thunderbolt: Fix typos and magic number
[linux/fpc-iii.git] / fs / buffer.c
blob33be29675358321117038674a770e814a690e9fb
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/backing-dev.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45 #include <trace/events/block.h>
47 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
48 static int submit_bh_wbc(int rw, struct buffer_head *bh,
49 unsigned long bio_flags,
50 struct writeback_control *wbc);
52 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
54 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
56 bh->b_end_io = handler;
57 bh->b_private = private;
59 EXPORT_SYMBOL(init_buffer);
61 inline void touch_buffer(struct buffer_head *bh)
63 trace_block_touch_buffer(bh);
64 mark_page_accessed(bh->b_page);
66 EXPORT_SYMBOL(touch_buffer);
68 void __lock_buffer(struct buffer_head *bh)
70 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 EXPORT_SYMBOL(__lock_buffer);
74 void unlock_buffer(struct buffer_head *bh)
76 clear_bit_unlock(BH_Lock, &bh->b_state);
77 smp_mb__after_atomic();
78 wake_up_bit(&bh->b_state, BH_Lock);
80 EXPORT_SYMBOL(unlock_buffer);
83 * Returns if the page has dirty or writeback buffers. If all the buffers
84 * are unlocked and clean then the PageDirty information is stale. If
85 * any of the pages are locked, it is assumed they are locked for IO.
87 void buffer_check_dirty_writeback(struct page *page,
88 bool *dirty, bool *writeback)
90 struct buffer_head *head, *bh;
91 *dirty = false;
92 *writeback = false;
94 BUG_ON(!PageLocked(page));
96 if (!page_has_buffers(page))
97 return;
99 if (PageWriteback(page))
100 *writeback = true;
102 head = page_buffers(page);
103 bh = head;
104 do {
105 if (buffer_locked(bh))
106 *writeback = true;
108 if (buffer_dirty(bh))
109 *dirty = true;
111 bh = bh->b_this_page;
112 } while (bh != head);
114 EXPORT_SYMBOL(buffer_check_dirty_writeback);
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
121 void __wait_on_buffer(struct buffer_head * bh)
123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
125 EXPORT_SYMBOL(__wait_on_buffer);
127 static void
128 __clear_page_buffers(struct page *page)
130 ClearPagePrivate(page);
131 set_page_private(page, 0);
132 page_cache_release(page);
135 static void buffer_io_error(struct buffer_head *bh, char *msg)
137 if (!test_bit(BH_Quiet, &bh->b_state))
138 printk_ratelimited(KERN_ERR
139 "Buffer I/O error on dev %pg, logical block %llu%s\n",
140 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
144 * End-of-IO handler helper function which does not touch the bh after
145 * unlocking it.
146 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
147 * a race there is benign: unlock_buffer() only use the bh's address for
148 * hashing after unlocking the buffer, so it doesn't actually touch the bh
149 * itself.
151 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
153 if (uptodate) {
154 set_buffer_uptodate(bh);
155 } else {
156 /* This happens, due to failed READA attempts. */
157 clear_buffer_uptodate(bh);
159 unlock_buffer(bh);
163 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
164 * unlock the buffer. This is what ll_rw_block uses too.
166 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
168 __end_buffer_read_notouch(bh, uptodate);
169 put_bh(bh);
171 EXPORT_SYMBOL(end_buffer_read_sync);
173 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
175 if (uptodate) {
176 set_buffer_uptodate(bh);
177 } else {
178 buffer_io_error(bh, ", lost sync page write");
179 set_buffer_write_io_error(bh);
180 clear_buffer_uptodate(bh);
182 unlock_buffer(bh);
183 put_bh(bh);
185 EXPORT_SYMBOL(end_buffer_write_sync);
188 * Various filesystems appear to want __find_get_block to be non-blocking.
189 * But it's the page lock which protects the buffers. To get around this,
190 * we get exclusion from try_to_free_buffers with the blockdev mapping's
191 * private_lock.
193 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
194 * may be quite high. This code could TryLock the page, and if that
195 * succeeds, there is no need to take private_lock. (But if
196 * private_lock is contended then so is mapping->tree_lock).
198 static struct buffer_head *
199 __find_get_block_slow(struct block_device *bdev, sector_t block)
201 struct inode *bd_inode = bdev->bd_inode;
202 struct address_space *bd_mapping = bd_inode->i_mapping;
203 struct buffer_head *ret = NULL;
204 pgoff_t index;
205 struct buffer_head *bh;
206 struct buffer_head *head;
207 struct page *page;
208 int all_mapped = 1;
210 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
211 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
212 if (!page)
213 goto out;
215 spin_lock(&bd_mapping->private_lock);
216 if (!page_has_buffers(page))
217 goto out_unlock;
218 head = page_buffers(page);
219 bh = head;
220 do {
221 if (!buffer_mapped(bh))
222 all_mapped = 0;
223 else if (bh->b_blocknr == block) {
224 ret = bh;
225 get_bh(bh);
226 goto out_unlock;
228 bh = bh->b_this_page;
229 } while (bh != head);
231 /* we might be here because some of the buffers on this page are
232 * not mapped. This is due to various races between
233 * file io on the block device and getblk. It gets dealt with
234 * elsewhere, don't buffer_error if we had some unmapped buffers
236 if (all_mapped) {
237 printk("__find_get_block_slow() failed. "
238 "block=%llu, b_blocknr=%llu\n",
239 (unsigned long long)block,
240 (unsigned long long)bh->b_blocknr);
241 printk("b_state=0x%08lx, b_size=%zu\n",
242 bh->b_state, bh->b_size);
243 printk("device %pg blocksize: %d\n", bdev,
244 1 << bd_inode->i_blkbits);
246 out_unlock:
247 spin_unlock(&bd_mapping->private_lock);
248 page_cache_release(page);
249 out:
250 return ret;
254 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
256 static void free_more_memory(void)
258 struct zone *zone;
259 int nid;
261 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
262 yield();
264 for_each_online_node(nid) {
265 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
266 gfp_zone(GFP_NOFS), NULL,
267 &zone);
268 if (zone)
269 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
270 GFP_NOFS, NULL);
275 * I/O completion handler for block_read_full_page() - pages
276 * which come unlocked at the end of I/O.
278 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
280 unsigned long flags;
281 struct buffer_head *first;
282 struct buffer_head *tmp;
283 struct page *page;
284 int page_uptodate = 1;
286 BUG_ON(!buffer_async_read(bh));
288 page = bh->b_page;
289 if (uptodate) {
290 set_buffer_uptodate(bh);
291 } else {
292 clear_buffer_uptodate(bh);
293 buffer_io_error(bh, ", async page read");
294 SetPageError(page);
298 * Be _very_ careful from here on. Bad things can happen if
299 * two buffer heads end IO at almost the same time and both
300 * decide that the page is now completely done.
302 first = page_buffers(page);
303 local_irq_save(flags);
304 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
305 clear_buffer_async_read(bh);
306 unlock_buffer(bh);
307 tmp = bh;
308 do {
309 if (!buffer_uptodate(tmp))
310 page_uptodate = 0;
311 if (buffer_async_read(tmp)) {
312 BUG_ON(!buffer_locked(tmp));
313 goto still_busy;
315 tmp = tmp->b_this_page;
316 } while (tmp != bh);
317 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
318 local_irq_restore(flags);
321 * If none of the buffers had errors and they are all
322 * uptodate then we can set the page uptodate.
324 if (page_uptodate && !PageError(page))
325 SetPageUptodate(page);
326 unlock_page(page);
327 return;
329 still_busy:
330 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
331 local_irq_restore(flags);
332 return;
336 * Completion handler for block_write_full_page() - pages which are unlocked
337 * during I/O, and which have PageWriteback cleared upon I/O completion.
339 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
341 unsigned long flags;
342 struct buffer_head *first;
343 struct buffer_head *tmp;
344 struct page *page;
346 BUG_ON(!buffer_async_write(bh));
348 page = bh->b_page;
349 if (uptodate) {
350 set_buffer_uptodate(bh);
351 } else {
352 buffer_io_error(bh, ", lost async page write");
353 set_bit(AS_EIO, &page->mapping->flags);
354 set_buffer_write_io_error(bh);
355 clear_buffer_uptodate(bh);
356 SetPageError(page);
359 first = page_buffers(page);
360 local_irq_save(flags);
361 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
363 clear_buffer_async_write(bh);
364 unlock_buffer(bh);
365 tmp = bh->b_this_page;
366 while (tmp != bh) {
367 if (buffer_async_write(tmp)) {
368 BUG_ON(!buffer_locked(tmp));
369 goto still_busy;
371 tmp = tmp->b_this_page;
373 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374 local_irq_restore(flags);
375 end_page_writeback(page);
376 return;
378 still_busy:
379 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
380 local_irq_restore(flags);
381 return;
383 EXPORT_SYMBOL(end_buffer_async_write);
386 * If a page's buffers are under async readin (end_buffer_async_read
387 * completion) then there is a possibility that another thread of
388 * control could lock one of the buffers after it has completed
389 * but while some of the other buffers have not completed. This
390 * locked buffer would confuse end_buffer_async_read() into not unlocking
391 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
392 * that this buffer is not under async I/O.
394 * The page comes unlocked when it has no locked buffer_async buffers
395 * left.
397 * PageLocked prevents anyone starting new async I/O reads any of
398 * the buffers.
400 * PageWriteback is used to prevent simultaneous writeout of the same
401 * page.
403 * PageLocked prevents anyone from starting writeback of a page which is
404 * under read I/O (PageWriteback is only ever set against a locked page).
406 static void mark_buffer_async_read(struct buffer_head *bh)
408 bh->b_end_io = end_buffer_async_read;
409 set_buffer_async_read(bh);
412 static void mark_buffer_async_write_endio(struct buffer_head *bh,
413 bh_end_io_t *handler)
415 bh->b_end_io = handler;
416 set_buffer_async_write(bh);
419 void mark_buffer_async_write(struct buffer_head *bh)
421 mark_buffer_async_write_endio(bh, end_buffer_async_write);
423 EXPORT_SYMBOL(mark_buffer_async_write);
427 * fs/buffer.c contains helper functions for buffer-backed address space's
428 * fsync functions. A common requirement for buffer-based filesystems is
429 * that certain data from the backing blockdev needs to be written out for
430 * a successful fsync(). For example, ext2 indirect blocks need to be
431 * written back and waited upon before fsync() returns.
433 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
434 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
435 * management of a list of dependent buffers at ->i_mapping->private_list.
437 * Locking is a little subtle: try_to_free_buffers() will remove buffers
438 * from their controlling inode's queue when they are being freed. But
439 * try_to_free_buffers() will be operating against the *blockdev* mapping
440 * at the time, not against the S_ISREG file which depends on those buffers.
441 * So the locking for private_list is via the private_lock in the address_space
442 * which backs the buffers. Which is different from the address_space
443 * against which the buffers are listed. So for a particular address_space,
444 * mapping->private_lock does *not* protect mapping->private_list! In fact,
445 * mapping->private_list will always be protected by the backing blockdev's
446 * ->private_lock.
448 * Which introduces a requirement: all buffers on an address_space's
449 * ->private_list must be from the same address_space: the blockdev's.
451 * address_spaces which do not place buffers at ->private_list via these
452 * utility functions are free to use private_lock and private_list for
453 * whatever they want. The only requirement is that list_empty(private_list)
454 * be true at clear_inode() time.
456 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
457 * filesystems should do that. invalidate_inode_buffers() should just go
458 * BUG_ON(!list_empty).
460 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
461 * take an address_space, not an inode. And it should be called
462 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
463 * queued up.
465 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
466 * list if it is already on a list. Because if the buffer is on a list,
467 * it *must* already be on the right one. If not, the filesystem is being
468 * silly. This will save a ton of locking. But first we have to ensure
469 * that buffers are taken *off* the old inode's list when they are freed
470 * (presumably in truncate). That requires careful auditing of all
471 * filesystems (do it inside bforget()). It could also be done by bringing
472 * b_inode back.
476 * The buffer's backing address_space's private_lock must be held
478 static void __remove_assoc_queue(struct buffer_head *bh)
480 list_del_init(&bh->b_assoc_buffers);
481 WARN_ON(!bh->b_assoc_map);
482 if (buffer_write_io_error(bh))
483 set_bit(AS_EIO, &bh->b_assoc_map->flags);
484 bh->b_assoc_map = NULL;
487 int inode_has_buffers(struct inode *inode)
489 return !list_empty(&inode->i_data.private_list);
493 * osync is designed to support O_SYNC io. It waits synchronously for
494 * all already-submitted IO to complete, but does not queue any new
495 * writes to the disk.
497 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
498 * you dirty the buffers, and then use osync_inode_buffers to wait for
499 * completion. Any other dirty buffers which are not yet queued for
500 * write will not be flushed to disk by the osync.
502 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
504 struct buffer_head *bh;
505 struct list_head *p;
506 int err = 0;
508 spin_lock(lock);
509 repeat:
510 list_for_each_prev(p, list) {
511 bh = BH_ENTRY(p);
512 if (buffer_locked(bh)) {
513 get_bh(bh);
514 spin_unlock(lock);
515 wait_on_buffer(bh);
516 if (!buffer_uptodate(bh))
517 err = -EIO;
518 brelse(bh);
519 spin_lock(lock);
520 goto repeat;
523 spin_unlock(lock);
524 return err;
527 static void do_thaw_one(struct super_block *sb, void *unused)
529 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
530 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
533 static void do_thaw_all(struct work_struct *work)
535 iterate_supers(do_thaw_one, NULL);
536 kfree(work);
537 printk(KERN_WARNING "Emergency Thaw complete\n");
541 * emergency_thaw_all -- forcibly thaw every frozen filesystem
543 * Used for emergency unfreeze of all filesystems via SysRq
545 void emergency_thaw_all(void)
547 struct work_struct *work;
549 work = kmalloc(sizeof(*work), GFP_ATOMIC);
550 if (work) {
551 INIT_WORK(work, do_thaw_all);
552 schedule_work(work);
557 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
558 * @mapping: the mapping which wants those buffers written
560 * Starts I/O against the buffers at mapping->private_list, and waits upon
561 * that I/O.
563 * Basically, this is a convenience function for fsync().
564 * @mapping is a file or directory which needs those buffers to be written for
565 * a successful fsync().
567 int sync_mapping_buffers(struct address_space *mapping)
569 struct address_space *buffer_mapping = mapping->private_data;
571 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
572 return 0;
574 return fsync_buffers_list(&buffer_mapping->private_lock,
575 &mapping->private_list);
577 EXPORT_SYMBOL(sync_mapping_buffers);
580 * Called when we've recently written block `bblock', and it is known that
581 * `bblock' was for a buffer_boundary() buffer. This means that the block at
582 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
583 * dirty, schedule it for IO. So that indirects merge nicely with their data.
585 void write_boundary_block(struct block_device *bdev,
586 sector_t bblock, unsigned blocksize)
588 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
589 if (bh) {
590 if (buffer_dirty(bh))
591 ll_rw_block(WRITE, 1, &bh);
592 put_bh(bh);
596 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
598 struct address_space *mapping = inode->i_mapping;
599 struct address_space *buffer_mapping = bh->b_page->mapping;
601 mark_buffer_dirty(bh);
602 if (!mapping->private_data) {
603 mapping->private_data = buffer_mapping;
604 } else {
605 BUG_ON(mapping->private_data != buffer_mapping);
607 if (!bh->b_assoc_map) {
608 spin_lock(&buffer_mapping->private_lock);
609 list_move_tail(&bh->b_assoc_buffers,
610 &mapping->private_list);
611 bh->b_assoc_map = mapping;
612 spin_unlock(&buffer_mapping->private_lock);
615 EXPORT_SYMBOL(mark_buffer_dirty_inode);
618 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
619 * dirty.
621 * If warn is true, then emit a warning if the page is not uptodate and has
622 * not been truncated.
624 * The caller must hold lock_page_memcg().
626 static void __set_page_dirty(struct page *page, struct address_space *mapping,
627 int warn)
629 unsigned long flags;
631 spin_lock_irqsave(&mapping->tree_lock, flags);
632 if (page->mapping) { /* Race with truncate? */
633 WARN_ON_ONCE(warn && !PageUptodate(page));
634 account_page_dirtied(page, mapping);
635 radix_tree_tag_set(&mapping->page_tree,
636 page_index(page), PAGECACHE_TAG_DIRTY);
638 spin_unlock_irqrestore(&mapping->tree_lock, flags);
642 * Add a page to the dirty page list.
644 * It is a sad fact of life that this function is called from several places
645 * deeply under spinlocking. It may not sleep.
647 * If the page has buffers, the uptodate buffers are set dirty, to preserve
648 * dirty-state coherency between the page and the buffers. It the page does
649 * not have buffers then when they are later attached they will all be set
650 * dirty.
652 * The buffers are dirtied before the page is dirtied. There's a small race
653 * window in which a writepage caller may see the page cleanness but not the
654 * buffer dirtiness. That's fine. If this code were to set the page dirty
655 * before the buffers, a concurrent writepage caller could clear the page dirty
656 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
657 * page on the dirty page list.
659 * We use private_lock to lock against try_to_free_buffers while using the
660 * page's buffer list. Also use this to protect against clean buffers being
661 * added to the page after it was set dirty.
663 * FIXME: may need to call ->reservepage here as well. That's rather up to the
664 * address_space though.
666 int __set_page_dirty_buffers(struct page *page)
668 int newly_dirty;
669 struct address_space *mapping = page_mapping(page);
671 if (unlikely(!mapping))
672 return !TestSetPageDirty(page);
674 spin_lock(&mapping->private_lock);
675 if (page_has_buffers(page)) {
676 struct buffer_head *head = page_buffers(page);
677 struct buffer_head *bh = head;
679 do {
680 set_buffer_dirty(bh);
681 bh = bh->b_this_page;
682 } while (bh != head);
685 * Lock out page->mem_cgroup migration to keep PageDirty
686 * synchronized with per-memcg dirty page counters.
688 lock_page_memcg(page);
689 newly_dirty = !TestSetPageDirty(page);
690 spin_unlock(&mapping->private_lock);
692 if (newly_dirty)
693 __set_page_dirty(page, mapping, 1);
695 unlock_page_memcg(page);
697 if (newly_dirty)
698 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
700 return newly_dirty;
702 EXPORT_SYMBOL(__set_page_dirty_buffers);
705 * Write out and wait upon a list of buffers.
707 * We have conflicting pressures: we want to make sure that all
708 * initially dirty buffers get waited on, but that any subsequently
709 * dirtied buffers don't. After all, we don't want fsync to last
710 * forever if somebody is actively writing to the file.
712 * Do this in two main stages: first we copy dirty buffers to a
713 * temporary inode list, queueing the writes as we go. Then we clean
714 * up, waiting for those writes to complete.
716 * During this second stage, any subsequent updates to the file may end
717 * up refiling the buffer on the original inode's dirty list again, so
718 * there is a chance we will end up with a buffer queued for write but
719 * not yet completed on that list. So, as a final cleanup we go through
720 * the osync code to catch these locked, dirty buffers without requeuing
721 * any newly dirty buffers for write.
723 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
725 struct buffer_head *bh;
726 struct list_head tmp;
727 struct address_space *mapping;
728 int err = 0, err2;
729 struct blk_plug plug;
731 INIT_LIST_HEAD(&tmp);
732 blk_start_plug(&plug);
734 spin_lock(lock);
735 while (!list_empty(list)) {
736 bh = BH_ENTRY(list->next);
737 mapping = bh->b_assoc_map;
738 __remove_assoc_queue(bh);
739 /* Avoid race with mark_buffer_dirty_inode() which does
740 * a lockless check and we rely on seeing the dirty bit */
741 smp_mb();
742 if (buffer_dirty(bh) || buffer_locked(bh)) {
743 list_add(&bh->b_assoc_buffers, &tmp);
744 bh->b_assoc_map = mapping;
745 if (buffer_dirty(bh)) {
746 get_bh(bh);
747 spin_unlock(lock);
749 * Ensure any pending I/O completes so that
750 * write_dirty_buffer() actually writes the
751 * current contents - it is a noop if I/O is
752 * still in flight on potentially older
753 * contents.
755 write_dirty_buffer(bh, WRITE_SYNC);
758 * Kick off IO for the previous mapping. Note
759 * that we will not run the very last mapping,
760 * wait_on_buffer() will do that for us
761 * through sync_buffer().
763 brelse(bh);
764 spin_lock(lock);
769 spin_unlock(lock);
770 blk_finish_plug(&plug);
771 spin_lock(lock);
773 while (!list_empty(&tmp)) {
774 bh = BH_ENTRY(tmp.prev);
775 get_bh(bh);
776 mapping = bh->b_assoc_map;
777 __remove_assoc_queue(bh);
778 /* Avoid race with mark_buffer_dirty_inode() which does
779 * a lockless check and we rely on seeing the dirty bit */
780 smp_mb();
781 if (buffer_dirty(bh)) {
782 list_add(&bh->b_assoc_buffers,
783 &mapping->private_list);
784 bh->b_assoc_map = mapping;
786 spin_unlock(lock);
787 wait_on_buffer(bh);
788 if (!buffer_uptodate(bh))
789 err = -EIO;
790 brelse(bh);
791 spin_lock(lock);
794 spin_unlock(lock);
795 err2 = osync_buffers_list(lock, list);
796 if (err)
797 return err;
798 else
799 return err2;
803 * Invalidate any and all dirty buffers on a given inode. We are
804 * probably unmounting the fs, but that doesn't mean we have already
805 * done a sync(). Just drop the buffers from the inode list.
807 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
808 * assumes that all the buffers are against the blockdev. Not true
809 * for reiserfs.
811 void invalidate_inode_buffers(struct inode *inode)
813 if (inode_has_buffers(inode)) {
814 struct address_space *mapping = &inode->i_data;
815 struct list_head *list = &mapping->private_list;
816 struct address_space *buffer_mapping = mapping->private_data;
818 spin_lock(&buffer_mapping->private_lock);
819 while (!list_empty(list))
820 __remove_assoc_queue(BH_ENTRY(list->next));
821 spin_unlock(&buffer_mapping->private_lock);
824 EXPORT_SYMBOL(invalidate_inode_buffers);
827 * Remove any clean buffers from the inode's buffer list. This is called
828 * when we're trying to free the inode itself. Those buffers can pin it.
830 * Returns true if all buffers were removed.
832 int remove_inode_buffers(struct inode *inode)
834 int ret = 1;
836 if (inode_has_buffers(inode)) {
837 struct address_space *mapping = &inode->i_data;
838 struct list_head *list = &mapping->private_list;
839 struct address_space *buffer_mapping = mapping->private_data;
841 spin_lock(&buffer_mapping->private_lock);
842 while (!list_empty(list)) {
843 struct buffer_head *bh = BH_ENTRY(list->next);
844 if (buffer_dirty(bh)) {
845 ret = 0;
846 break;
848 __remove_assoc_queue(bh);
850 spin_unlock(&buffer_mapping->private_lock);
852 return ret;
856 * Create the appropriate buffers when given a page for data area and
857 * the size of each buffer.. Use the bh->b_this_page linked list to
858 * follow the buffers created. Return NULL if unable to create more
859 * buffers.
861 * The retry flag is used to differentiate async IO (paging, swapping)
862 * which may not fail from ordinary buffer allocations.
864 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
865 int retry)
867 struct buffer_head *bh, *head;
868 long offset;
870 try_again:
871 head = NULL;
872 offset = PAGE_SIZE;
873 while ((offset -= size) >= 0) {
874 bh = alloc_buffer_head(GFP_NOFS);
875 if (!bh)
876 goto no_grow;
878 bh->b_this_page = head;
879 bh->b_blocknr = -1;
880 head = bh;
882 bh->b_size = size;
884 /* Link the buffer to its page */
885 set_bh_page(bh, page, offset);
887 return head;
889 * In case anything failed, we just free everything we got.
891 no_grow:
892 if (head) {
893 do {
894 bh = head;
895 head = head->b_this_page;
896 free_buffer_head(bh);
897 } while (head);
901 * Return failure for non-async IO requests. Async IO requests
902 * are not allowed to fail, so we have to wait until buffer heads
903 * become available. But we don't want tasks sleeping with
904 * partially complete buffers, so all were released above.
906 if (!retry)
907 return NULL;
909 /* We're _really_ low on memory. Now we just
910 * wait for old buffer heads to become free due to
911 * finishing IO. Since this is an async request and
912 * the reserve list is empty, we're sure there are
913 * async buffer heads in use.
915 free_more_memory();
916 goto try_again;
918 EXPORT_SYMBOL_GPL(alloc_page_buffers);
920 static inline void
921 link_dev_buffers(struct page *page, struct buffer_head *head)
923 struct buffer_head *bh, *tail;
925 bh = head;
926 do {
927 tail = bh;
928 bh = bh->b_this_page;
929 } while (bh);
930 tail->b_this_page = head;
931 attach_page_buffers(page, head);
934 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
936 sector_t retval = ~((sector_t)0);
937 loff_t sz = i_size_read(bdev->bd_inode);
939 if (sz) {
940 unsigned int sizebits = blksize_bits(size);
941 retval = (sz >> sizebits);
943 return retval;
947 * Initialise the state of a blockdev page's buffers.
949 static sector_t
950 init_page_buffers(struct page *page, struct block_device *bdev,
951 sector_t block, int size)
953 struct buffer_head *head = page_buffers(page);
954 struct buffer_head *bh = head;
955 int uptodate = PageUptodate(page);
956 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
958 do {
959 if (!buffer_mapped(bh)) {
960 init_buffer(bh, NULL, NULL);
961 bh->b_bdev = bdev;
962 bh->b_blocknr = block;
963 if (uptodate)
964 set_buffer_uptodate(bh);
965 if (block < end_block)
966 set_buffer_mapped(bh);
968 block++;
969 bh = bh->b_this_page;
970 } while (bh != head);
973 * Caller needs to validate requested block against end of device.
975 return end_block;
979 * Create the page-cache page that contains the requested block.
981 * This is used purely for blockdev mappings.
983 static int
984 grow_dev_page(struct block_device *bdev, sector_t block,
985 pgoff_t index, int size, int sizebits, gfp_t gfp)
987 struct inode *inode = bdev->bd_inode;
988 struct page *page;
989 struct buffer_head *bh;
990 sector_t end_block;
991 int ret = 0; /* Will call free_more_memory() */
992 gfp_t gfp_mask;
994 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
997 * XXX: __getblk_slow() can not really deal with failure and
998 * will endlessly loop on improvised global reclaim. Prefer
999 * looping in the allocator rather than here, at least that
1000 * code knows what it's doing.
1002 gfp_mask |= __GFP_NOFAIL;
1004 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1005 if (!page)
1006 return ret;
1008 BUG_ON(!PageLocked(page));
1010 if (page_has_buffers(page)) {
1011 bh = page_buffers(page);
1012 if (bh->b_size == size) {
1013 end_block = init_page_buffers(page, bdev,
1014 (sector_t)index << sizebits,
1015 size);
1016 goto done;
1018 if (!try_to_free_buffers(page))
1019 goto failed;
1023 * Allocate some buffers for this page
1025 bh = alloc_page_buffers(page, size, 0);
1026 if (!bh)
1027 goto failed;
1030 * Link the page to the buffers and initialise them. Take the
1031 * lock to be atomic wrt __find_get_block(), which does not
1032 * run under the page lock.
1034 spin_lock(&inode->i_mapping->private_lock);
1035 link_dev_buffers(page, bh);
1036 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1037 size);
1038 spin_unlock(&inode->i_mapping->private_lock);
1039 done:
1040 ret = (block < end_block) ? 1 : -ENXIO;
1041 failed:
1042 unlock_page(page);
1043 page_cache_release(page);
1044 return ret;
1048 * Create buffers for the specified block device block's page. If
1049 * that page was dirty, the buffers are set dirty also.
1051 static int
1052 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1054 pgoff_t index;
1055 int sizebits;
1057 sizebits = -1;
1058 do {
1059 sizebits++;
1060 } while ((size << sizebits) < PAGE_SIZE);
1062 index = block >> sizebits;
1065 * Check for a block which wants to lie outside our maximum possible
1066 * pagecache index. (this comparison is done using sector_t types).
1068 if (unlikely(index != block >> sizebits)) {
1069 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1070 "device %pg\n",
1071 __func__, (unsigned long long)block,
1072 bdev);
1073 return -EIO;
1076 /* Create a page with the proper size buffers.. */
1077 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1080 struct buffer_head *
1081 __getblk_slow(struct block_device *bdev, sector_t block,
1082 unsigned size, gfp_t gfp)
1084 /* Size must be multiple of hard sectorsize */
1085 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1086 (size < 512 || size > PAGE_SIZE))) {
1087 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1088 size);
1089 printk(KERN_ERR "logical block size: %d\n",
1090 bdev_logical_block_size(bdev));
1092 dump_stack();
1093 return NULL;
1096 for (;;) {
1097 struct buffer_head *bh;
1098 int ret;
1100 bh = __find_get_block(bdev, block, size);
1101 if (bh)
1102 return bh;
1104 ret = grow_buffers(bdev, block, size, gfp);
1105 if (ret < 0)
1106 return NULL;
1107 if (ret == 0)
1108 free_more_memory();
1111 EXPORT_SYMBOL(__getblk_slow);
1114 * The relationship between dirty buffers and dirty pages:
1116 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1117 * the page is tagged dirty in its radix tree.
1119 * At all times, the dirtiness of the buffers represents the dirtiness of
1120 * subsections of the page. If the page has buffers, the page dirty bit is
1121 * merely a hint about the true dirty state.
1123 * When a page is set dirty in its entirety, all its buffers are marked dirty
1124 * (if the page has buffers).
1126 * When a buffer is marked dirty, its page is dirtied, but the page's other
1127 * buffers are not.
1129 * Also. When blockdev buffers are explicitly read with bread(), they
1130 * individually become uptodate. But their backing page remains not
1131 * uptodate - even if all of its buffers are uptodate. A subsequent
1132 * block_read_full_page() against that page will discover all the uptodate
1133 * buffers, will set the page uptodate and will perform no I/O.
1137 * mark_buffer_dirty - mark a buffer_head as needing writeout
1138 * @bh: the buffer_head to mark dirty
1140 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1141 * backing page dirty, then tag the page as dirty in its address_space's radix
1142 * tree and then attach the address_space's inode to its superblock's dirty
1143 * inode list.
1145 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1146 * mapping->tree_lock and mapping->host->i_lock.
1148 void mark_buffer_dirty(struct buffer_head *bh)
1150 WARN_ON_ONCE(!buffer_uptodate(bh));
1152 trace_block_dirty_buffer(bh);
1155 * Very *carefully* optimize the it-is-already-dirty case.
1157 * Don't let the final "is it dirty" escape to before we
1158 * perhaps modified the buffer.
1160 if (buffer_dirty(bh)) {
1161 smp_mb();
1162 if (buffer_dirty(bh))
1163 return;
1166 if (!test_set_buffer_dirty(bh)) {
1167 struct page *page = bh->b_page;
1168 struct address_space *mapping = NULL;
1170 lock_page_memcg(page);
1171 if (!TestSetPageDirty(page)) {
1172 mapping = page_mapping(page);
1173 if (mapping)
1174 __set_page_dirty(page, mapping, 0);
1176 unlock_page_memcg(page);
1177 if (mapping)
1178 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1181 EXPORT_SYMBOL(mark_buffer_dirty);
1184 * Decrement a buffer_head's reference count. If all buffers against a page
1185 * have zero reference count, are clean and unlocked, and if the page is clean
1186 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1187 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1188 * a page but it ends up not being freed, and buffers may later be reattached).
1190 void __brelse(struct buffer_head * buf)
1192 if (atomic_read(&buf->b_count)) {
1193 put_bh(buf);
1194 return;
1196 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1198 EXPORT_SYMBOL(__brelse);
1201 * bforget() is like brelse(), except it discards any
1202 * potentially dirty data.
1204 void __bforget(struct buffer_head *bh)
1206 clear_buffer_dirty(bh);
1207 if (bh->b_assoc_map) {
1208 struct address_space *buffer_mapping = bh->b_page->mapping;
1210 spin_lock(&buffer_mapping->private_lock);
1211 list_del_init(&bh->b_assoc_buffers);
1212 bh->b_assoc_map = NULL;
1213 spin_unlock(&buffer_mapping->private_lock);
1215 __brelse(bh);
1217 EXPORT_SYMBOL(__bforget);
1219 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1221 lock_buffer(bh);
1222 if (buffer_uptodate(bh)) {
1223 unlock_buffer(bh);
1224 return bh;
1225 } else {
1226 get_bh(bh);
1227 bh->b_end_io = end_buffer_read_sync;
1228 submit_bh(READ, bh);
1229 wait_on_buffer(bh);
1230 if (buffer_uptodate(bh))
1231 return bh;
1233 brelse(bh);
1234 return NULL;
1238 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1239 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1240 * refcount elevated by one when they're in an LRU. A buffer can only appear
1241 * once in a particular CPU's LRU. A single buffer can be present in multiple
1242 * CPU's LRUs at the same time.
1244 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1245 * sb_find_get_block().
1247 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1248 * a local interrupt disable for that.
1251 #define BH_LRU_SIZE 16
1253 struct bh_lru {
1254 struct buffer_head *bhs[BH_LRU_SIZE];
1257 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1259 #ifdef CONFIG_SMP
1260 #define bh_lru_lock() local_irq_disable()
1261 #define bh_lru_unlock() local_irq_enable()
1262 #else
1263 #define bh_lru_lock() preempt_disable()
1264 #define bh_lru_unlock() preempt_enable()
1265 #endif
1267 static inline void check_irqs_on(void)
1269 #ifdef irqs_disabled
1270 BUG_ON(irqs_disabled());
1271 #endif
1275 * The LRU management algorithm is dopey-but-simple. Sorry.
1277 static void bh_lru_install(struct buffer_head *bh)
1279 struct buffer_head *evictee = NULL;
1281 check_irqs_on();
1282 bh_lru_lock();
1283 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1284 struct buffer_head *bhs[BH_LRU_SIZE];
1285 int in;
1286 int out = 0;
1288 get_bh(bh);
1289 bhs[out++] = bh;
1290 for (in = 0; in < BH_LRU_SIZE; in++) {
1291 struct buffer_head *bh2 =
1292 __this_cpu_read(bh_lrus.bhs[in]);
1294 if (bh2 == bh) {
1295 __brelse(bh2);
1296 } else {
1297 if (out >= BH_LRU_SIZE) {
1298 BUG_ON(evictee != NULL);
1299 evictee = bh2;
1300 } else {
1301 bhs[out++] = bh2;
1305 while (out < BH_LRU_SIZE)
1306 bhs[out++] = NULL;
1307 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1309 bh_lru_unlock();
1311 if (evictee)
1312 __brelse(evictee);
1316 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1318 static struct buffer_head *
1319 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1321 struct buffer_head *ret = NULL;
1322 unsigned int i;
1324 check_irqs_on();
1325 bh_lru_lock();
1326 for (i = 0; i < BH_LRU_SIZE; i++) {
1327 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1329 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1330 bh->b_size == size) {
1331 if (i) {
1332 while (i) {
1333 __this_cpu_write(bh_lrus.bhs[i],
1334 __this_cpu_read(bh_lrus.bhs[i - 1]));
1335 i--;
1337 __this_cpu_write(bh_lrus.bhs[0], bh);
1339 get_bh(bh);
1340 ret = bh;
1341 break;
1344 bh_lru_unlock();
1345 return ret;
1349 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1350 * it in the LRU and mark it as accessed. If it is not present then return
1351 * NULL
1353 struct buffer_head *
1354 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1356 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1358 if (bh == NULL) {
1359 /* __find_get_block_slow will mark the page accessed */
1360 bh = __find_get_block_slow(bdev, block);
1361 if (bh)
1362 bh_lru_install(bh);
1363 } else
1364 touch_buffer(bh);
1366 return bh;
1368 EXPORT_SYMBOL(__find_get_block);
1371 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1372 * which corresponds to the passed block_device, block and size. The
1373 * returned buffer has its reference count incremented.
1375 * __getblk_gfp() will lock up the machine if grow_dev_page's
1376 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1378 struct buffer_head *
1379 __getblk_gfp(struct block_device *bdev, sector_t block,
1380 unsigned size, gfp_t gfp)
1382 struct buffer_head *bh = __find_get_block(bdev, block, size);
1384 might_sleep();
1385 if (bh == NULL)
1386 bh = __getblk_slow(bdev, block, size, gfp);
1387 return bh;
1389 EXPORT_SYMBOL(__getblk_gfp);
1392 * Do async read-ahead on a buffer..
1394 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1396 struct buffer_head *bh = __getblk(bdev, block, size);
1397 if (likely(bh)) {
1398 ll_rw_block(READA, 1, &bh);
1399 brelse(bh);
1402 EXPORT_SYMBOL(__breadahead);
1405 * __bread_gfp() - reads a specified block and returns the bh
1406 * @bdev: the block_device to read from
1407 * @block: number of block
1408 * @size: size (in bytes) to read
1409 * @gfp: page allocation flag
1411 * Reads a specified block, and returns buffer head that contains it.
1412 * The page cache can be allocated from non-movable area
1413 * not to prevent page migration if you set gfp to zero.
1414 * It returns NULL if the block was unreadable.
1416 struct buffer_head *
1417 __bread_gfp(struct block_device *bdev, sector_t block,
1418 unsigned size, gfp_t gfp)
1420 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1422 if (likely(bh) && !buffer_uptodate(bh))
1423 bh = __bread_slow(bh);
1424 return bh;
1426 EXPORT_SYMBOL(__bread_gfp);
1429 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1430 * This doesn't race because it runs in each cpu either in irq
1431 * or with preempt disabled.
1433 static void invalidate_bh_lru(void *arg)
1435 struct bh_lru *b = &get_cpu_var(bh_lrus);
1436 int i;
1438 for (i = 0; i < BH_LRU_SIZE; i++) {
1439 brelse(b->bhs[i]);
1440 b->bhs[i] = NULL;
1442 put_cpu_var(bh_lrus);
1445 static bool has_bh_in_lru(int cpu, void *dummy)
1447 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1448 int i;
1450 for (i = 0; i < BH_LRU_SIZE; i++) {
1451 if (b->bhs[i])
1452 return 1;
1455 return 0;
1458 void invalidate_bh_lrus(void)
1460 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1462 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1464 void set_bh_page(struct buffer_head *bh,
1465 struct page *page, unsigned long offset)
1467 bh->b_page = page;
1468 BUG_ON(offset >= PAGE_SIZE);
1469 if (PageHighMem(page))
1471 * This catches illegal uses and preserves the offset:
1473 bh->b_data = (char *)(0 + offset);
1474 else
1475 bh->b_data = page_address(page) + offset;
1477 EXPORT_SYMBOL(set_bh_page);
1480 * Called when truncating a buffer on a page completely.
1483 /* Bits that are cleared during an invalidate */
1484 #define BUFFER_FLAGS_DISCARD \
1485 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1486 1 << BH_Delay | 1 << BH_Unwritten)
1488 static void discard_buffer(struct buffer_head * bh)
1490 unsigned long b_state, b_state_old;
1492 lock_buffer(bh);
1493 clear_buffer_dirty(bh);
1494 bh->b_bdev = NULL;
1495 b_state = bh->b_state;
1496 for (;;) {
1497 b_state_old = cmpxchg(&bh->b_state, b_state,
1498 (b_state & ~BUFFER_FLAGS_DISCARD));
1499 if (b_state_old == b_state)
1500 break;
1501 b_state = b_state_old;
1503 unlock_buffer(bh);
1507 * block_invalidatepage - invalidate part or all of a buffer-backed page
1509 * @page: the page which is affected
1510 * @offset: start of the range to invalidate
1511 * @length: length of the range to invalidate
1513 * block_invalidatepage() is called when all or part of the page has become
1514 * invalidated by a truncate operation.
1516 * block_invalidatepage() does not have to release all buffers, but it must
1517 * ensure that no dirty buffer is left outside @offset and that no I/O
1518 * is underway against any of the blocks which are outside the truncation
1519 * point. Because the caller is about to free (and possibly reuse) those
1520 * blocks on-disk.
1522 void block_invalidatepage(struct page *page, unsigned int offset,
1523 unsigned int length)
1525 struct buffer_head *head, *bh, *next;
1526 unsigned int curr_off = 0;
1527 unsigned int stop = length + offset;
1529 BUG_ON(!PageLocked(page));
1530 if (!page_has_buffers(page))
1531 goto out;
1534 * Check for overflow
1536 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1538 head = page_buffers(page);
1539 bh = head;
1540 do {
1541 unsigned int next_off = curr_off + bh->b_size;
1542 next = bh->b_this_page;
1545 * Are we still fully in range ?
1547 if (next_off > stop)
1548 goto out;
1551 * is this block fully invalidated?
1553 if (offset <= curr_off)
1554 discard_buffer(bh);
1555 curr_off = next_off;
1556 bh = next;
1557 } while (bh != head);
1560 * We release buffers only if the entire page is being invalidated.
1561 * The get_block cached value has been unconditionally invalidated,
1562 * so real IO is not possible anymore.
1564 if (offset == 0)
1565 try_to_release_page(page, 0);
1566 out:
1567 return;
1569 EXPORT_SYMBOL(block_invalidatepage);
1573 * We attach and possibly dirty the buffers atomically wrt
1574 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1575 * is already excluded via the page lock.
1577 void create_empty_buffers(struct page *page,
1578 unsigned long blocksize, unsigned long b_state)
1580 struct buffer_head *bh, *head, *tail;
1582 head = alloc_page_buffers(page, blocksize, 1);
1583 bh = head;
1584 do {
1585 bh->b_state |= b_state;
1586 tail = bh;
1587 bh = bh->b_this_page;
1588 } while (bh);
1589 tail->b_this_page = head;
1591 spin_lock(&page->mapping->private_lock);
1592 if (PageUptodate(page) || PageDirty(page)) {
1593 bh = head;
1594 do {
1595 if (PageDirty(page))
1596 set_buffer_dirty(bh);
1597 if (PageUptodate(page))
1598 set_buffer_uptodate(bh);
1599 bh = bh->b_this_page;
1600 } while (bh != head);
1602 attach_page_buffers(page, head);
1603 spin_unlock(&page->mapping->private_lock);
1605 EXPORT_SYMBOL(create_empty_buffers);
1608 * We are taking a block for data and we don't want any output from any
1609 * buffer-cache aliases starting from return from that function and
1610 * until the moment when something will explicitly mark the buffer
1611 * dirty (hopefully that will not happen until we will free that block ;-)
1612 * We don't even need to mark it not-uptodate - nobody can expect
1613 * anything from a newly allocated buffer anyway. We used to used
1614 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1615 * don't want to mark the alias unmapped, for example - it would confuse
1616 * anyone who might pick it with bread() afterwards...
1618 * Also.. Note that bforget() doesn't lock the buffer. So there can
1619 * be writeout I/O going on against recently-freed buffers. We don't
1620 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1621 * only if we really need to. That happens here.
1623 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1625 struct buffer_head *old_bh;
1627 might_sleep();
1629 old_bh = __find_get_block_slow(bdev, block);
1630 if (old_bh) {
1631 clear_buffer_dirty(old_bh);
1632 wait_on_buffer(old_bh);
1633 clear_buffer_req(old_bh);
1634 __brelse(old_bh);
1637 EXPORT_SYMBOL(unmap_underlying_metadata);
1640 * Size is a power-of-two in the range 512..PAGE_SIZE,
1641 * and the case we care about most is PAGE_SIZE.
1643 * So this *could* possibly be written with those
1644 * constraints in mind (relevant mostly if some
1645 * architecture has a slow bit-scan instruction)
1647 static inline int block_size_bits(unsigned int blocksize)
1649 return ilog2(blocksize);
1652 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1654 BUG_ON(!PageLocked(page));
1656 if (!page_has_buffers(page))
1657 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1658 return page_buffers(page);
1662 * NOTE! All mapped/uptodate combinations are valid:
1664 * Mapped Uptodate Meaning
1666 * No No "unknown" - must do get_block()
1667 * No Yes "hole" - zero-filled
1668 * Yes No "allocated" - allocated on disk, not read in
1669 * Yes Yes "valid" - allocated and up-to-date in memory.
1671 * "Dirty" is valid only with the last case (mapped+uptodate).
1675 * While block_write_full_page is writing back the dirty buffers under
1676 * the page lock, whoever dirtied the buffers may decide to clean them
1677 * again at any time. We handle that by only looking at the buffer
1678 * state inside lock_buffer().
1680 * If block_write_full_page() is called for regular writeback
1681 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1682 * locked buffer. This only can happen if someone has written the buffer
1683 * directly, with submit_bh(). At the address_space level PageWriteback
1684 * prevents this contention from occurring.
1686 * If block_write_full_page() is called with wbc->sync_mode ==
1687 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1688 * causes the writes to be flagged as synchronous writes.
1690 static int __block_write_full_page(struct inode *inode, struct page *page,
1691 get_block_t *get_block, struct writeback_control *wbc,
1692 bh_end_io_t *handler)
1694 int err;
1695 sector_t block;
1696 sector_t last_block;
1697 struct buffer_head *bh, *head;
1698 unsigned int blocksize, bbits;
1699 int nr_underway = 0;
1700 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
1702 head = create_page_buffers(page, inode,
1703 (1 << BH_Dirty)|(1 << BH_Uptodate));
1706 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1707 * here, and the (potentially unmapped) buffers may become dirty at
1708 * any time. If a buffer becomes dirty here after we've inspected it
1709 * then we just miss that fact, and the page stays dirty.
1711 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1712 * handle that here by just cleaning them.
1715 bh = head;
1716 blocksize = bh->b_size;
1717 bbits = block_size_bits(blocksize);
1719 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1720 last_block = (i_size_read(inode) - 1) >> bbits;
1723 * Get all the dirty buffers mapped to disk addresses and
1724 * handle any aliases from the underlying blockdev's mapping.
1726 do {
1727 if (block > last_block) {
1729 * mapped buffers outside i_size will occur, because
1730 * this page can be outside i_size when there is a
1731 * truncate in progress.
1734 * The buffer was zeroed by block_write_full_page()
1736 clear_buffer_dirty(bh);
1737 set_buffer_uptodate(bh);
1738 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1739 buffer_dirty(bh)) {
1740 WARN_ON(bh->b_size != blocksize);
1741 err = get_block(inode, block, bh, 1);
1742 if (err)
1743 goto recover;
1744 clear_buffer_delay(bh);
1745 if (buffer_new(bh)) {
1746 /* blockdev mappings never come here */
1747 clear_buffer_new(bh);
1748 unmap_underlying_metadata(bh->b_bdev,
1749 bh->b_blocknr);
1752 bh = bh->b_this_page;
1753 block++;
1754 } while (bh != head);
1756 do {
1757 if (!buffer_mapped(bh))
1758 continue;
1760 * If it's a fully non-blocking write attempt and we cannot
1761 * lock the buffer then redirty the page. Note that this can
1762 * potentially cause a busy-wait loop from writeback threads
1763 * and kswapd activity, but those code paths have their own
1764 * higher-level throttling.
1766 if (wbc->sync_mode != WB_SYNC_NONE) {
1767 lock_buffer(bh);
1768 } else if (!trylock_buffer(bh)) {
1769 redirty_page_for_writepage(wbc, page);
1770 continue;
1772 if (test_clear_buffer_dirty(bh)) {
1773 mark_buffer_async_write_endio(bh, handler);
1774 } else {
1775 unlock_buffer(bh);
1777 } while ((bh = bh->b_this_page) != head);
1780 * The page and its buffers are protected by PageWriteback(), so we can
1781 * drop the bh refcounts early.
1783 BUG_ON(PageWriteback(page));
1784 set_page_writeback(page);
1786 do {
1787 struct buffer_head *next = bh->b_this_page;
1788 if (buffer_async_write(bh)) {
1789 submit_bh_wbc(write_op, bh, 0, wbc);
1790 nr_underway++;
1792 bh = next;
1793 } while (bh != head);
1794 unlock_page(page);
1796 err = 0;
1797 done:
1798 if (nr_underway == 0) {
1800 * The page was marked dirty, but the buffers were
1801 * clean. Someone wrote them back by hand with
1802 * ll_rw_block/submit_bh. A rare case.
1804 end_page_writeback(page);
1807 * The page and buffer_heads can be released at any time from
1808 * here on.
1811 return err;
1813 recover:
1815 * ENOSPC, or some other error. We may already have added some
1816 * blocks to the file, so we need to write these out to avoid
1817 * exposing stale data.
1818 * The page is currently locked and not marked for writeback
1820 bh = head;
1821 /* Recovery: lock and submit the mapped buffers */
1822 do {
1823 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1824 !buffer_delay(bh)) {
1825 lock_buffer(bh);
1826 mark_buffer_async_write_endio(bh, handler);
1827 } else {
1829 * The buffer may have been set dirty during
1830 * attachment to a dirty page.
1832 clear_buffer_dirty(bh);
1834 } while ((bh = bh->b_this_page) != head);
1835 SetPageError(page);
1836 BUG_ON(PageWriteback(page));
1837 mapping_set_error(page->mapping, err);
1838 set_page_writeback(page);
1839 do {
1840 struct buffer_head *next = bh->b_this_page;
1841 if (buffer_async_write(bh)) {
1842 clear_buffer_dirty(bh);
1843 submit_bh_wbc(write_op, bh, 0, wbc);
1844 nr_underway++;
1846 bh = next;
1847 } while (bh != head);
1848 unlock_page(page);
1849 goto done;
1853 * If a page has any new buffers, zero them out here, and mark them uptodate
1854 * and dirty so they'll be written out (in order to prevent uninitialised
1855 * block data from leaking). And clear the new bit.
1857 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1859 unsigned int block_start, block_end;
1860 struct buffer_head *head, *bh;
1862 BUG_ON(!PageLocked(page));
1863 if (!page_has_buffers(page))
1864 return;
1866 bh = head = page_buffers(page);
1867 block_start = 0;
1868 do {
1869 block_end = block_start + bh->b_size;
1871 if (buffer_new(bh)) {
1872 if (block_end > from && block_start < to) {
1873 if (!PageUptodate(page)) {
1874 unsigned start, size;
1876 start = max(from, block_start);
1877 size = min(to, block_end) - start;
1879 zero_user(page, start, size);
1880 set_buffer_uptodate(bh);
1883 clear_buffer_new(bh);
1884 mark_buffer_dirty(bh);
1888 block_start = block_end;
1889 bh = bh->b_this_page;
1890 } while (bh != head);
1892 EXPORT_SYMBOL(page_zero_new_buffers);
1894 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1895 get_block_t *get_block)
1897 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1898 unsigned to = from + len;
1899 struct inode *inode = page->mapping->host;
1900 unsigned block_start, block_end;
1901 sector_t block;
1902 int err = 0;
1903 unsigned blocksize, bbits;
1904 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1906 BUG_ON(!PageLocked(page));
1907 BUG_ON(from > PAGE_CACHE_SIZE);
1908 BUG_ON(to > PAGE_CACHE_SIZE);
1909 BUG_ON(from > to);
1911 head = create_page_buffers(page, inode, 0);
1912 blocksize = head->b_size;
1913 bbits = block_size_bits(blocksize);
1915 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1917 for(bh = head, block_start = 0; bh != head || !block_start;
1918 block++, block_start=block_end, bh = bh->b_this_page) {
1919 block_end = block_start + blocksize;
1920 if (block_end <= from || block_start >= to) {
1921 if (PageUptodate(page)) {
1922 if (!buffer_uptodate(bh))
1923 set_buffer_uptodate(bh);
1925 continue;
1927 if (buffer_new(bh))
1928 clear_buffer_new(bh);
1929 if (!buffer_mapped(bh)) {
1930 WARN_ON(bh->b_size != blocksize);
1931 err = get_block(inode, block, bh, 1);
1932 if (err)
1933 break;
1934 if (buffer_new(bh)) {
1935 unmap_underlying_metadata(bh->b_bdev,
1936 bh->b_blocknr);
1937 if (PageUptodate(page)) {
1938 clear_buffer_new(bh);
1939 set_buffer_uptodate(bh);
1940 mark_buffer_dirty(bh);
1941 continue;
1943 if (block_end > to || block_start < from)
1944 zero_user_segments(page,
1945 to, block_end,
1946 block_start, from);
1947 continue;
1950 if (PageUptodate(page)) {
1951 if (!buffer_uptodate(bh))
1952 set_buffer_uptodate(bh);
1953 continue;
1955 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1956 !buffer_unwritten(bh) &&
1957 (block_start < from || block_end > to)) {
1958 ll_rw_block(READ, 1, &bh);
1959 *wait_bh++=bh;
1963 * If we issued read requests - let them complete.
1965 while(wait_bh > wait) {
1966 wait_on_buffer(*--wait_bh);
1967 if (!buffer_uptodate(*wait_bh))
1968 err = -EIO;
1970 if (unlikely(err))
1971 page_zero_new_buffers(page, from, to);
1972 return err;
1974 EXPORT_SYMBOL(__block_write_begin);
1976 static int __block_commit_write(struct inode *inode, struct page *page,
1977 unsigned from, unsigned to)
1979 unsigned block_start, block_end;
1980 int partial = 0;
1981 unsigned blocksize;
1982 struct buffer_head *bh, *head;
1984 bh = head = page_buffers(page);
1985 blocksize = bh->b_size;
1987 block_start = 0;
1988 do {
1989 block_end = block_start + blocksize;
1990 if (block_end <= from || block_start >= to) {
1991 if (!buffer_uptodate(bh))
1992 partial = 1;
1993 } else {
1994 set_buffer_uptodate(bh);
1995 mark_buffer_dirty(bh);
1997 clear_buffer_new(bh);
1999 block_start = block_end;
2000 bh = bh->b_this_page;
2001 } while (bh != head);
2004 * If this is a partial write which happened to make all buffers
2005 * uptodate then we can optimize away a bogus readpage() for
2006 * the next read(). Here we 'discover' whether the page went
2007 * uptodate as a result of this (potentially partial) write.
2009 if (!partial)
2010 SetPageUptodate(page);
2011 return 0;
2015 * block_write_begin takes care of the basic task of block allocation and
2016 * bringing partial write blocks uptodate first.
2018 * The filesystem needs to handle block truncation upon failure.
2020 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2021 unsigned flags, struct page **pagep, get_block_t *get_block)
2023 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2024 struct page *page;
2025 int status;
2027 page = grab_cache_page_write_begin(mapping, index, flags);
2028 if (!page)
2029 return -ENOMEM;
2031 status = __block_write_begin(page, pos, len, get_block);
2032 if (unlikely(status)) {
2033 unlock_page(page);
2034 page_cache_release(page);
2035 page = NULL;
2038 *pagep = page;
2039 return status;
2041 EXPORT_SYMBOL(block_write_begin);
2043 int block_write_end(struct file *file, struct address_space *mapping,
2044 loff_t pos, unsigned len, unsigned copied,
2045 struct page *page, void *fsdata)
2047 struct inode *inode = mapping->host;
2048 unsigned start;
2050 start = pos & (PAGE_CACHE_SIZE - 1);
2052 if (unlikely(copied < len)) {
2054 * The buffers that were written will now be uptodate, so we
2055 * don't have to worry about a readpage reading them and
2056 * overwriting a partial write. However if we have encountered
2057 * a short write and only partially written into a buffer, it
2058 * will not be marked uptodate, so a readpage might come in and
2059 * destroy our partial write.
2061 * Do the simplest thing, and just treat any short write to a
2062 * non uptodate page as a zero-length write, and force the
2063 * caller to redo the whole thing.
2065 if (!PageUptodate(page))
2066 copied = 0;
2068 page_zero_new_buffers(page, start+copied, start+len);
2070 flush_dcache_page(page);
2072 /* This could be a short (even 0-length) commit */
2073 __block_commit_write(inode, page, start, start+copied);
2075 return copied;
2077 EXPORT_SYMBOL(block_write_end);
2079 int generic_write_end(struct file *file, struct address_space *mapping,
2080 loff_t pos, unsigned len, unsigned copied,
2081 struct page *page, void *fsdata)
2083 struct inode *inode = mapping->host;
2084 loff_t old_size = inode->i_size;
2085 int i_size_changed = 0;
2087 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2090 * No need to use i_size_read() here, the i_size
2091 * cannot change under us because we hold i_mutex.
2093 * But it's important to update i_size while still holding page lock:
2094 * page writeout could otherwise come in and zero beyond i_size.
2096 if (pos+copied > inode->i_size) {
2097 i_size_write(inode, pos+copied);
2098 i_size_changed = 1;
2101 unlock_page(page);
2102 page_cache_release(page);
2104 if (old_size < pos)
2105 pagecache_isize_extended(inode, old_size, pos);
2107 * Don't mark the inode dirty under page lock. First, it unnecessarily
2108 * makes the holding time of page lock longer. Second, it forces lock
2109 * ordering of page lock and transaction start for journaling
2110 * filesystems.
2112 if (i_size_changed)
2113 mark_inode_dirty(inode);
2115 return copied;
2117 EXPORT_SYMBOL(generic_write_end);
2120 * block_is_partially_uptodate checks whether buffers within a page are
2121 * uptodate or not.
2123 * Returns true if all buffers which correspond to a file portion
2124 * we want to read are uptodate.
2126 int block_is_partially_uptodate(struct page *page, unsigned long from,
2127 unsigned long count)
2129 unsigned block_start, block_end, blocksize;
2130 unsigned to;
2131 struct buffer_head *bh, *head;
2132 int ret = 1;
2134 if (!page_has_buffers(page))
2135 return 0;
2137 head = page_buffers(page);
2138 blocksize = head->b_size;
2139 to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2140 to = from + to;
2141 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2142 return 0;
2144 bh = head;
2145 block_start = 0;
2146 do {
2147 block_end = block_start + blocksize;
2148 if (block_end > from && block_start < to) {
2149 if (!buffer_uptodate(bh)) {
2150 ret = 0;
2151 break;
2153 if (block_end >= to)
2154 break;
2156 block_start = block_end;
2157 bh = bh->b_this_page;
2158 } while (bh != head);
2160 return ret;
2162 EXPORT_SYMBOL(block_is_partially_uptodate);
2165 * Generic "read page" function for block devices that have the normal
2166 * get_block functionality. This is most of the block device filesystems.
2167 * Reads the page asynchronously --- the unlock_buffer() and
2168 * set/clear_buffer_uptodate() functions propagate buffer state into the
2169 * page struct once IO has completed.
2171 int block_read_full_page(struct page *page, get_block_t *get_block)
2173 struct inode *inode = page->mapping->host;
2174 sector_t iblock, lblock;
2175 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2176 unsigned int blocksize, bbits;
2177 int nr, i;
2178 int fully_mapped = 1;
2180 head = create_page_buffers(page, inode, 0);
2181 blocksize = head->b_size;
2182 bbits = block_size_bits(blocksize);
2184 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2185 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2186 bh = head;
2187 nr = 0;
2188 i = 0;
2190 do {
2191 if (buffer_uptodate(bh))
2192 continue;
2194 if (!buffer_mapped(bh)) {
2195 int err = 0;
2197 fully_mapped = 0;
2198 if (iblock < lblock) {
2199 WARN_ON(bh->b_size != blocksize);
2200 err = get_block(inode, iblock, bh, 0);
2201 if (err)
2202 SetPageError(page);
2204 if (!buffer_mapped(bh)) {
2205 zero_user(page, i * blocksize, blocksize);
2206 if (!err)
2207 set_buffer_uptodate(bh);
2208 continue;
2211 * get_block() might have updated the buffer
2212 * synchronously
2214 if (buffer_uptodate(bh))
2215 continue;
2217 arr[nr++] = bh;
2218 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2220 if (fully_mapped)
2221 SetPageMappedToDisk(page);
2223 if (!nr) {
2225 * All buffers are uptodate - we can set the page uptodate
2226 * as well. But not if get_block() returned an error.
2228 if (!PageError(page))
2229 SetPageUptodate(page);
2230 unlock_page(page);
2231 return 0;
2234 /* Stage two: lock the buffers */
2235 for (i = 0; i < nr; i++) {
2236 bh = arr[i];
2237 lock_buffer(bh);
2238 mark_buffer_async_read(bh);
2242 * Stage 3: start the IO. Check for uptodateness
2243 * inside the buffer lock in case another process reading
2244 * the underlying blockdev brought it uptodate (the sct fix).
2246 for (i = 0; i < nr; i++) {
2247 bh = arr[i];
2248 if (buffer_uptodate(bh))
2249 end_buffer_async_read(bh, 1);
2250 else
2251 submit_bh(READ, bh);
2253 return 0;
2255 EXPORT_SYMBOL(block_read_full_page);
2257 /* utility function for filesystems that need to do work on expanding
2258 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2259 * deal with the hole.
2261 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2263 struct address_space *mapping = inode->i_mapping;
2264 struct page *page;
2265 void *fsdata;
2266 int err;
2268 err = inode_newsize_ok(inode, size);
2269 if (err)
2270 goto out;
2272 err = pagecache_write_begin(NULL, mapping, size, 0,
2273 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2274 &page, &fsdata);
2275 if (err)
2276 goto out;
2278 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2279 BUG_ON(err > 0);
2281 out:
2282 return err;
2284 EXPORT_SYMBOL(generic_cont_expand_simple);
2286 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2287 loff_t pos, loff_t *bytes)
2289 struct inode *inode = mapping->host;
2290 unsigned blocksize = 1 << inode->i_blkbits;
2291 struct page *page;
2292 void *fsdata;
2293 pgoff_t index, curidx;
2294 loff_t curpos;
2295 unsigned zerofrom, offset, len;
2296 int err = 0;
2298 index = pos >> PAGE_CACHE_SHIFT;
2299 offset = pos & ~PAGE_CACHE_MASK;
2301 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2302 zerofrom = curpos & ~PAGE_CACHE_MASK;
2303 if (zerofrom & (blocksize-1)) {
2304 *bytes |= (blocksize-1);
2305 (*bytes)++;
2307 len = PAGE_CACHE_SIZE - zerofrom;
2309 err = pagecache_write_begin(file, mapping, curpos, len,
2310 AOP_FLAG_UNINTERRUPTIBLE,
2311 &page, &fsdata);
2312 if (err)
2313 goto out;
2314 zero_user(page, zerofrom, len);
2315 err = pagecache_write_end(file, mapping, curpos, len, len,
2316 page, fsdata);
2317 if (err < 0)
2318 goto out;
2319 BUG_ON(err != len);
2320 err = 0;
2322 balance_dirty_pages_ratelimited(mapping);
2324 if (unlikely(fatal_signal_pending(current))) {
2325 err = -EINTR;
2326 goto out;
2330 /* page covers the boundary, find the boundary offset */
2331 if (index == curidx) {
2332 zerofrom = curpos & ~PAGE_CACHE_MASK;
2333 /* if we will expand the thing last block will be filled */
2334 if (offset <= zerofrom) {
2335 goto out;
2337 if (zerofrom & (blocksize-1)) {
2338 *bytes |= (blocksize-1);
2339 (*bytes)++;
2341 len = offset - zerofrom;
2343 err = pagecache_write_begin(file, mapping, curpos, len,
2344 AOP_FLAG_UNINTERRUPTIBLE,
2345 &page, &fsdata);
2346 if (err)
2347 goto out;
2348 zero_user(page, zerofrom, len);
2349 err = pagecache_write_end(file, mapping, curpos, len, len,
2350 page, fsdata);
2351 if (err < 0)
2352 goto out;
2353 BUG_ON(err != len);
2354 err = 0;
2356 out:
2357 return err;
2361 * For moronic filesystems that do not allow holes in file.
2362 * We may have to extend the file.
2364 int cont_write_begin(struct file *file, struct address_space *mapping,
2365 loff_t pos, unsigned len, unsigned flags,
2366 struct page **pagep, void **fsdata,
2367 get_block_t *get_block, loff_t *bytes)
2369 struct inode *inode = mapping->host;
2370 unsigned blocksize = 1 << inode->i_blkbits;
2371 unsigned zerofrom;
2372 int err;
2374 err = cont_expand_zero(file, mapping, pos, bytes);
2375 if (err)
2376 return err;
2378 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2379 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2380 *bytes |= (blocksize-1);
2381 (*bytes)++;
2384 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2386 EXPORT_SYMBOL(cont_write_begin);
2388 int block_commit_write(struct page *page, unsigned from, unsigned to)
2390 struct inode *inode = page->mapping->host;
2391 __block_commit_write(inode,page,from,to);
2392 return 0;
2394 EXPORT_SYMBOL(block_commit_write);
2397 * block_page_mkwrite() is not allowed to change the file size as it gets
2398 * called from a page fault handler when a page is first dirtied. Hence we must
2399 * be careful to check for EOF conditions here. We set the page up correctly
2400 * for a written page which means we get ENOSPC checking when writing into
2401 * holes and correct delalloc and unwritten extent mapping on filesystems that
2402 * support these features.
2404 * We are not allowed to take the i_mutex here so we have to play games to
2405 * protect against truncate races as the page could now be beyond EOF. Because
2406 * truncate writes the inode size before removing pages, once we have the
2407 * page lock we can determine safely if the page is beyond EOF. If it is not
2408 * beyond EOF, then the page is guaranteed safe against truncation until we
2409 * unlock the page.
2411 * Direct callers of this function should protect against filesystem freezing
2412 * using sb_start_pagefault() - sb_end_pagefault() functions.
2414 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2415 get_block_t get_block)
2417 struct page *page = vmf->page;
2418 struct inode *inode = file_inode(vma->vm_file);
2419 unsigned long end;
2420 loff_t size;
2421 int ret;
2423 lock_page(page);
2424 size = i_size_read(inode);
2425 if ((page->mapping != inode->i_mapping) ||
2426 (page_offset(page) > size)) {
2427 /* We overload EFAULT to mean page got truncated */
2428 ret = -EFAULT;
2429 goto out_unlock;
2432 /* page is wholly or partially inside EOF */
2433 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2434 end = size & ~PAGE_CACHE_MASK;
2435 else
2436 end = PAGE_CACHE_SIZE;
2438 ret = __block_write_begin(page, 0, end, get_block);
2439 if (!ret)
2440 ret = block_commit_write(page, 0, end);
2442 if (unlikely(ret < 0))
2443 goto out_unlock;
2444 set_page_dirty(page);
2445 wait_for_stable_page(page);
2446 return 0;
2447 out_unlock:
2448 unlock_page(page);
2449 return ret;
2451 EXPORT_SYMBOL(block_page_mkwrite);
2454 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2455 * immediately, while under the page lock. So it needs a special end_io
2456 * handler which does not touch the bh after unlocking it.
2458 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2460 __end_buffer_read_notouch(bh, uptodate);
2464 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2465 * the page (converting it to circular linked list and taking care of page
2466 * dirty races).
2468 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2470 struct buffer_head *bh;
2472 BUG_ON(!PageLocked(page));
2474 spin_lock(&page->mapping->private_lock);
2475 bh = head;
2476 do {
2477 if (PageDirty(page))
2478 set_buffer_dirty(bh);
2479 if (!bh->b_this_page)
2480 bh->b_this_page = head;
2481 bh = bh->b_this_page;
2482 } while (bh != head);
2483 attach_page_buffers(page, head);
2484 spin_unlock(&page->mapping->private_lock);
2488 * On entry, the page is fully not uptodate.
2489 * On exit the page is fully uptodate in the areas outside (from,to)
2490 * The filesystem needs to handle block truncation upon failure.
2492 int nobh_write_begin(struct address_space *mapping,
2493 loff_t pos, unsigned len, unsigned flags,
2494 struct page **pagep, void **fsdata,
2495 get_block_t *get_block)
2497 struct inode *inode = mapping->host;
2498 const unsigned blkbits = inode->i_blkbits;
2499 const unsigned blocksize = 1 << blkbits;
2500 struct buffer_head *head, *bh;
2501 struct page *page;
2502 pgoff_t index;
2503 unsigned from, to;
2504 unsigned block_in_page;
2505 unsigned block_start, block_end;
2506 sector_t block_in_file;
2507 int nr_reads = 0;
2508 int ret = 0;
2509 int is_mapped_to_disk = 1;
2511 index = pos >> PAGE_CACHE_SHIFT;
2512 from = pos & (PAGE_CACHE_SIZE - 1);
2513 to = from + len;
2515 page = grab_cache_page_write_begin(mapping, index, flags);
2516 if (!page)
2517 return -ENOMEM;
2518 *pagep = page;
2519 *fsdata = NULL;
2521 if (page_has_buffers(page)) {
2522 ret = __block_write_begin(page, pos, len, get_block);
2523 if (unlikely(ret))
2524 goto out_release;
2525 return ret;
2528 if (PageMappedToDisk(page))
2529 return 0;
2532 * Allocate buffers so that we can keep track of state, and potentially
2533 * attach them to the page if an error occurs. In the common case of
2534 * no error, they will just be freed again without ever being attached
2535 * to the page (which is all OK, because we're under the page lock).
2537 * Be careful: the buffer linked list is a NULL terminated one, rather
2538 * than the circular one we're used to.
2540 head = alloc_page_buffers(page, blocksize, 0);
2541 if (!head) {
2542 ret = -ENOMEM;
2543 goto out_release;
2546 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2549 * We loop across all blocks in the page, whether or not they are
2550 * part of the affected region. This is so we can discover if the
2551 * page is fully mapped-to-disk.
2553 for (block_start = 0, block_in_page = 0, bh = head;
2554 block_start < PAGE_CACHE_SIZE;
2555 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2556 int create;
2558 block_end = block_start + blocksize;
2559 bh->b_state = 0;
2560 create = 1;
2561 if (block_start >= to)
2562 create = 0;
2563 ret = get_block(inode, block_in_file + block_in_page,
2564 bh, create);
2565 if (ret)
2566 goto failed;
2567 if (!buffer_mapped(bh))
2568 is_mapped_to_disk = 0;
2569 if (buffer_new(bh))
2570 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2571 if (PageUptodate(page)) {
2572 set_buffer_uptodate(bh);
2573 continue;
2575 if (buffer_new(bh) || !buffer_mapped(bh)) {
2576 zero_user_segments(page, block_start, from,
2577 to, block_end);
2578 continue;
2580 if (buffer_uptodate(bh))
2581 continue; /* reiserfs does this */
2582 if (block_start < from || block_end > to) {
2583 lock_buffer(bh);
2584 bh->b_end_io = end_buffer_read_nobh;
2585 submit_bh(READ, bh);
2586 nr_reads++;
2590 if (nr_reads) {
2592 * The page is locked, so these buffers are protected from
2593 * any VM or truncate activity. Hence we don't need to care
2594 * for the buffer_head refcounts.
2596 for (bh = head; bh; bh = bh->b_this_page) {
2597 wait_on_buffer(bh);
2598 if (!buffer_uptodate(bh))
2599 ret = -EIO;
2601 if (ret)
2602 goto failed;
2605 if (is_mapped_to_disk)
2606 SetPageMappedToDisk(page);
2608 *fsdata = head; /* to be released by nobh_write_end */
2610 return 0;
2612 failed:
2613 BUG_ON(!ret);
2615 * Error recovery is a bit difficult. We need to zero out blocks that
2616 * were newly allocated, and dirty them to ensure they get written out.
2617 * Buffers need to be attached to the page at this point, otherwise
2618 * the handling of potential IO errors during writeout would be hard
2619 * (could try doing synchronous writeout, but what if that fails too?)
2621 attach_nobh_buffers(page, head);
2622 page_zero_new_buffers(page, from, to);
2624 out_release:
2625 unlock_page(page);
2626 page_cache_release(page);
2627 *pagep = NULL;
2629 return ret;
2631 EXPORT_SYMBOL(nobh_write_begin);
2633 int nobh_write_end(struct file *file, struct address_space *mapping,
2634 loff_t pos, unsigned len, unsigned copied,
2635 struct page *page, void *fsdata)
2637 struct inode *inode = page->mapping->host;
2638 struct buffer_head *head = fsdata;
2639 struct buffer_head *bh;
2640 BUG_ON(fsdata != NULL && page_has_buffers(page));
2642 if (unlikely(copied < len) && head)
2643 attach_nobh_buffers(page, head);
2644 if (page_has_buffers(page))
2645 return generic_write_end(file, mapping, pos, len,
2646 copied, page, fsdata);
2648 SetPageUptodate(page);
2649 set_page_dirty(page);
2650 if (pos+copied > inode->i_size) {
2651 i_size_write(inode, pos+copied);
2652 mark_inode_dirty(inode);
2655 unlock_page(page);
2656 page_cache_release(page);
2658 while (head) {
2659 bh = head;
2660 head = head->b_this_page;
2661 free_buffer_head(bh);
2664 return copied;
2666 EXPORT_SYMBOL(nobh_write_end);
2669 * nobh_writepage() - based on block_full_write_page() except
2670 * that it tries to operate without attaching bufferheads to
2671 * the page.
2673 int nobh_writepage(struct page *page, get_block_t *get_block,
2674 struct writeback_control *wbc)
2676 struct inode * const inode = page->mapping->host;
2677 loff_t i_size = i_size_read(inode);
2678 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2679 unsigned offset;
2680 int ret;
2682 /* Is the page fully inside i_size? */
2683 if (page->index < end_index)
2684 goto out;
2686 /* Is the page fully outside i_size? (truncate in progress) */
2687 offset = i_size & (PAGE_CACHE_SIZE-1);
2688 if (page->index >= end_index+1 || !offset) {
2690 * The page may have dirty, unmapped buffers. For example,
2691 * they may have been added in ext3_writepage(). Make them
2692 * freeable here, so the page does not leak.
2694 #if 0
2695 /* Not really sure about this - do we need this ? */
2696 if (page->mapping->a_ops->invalidatepage)
2697 page->mapping->a_ops->invalidatepage(page, offset);
2698 #endif
2699 unlock_page(page);
2700 return 0; /* don't care */
2704 * The page straddles i_size. It must be zeroed out on each and every
2705 * writepage invocation because it may be mmapped. "A file is mapped
2706 * in multiples of the page size. For a file that is not a multiple of
2707 * the page size, the remaining memory is zeroed when mapped, and
2708 * writes to that region are not written out to the file."
2710 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2711 out:
2712 ret = mpage_writepage(page, get_block, wbc);
2713 if (ret == -EAGAIN)
2714 ret = __block_write_full_page(inode, page, get_block, wbc,
2715 end_buffer_async_write);
2716 return ret;
2718 EXPORT_SYMBOL(nobh_writepage);
2720 int nobh_truncate_page(struct address_space *mapping,
2721 loff_t from, get_block_t *get_block)
2723 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2724 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2725 unsigned blocksize;
2726 sector_t iblock;
2727 unsigned length, pos;
2728 struct inode *inode = mapping->host;
2729 struct page *page;
2730 struct buffer_head map_bh;
2731 int err;
2733 blocksize = 1 << inode->i_blkbits;
2734 length = offset & (blocksize - 1);
2736 /* Block boundary? Nothing to do */
2737 if (!length)
2738 return 0;
2740 length = blocksize - length;
2741 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2743 page = grab_cache_page(mapping, index);
2744 err = -ENOMEM;
2745 if (!page)
2746 goto out;
2748 if (page_has_buffers(page)) {
2749 has_buffers:
2750 unlock_page(page);
2751 page_cache_release(page);
2752 return block_truncate_page(mapping, from, get_block);
2755 /* Find the buffer that contains "offset" */
2756 pos = blocksize;
2757 while (offset >= pos) {
2758 iblock++;
2759 pos += blocksize;
2762 map_bh.b_size = blocksize;
2763 map_bh.b_state = 0;
2764 err = get_block(inode, iblock, &map_bh, 0);
2765 if (err)
2766 goto unlock;
2767 /* unmapped? It's a hole - nothing to do */
2768 if (!buffer_mapped(&map_bh))
2769 goto unlock;
2771 /* Ok, it's mapped. Make sure it's up-to-date */
2772 if (!PageUptodate(page)) {
2773 err = mapping->a_ops->readpage(NULL, page);
2774 if (err) {
2775 page_cache_release(page);
2776 goto out;
2778 lock_page(page);
2779 if (!PageUptodate(page)) {
2780 err = -EIO;
2781 goto unlock;
2783 if (page_has_buffers(page))
2784 goto has_buffers;
2786 zero_user(page, offset, length);
2787 set_page_dirty(page);
2788 err = 0;
2790 unlock:
2791 unlock_page(page);
2792 page_cache_release(page);
2793 out:
2794 return err;
2796 EXPORT_SYMBOL(nobh_truncate_page);
2798 int block_truncate_page(struct address_space *mapping,
2799 loff_t from, get_block_t *get_block)
2801 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2802 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2803 unsigned blocksize;
2804 sector_t iblock;
2805 unsigned length, pos;
2806 struct inode *inode = mapping->host;
2807 struct page *page;
2808 struct buffer_head *bh;
2809 int err;
2811 blocksize = 1 << inode->i_blkbits;
2812 length = offset & (blocksize - 1);
2814 /* Block boundary? Nothing to do */
2815 if (!length)
2816 return 0;
2818 length = blocksize - length;
2819 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2821 page = grab_cache_page(mapping, index);
2822 err = -ENOMEM;
2823 if (!page)
2824 goto out;
2826 if (!page_has_buffers(page))
2827 create_empty_buffers(page, blocksize, 0);
2829 /* Find the buffer that contains "offset" */
2830 bh = page_buffers(page);
2831 pos = blocksize;
2832 while (offset >= pos) {
2833 bh = bh->b_this_page;
2834 iblock++;
2835 pos += blocksize;
2838 err = 0;
2839 if (!buffer_mapped(bh)) {
2840 WARN_ON(bh->b_size != blocksize);
2841 err = get_block(inode, iblock, bh, 0);
2842 if (err)
2843 goto unlock;
2844 /* unmapped? It's a hole - nothing to do */
2845 if (!buffer_mapped(bh))
2846 goto unlock;
2849 /* Ok, it's mapped. Make sure it's up-to-date */
2850 if (PageUptodate(page))
2851 set_buffer_uptodate(bh);
2853 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2854 err = -EIO;
2855 ll_rw_block(READ, 1, &bh);
2856 wait_on_buffer(bh);
2857 /* Uhhuh. Read error. Complain and punt. */
2858 if (!buffer_uptodate(bh))
2859 goto unlock;
2862 zero_user(page, offset, length);
2863 mark_buffer_dirty(bh);
2864 err = 0;
2866 unlock:
2867 unlock_page(page);
2868 page_cache_release(page);
2869 out:
2870 return err;
2872 EXPORT_SYMBOL(block_truncate_page);
2875 * The generic ->writepage function for buffer-backed address_spaces
2877 int block_write_full_page(struct page *page, get_block_t *get_block,
2878 struct writeback_control *wbc)
2880 struct inode * const inode = page->mapping->host;
2881 loff_t i_size = i_size_read(inode);
2882 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2883 unsigned offset;
2885 /* Is the page fully inside i_size? */
2886 if (page->index < end_index)
2887 return __block_write_full_page(inode, page, get_block, wbc,
2888 end_buffer_async_write);
2890 /* Is the page fully outside i_size? (truncate in progress) */
2891 offset = i_size & (PAGE_CACHE_SIZE-1);
2892 if (page->index >= end_index+1 || !offset) {
2894 * The page may have dirty, unmapped buffers. For example,
2895 * they may have been added in ext3_writepage(). Make them
2896 * freeable here, so the page does not leak.
2898 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2899 unlock_page(page);
2900 return 0; /* don't care */
2904 * The page straddles i_size. It must be zeroed out on each and every
2905 * writepage invocation because it may be mmapped. "A file is mapped
2906 * in multiples of the page size. For a file that is not a multiple of
2907 * the page size, the remaining memory is zeroed when mapped, and
2908 * writes to that region are not written out to the file."
2910 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2911 return __block_write_full_page(inode, page, get_block, wbc,
2912 end_buffer_async_write);
2914 EXPORT_SYMBOL(block_write_full_page);
2916 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2917 get_block_t *get_block)
2919 struct buffer_head tmp;
2920 struct inode *inode = mapping->host;
2921 tmp.b_state = 0;
2922 tmp.b_blocknr = 0;
2923 tmp.b_size = 1 << inode->i_blkbits;
2924 get_block(inode, block, &tmp, 0);
2925 return tmp.b_blocknr;
2927 EXPORT_SYMBOL(generic_block_bmap);
2929 static void end_bio_bh_io_sync(struct bio *bio)
2931 struct buffer_head *bh = bio->bi_private;
2933 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2934 set_bit(BH_Quiet, &bh->b_state);
2936 bh->b_end_io(bh, !bio->bi_error);
2937 bio_put(bio);
2941 * This allows us to do IO even on the odd last sectors
2942 * of a device, even if the block size is some multiple
2943 * of the physical sector size.
2945 * We'll just truncate the bio to the size of the device,
2946 * and clear the end of the buffer head manually.
2948 * Truly out-of-range accesses will turn into actual IO
2949 * errors, this only handles the "we need to be able to
2950 * do IO at the final sector" case.
2952 void guard_bio_eod(int rw, struct bio *bio)
2954 sector_t maxsector;
2955 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2956 unsigned truncated_bytes;
2958 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2959 if (!maxsector)
2960 return;
2963 * If the *whole* IO is past the end of the device,
2964 * let it through, and the IO layer will turn it into
2965 * an EIO.
2967 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2968 return;
2970 maxsector -= bio->bi_iter.bi_sector;
2971 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
2972 return;
2974 /* Uhhuh. We've got a bio that straddles the device size! */
2975 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
2977 /* Truncate the bio.. */
2978 bio->bi_iter.bi_size -= truncated_bytes;
2979 bvec->bv_len -= truncated_bytes;
2981 /* ..and clear the end of the buffer for reads */
2982 if ((rw & RW_MASK) == READ) {
2983 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
2984 truncated_bytes);
2988 static int submit_bh_wbc(int rw, struct buffer_head *bh,
2989 unsigned long bio_flags, struct writeback_control *wbc)
2991 struct bio *bio;
2993 BUG_ON(!buffer_locked(bh));
2994 BUG_ON(!buffer_mapped(bh));
2995 BUG_ON(!bh->b_end_io);
2996 BUG_ON(buffer_delay(bh));
2997 BUG_ON(buffer_unwritten(bh));
3000 * Only clear out a write error when rewriting
3002 if (test_set_buffer_req(bh) && (rw & WRITE))
3003 clear_buffer_write_io_error(bh);
3006 * from here on down, it's all bio -- do the initial mapping,
3007 * submit_bio -> generic_make_request may further map this bio around
3009 bio = bio_alloc(GFP_NOIO, 1);
3011 if (wbc) {
3012 wbc_init_bio(wbc, bio);
3013 wbc_account_io(wbc, bh->b_page, bh->b_size);
3016 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3017 bio->bi_bdev = bh->b_bdev;
3019 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3020 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3022 bio->bi_end_io = end_bio_bh_io_sync;
3023 bio->bi_private = bh;
3024 bio->bi_flags |= bio_flags;
3026 /* Take care of bh's that straddle the end of the device */
3027 guard_bio_eod(rw, bio);
3029 if (buffer_meta(bh))
3030 rw |= REQ_META;
3031 if (buffer_prio(bh))
3032 rw |= REQ_PRIO;
3034 submit_bio(rw, bio);
3035 return 0;
3038 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3040 return submit_bh_wbc(rw, bh, bio_flags, NULL);
3042 EXPORT_SYMBOL_GPL(_submit_bh);
3044 int submit_bh(int rw, struct buffer_head *bh)
3046 return submit_bh_wbc(rw, bh, 0, NULL);
3048 EXPORT_SYMBOL(submit_bh);
3051 * ll_rw_block: low-level access to block devices (DEPRECATED)
3052 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3053 * @nr: number of &struct buffer_heads in the array
3054 * @bhs: array of pointers to &struct buffer_head
3056 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3057 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3058 * %READA option is described in the documentation for generic_make_request()
3059 * which ll_rw_block() calls.
3061 * This function drops any buffer that it cannot get a lock on (with the
3062 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3063 * request, and any buffer that appears to be up-to-date when doing read
3064 * request. Further it marks as clean buffers that are processed for
3065 * writing (the buffer cache won't assume that they are actually clean
3066 * until the buffer gets unlocked).
3068 * ll_rw_block sets b_end_io to simple completion handler that marks
3069 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3070 * any waiters.
3072 * All of the buffers must be for the same device, and must also be a
3073 * multiple of the current approved size for the device.
3075 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3077 int i;
3079 for (i = 0; i < nr; i++) {
3080 struct buffer_head *bh = bhs[i];
3082 if (!trylock_buffer(bh))
3083 continue;
3084 if (rw == WRITE) {
3085 if (test_clear_buffer_dirty(bh)) {
3086 bh->b_end_io = end_buffer_write_sync;
3087 get_bh(bh);
3088 submit_bh(WRITE, bh);
3089 continue;
3091 } else {
3092 if (!buffer_uptodate(bh)) {
3093 bh->b_end_io = end_buffer_read_sync;
3094 get_bh(bh);
3095 submit_bh(rw, bh);
3096 continue;
3099 unlock_buffer(bh);
3102 EXPORT_SYMBOL(ll_rw_block);
3104 void write_dirty_buffer(struct buffer_head *bh, int rw)
3106 lock_buffer(bh);
3107 if (!test_clear_buffer_dirty(bh)) {
3108 unlock_buffer(bh);
3109 return;
3111 bh->b_end_io = end_buffer_write_sync;
3112 get_bh(bh);
3113 submit_bh(rw, bh);
3115 EXPORT_SYMBOL(write_dirty_buffer);
3118 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3119 * and then start new I/O and then wait upon it. The caller must have a ref on
3120 * the buffer_head.
3122 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3124 int ret = 0;
3126 WARN_ON(atomic_read(&bh->b_count) < 1);
3127 lock_buffer(bh);
3128 if (test_clear_buffer_dirty(bh)) {
3129 get_bh(bh);
3130 bh->b_end_io = end_buffer_write_sync;
3131 ret = submit_bh(rw, bh);
3132 wait_on_buffer(bh);
3133 if (!ret && !buffer_uptodate(bh))
3134 ret = -EIO;
3135 } else {
3136 unlock_buffer(bh);
3138 return ret;
3140 EXPORT_SYMBOL(__sync_dirty_buffer);
3142 int sync_dirty_buffer(struct buffer_head *bh)
3144 return __sync_dirty_buffer(bh, WRITE_SYNC);
3146 EXPORT_SYMBOL(sync_dirty_buffer);
3149 * try_to_free_buffers() checks if all the buffers on this particular page
3150 * are unused, and releases them if so.
3152 * Exclusion against try_to_free_buffers may be obtained by either
3153 * locking the page or by holding its mapping's private_lock.
3155 * If the page is dirty but all the buffers are clean then we need to
3156 * be sure to mark the page clean as well. This is because the page
3157 * may be against a block device, and a later reattachment of buffers
3158 * to a dirty page will set *all* buffers dirty. Which would corrupt
3159 * filesystem data on the same device.
3161 * The same applies to regular filesystem pages: if all the buffers are
3162 * clean then we set the page clean and proceed. To do that, we require
3163 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3164 * private_lock.
3166 * try_to_free_buffers() is non-blocking.
3168 static inline int buffer_busy(struct buffer_head *bh)
3170 return atomic_read(&bh->b_count) |
3171 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3174 static int
3175 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3177 struct buffer_head *head = page_buffers(page);
3178 struct buffer_head *bh;
3180 bh = head;
3181 do {
3182 if (buffer_write_io_error(bh) && page->mapping)
3183 set_bit(AS_EIO, &page->mapping->flags);
3184 if (buffer_busy(bh))
3185 goto failed;
3186 bh = bh->b_this_page;
3187 } while (bh != head);
3189 do {
3190 struct buffer_head *next = bh->b_this_page;
3192 if (bh->b_assoc_map)
3193 __remove_assoc_queue(bh);
3194 bh = next;
3195 } while (bh != head);
3196 *buffers_to_free = head;
3197 __clear_page_buffers(page);
3198 return 1;
3199 failed:
3200 return 0;
3203 int try_to_free_buffers(struct page *page)
3205 struct address_space * const mapping = page->mapping;
3206 struct buffer_head *buffers_to_free = NULL;
3207 int ret = 0;
3209 BUG_ON(!PageLocked(page));
3210 if (PageWriteback(page))
3211 return 0;
3213 if (mapping == NULL) { /* can this still happen? */
3214 ret = drop_buffers(page, &buffers_to_free);
3215 goto out;
3218 spin_lock(&mapping->private_lock);
3219 ret = drop_buffers(page, &buffers_to_free);
3222 * If the filesystem writes its buffers by hand (eg ext3)
3223 * then we can have clean buffers against a dirty page. We
3224 * clean the page here; otherwise the VM will never notice
3225 * that the filesystem did any IO at all.
3227 * Also, during truncate, discard_buffer will have marked all
3228 * the page's buffers clean. We discover that here and clean
3229 * the page also.
3231 * private_lock must be held over this entire operation in order
3232 * to synchronise against __set_page_dirty_buffers and prevent the
3233 * dirty bit from being lost.
3235 if (ret)
3236 cancel_dirty_page(page);
3237 spin_unlock(&mapping->private_lock);
3238 out:
3239 if (buffers_to_free) {
3240 struct buffer_head *bh = buffers_to_free;
3242 do {
3243 struct buffer_head *next = bh->b_this_page;
3244 free_buffer_head(bh);
3245 bh = next;
3246 } while (bh != buffers_to_free);
3248 return ret;
3250 EXPORT_SYMBOL(try_to_free_buffers);
3253 * There are no bdflush tunables left. But distributions are
3254 * still running obsolete flush daemons, so we terminate them here.
3256 * Use of bdflush() is deprecated and will be removed in a future kernel.
3257 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3259 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3261 static int msg_count;
3263 if (!capable(CAP_SYS_ADMIN))
3264 return -EPERM;
3266 if (msg_count < 5) {
3267 msg_count++;
3268 printk(KERN_INFO
3269 "warning: process `%s' used the obsolete bdflush"
3270 " system call\n", current->comm);
3271 printk(KERN_INFO "Fix your initscripts?\n");
3274 if (func == 1)
3275 do_exit(0);
3276 return 0;
3280 * Buffer-head allocation
3282 static struct kmem_cache *bh_cachep __read_mostly;
3285 * Once the number of bh's in the machine exceeds this level, we start
3286 * stripping them in writeback.
3288 static unsigned long max_buffer_heads;
3290 int buffer_heads_over_limit;
3292 struct bh_accounting {
3293 int nr; /* Number of live bh's */
3294 int ratelimit; /* Limit cacheline bouncing */
3297 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3299 static void recalc_bh_state(void)
3301 int i;
3302 int tot = 0;
3304 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3305 return;
3306 __this_cpu_write(bh_accounting.ratelimit, 0);
3307 for_each_online_cpu(i)
3308 tot += per_cpu(bh_accounting, i).nr;
3309 buffer_heads_over_limit = (tot > max_buffer_heads);
3312 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3314 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3315 if (ret) {
3316 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3317 preempt_disable();
3318 __this_cpu_inc(bh_accounting.nr);
3319 recalc_bh_state();
3320 preempt_enable();
3322 return ret;
3324 EXPORT_SYMBOL(alloc_buffer_head);
3326 void free_buffer_head(struct buffer_head *bh)
3328 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3329 kmem_cache_free(bh_cachep, bh);
3330 preempt_disable();
3331 __this_cpu_dec(bh_accounting.nr);
3332 recalc_bh_state();
3333 preempt_enable();
3335 EXPORT_SYMBOL(free_buffer_head);
3337 static void buffer_exit_cpu(int cpu)
3339 int i;
3340 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3342 for (i = 0; i < BH_LRU_SIZE; i++) {
3343 brelse(b->bhs[i]);
3344 b->bhs[i] = NULL;
3346 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3347 per_cpu(bh_accounting, cpu).nr = 0;
3350 static int buffer_cpu_notify(struct notifier_block *self,
3351 unsigned long action, void *hcpu)
3353 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3354 buffer_exit_cpu((unsigned long)hcpu);
3355 return NOTIFY_OK;
3359 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3360 * @bh: struct buffer_head
3362 * Return true if the buffer is up-to-date and false,
3363 * with the buffer locked, if not.
3365 int bh_uptodate_or_lock(struct buffer_head *bh)
3367 if (!buffer_uptodate(bh)) {
3368 lock_buffer(bh);
3369 if (!buffer_uptodate(bh))
3370 return 0;
3371 unlock_buffer(bh);
3373 return 1;
3375 EXPORT_SYMBOL(bh_uptodate_or_lock);
3378 * bh_submit_read - Submit a locked buffer for reading
3379 * @bh: struct buffer_head
3381 * Returns zero on success and -EIO on error.
3383 int bh_submit_read(struct buffer_head *bh)
3385 BUG_ON(!buffer_locked(bh));
3387 if (buffer_uptodate(bh)) {
3388 unlock_buffer(bh);
3389 return 0;
3392 get_bh(bh);
3393 bh->b_end_io = end_buffer_read_sync;
3394 submit_bh(READ, bh);
3395 wait_on_buffer(bh);
3396 if (buffer_uptodate(bh))
3397 return 0;
3398 return -EIO;
3400 EXPORT_SYMBOL(bh_submit_read);
3402 void __init buffer_init(void)
3404 unsigned long nrpages;
3406 bh_cachep = kmem_cache_create("buffer_head",
3407 sizeof(struct buffer_head), 0,
3408 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3409 SLAB_MEM_SPREAD),
3410 NULL);
3413 * Limit the bh occupancy to 10% of ZONE_NORMAL
3415 nrpages = (nr_free_buffer_pages() * 10) / 100;
3416 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3417 hotcpu_notifier(buffer_cpu_notify, 0);