg
;
5306 size
= sizeof(struct mem_cgroup
);
5307 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
5309 memcg
= kzalloc(size
, GFP_KERNEL
);
5313 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
5316 spin_lock_init(&memcg
->pcp_counter_lock
);
5325 * At destroying mem_cgroup, references from swap_cgroup can remain.
5326 * (scanning all at force_empty is too costly...)
5328 * Instead of clearing all references at force_empty, we remember
5329 * the number of reference from swap_cgroup and free mem_cgroup when
5330 * it goes down to 0.
5332 * Removal of cgroup itself succeeds regardless of refs from swap.
5335 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
5339 mem_cgroup_remove_from_trees(memcg
);
5342 free_mem_cgroup_per_zone_info(memcg
, node
);
5344 free_percpu(memcg
->stat
);
5347 * We need to make sure that (at least for now), the jump label
5348 * destruction code runs outside of the cgroup lock. This is because
5349 * get_online_cpus(), which is called from the static_branch update,
5350 * can't be called inside the cgroup_lock. cpusets are the ones
5351 * enforcing this dependency, so if they ever change, we might as well.
5353 * schedule_work() will guarantee this happens. Be careful if you need
5354 * to move this code around, and make sure it is outside
5357 disarm_static_keys(memcg
);
5362 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5364 struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
5366 if (!memcg
->res
.parent
)
5368 return mem_cgroup_from_res_counter(memcg
->res
.parent
, res
);
5370 EXPORT_SYMBOL(parent_mem_cgroup
);
5372 static void __init
mem_cgroup_soft_limit_tree_init(void)
5374 struct mem_cgroup_tree_per_node
*rtpn
;
5375 struct mem_cgroup_tree_per_zone
*rtpz
;
5376 int tmp
, node
, zone
;
5378 for_each_node(node
) {
5380 if (!node_state(node
, N_NORMAL_MEMORY
))
5382 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
5385 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
5387 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
5388 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
5389 rtpz
->rb_root
= RB_ROOT
;
5390 spin_lock_init(&rtpz
->lock
);
5395 static struct cgroup_subsys_state
* __ref
5396 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
5398 struct mem_cgroup
*memcg
;
5399 long error
= -ENOMEM
;
5402 memcg
= mem_cgroup_alloc();
5404 return ERR_PTR(error
);
5407 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
5411 if (parent_css
== NULL
) {
5412 root_mem_cgroup
= memcg
;
5413 res_counter_init(&memcg
->res
, NULL
);
5414 res_counter_init(&memcg
->memsw
, NULL
);
5415 res_counter_init(&memcg
->kmem
, NULL
);
5418 memcg
->last_scanned_node
= MAX_NUMNODES
;
5419 INIT_LIST_HEAD(&memcg
->oom_notify
);
5420 memcg
->move_charge_at_immigrate
= 0;
5421 mutex_init(&memcg
->thresholds_lock
);
5422 spin_lock_init(&memcg
->move_lock
);
5423 vmpressure_init(&memcg
->vmpressure
);
5424 INIT_LIST_HEAD(&memcg
->event_list
);
5425 spin_lock_init(&memcg
->event_list_lock
);
5430 __mem_cgroup_free(memcg
);
5431 return ERR_PTR(error
);
5435 mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
5437 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5438 struct mem_cgroup
*parent
= mem_cgroup_from_css(css
->parent
);
5441 if (css
->id
> MEM_CGROUP_ID_MAX
)
5447 mutex_lock(&memcg_create_mutex
);
5449 memcg
->use_hierarchy
= parent
->use_hierarchy
;
5450 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
5451 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
5453 if (parent
->use_hierarchy
) {
5454 res_counter_init(&memcg
->res
, &parent
->res
);
5455 res_counter_init(&memcg
->memsw
, &parent
->memsw
);
5456 res_counter_init(&memcg
->kmem
, &parent
->kmem
);
5459 * No need to take a reference to the parent because cgroup
5460 * core guarantees its existence.
5463 res_counter_init(&memcg
->res
, NULL
);
5464 res_counter_init(&memcg
->memsw
, NULL
);
5465 res_counter_init(&memcg
->kmem
, NULL
);
5467 * Deeper hierachy with use_hierarchy == false doesn't make
5468 * much sense so let cgroup subsystem know about this
5469 * unfortunate state in our controller.
5471 if (parent
!= root_mem_cgroup
)
5472 memory_cgrp_subsys
.broken_hierarchy
= true;
5474 mutex_unlock(&memcg_create_mutex
);
5476 ret
= memcg_init_kmem(memcg
, &memory_cgrp_subsys
);
5481 * Make sure the memcg is initialized: mem_cgroup_iter()
5482 * orders reading memcg->initialized against its callers
5483 * reading the memcg members.
5485 smp_store_release(&memcg
->initialized
, 1);
5491 * Announce all parents that a group from their hierarchy is gone.
5493 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup
*memcg
)
5495 struct mem_cgroup
*parent
= memcg
;
5497 while ((parent
= parent_mem_cgroup(parent
)))
5498 mem_cgroup_iter_invalidate(parent
);
5501 * if the root memcg is not hierarchical we have to check it
5504 if (!root_mem_cgroup
->use_hierarchy
)
5505 mem_cgroup_iter_invalidate(root_mem_cgroup
);
5508 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
5510 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5511 struct mem_cgroup_event
*event
, *tmp
;
5512 struct cgroup_subsys_state
*iter
;
5515 * Unregister events and notify userspace.
5516 * Notify userspace about cgroup removing only after rmdir of cgroup
5517 * directory to avoid race between userspace and kernelspace.
5519 spin_lock(&memcg
->event_list_lock
);
5520 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
5521 list_del_init(&event
->list
);
5522 schedule_work(&event
->remove
);
5524 spin_unlock(&memcg
->event_list_lock
);
5526 kmem_cgroup_css_offline(memcg
);
5528 mem_cgroup_invalidate_reclaim_iterators(memcg
);
5531 * This requires that offlining is serialized. Right now that is
5532 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
5534 css_for_each_descendant_post(iter
, css
)
5535 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter
));
5537 memcg_unregister_all_caches(memcg
);
5538 vmpressure_cleanup(&memcg
->vmpressure
);
5541 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
5543 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5545 * XXX: css_offline() would be where we should reparent all
5546 * memory to prepare the cgroup for destruction. However,
5547 * memcg does not do css_tryget_online() and res_counter charging
5548 * under the same RCU lock region, which means that charging
5549 * could race with offlining. Offlining only happens to
5550 * cgroups with no tasks in them but charges can show up
5551 * without any tasks from the swapin path when the target
5552 * memcg is looked up from the swapout record and not from the
5553 * current task as it usually is. A race like this can leak
5554 * charges and put pages with stale cgroup pointers into
5558 * lookup_swap_cgroup_id()
5560 * mem_cgroup_lookup()
5561 * css_tryget_online()
5563 * disable css_tryget_online()
5566 * reparent_charges()
5567 * res_counter_charge()
5570 * pc->mem_cgroup = dead memcg
5573 * The bulk of the charges are still moved in offline_css() to
5574 * avoid pinning a lot of pages in case a long-term reference
5575 * like a swapout record is deferring the css_free() to long
5576 * after offlining. But this makes sure we catch any charges
5577 * made after offlining:
5579 mem_cgroup_reparent_charges(memcg
);
5581 memcg_destroy_kmem(memcg
);
5582 __mem_cgroup_free(memcg
);
5586 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5587 * @css: the target css
5589 * Reset the states of the mem_cgroup associated with @css. This is
5590 * invoked when the userland requests disabling on the default hierarchy
5591 * but the memcg is pinned through dependency. The memcg should stop
5592 * applying policies and should revert to the vanilla state as it may be
5593 * made visible again.
5595 * The current implementation only resets the essential configurations.
5596 * This needs to be expanded to cover all the visible parts.
5598 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
5600 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5602 mem_cgroup_resize_limit(memcg
, ULLONG_MAX
);
5603 mem_cgroup_resize_memsw_limit(memcg
, ULLONG_MAX
);
5604 memcg_update_kmem_limit(memcg
, ULLONG_MAX
);
5605 res_counter_set_soft_limit(&memcg
->res
, ULLONG_MAX
);
5609 /* Handlers for move charge at task migration. */
5610 static int mem_cgroup_do_precharge(unsigned long count
)
5614 /* Try a single bulk charge without reclaim first */
5615 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_WAIT
, count
);
5617 mc
.precharge
+= count
;
5620 if (ret
== -EINTR
) {
5621 cancel_charge(root_mem_cgroup
, count
);
5625 /* Try charges one by one with reclaim */
5627 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_NORETRY
, 1);
5629 * In case of failure, any residual charges against
5630 * mc.to will be dropped by mem_cgroup_clear_mc()
5631 * later on. However, cancel any charges that are
5632 * bypassed to root right away or they'll be lost.
5635 cancel_charge(root_mem_cgroup
, 1);
5645 * get_mctgt_type - get target type of moving charge
5646 * @vma: the vma the pte to be checked belongs
5647 * @addr: the address corresponding to the pte to be checked
5648 * @ptent: the pte to be checked
5649 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5652 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5653 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5654 * move charge. if @target is not NULL, the page is stored in target->page
5655 * with extra refcnt got(Callers should handle it).
5656 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5657 * target for charge migration. if @target is not NULL, the entry is stored
5660 * Called with pte lock held.
5667 enum mc_target_type
{
5673 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
5674 unsigned long addr
, pte_t ptent
)
5676 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
5678 if (!page
|| !page_mapped(page
))
5680 if (PageAnon(page
)) {
5681 /* we don't move shared anon */
5684 } else if (!move_file())
5685 /* we ignore mapcount for file pages */
5687 if (!get_page_unless_zero(page
))
5694 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5695 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5697 struct page
*page
= NULL
;
5698 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5700 if (!move_anon() || non_swap_entry(ent
))
5703 * Because lookup_swap_cache() updates some statistics counter,
5704 * we call find_get_page() with swapper_space directly.
5706 page
= find_get_page(swap_address_space(ent
), ent
.val
);
5707 if (do_swap_account
)
5708 entry
->val
= ent
.val
;
5713 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5714 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5720 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5721 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5723 struct page
*page
= NULL
;
5724 struct address_space
*mapping
;
5727 if (!vma
->vm_file
) /* anonymous vma */
5732 mapping
= vma
->vm_file
->f_mapping
;
5733 if (pte_none(ptent
))
5734 pgoff
= linear_page_index(vma
, addr
);
5735 else /* pte_file(ptent) is true */
5736 pgoff
= pte_to_pgoff(ptent
);
5738 /* page is moved even if it's not RSS of this task(page-faulted). */
5740 /* shmem/tmpfs may report page out on swap: account for that too. */
5741 if (shmem_mapping(mapping
)) {
5742 page
= find_get_entry(mapping
, pgoff
);
5743 if (radix_tree_exceptional_entry(page
)) {
5744 swp_entry_t swp
= radix_to_swp_entry(page
);
5745 if (do_swap_account
)
5747 page
= find_get_page(swap_address_space(swp
), swp
.val
);
5750 page
= find_get_page(mapping
, pgoff
);
5752 page
= find_get_page(mapping
, pgoff
);
5757 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
5758 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5760 struct page
*page
= NULL
;
5761 struct page_cgroup
*pc
;
5762 enum mc_target_type ret
= MC_TARGET_NONE
;
5763 swp_entry_t ent
= { .val
= 0 };
5765 if (pte_present(ptent
))
5766 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5767 else if (is_swap_pte(ptent
))
5768 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
5769 else if (pte_none(ptent
) || pte_file(ptent
))
5770 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5772 if (!page
&& !ent
.val
)
5775 pc
= lookup_page_cgroup(page
);
5777 * Do only loose check w/o serialization.
5778 * mem_cgroup_move_account() checks the pc is valid or
5779 * not under LRU exclusion.
5781 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5782 ret
= MC_TARGET_PAGE
;
5784 target
->page
= page
;
5786 if (!ret
|| !target
)
5789 /* There is a swap entry and a page doesn't exist or isn't charged */
5790 if (ent
.val
&& !ret
&&
5791 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
5792 ret
= MC_TARGET_SWAP
;
5799 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5801 * We don't consider swapping or file mapped pages because THP does not
5802 * support them for now.
5803 * Caller should make sure that pmd_trans_huge(pmd) is true.
5805 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5806 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5808 struct page
*page
= NULL
;
5809 struct page_cgroup
*pc
;
5810 enum mc_target_type ret
= MC_TARGET_NONE
;
5812 page
= pmd_page(pmd
);
5813 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
5816 pc
= lookup_page_cgroup(page
);
5817 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5818 ret
= MC_TARGET_PAGE
;
5821 target
->page
= page
;
5827 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5828 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5830 return MC_TARGET_NONE
;
5834 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5835 unsigned long addr
, unsigned long end
,
5836 struct mm_walk
*walk
)
5838 struct vm_area_struct
*vma
= walk
->private;
5842 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
5843 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
5844 mc
.precharge
+= HPAGE_PMD_NR
;
5849 if (pmd_trans_unstable(pmd
))
5851 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5852 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5853 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
5854 mc
.precharge
++; /* increment precharge temporarily */
5855 pte_unmap_unlock(pte
- 1, ptl
);
5861 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5863 unsigned long precharge
;
5864 struct vm_area_struct
*vma
;
5866 down_read(&mm
->mmap_sem
);
5867 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5868 struct mm_walk mem_cgroup_count_precharge_walk
= {
5869 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5873 if (is_vm_hugetlb_page(vma
))
5875 walk_page_range(vma
->vm_start
, vma
->vm_end
,
5876 &mem_cgroup_count_precharge_walk
);
5878 up_read(&mm
->mmap_sem
);
5880 precharge
= mc
.precharge
;
5886 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5888 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5890 VM_BUG_ON(mc
.moving_task
);
5891 mc
.moving_task
= current
;
5892 return mem_cgroup_do_precharge(precharge
);
5895 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5896 static void __mem_cgroup_clear_mc(void)
5898 struct mem_cgroup
*from
= mc
.from
;
5899 struct mem_cgroup
*to
= mc
.to
;
5902 /* we must uncharge all the leftover precharges from mc.to */
5904 cancel_charge(mc
.to
, mc
.precharge
);
5908 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5909 * we must uncharge here.
5911 if (mc
.moved_charge
) {
5912 cancel_charge(mc
.from
, mc
.moved_charge
);
5913 mc
.moved_charge
= 0;
5915 /* we must fixup refcnts and charges */
5916 if (mc
.moved_swap
) {
5917 /* uncharge swap account from the old cgroup */
5918 if (!mem_cgroup_is_root(mc
.from
))
5919 res_counter_uncharge(&mc
.from
->memsw
,
5920 PAGE_SIZE
* mc
.moved_swap
);
5922 for (i
= 0; i
< mc
.moved_swap
; i
++)
5923 css_put(&mc
.from
->css
);
5926 * we charged both to->res and to->memsw, so we should
5929 if (!mem_cgroup_is_root(mc
.to
))
5930 res_counter_uncharge(&mc
.to
->res
,
5931 PAGE_SIZE
* mc
.moved_swap
);
5932 /* we've already done css_get(mc.to) */
5935 memcg_oom_recover(from
);
5936 memcg_oom_recover(to
);
5937 wake_up_all(&mc
.waitq
);
5940 static void mem_cgroup_clear_mc(void)
5942 struct mem_cgroup
*from
= mc
.from
;
5945 * we must clear moving_task before waking up waiters at the end of
5948 mc
.moving_task
= NULL
;
5949 __mem_cgroup_clear_mc();
5950 spin_lock(&mc
.lock
);
5953 spin_unlock(&mc
.lock
);
5954 mem_cgroup_end_move(from
);
5957 static int mem_cgroup_can_attach(struct cgroup_subsys_state
*css
,
5958 struct cgroup_taskset
*tset
)
5960 struct task_struct
*p
= cgroup_taskset_first(tset
);
5962 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5963 unsigned long move_charge_at_immigrate
;
5966 * We are now commited to this value whatever it is. Changes in this
5967 * tunable will only affect upcoming migrations, not the current one.
5968 * So we need to save it, and keep it going.
5970 move_charge_at_immigrate
= memcg
->move_charge_at_immigrate
;
5971 if (move_charge_at_immigrate
) {
5972 struct mm_struct
*mm
;
5973 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
5975 VM_BUG_ON(from
== memcg
);
5977 mm
= get_task_mm(p
);
5980 /* We move charges only when we move a owner of the mm */
5981 if (mm
->owner
== p
) {
5984 VM_BUG_ON(mc
.precharge
);
5985 VM_BUG_ON(mc
.moved_charge
);
5986 VM_BUG_ON(mc
.moved_swap
);
5987 mem_cgroup_start_move(from
);
5988 spin_lock(&mc
.lock
);
5991 mc
.immigrate_flags
= move_charge_at_immigrate
;
5992 spin_unlock(&mc
.lock
);
5993 /* We set mc.moving_task later */
5995 ret
= mem_cgroup_precharge_mc(mm
);
5997 mem_cgroup_clear_mc();
6004 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state
*css
,
6005 struct cgroup_taskset
*tset
)
6007 mem_cgroup_clear_mc();
6010 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
6011 unsigned long addr
, unsigned long end
,
6012 struct mm_walk
*walk
)
6015 struct vm_area_struct
*vma
= walk
->private;
6018 enum mc_target_type target_type
;
6019 union mc_target target
;
6021 struct page_cgroup
*pc
;
6024 * We don't take compound_lock() here but no race with splitting thp
6026 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6027 * under splitting, which means there's no concurrent thp split,
6028 * - if another thread runs into split_huge_page() just after we
6029 * entered this if-block, the thread must wait for page table lock
6030 * to be unlocked in __split_huge_page_splitting(), where the main
6031 * part of thp split is not executed yet.
6033 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
6034 if (mc
.precharge
< HPAGE_PMD_NR
) {
6038 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
6039 if (target_type
== MC_TARGET_PAGE
) {
6041 if (!isolate_lru_page(page
)) {
6042 pc
= lookup_page_cgroup(page
);
6043 if (!mem_cgroup_move_account(page
, HPAGE_PMD_NR
,
6044 pc
, mc
.from
, mc
.to
)) {
6045 mc
.precharge
-= HPAGE_PMD_NR
;
6046 mc
.moved_charge
+= HPAGE_PMD_NR
;
6048 putback_lru_page(page
);
6056 if (pmd_trans_unstable(pmd
))
6059 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
6060 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
6061 pte_t ptent
= *(pte
++);
6067 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
6068 case MC_TARGET_PAGE
:
6070 if (isolate_lru_page(page
))
6072 pc
= lookup_page_cgroup(page
);
6073 if (!mem_cgroup_move_account(page
, 1, pc
,
6076 /* we uncharge from mc.from later. */
6079 putback_lru_page(page
);
6080 put
: /* get_mctgt_type() gets the page */
6083 case MC_TARGET_SWAP
:
6085 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
6087 /* we fixup refcnts and charges later. */
6095 pte_unmap_unlock(pte
- 1, ptl
);
6100 * We have consumed all precharges we got in can_attach().
6101 * We try charge one by one, but don't do any additional
6102 * charges to mc.to if we have failed in charge once in attach()
6105 ret
= mem_cgroup_do_precharge(1);
6113 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
6115 struct vm_area_struct
*vma
;
6117 lru_add_drain_all();
6119 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
6121 * Someone who are holding the mmap_sem might be waiting in
6122 * waitq. So we cancel all extra charges, wake up all waiters,
6123 * and retry. Because we cancel precharges, we might not be able
6124 * to move enough charges, but moving charge is a best-effort
6125 * feature anyway, so it wouldn't be a big problem.
6127 __mem_cgroup_clear_mc();
6131 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
6133 struct mm_walk mem_cgroup_move_charge_walk
= {
6134 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
6138 if (is_vm_hugetlb_page(vma
))
6140 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
6141 &mem_cgroup_move_charge_walk
);
6144 * means we have consumed all precharges and failed in
6145 * doing additional charge. Just abandon here.
6149 up_read(&mm
->mmap_sem
);
6152 static void mem_cgroup_move_task(struct cgroup_subsys_state
*css
,
6153 struct cgroup_taskset
*tset
)
6155 struct task_struct
*p
= cgroup_taskset_first(tset
);
6156 struct mm_struct
*mm
= get_task_mm(p
);
6160 mem_cgroup_move_charge(mm
);
6164 mem_cgroup_clear_mc();
6166 #else /* !CONFIG_MMU */
6167 static int mem_cgroup_can_attach(struct cgroup_subsys_state
*css
,
6168 struct cgroup_taskset
*tset
)
6172 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state
*css
,
6173 struct cgroup_taskset
*tset
)
6176 static void mem_cgroup_move_task(struct cgroup_subsys_state
*css
,
6177 struct cgroup_taskset
*tset
)
6183 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6184 * to verify whether we're attached to the default hierarchy on each mount
6187 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
6190 * use_hierarchy is forced on the default hierarchy. cgroup core
6191 * guarantees that @root doesn't have any children, so turning it
6192 * on for the root memcg is enough.
6194 if (cgroup_on_dfl(root_css
->cgroup
))
6195 mem_cgroup_from_css(root_css
)->use_hierarchy
= true;
6198 struct cgroup_subsys memory_cgrp_subsys
= {
6199 .css_alloc
= mem_cgroup_css_alloc
,
6200 .css_online
= mem_cgroup_css_online
,
6201 .css_offline
= mem_cgroup_css_offline
,
6202 .css_free
= mem_cgroup_css_free
,
6203 .css_reset
= mem_cgroup_css_reset
,
6204 .can_attach
= mem_cgroup_can_attach
,
6205 .cancel_attach
= mem_cgroup_cancel_attach
,
6206 .attach
= mem_cgroup_move_task
,
6207 .bind
= mem_cgroup_bind
,
6208 .legacy_cftypes
= mem_cgroup_files
,
6212 #ifdef CONFIG_MEMCG_SWAP
6213 static int __init
enable_swap_account(char *s
)
6215 if (!strcmp(s
, "1"))
6216 really_do_swap_account
= 1;
6217 else if (!strcmp(s
, "0"))
6218 really_do_swap_account
= 0;
6221 __setup("swapaccount=", enable_swap_account
);
6223 static void __init
memsw_file_init(void)
6225 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
6226 memsw_cgroup_files
));
6229 static void __init
enable_swap_cgroup(void)
6231 if (!mem_cgroup_disabled() && really_do_swap_account
) {
6232 do_swap_account
= 1;
6238 static void __init
enable_swap_cgroup(void)
6243 #ifdef CONFIG_MEMCG_SWAP
6245 * mem_cgroup_swapout - transfer a memsw charge to swap
6246 * @page: page whose memsw charge to transfer
6247 * @entry: swap entry to move the charge to
6249 * Transfer the memsw charge of @page to @entry.
6251 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
6253 struct page_cgroup
*pc
;
6254 unsigned short oldid
;
6256 VM_BUG_ON_PAGE(PageLRU(page
), page
);
6257 VM_BUG_ON_PAGE(page_count(page
), page
);
6259 if (!do_swap_account
)
6262 pc
= lookup_page_cgroup(page
);
6264 /* Readahead page, never charged */
6265 if (!PageCgroupUsed(pc
))
6268 VM_BUG_ON_PAGE(!(pc
->flags
& PCG_MEMSW
), page
);
6270 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(pc
->mem_cgroup
));
6271 VM_BUG_ON_PAGE(oldid
, page
);
6273 pc
->flags
&= ~PCG_MEMSW
;
6274 css_get(&pc
->mem_cgroup
->css
);
6275 mem_cgroup_swap_statistics(pc
->mem_cgroup
, true);
6279 * mem_cgroup_uncharge_swap - uncharge a swap entry
6280 * @entry: swap entry to uncharge
6282 * Drop the memsw charge associated with @entry.
6284 void mem_cgroup_uncharge_swap(swp_entry_t entry
)
6286 struct mem_cgroup
*memcg
;
6289 if (!do_swap_account
)
6292 id
= swap_cgroup_record(entry
, 0);
6294 memcg
= mem_cgroup_lookup(id
);
6296 if (!mem_cgroup_is_root(memcg
))
6297 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
6298 mem_cgroup_swap_statistics(memcg
, false);
6299 css_put(&memcg
->css
);
6306 * mem_cgroup_try_charge - try charging a page
6307 * @page: page to charge
6308 * @mm: mm context of the victim
6309 * @gfp_mask: reclaim mode
6310 * @memcgp: charged memcg return
6312 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6313 * pages according to @gfp_mask if necessary.
6315 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6316 * Otherwise, an error code is returned.
6318 * After page->mapping has been set up, the caller must finalize the
6319 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6320 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6322 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
6323 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
)
6325 struct mem_cgroup
*memcg
= NULL
;
6326 unsigned int nr_pages
= 1;
6329 if (mem_cgroup_disabled())
6332 if (PageSwapCache(page
)) {
6333 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
6335 * Every swap fault against a single page tries to charge the
6336 * page, bail as early as possible. shmem_unuse() encounters
6337 * already charged pages, too. The USED bit is protected by
6338 * the page lock, which serializes swap cache removal, which
6339 * in turn serializes uncharging.
6341 if (PageCgroupUsed(pc
))
6345 if (PageTransHuge(page
)) {
6346 nr_pages
<<= compound_order(page
);
6347 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
6350 if (do_swap_account
&& PageSwapCache(page
))
6351 memcg
= try_get_mem_cgroup_from_page(page
);
6353 memcg
= get_mem_cgroup_from_mm(mm
);
6355 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
6357 css_put(&memcg
->css
);
6359 if (ret
== -EINTR
) {
6360 memcg
= root_mem_cgroup
;
6369 * mem_cgroup_commit_charge - commit a page charge
6370 * @page: page to charge
6371 * @memcg: memcg to charge the page to
6372 * @lrucare: page might be on LRU already
6374 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6375 * after page->mapping has been set up. This must happen atomically
6376 * as part of the page instantiation, i.e. under the page table lock
6377 * for anonymous pages, under the page lock for page and swap cache.
6379 * In addition, the page must not be on the LRU during the commit, to
6380 * prevent racing with task migration. If it might be, use @lrucare.
6382 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6384 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
6387 unsigned int nr_pages
= 1;
6389 VM_BUG_ON_PAGE(!page
->mapping
, page
);
6390 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
6392 if (mem_cgroup_disabled())
6395 * Swap faults will attempt to charge the same page multiple
6396 * times. But reuse_swap_page() might have removed the page
6397 * from swapcache already, so we can't check PageSwapCache().
6402 commit_charge(page
, memcg
, lrucare
);
6404 if (PageTransHuge(page
)) {
6405 nr_pages
<<= compound_order(page
);
6406 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
6409 local_irq_disable();
6410 mem_cgroup_charge_statistics(memcg
, page
, nr_pages
);
6411 memcg_check_events(memcg
, page
);
6414 if (do_swap_account
&& PageSwapCache(page
)) {
6415 swp_entry_t entry
= { .val
= page_private(page
) };
6417 * The swap entry might not get freed for a long time,
6418 * let's not wait for it. The page already received a
6419 * memory+swap charge, drop the swap entry duplicate.
6421 mem_cgroup_uncharge_swap(entry
);
6426 * mem_cgroup_cancel_charge - cancel a page charge
6427 * @page: page to charge
6428 * @memcg: memcg to charge the page to
6430 * Cancel a charge transaction started by mem_cgroup_try_charge().
6432 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
)
6434 unsigned int nr_pages
= 1;
6436 if (mem_cgroup_disabled())
6439 * Swap faults will attempt to charge the same page multiple
6440 * times. But reuse_swap_page() might have removed the page
6441 * from swapcache already, so we can't check PageSwapCache().
6446 if (PageTransHuge(page
)) {
6447 nr_pages
<<= compound_order(page
);
6448 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
6451 cancel_charge(memcg
, nr_pages
);
6454 static void uncharge_batch(struct mem_cgroup
*memcg
, unsigned long pgpgout
,
6455 unsigned long nr_mem
, unsigned long nr_memsw
,
6456 unsigned long nr_anon
, unsigned long nr_file
,
6457 unsigned long nr_huge
, struct page
*dummy_page
)
6459 unsigned long flags
;
6461 if (!mem_cgroup_is_root(memcg
)) {
6463 res_counter_uncharge(&memcg
->res
,
6464 nr_mem
* PAGE_SIZE
);
6466 res_counter_uncharge(&memcg
->memsw
,
6467 nr_memsw
* PAGE_SIZE
);
6468 memcg_oom_recover(memcg
);
6471 local_irq_save(flags
);
6472 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_anon
);
6473 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_file
);
6474 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
], nr_huge
);
6475 __this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
], pgpgout
);
6476 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_anon
+ nr_file
);
6477 memcg_check_events(memcg
, dummy_page
);
6478 local_irq_restore(flags
);
6481 static void uncharge_list(struct list_head
*page_list
)
6483 struct mem_cgroup
*memcg
= NULL
;
6484 unsigned long nr_memsw
= 0;
6485 unsigned long nr_anon
= 0;
6486 unsigned long nr_file
= 0;
6487 unsigned long nr_huge
= 0;
6488 unsigned long pgpgout
= 0;
6489 unsigned long nr_mem
= 0;
6490 struct list_head
*next
;
6493 next
= page_list
->next
;
6495 unsigned int nr_pages
= 1;
6496 struct page_cgroup
*pc
;
6498 page
= list_entry(next
, struct page
, lru
);
6499 next
= page
->lru
.next
;
6501 VM_BUG_ON_PAGE(PageLRU(page
), page
);
6502 VM_BUG_ON_PAGE(page_count(page
), page
);
6504 pc
= lookup_page_cgroup(page
);
6505 if (!PageCgroupUsed(pc
))
6509 * Nobody should be changing or seriously looking at
6510 * pc->mem_cgroup and pc->flags at this point, we have
6511 * fully exclusive access to the page.
6514 if (memcg
!= pc
->mem_cgroup
) {
6516 uncharge_batch(memcg
, pgpgout
, nr_mem
, nr_memsw
,
6517 nr_anon
, nr_file
, nr_huge
, page
);
6518 pgpgout
= nr_mem
= nr_memsw
= 0;
6519 nr_anon
= nr_file
= nr_huge
= 0;
6521 memcg
= pc
->mem_cgroup
;
6524 if (PageTransHuge(page
)) {
6525 nr_pages
<<= compound_order(page
);
6526 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
6527 nr_huge
+= nr_pages
;
6531 nr_anon
+= nr_pages
;
6533 nr_file
+= nr_pages
;
6535 if (pc
->flags
& PCG_MEM
)
6537 if (pc
->flags
& PCG_MEMSW
)
6538 nr_memsw
+= nr_pages
;
6542 } while (next
!= page_list
);
6545 uncharge_batch(memcg
, pgpgout
, nr_mem
, nr_memsw
,
6546 nr_anon
, nr_file
, nr_huge
, page
);
6550 * mem_cgroup_uncharge - uncharge a page
6551 * @page: page to uncharge
6553 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6554 * mem_cgroup_commit_charge().
6556 void mem_cgroup_uncharge(struct page
*page
)
6558 struct page_cgroup
*pc
;
6560 if (mem_cgroup_disabled())
6563 /* Don't touch page->lru of any random page, pre-check: */
6564 pc
= lookup_page_cgroup(page
);
6565 if (!PageCgroupUsed(pc
))
6568 INIT_LIST_HEAD(&page
->lru
);
6569 uncharge_list(&page
->lru
);
6573 * mem_cgroup_uncharge_list - uncharge a list of page
6574 * @page_list: list of pages to uncharge
6576 * Uncharge a list of pages previously charged with
6577 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6579 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
6581 if (mem_cgroup_disabled())
6584 if (!list_empty(page_list
))
6585 uncharge_list(page_list
);
6589 * mem_cgroup_migrate - migrate a charge to another page
6590 * @oldpage: currently charged page
6591 * @newpage: page to transfer the charge to
6592 * @lrucare: both pages might be on the LRU already
6594 * Migrate the charge from @oldpage to @newpage.
6596 * Both pages must be locked, @newpage->mapping must be set up.
6598 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
,
6601 struct page_cgroup
*pc
;
6604 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
6605 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
6606 VM_BUG_ON_PAGE(!lrucare
&& PageLRU(oldpage
), oldpage
);
6607 VM_BUG_ON_PAGE(!lrucare
&& PageLRU(newpage
), newpage
);
6608 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
6609 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
6612 if (mem_cgroup_disabled())
6615 /* Page cache replacement: new page already charged? */
6616 pc
= lookup_page_cgroup(newpage
);
6617 if (PageCgroupUsed(pc
))
6620 /* Re-entrant migration: old page already uncharged? */
6621 pc
= lookup_page_cgroup(oldpage
);
6622 if (!PageCgroupUsed(pc
))
6625 VM_BUG_ON_PAGE(!(pc
->flags
& PCG_MEM
), oldpage
);
6626 VM_BUG_ON_PAGE(do_swap_account
&& !(pc
->flags
& PCG_MEMSW
), oldpage
);
6629 lock_page_lru(oldpage
, &isolated
);
6634 unlock_page_lru(oldpage
, isolated
);
6636 commit_charge(newpage
, pc
->mem_cgroup
, lrucare
);
6640 * subsys_initcall() for memory controller.
6642 * Some parts like hotcpu_notifier() have to be initialized from this context
6643 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6644 * everything that doesn't depend on a specific mem_cgroup structure should
6645 * be initialized from here.
6647 static int __init
mem_cgroup_init(void)
6649 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
6650 enable_swap_cgroup();
6651 mem_cgroup_soft_limit_tree_init();
6655 subsys_initcall(mem_cgroup_init
);