2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
28 #include <asm/pgtable.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
37 int hugepages_treat_as_movable
;
39 int hugetlb_max_hstate __read_mostly
;
40 unsigned int default_hstate_idx
;
41 struct hstate hstates
[HUGE_MAX_HSTATE
];
43 * Minimum page order among possible hugepage sizes, set to a proper value
46 static unsigned int minimum_order __read_mostly
= UINT_MAX
;
48 __initdata
LIST_HEAD(huge_boot_pages
);
50 /* for command line parsing */
51 static struct hstate
* __initdata parsed_hstate
;
52 static unsigned long __initdata default_hstate_max_huge_pages
;
53 static unsigned long __initdata default_hstate_size
;
54 static bool __initdata parsed_valid_hugepagesz
= true;
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
60 DEFINE_SPINLOCK(hugetlb_lock
);
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 static int num_fault_mutexes
;
67 struct mutex
*hugetlb_fault_mutex_table ____cacheline_aligned_in_smp
;
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
72 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
74 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
76 spin_unlock(&spool
->lock
);
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
82 if (spool
->min_hpages
!= -1)
83 hugetlb_acct_memory(spool
->hstate
,
89 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
92 struct hugepage_subpool
*spool
;
94 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
98 spin_lock_init(&spool
->lock
);
100 spool
->max_hpages
= max_hpages
;
102 spool
->min_hpages
= min_hpages
;
104 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
108 spool
->rsv_hpages
= min_hpages
;
113 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
115 spin_lock(&spool
->lock
);
116 BUG_ON(!spool
->count
);
118 unlock_or_release_subpool(spool
);
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
129 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
137 spin_lock(&spool
->lock
);
139 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
140 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
141 spool
->used_hpages
+= delta
;
148 /* minimum size accounting */
149 if (spool
->min_hpages
!= -1 && spool
->rsv_hpages
) {
150 if (delta
> spool
->rsv_hpages
) {
152 * Asking for more reserves than those already taken on
153 * behalf of subpool. Return difference.
155 ret
= delta
- spool
->rsv_hpages
;
156 spool
->rsv_hpages
= 0;
158 ret
= 0; /* reserves already accounted for */
159 spool
->rsv_hpages
-= delta
;
164 spin_unlock(&spool
->lock
);
169 * Subpool accounting for freeing and unreserving pages.
170 * Return the number of global page reservations that must be dropped.
171 * The return value may only be different than the passed value (delta)
172 * in the case where a subpool minimum size must be maintained.
174 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
182 spin_lock(&spool
->lock
);
184 if (spool
->max_hpages
!= -1) /* maximum size accounting */
185 spool
->used_hpages
-= delta
;
187 /* minimum size accounting */
188 if (spool
->min_hpages
!= -1 && spool
->used_hpages
< spool
->min_hpages
) {
189 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
192 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
194 spool
->rsv_hpages
+= delta
;
195 if (spool
->rsv_hpages
> spool
->min_hpages
)
196 spool
->rsv_hpages
= spool
->min_hpages
;
200 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 * quota reference, free it now.
203 unlock_or_release_subpool(spool
);
208 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
210 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
213 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
215 return subpool_inode(file_inode(vma
->vm_file
));
219 * Region tracking -- allows tracking of reservations and instantiated pages
220 * across the pages in a mapping.
222 * The region data structures are embedded into a resv_map and protected
223 * by a resv_map's lock. The set of regions within the resv_map represent
224 * reservations for huge pages, or huge pages that have already been
225 * instantiated within the map. The from and to elements are huge page
226 * indicies into the associated mapping. from indicates the starting index
227 * of the region. to represents the first index past the end of the region.
229 * For example, a file region structure with from == 0 and to == 4 represents
230 * four huge pages in a mapping. It is important to note that the to element
231 * represents the first element past the end of the region. This is used in
232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234 * Interval notation of the form [from, to) will be used to indicate that
235 * the endpoint from is inclusive and to is exclusive.
238 struct list_head link
;
244 * Add the huge page range represented by [f, t) to the reserve
245 * map. In the normal case, existing regions will be expanded
246 * to accommodate the specified range. Sufficient regions should
247 * exist for expansion due to the previous call to region_chg
248 * with the same range. However, it is possible that region_del
249 * could have been called after region_chg and modifed the map
250 * in such a way that no region exists to be expanded. In this
251 * case, pull a region descriptor from the cache associated with
252 * the map and use that for the new range.
254 * Return the number of new huge pages added to the map. This
255 * number is greater than or equal to zero.
257 static long region_add(struct resv_map
*resv
, long f
, long t
)
259 struct list_head
*head
= &resv
->regions
;
260 struct file_region
*rg
, *nrg
, *trg
;
263 spin_lock(&resv
->lock
);
264 /* Locate the region we are either in or before. */
265 list_for_each_entry(rg
, head
, link
)
270 * If no region exists which can be expanded to include the
271 * specified range, the list must have been modified by an
272 * interleving call to region_del(). Pull a region descriptor
273 * from the cache and use it for this range.
275 if (&rg
->link
== head
|| t
< rg
->from
) {
276 VM_BUG_ON(resv
->region_cache_count
<= 0);
278 resv
->region_cache_count
--;
279 nrg
= list_first_entry(&resv
->region_cache
, struct file_region
,
281 list_del(&nrg
->link
);
285 list_add(&nrg
->link
, rg
->link
.prev
);
291 /* Round our left edge to the current segment if it encloses us. */
295 /* Check for and consume any regions we now overlap with. */
297 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
298 if (&rg
->link
== head
)
303 /* If this area reaches higher then extend our area to
304 * include it completely. If this is not the first area
305 * which we intend to reuse, free it. */
309 /* Decrement return value by the deleted range.
310 * Another range will span this area so that by
311 * end of routine add will be >= zero
313 add
-= (rg
->to
- rg
->from
);
319 add
+= (nrg
->from
- f
); /* Added to beginning of region */
321 add
+= t
- nrg
->to
; /* Added to end of region */
325 resv
->adds_in_progress
--;
326 spin_unlock(&resv
->lock
);
332 * Examine the existing reserve map and determine how many
333 * huge pages in the specified range [f, t) are NOT currently
334 * represented. This routine is called before a subsequent
335 * call to region_add that will actually modify the reserve
336 * map to add the specified range [f, t). region_chg does
337 * not change the number of huge pages represented by the
338 * map. However, if the existing regions in the map can not
339 * be expanded to represent the new range, a new file_region
340 * structure is added to the map as a placeholder. This is
341 * so that the subsequent region_add call will have all the
342 * regions it needs and will not fail.
344 * Upon entry, region_chg will also examine the cache of region descriptors
345 * associated with the map. If there are not enough descriptors cached, one
346 * will be allocated for the in progress add operation.
348 * Returns the number of huge pages that need to be added to the existing
349 * reservation map for the range [f, t). This number is greater or equal to
350 * zero. -ENOMEM is returned if a new file_region structure or cache entry
351 * is needed and can not be allocated.
353 static long region_chg(struct resv_map
*resv
, long f
, long t
)
355 struct list_head
*head
= &resv
->regions
;
356 struct file_region
*rg
, *nrg
= NULL
;
360 spin_lock(&resv
->lock
);
362 resv
->adds_in_progress
++;
365 * Check for sufficient descriptors in the cache to accommodate
366 * the number of in progress add operations.
368 if (resv
->adds_in_progress
> resv
->region_cache_count
) {
369 struct file_region
*trg
;
371 VM_BUG_ON(resv
->adds_in_progress
- resv
->region_cache_count
> 1);
372 /* Must drop lock to allocate a new descriptor. */
373 resv
->adds_in_progress
--;
374 spin_unlock(&resv
->lock
);
376 trg
= kmalloc(sizeof(*trg
), GFP_KERNEL
);
382 spin_lock(&resv
->lock
);
383 list_add(&trg
->link
, &resv
->region_cache
);
384 resv
->region_cache_count
++;
388 /* Locate the region we are before or in. */
389 list_for_each_entry(rg
, head
, link
)
393 /* If we are below the current region then a new region is required.
394 * Subtle, allocate a new region at the position but make it zero
395 * size such that we can guarantee to record the reservation. */
396 if (&rg
->link
== head
|| t
< rg
->from
) {
398 resv
->adds_in_progress
--;
399 spin_unlock(&resv
->lock
);
400 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
406 INIT_LIST_HEAD(&nrg
->link
);
410 list_add(&nrg
->link
, rg
->link
.prev
);
415 /* Round our left edge to the current segment if it encloses us. */
420 /* Check for and consume any regions we now overlap with. */
421 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
422 if (&rg
->link
== head
)
427 /* We overlap with this area, if it extends further than
428 * us then we must extend ourselves. Account for its
429 * existing reservation. */
434 chg
-= rg
->to
- rg
->from
;
438 spin_unlock(&resv
->lock
);
439 /* We already know we raced and no longer need the new region */
443 spin_unlock(&resv
->lock
);
448 * Abort the in progress add operation. The adds_in_progress field
449 * of the resv_map keeps track of the operations in progress between
450 * calls to region_chg and region_add. Operations are sometimes
451 * aborted after the call to region_chg. In such cases, region_abort
452 * is called to decrement the adds_in_progress counter.
454 * NOTE: The range arguments [f, t) are not needed or used in this
455 * routine. They are kept to make reading the calling code easier as
456 * arguments will match the associated region_chg call.
458 static void region_abort(struct resv_map
*resv
, long f
, long t
)
460 spin_lock(&resv
->lock
);
461 VM_BUG_ON(!resv
->region_cache_count
);
462 resv
->adds_in_progress
--;
463 spin_unlock(&resv
->lock
);
467 * Delete the specified range [f, t) from the reserve map. If the
468 * t parameter is LONG_MAX, this indicates that ALL regions after f
469 * should be deleted. Locate the regions which intersect [f, t)
470 * and either trim, delete or split the existing regions.
472 * Returns the number of huge pages deleted from the reserve map.
473 * In the normal case, the return value is zero or more. In the
474 * case where a region must be split, a new region descriptor must
475 * be allocated. If the allocation fails, -ENOMEM will be returned.
476 * NOTE: If the parameter t == LONG_MAX, then we will never split
477 * a region and possibly return -ENOMEM. Callers specifying
478 * t == LONG_MAX do not need to check for -ENOMEM error.
480 static long region_del(struct resv_map
*resv
, long f
, long t
)
482 struct list_head
*head
= &resv
->regions
;
483 struct file_region
*rg
, *trg
;
484 struct file_region
*nrg
= NULL
;
488 spin_lock(&resv
->lock
);
489 list_for_each_entry_safe(rg
, trg
, head
, link
) {
491 * Skip regions before the range to be deleted. file_region
492 * ranges are normally of the form [from, to). However, there
493 * may be a "placeholder" entry in the map which is of the form
494 * (from, to) with from == to. Check for placeholder entries
495 * at the beginning of the range to be deleted.
497 if (rg
->to
<= f
&& (rg
->to
!= rg
->from
|| rg
->to
!= f
))
503 if (f
> rg
->from
&& t
< rg
->to
) { /* Must split region */
505 * Check for an entry in the cache before dropping
506 * lock and attempting allocation.
509 resv
->region_cache_count
> resv
->adds_in_progress
) {
510 nrg
= list_first_entry(&resv
->region_cache
,
513 list_del(&nrg
->link
);
514 resv
->region_cache_count
--;
518 spin_unlock(&resv
->lock
);
519 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
527 /* New entry for end of split region */
530 INIT_LIST_HEAD(&nrg
->link
);
532 /* Original entry is trimmed */
535 list_add(&nrg
->link
, &rg
->link
);
540 if (f
<= rg
->from
&& t
>= rg
->to
) { /* Remove entire region */
541 del
+= rg
->to
- rg
->from
;
547 if (f
<= rg
->from
) { /* Trim beginning of region */
550 } else { /* Trim end of region */
556 spin_unlock(&resv
->lock
);
562 * A rare out of memory error was encountered which prevented removal of
563 * the reserve map region for a page. The huge page itself was free'ed
564 * and removed from the page cache. This routine will adjust the subpool
565 * usage count, and the global reserve count if needed. By incrementing
566 * these counts, the reserve map entry which could not be deleted will
567 * appear as a "reserved" entry instead of simply dangling with incorrect
570 void hugetlb_fix_reserve_counts(struct inode
*inode
, bool restore_reserve
)
572 struct hugepage_subpool
*spool
= subpool_inode(inode
);
575 rsv_adjust
= hugepage_subpool_get_pages(spool
, 1);
576 if (restore_reserve
&& rsv_adjust
) {
577 struct hstate
*h
= hstate_inode(inode
);
579 hugetlb_acct_memory(h
, 1);
584 * Count and return the number of huge pages in the reserve map
585 * that intersect with the range [f, t).
587 static long region_count(struct resv_map
*resv
, long f
, long t
)
589 struct list_head
*head
= &resv
->regions
;
590 struct file_region
*rg
;
593 spin_lock(&resv
->lock
);
594 /* Locate each segment we overlap with, and count that overlap. */
595 list_for_each_entry(rg
, head
, link
) {
604 seg_from
= max(rg
->from
, f
);
605 seg_to
= min(rg
->to
, t
);
607 chg
+= seg_to
- seg_from
;
609 spin_unlock(&resv
->lock
);
615 * Convert the address within this vma to the page offset within
616 * the mapping, in pagecache page units; huge pages here.
618 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
619 struct vm_area_struct
*vma
, unsigned long address
)
621 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
622 (vma
->vm_pgoff
>> huge_page_order(h
));
625 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
626 unsigned long address
)
628 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
630 EXPORT_SYMBOL_GPL(linear_hugepage_index
);
633 * Return the size of the pages allocated when backing a VMA. In the majority
634 * cases this will be same size as used by the page table entries.
636 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
638 struct hstate
*hstate
;
640 if (!is_vm_hugetlb_page(vma
))
643 hstate
= hstate_vma(vma
);
645 return 1UL << huge_page_shift(hstate
);
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
650 * Return the page size being used by the MMU to back a VMA. In the majority
651 * of cases, the page size used by the kernel matches the MMU size. On
652 * architectures where it differs, an architecture-specific version of this
653 * function is required.
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
658 return vma_kernel_pagesize(vma
);
663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
664 * bits of the reservation map pointer, which are always clear due to
667 #define HPAGE_RESV_OWNER (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672 * These helpers are used to track how many pages are reserved for
673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674 * is guaranteed to have their future faults succeed.
676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677 * the reserve counters are updated with the hugetlb_lock held. It is safe
678 * to reset the VMA at fork() time as it is not in use yet and there is no
679 * chance of the global counters getting corrupted as a result of the values.
681 * The private mapping reservation is represented in a subtly different
682 * manner to a shared mapping. A shared mapping has a region map associated
683 * with the underlying file, this region map represents the backing file
684 * pages which have ever had a reservation assigned which this persists even
685 * after the page is instantiated. A private mapping has a region map
686 * associated with the original mmap which is attached to all VMAs which
687 * reference it, this region map represents those offsets which have consumed
688 * reservation ie. where pages have been instantiated.
690 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
692 return (unsigned long)vma
->vm_private_data
;
695 static void set_vma_private_data(struct vm_area_struct
*vma
,
698 vma
->vm_private_data
= (void *)value
;
701 struct resv_map
*resv_map_alloc(void)
703 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
704 struct file_region
*rg
= kmalloc(sizeof(*rg
), GFP_KERNEL
);
706 if (!resv_map
|| !rg
) {
712 kref_init(&resv_map
->refs
);
713 spin_lock_init(&resv_map
->lock
);
714 INIT_LIST_HEAD(&resv_map
->regions
);
716 resv_map
->adds_in_progress
= 0;
718 INIT_LIST_HEAD(&resv_map
->region_cache
);
719 list_add(&rg
->link
, &resv_map
->region_cache
);
720 resv_map
->region_cache_count
= 1;
725 void resv_map_release(struct kref
*ref
)
727 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
728 struct list_head
*head
= &resv_map
->region_cache
;
729 struct file_region
*rg
, *trg
;
731 /* Clear out any active regions before we release the map. */
732 region_del(resv_map
, 0, LONG_MAX
);
734 /* ... and any entries left in the cache */
735 list_for_each_entry_safe(rg
, trg
, head
, link
) {
740 VM_BUG_ON(resv_map
->adds_in_progress
);
745 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
747 return inode
->i_mapping
->private_data
;
750 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
753 if (vma
->vm_flags
& VM_MAYSHARE
) {
754 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
755 struct inode
*inode
= mapping
->host
;
757 return inode_resv_map(inode
);
760 return (struct resv_map
*)(get_vma_private_data(vma
) &
765 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
768 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
770 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
771 HPAGE_RESV_MASK
) | (unsigned long)map
);
774 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
777 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
779 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
782 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
786 return (get_vma_private_data(vma
) & flag
) != 0;
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
793 if (!(vma
->vm_flags
& VM_MAYSHARE
))
794 vma
->vm_private_data
= (void *)0;
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
800 if (vma
->vm_flags
& VM_NORESERVE
) {
802 * This address is already reserved by other process(chg == 0),
803 * so, we should decrement reserved count. Without decrementing,
804 * reserve count remains after releasing inode, because this
805 * allocated page will go into page cache and is regarded as
806 * coming from reserved pool in releasing step. Currently, we
807 * don't have any other solution to deal with this situation
808 * properly, so add work-around here.
810 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
816 /* Shared mappings always use reserves */
817 if (vma
->vm_flags
& VM_MAYSHARE
) {
819 * We know VM_NORESERVE is not set. Therefore, there SHOULD
820 * be a region map for all pages. The only situation where
821 * there is no region map is if a hole was punched via
822 * fallocate. In this case, there really are no reverves to
823 * use. This situation is indicated if chg != 0.
832 * Only the process that called mmap() has reserves for
835 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
841 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
843 int nid
= page_to_nid(page
);
844 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
845 h
->free_huge_pages
++;
846 h
->free_huge_pages_node
[nid
]++;
849 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
853 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
854 if (!is_migrate_isolate_page(page
))
857 * if 'non-isolated free hugepage' not found on the list,
858 * the allocation fails.
860 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
862 list_move(&page
->lru
, &h
->hugepage_activelist
);
863 set_page_refcounted(page
);
864 h
->free_huge_pages
--;
865 h
->free_huge_pages_node
[nid
]--;
869 /* Movability of hugepages depends on migration support. */
870 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
872 if (hugepages_treat_as_movable
|| hugepage_migration_supported(h
))
873 return GFP_HIGHUSER_MOVABLE
;
878 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
879 struct vm_area_struct
*vma
,
880 unsigned long address
, int avoid_reserve
,
883 struct page
*page
= NULL
;
884 struct mempolicy
*mpol
;
885 nodemask_t
*nodemask
;
886 struct zonelist
*zonelist
;
889 unsigned int cpuset_mems_cookie
;
892 * A child process with MAP_PRIVATE mappings created by their parent
893 * have no page reserves. This check ensures that reservations are
894 * not "stolen". The child may still get SIGKILLed
896 if (!vma_has_reserves(vma
, chg
) &&
897 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
900 /* If reserves cannot be used, ensure enough pages are in the pool */
901 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
905 cpuset_mems_cookie
= read_mems_allowed_begin();
906 zonelist
= huge_zonelist(vma
, address
,
907 htlb_alloc_mask(h
), &mpol
, &nodemask
);
909 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
910 MAX_NR_ZONES
- 1, nodemask
) {
911 if (cpuset_zone_allowed(zone
, htlb_alloc_mask(h
))) {
912 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
916 if (!vma_has_reserves(vma
, chg
))
919 SetPagePrivate(page
);
920 h
->resv_huge_pages
--;
927 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
936 * common helper functions for hstate_next_node_to_{alloc|free}.
937 * We may have allocated or freed a huge page based on a different
938 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
939 * be outside of *nodes_allowed. Ensure that we use an allowed
940 * node for alloc or free.
942 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
944 nid
= next_node_in(nid
, *nodes_allowed
);
945 VM_BUG_ON(nid
>= MAX_NUMNODES
);
950 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
952 if (!node_isset(nid
, *nodes_allowed
))
953 nid
= next_node_allowed(nid
, nodes_allowed
);
958 * returns the previously saved node ["this node"] from which to
959 * allocate a persistent huge page for the pool and advance the
960 * next node from which to allocate, handling wrap at end of node
963 static int hstate_next_node_to_alloc(struct hstate
*h
,
964 nodemask_t
*nodes_allowed
)
968 VM_BUG_ON(!nodes_allowed
);
970 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
971 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
977 * helper for free_pool_huge_page() - return the previously saved
978 * node ["this node"] from which to free a huge page. Advance the
979 * next node id whether or not we find a free huge page to free so
980 * that the next attempt to free addresses the next node.
982 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
986 VM_BUG_ON(!nodes_allowed
);
988 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
989 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
994 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
995 for (nr_nodes = nodes_weight(*mask); \
997 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1000 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1001 for (nr_nodes = nodes_weight(*mask); \
1003 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1006 #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1007 static void destroy_compound_gigantic_page(struct page
*page
,
1011 int nr_pages
= 1 << order
;
1012 struct page
*p
= page
+ 1;
1014 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1015 clear_compound_head(p
);
1016 set_page_refcounted(p
);
1019 set_compound_order(page
, 0);
1020 __ClearPageHead(page
);
1023 static void free_gigantic_page(struct page
*page
, unsigned int order
)
1025 free_contig_range(page_to_pfn(page
), 1 << order
);
1028 static int __alloc_gigantic_page(unsigned long start_pfn
,
1029 unsigned long nr_pages
)
1031 unsigned long end_pfn
= start_pfn
+ nr_pages
;
1032 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
1035 static bool pfn_range_valid_gigantic(struct zone
*z
,
1036 unsigned long start_pfn
, unsigned long nr_pages
)
1038 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
1041 for (i
= start_pfn
; i
< end_pfn
; i
++) {
1045 page
= pfn_to_page(i
);
1047 if (page_zone(page
) != z
)
1050 if (PageReserved(page
))
1053 if (page_count(page
) > 0)
1063 static bool zone_spans_last_pfn(const struct zone
*zone
,
1064 unsigned long start_pfn
, unsigned long nr_pages
)
1066 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
1067 return zone_spans_pfn(zone
, last_pfn
);
1070 static struct page
*alloc_gigantic_page(int nid
, unsigned int order
)
1072 unsigned long nr_pages
= 1 << order
;
1073 unsigned long ret
, pfn
, flags
;
1076 z
= NODE_DATA(nid
)->node_zones
;
1077 for (; z
- NODE_DATA(nid
)->node_zones
< MAX_NR_ZONES
; z
++) {
1078 spin_lock_irqsave(&z
->lock
, flags
);
1080 pfn
= ALIGN(z
->zone_start_pfn
, nr_pages
);
1081 while (zone_spans_last_pfn(z
, pfn
, nr_pages
)) {
1082 if (pfn_range_valid_gigantic(z
, pfn
, nr_pages
)) {
1084 * We release the zone lock here because
1085 * alloc_contig_range() will also lock the zone
1086 * at some point. If there's an allocation
1087 * spinning on this lock, it may win the race
1088 * and cause alloc_contig_range() to fail...
1090 spin_unlock_irqrestore(&z
->lock
, flags
);
1091 ret
= __alloc_gigantic_page(pfn
, nr_pages
);
1093 return pfn_to_page(pfn
);
1094 spin_lock_irqsave(&z
->lock
, flags
);
1099 spin_unlock_irqrestore(&z
->lock
, flags
);
1105 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
1106 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
);
1108 static struct page
*alloc_fresh_gigantic_page_node(struct hstate
*h
, int nid
)
1112 page
= alloc_gigantic_page(nid
, huge_page_order(h
));
1114 prep_compound_gigantic_page(page
, huge_page_order(h
));
1115 prep_new_huge_page(h
, page
, nid
);
1121 static int alloc_fresh_gigantic_page(struct hstate
*h
,
1122 nodemask_t
*nodes_allowed
)
1124 struct page
*page
= NULL
;
1127 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1128 page
= alloc_fresh_gigantic_page_node(h
, node
);
1136 static inline bool gigantic_page_supported(void) { return true; }
1138 static inline bool gigantic_page_supported(void) { return false; }
1139 static inline void free_gigantic_page(struct page
*page
, unsigned int order
) { }
1140 static inline void destroy_compound_gigantic_page(struct page
*page
,
1141 unsigned int order
) { }
1142 static inline int alloc_fresh_gigantic_page(struct hstate
*h
,
1143 nodemask_t
*nodes_allowed
) { return 0; }
1146 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
1150 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
1154 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
1155 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
1156 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
1157 1 << PG_referenced
| 1 << PG_dirty
|
1158 1 << PG_active
| 1 << PG_private
|
1161 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
1162 set_compound_page_dtor(page
, NULL_COMPOUND_DTOR
);
1163 set_page_refcounted(page
);
1164 if (hstate_is_gigantic(h
)) {
1165 destroy_compound_gigantic_page(page
, huge_page_order(h
));
1166 free_gigantic_page(page
, huge_page_order(h
));
1168 __free_pages(page
, huge_page_order(h
));
1172 struct hstate
*size_to_hstate(unsigned long size
)
1176 for_each_hstate(h
) {
1177 if (huge_page_size(h
) == size
)
1184 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1185 * to hstate->hugepage_activelist.)
1187 * This function can be called for tail pages, but never returns true for them.
1189 bool page_huge_active(struct page
*page
)
1191 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
1192 return PageHead(page
) && PagePrivate(&page
[1]);
1195 /* never called for tail page */
1196 static void set_page_huge_active(struct page
*page
)
1198 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1199 SetPagePrivate(&page
[1]);
1202 static void clear_page_huge_active(struct page
*page
)
1204 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1205 ClearPagePrivate(&page
[1]);
1208 void free_huge_page(struct page
*page
)
1211 * Can't pass hstate in here because it is called from the
1212 * compound page destructor.
1214 struct hstate
*h
= page_hstate(page
);
1215 int nid
= page_to_nid(page
);
1216 struct hugepage_subpool
*spool
=
1217 (struct hugepage_subpool
*)page_private(page
);
1218 bool restore_reserve
;
1220 set_page_private(page
, 0);
1221 page
->mapping
= NULL
;
1222 VM_BUG_ON_PAGE(page_count(page
), page
);
1223 VM_BUG_ON_PAGE(page_mapcount(page
), page
);
1224 restore_reserve
= PagePrivate(page
);
1225 ClearPagePrivate(page
);
1228 * A return code of zero implies that the subpool will be under its
1229 * minimum size if the reservation is not restored after page is free.
1230 * Therefore, force restore_reserve operation.
1232 if (hugepage_subpool_put_pages(spool
, 1) == 0)
1233 restore_reserve
= true;
1235 spin_lock(&hugetlb_lock
);
1236 clear_page_huge_active(page
);
1237 hugetlb_cgroup_uncharge_page(hstate_index(h
),
1238 pages_per_huge_page(h
), page
);
1239 if (restore_reserve
)
1240 h
->resv_huge_pages
++;
1242 if (h
->surplus_huge_pages_node
[nid
]) {
1243 /* remove the page from active list */
1244 list_del(&page
->lru
);
1245 update_and_free_page(h
, page
);
1246 h
->surplus_huge_pages
--;
1247 h
->surplus_huge_pages_node
[nid
]--;
1249 arch_clear_hugepage_flags(page
);
1250 enqueue_huge_page(h
, page
);
1252 spin_unlock(&hugetlb_lock
);
1255 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1257 INIT_LIST_HEAD(&page
->lru
);
1258 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1259 spin_lock(&hugetlb_lock
);
1260 set_hugetlb_cgroup(page
, NULL
);
1262 h
->nr_huge_pages_node
[nid
]++;
1263 spin_unlock(&hugetlb_lock
);
1264 put_page(page
); /* free it into the hugepage allocator */
1267 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
)
1270 int nr_pages
= 1 << order
;
1271 struct page
*p
= page
+ 1;
1273 /* we rely on prep_new_huge_page to set the destructor */
1274 set_compound_order(page
, order
);
1275 __ClearPageReserved(page
);
1276 __SetPageHead(page
);
1277 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1279 * For gigantic hugepages allocated through bootmem at
1280 * boot, it's safer to be consistent with the not-gigantic
1281 * hugepages and clear the PG_reserved bit from all tail pages
1282 * too. Otherwse drivers using get_user_pages() to access tail
1283 * pages may get the reference counting wrong if they see
1284 * PG_reserved set on a tail page (despite the head page not
1285 * having PG_reserved set). Enforcing this consistency between
1286 * head and tail pages allows drivers to optimize away a check
1287 * on the head page when they need know if put_page() is needed
1288 * after get_user_pages().
1290 __ClearPageReserved(p
);
1291 set_page_count(p
, 0);
1292 set_compound_head(p
, page
);
1294 atomic_set(compound_mapcount_ptr(page
), -1);
1298 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1299 * transparent huge pages. See the PageTransHuge() documentation for more
1302 int PageHuge(struct page
*page
)
1304 if (!PageCompound(page
))
1307 page
= compound_head(page
);
1308 return page
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1310 EXPORT_SYMBOL_GPL(PageHuge
);
1313 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1314 * normal or transparent huge pages.
1316 int PageHeadHuge(struct page
*page_head
)
1318 if (!PageHead(page_head
))
1321 return get_compound_page_dtor(page_head
) == free_huge_page
;
1324 pgoff_t
__basepage_index(struct page
*page
)
1326 struct page
*page_head
= compound_head(page
);
1327 pgoff_t index
= page_index(page_head
);
1328 unsigned long compound_idx
;
1330 if (!PageHuge(page_head
))
1331 return page_index(page
);
1333 if (compound_order(page_head
) >= MAX_ORDER
)
1334 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1336 compound_idx
= page
- page_head
;
1338 return (index
<< compound_order(page_head
)) + compound_idx
;
1341 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
1345 page
= __alloc_pages_node(nid
,
1346 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
1347 __GFP_REPEAT
|__GFP_NOWARN
,
1348 huge_page_order(h
));
1350 prep_new_huge_page(h
, page
, nid
);
1356 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1362 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1363 page
= alloc_fresh_huge_page_node(h
, node
);
1371 count_vm_event(HTLB_BUDDY_PGALLOC
);
1373 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1379 * Free huge page from pool from next node to free.
1380 * Attempt to keep persistent huge pages more or less
1381 * balanced over allowed nodes.
1382 * Called with hugetlb_lock locked.
1384 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1390 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1392 * If we're returning unused surplus pages, only examine
1393 * nodes with surplus pages.
1395 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1396 !list_empty(&h
->hugepage_freelists
[node
])) {
1398 list_entry(h
->hugepage_freelists
[node
].next
,
1400 list_del(&page
->lru
);
1401 h
->free_huge_pages
--;
1402 h
->free_huge_pages_node
[node
]--;
1404 h
->surplus_huge_pages
--;
1405 h
->surplus_huge_pages_node
[node
]--;
1407 update_and_free_page(h
, page
);
1417 * Dissolve a given free hugepage into free buddy pages. This function does
1418 * nothing for in-use (including surplus) hugepages.
1420 static void dissolve_free_huge_page(struct page
*page
)
1422 spin_lock(&hugetlb_lock
);
1423 if (PageHuge(page
) && !page_count(page
)) {
1424 struct hstate
*h
= page_hstate(page
);
1425 int nid
= page_to_nid(page
);
1426 list_del(&page
->lru
);
1427 h
->free_huge_pages
--;
1428 h
->free_huge_pages_node
[nid
]--;
1429 update_and_free_page(h
, page
);
1431 spin_unlock(&hugetlb_lock
);
1435 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1436 * make specified memory blocks removable from the system.
1437 * Note that start_pfn should aligned with (minimum) hugepage size.
1439 void dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1443 if (!hugepages_supported())
1446 VM_BUG_ON(!IS_ALIGNED(start_pfn
, 1 << minimum_order
));
1447 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << minimum_order
)
1448 dissolve_free_huge_page(pfn_to_page(pfn
));
1452 * There are 3 ways this can get called:
1453 * 1. With vma+addr: we use the VMA's memory policy
1454 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1455 * page from any node, and let the buddy allocator itself figure
1457 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1458 * strictly from 'nid'
1460 static struct page
*__hugetlb_alloc_buddy_huge_page(struct hstate
*h
,
1461 struct vm_area_struct
*vma
, unsigned long addr
, int nid
)
1463 int order
= huge_page_order(h
);
1464 gfp_t gfp
= htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_REPEAT
|__GFP_NOWARN
;
1465 unsigned int cpuset_mems_cookie
;
1468 * We need a VMA to get a memory policy. If we do not
1469 * have one, we use the 'nid' argument.
1471 * The mempolicy stuff below has some non-inlined bits
1472 * and calls ->vm_ops. That makes it hard to optimize at
1473 * compile-time, even when NUMA is off and it does
1474 * nothing. This helps the compiler optimize it out.
1476 if (!IS_ENABLED(CONFIG_NUMA
) || !vma
) {
1478 * If a specific node is requested, make sure to
1479 * get memory from there, but only when a node
1480 * is explicitly specified.
1482 if (nid
!= NUMA_NO_NODE
)
1483 gfp
|= __GFP_THISNODE
;
1485 * Make sure to call something that can handle
1488 return alloc_pages_node(nid
, gfp
, order
);
1492 * OK, so we have a VMA. Fetch the mempolicy and try to
1493 * allocate a huge page with it. We will only reach this
1494 * when CONFIG_NUMA=y.
1498 struct mempolicy
*mpol
;
1499 struct zonelist
*zl
;
1500 nodemask_t
*nodemask
;
1502 cpuset_mems_cookie
= read_mems_allowed_begin();
1503 zl
= huge_zonelist(vma
, addr
, gfp
, &mpol
, &nodemask
);
1504 mpol_cond_put(mpol
);
1505 page
= __alloc_pages_nodemask(gfp
, order
, zl
, nodemask
);
1508 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1514 * There are two ways to allocate a huge page:
1515 * 1. When you have a VMA and an address (like a fault)
1516 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1518 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1519 * this case which signifies that the allocation should be done with
1520 * respect for the VMA's memory policy.
1522 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1523 * implies that memory policies will not be taken in to account.
1525 static struct page
*__alloc_buddy_huge_page(struct hstate
*h
,
1526 struct vm_area_struct
*vma
, unsigned long addr
, int nid
)
1531 if (hstate_is_gigantic(h
))
1535 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1536 * This makes sure the caller is picking _one_ of the modes with which
1537 * we can call this function, not both.
1539 if (vma
|| (addr
!= -1)) {
1540 VM_WARN_ON_ONCE(addr
== -1);
1541 VM_WARN_ON_ONCE(nid
!= NUMA_NO_NODE
);
1544 * Assume we will successfully allocate the surplus page to
1545 * prevent racing processes from causing the surplus to exceed
1548 * This however introduces a different race, where a process B
1549 * tries to grow the static hugepage pool while alloc_pages() is
1550 * called by process A. B will only examine the per-node
1551 * counters in determining if surplus huge pages can be
1552 * converted to normal huge pages in adjust_pool_surplus(). A
1553 * won't be able to increment the per-node counter, until the
1554 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1555 * no more huge pages can be converted from surplus to normal
1556 * state (and doesn't try to convert again). Thus, we have a
1557 * case where a surplus huge page exists, the pool is grown, and
1558 * the surplus huge page still exists after, even though it
1559 * should just have been converted to a normal huge page. This
1560 * does not leak memory, though, as the hugepage will be freed
1561 * once it is out of use. It also does not allow the counters to
1562 * go out of whack in adjust_pool_surplus() as we don't modify
1563 * the node values until we've gotten the hugepage and only the
1564 * per-node value is checked there.
1566 spin_lock(&hugetlb_lock
);
1567 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1568 spin_unlock(&hugetlb_lock
);
1572 h
->surplus_huge_pages
++;
1574 spin_unlock(&hugetlb_lock
);
1576 page
= __hugetlb_alloc_buddy_huge_page(h
, vma
, addr
, nid
);
1578 spin_lock(&hugetlb_lock
);
1580 INIT_LIST_HEAD(&page
->lru
);
1581 r_nid
= page_to_nid(page
);
1582 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1583 set_hugetlb_cgroup(page
, NULL
);
1585 * We incremented the global counters already
1587 h
->nr_huge_pages_node
[r_nid
]++;
1588 h
->surplus_huge_pages_node
[r_nid
]++;
1589 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1592 h
->surplus_huge_pages
--;
1593 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1595 spin_unlock(&hugetlb_lock
);
1601 * Allocate a huge page from 'nid'. Note, 'nid' may be
1602 * NUMA_NO_NODE, which means that it may be allocated
1606 struct page
*__alloc_buddy_huge_page_no_mpol(struct hstate
*h
, int nid
)
1608 unsigned long addr
= -1;
1610 return __alloc_buddy_huge_page(h
, NULL
, addr
, nid
);
1614 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1617 struct page
*__alloc_buddy_huge_page_with_mpol(struct hstate
*h
,
1618 struct vm_area_struct
*vma
, unsigned long addr
)
1620 return __alloc_buddy_huge_page(h
, vma
, addr
, NUMA_NO_NODE
);
1624 * This allocation function is useful in the context where vma is irrelevant.
1625 * E.g. soft-offlining uses this function because it only cares physical
1626 * address of error page.
1628 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1630 struct page
*page
= NULL
;
1632 spin_lock(&hugetlb_lock
);
1633 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1634 page
= dequeue_huge_page_node(h
, nid
);
1635 spin_unlock(&hugetlb_lock
);
1638 page
= __alloc_buddy_huge_page_no_mpol(h
, nid
);
1644 * Increase the hugetlb pool such that it can accommodate a reservation
1647 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1649 struct list_head surplus_list
;
1650 struct page
*page
, *tmp
;
1652 int needed
, allocated
;
1653 bool alloc_ok
= true;
1655 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1657 h
->resv_huge_pages
+= delta
;
1662 INIT_LIST_HEAD(&surplus_list
);
1666 spin_unlock(&hugetlb_lock
);
1667 for (i
= 0; i
< needed
; i
++) {
1668 page
= __alloc_buddy_huge_page_no_mpol(h
, NUMA_NO_NODE
);
1673 list_add(&page
->lru
, &surplus_list
);
1678 * After retaking hugetlb_lock, we need to recalculate 'needed'
1679 * because either resv_huge_pages or free_huge_pages may have changed.
1681 spin_lock(&hugetlb_lock
);
1682 needed
= (h
->resv_huge_pages
+ delta
) -
1683 (h
->free_huge_pages
+ allocated
);
1688 * We were not able to allocate enough pages to
1689 * satisfy the entire reservation so we free what
1690 * we've allocated so far.
1695 * The surplus_list now contains _at_least_ the number of extra pages
1696 * needed to accommodate the reservation. Add the appropriate number
1697 * of pages to the hugetlb pool and free the extras back to the buddy
1698 * allocator. Commit the entire reservation here to prevent another
1699 * process from stealing the pages as they are added to the pool but
1700 * before they are reserved.
1702 needed
+= allocated
;
1703 h
->resv_huge_pages
+= delta
;
1706 /* Free the needed pages to the hugetlb pool */
1707 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1711 * This page is now managed by the hugetlb allocator and has
1712 * no users -- drop the buddy allocator's reference.
1714 put_page_testzero(page
);
1715 VM_BUG_ON_PAGE(page_count(page
), page
);
1716 enqueue_huge_page(h
, page
);
1719 spin_unlock(&hugetlb_lock
);
1721 /* Free unnecessary surplus pages to the buddy allocator */
1722 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1724 spin_lock(&hugetlb_lock
);
1730 * When releasing a hugetlb pool reservation, any surplus pages that were
1731 * allocated to satisfy the reservation must be explicitly freed if they were
1733 * Called with hugetlb_lock held.
1735 static void return_unused_surplus_pages(struct hstate
*h
,
1736 unsigned long unused_resv_pages
)
1738 unsigned long nr_pages
;
1740 /* Uncommit the reservation */
1741 h
->resv_huge_pages
-= unused_resv_pages
;
1743 /* Cannot return gigantic pages currently */
1744 if (hstate_is_gigantic(h
))
1747 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1750 * We want to release as many surplus pages as possible, spread
1751 * evenly across all nodes with memory. Iterate across these nodes
1752 * until we can no longer free unreserved surplus pages. This occurs
1753 * when the nodes with surplus pages have no free pages.
1754 * free_pool_huge_page() will balance the the freed pages across the
1755 * on-line nodes with memory and will handle the hstate accounting.
1757 while (nr_pages
--) {
1758 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1760 cond_resched_lock(&hugetlb_lock
);
1766 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1767 * are used by the huge page allocation routines to manage reservations.
1769 * vma_needs_reservation is called to determine if the huge page at addr
1770 * within the vma has an associated reservation. If a reservation is
1771 * needed, the value 1 is returned. The caller is then responsible for
1772 * managing the global reservation and subpool usage counts. After
1773 * the huge page has been allocated, vma_commit_reservation is called
1774 * to add the page to the reservation map. If the page allocation fails,
1775 * the reservation must be ended instead of committed. vma_end_reservation
1776 * is called in such cases.
1778 * In the normal case, vma_commit_reservation returns the same value
1779 * as the preceding vma_needs_reservation call. The only time this
1780 * is not the case is if a reserve map was changed between calls. It
1781 * is the responsibility of the caller to notice the difference and
1782 * take appropriate action.
1784 enum vma_resv_mode
{
1789 static long __vma_reservation_common(struct hstate
*h
,
1790 struct vm_area_struct
*vma
, unsigned long addr
,
1791 enum vma_resv_mode mode
)
1793 struct resv_map
*resv
;
1797 resv
= vma_resv_map(vma
);
1801 idx
= vma_hugecache_offset(h
, vma
, addr
);
1803 case VMA_NEEDS_RESV
:
1804 ret
= region_chg(resv
, idx
, idx
+ 1);
1806 case VMA_COMMIT_RESV
:
1807 ret
= region_add(resv
, idx
, idx
+ 1);
1810 region_abort(resv
, idx
, idx
+ 1);
1817 if (vma
->vm_flags
& VM_MAYSHARE
)
1820 return ret
< 0 ? ret
: 0;
1823 static long vma_needs_reservation(struct hstate
*h
,
1824 struct vm_area_struct
*vma
, unsigned long addr
)
1826 return __vma_reservation_common(h
, vma
, addr
, VMA_NEEDS_RESV
);
1829 static long vma_commit_reservation(struct hstate
*h
,
1830 struct vm_area_struct
*vma
, unsigned long addr
)
1832 return __vma_reservation_common(h
, vma
, addr
, VMA_COMMIT_RESV
);
1835 static void vma_end_reservation(struct hstate
*h
,
1836 struct vm_area_struct
*vma
, unsigned long addr
)
1838 (void)__vma_reservation_common(h
, vma
, addr
, VMA_END_RESV
);
1841 struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1842 unsigned long addr
, int avoid_reserve
)
1844 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1845 struct hstate
*h
= hstate_vma(vma
);
1847 long map_chg
, map_commit
;
1850 struct hugetlb_cgroup
*h_cg
;
1852 idx
= hstate_index(h
);
1854 * Examine the region/reserve map to determine if the process
1855 * has a reservation for the page to be allocated. A return
1856 * code of zero indicates a reservation exists (no change).
1858 map_chg
= gbl_chg
= vma_needs_reservation(h
, vma
, addr
);
1860 return ERR_PTR(-ENOMEM
);
1863 * Processes that did not create the mapping will have no
1864 * reserves as indicated by the region/reserve map. Check
1865 * that the allocation will not exceed the subpool limit.
1866 * Allocations for MAP_NORESERVE mappings also need to be
1867 * checked against any subpool limit.
1869 if (map_chg
|| avoid_reserve
) {
1870 gbl_chg
= hugepage_subpool_get_pages(spool
, 1);
1872 vma_end_reservation(h
, vma
, addr
);
1873 return ERR_PTR(-ENOSPC
);
1877 * Even though there was no reservation in the region/reserve
1878 * map, there could be reservations associated with the
1879 * subpool that can be used. This would be indicated if the
1880 * return value of hugepage_subpool_get_pages() is zero.
1881 * However, if avoid_reserve is specified we still avoid even
1882 * the subpool reservations.
1888 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
1890 goto out_subpool_put
;
1892 spin_lock(&hugetlb_lock
);
1894 * glb_chg is passed to indicate whether or not a page must be taken
1895 * from the global free pool (global change). gbl_chg == 0 indicates
1896 * a reservation exists for the allocation.
1898 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, gbl_chg
);
1900 spin_unlock(&hugetlb_lock
);
1901 page
= __alloc_buddy_huge_page_with_mpol(h
, vma
, addr
);
1903 goto out_uncharge_cgroup
;
1904 if (!avoid_reserve
&& vma_has_reserves(vma
, gbl_chg
)) {
1905 SetPagePrivate(page
);
1906 h
->resv_huge_pages
--;
1908 spin_lock(&hugetlb_lock
);
1909 list_move(&page
->lru
, &h
->hugepage_activelist
);
1912 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
1913 spin_unlock(&hugetlb_lock
);
1915 set_page_private(page
, (unsigned long)spool
);
1917 map_commit
= vma_commit_reservation(h
, vma
, addr
);
1918 if (unlikely(map_chg
> map_commit
)) {
1920 * The page was added to the reservation map between
1921 * vma_needs_reservation and vma_commit_reservation.
1922 * This indicates a race with hugetlb_reserve_pages.
1923 * Adjust for the subpool count incremented above AND
1924 * in hugetlb_reserve_pages for the same page. Also,
1925 * the reservation count added in hugetlb_reserve_pages
1926 * no longer applies.
1930 rsv_adjust
= hugepage_subpool_put_pages(spool
, 1);
1931 hugetlb_acct_memory(h
, -rsv_adjust
);
1935 out_uncharge_cgroup
:
1936 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
1938 if (map_chg
|| avoid_reserve
)
1939 hugepage_subpool_put_pages(spool
, 1);
1940 vma_end_reservation(h
, vma
, addr
);
1941 return ERR_PTR(-ENOSPC
);
1945 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1946 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1947 * where no ERR_VALUE is expected to be returned.
1949 struct page
*alloc_huge_page_noerr(struct vm_area_struct
*vma
,
1950 unsigned long addr
, int avoid_reserve
)
1952 struct page
*page
= alloc_huge_page(vma
, addr
, avoid_reserve
);
1958 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1960 struct huge_bootmem_page
*m
;
1963 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
1966 addr
= memblock_virt_alloc_try_nid_nopanic(
1967 huge_page_size(h
), huge_page_size(h
),
1968 0, BOOTMEM_ALLOC_ACCESSIBLE
, node
);
1971 * Use the beginning of the huge page to store the
1972 * huge_bootmem_page struct (until gather_bootmem
1973 * puts them into the mem_map).
1982 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
1983 /* Put them into a private list first because mem_map is not up yet */
1984 list_add(&m
->list
, &huge_boot_pages
);
1989 static void __init
prep_compound_huge_page(struct page
*page
,
1992 if (unlikely(order
> (MAX_ORDER
- 1)))
1993 prep_compound_gigantic_page(page
, order
);
1995 prep_compound_page(page
, order
);
1998 /* Put bootmem huge pages into the standard lists after mem_map is up */
1999 static void __init
gather_bootmem_prealloc(void)
2001 struct huge_bootmem_page
*m
;
2003 list_for_each_entry(m
, &huge_boot_pages
, list
) {
2004 struct hstate
*h
= m
->hstate
;
2007 #ifdef CONFIG_HIGHMEM
2008 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
2009 memblock_free_late(__pa(m
),
2010 sizeof(struct huge_bootmem_page
));
2012 page
= virt_to_page(m
);
2014 WARN_ON(page_count(page
) != 1);
2015 prep_compound_huge_page(page
, h
->order
);
2016 WARN_ON(PageReserved(page
));
2017 prep_new_huge_page(h
, page
, page_to_nid(page
));
2019 * If we had gigantic hugepages allocated at boot time, we need
2020 * to restore the 'stolen' pages to totalram_pages in order to
2021 * fix confusing memory reports from free(1) and another
2022 * side-effects, like CommitLimit going negative.
2024 if (hstate_is_gigantic(h
))
2025 adjust_managed_page_count(page
, 1 << h
->order
);
2029 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
2033 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
2034 if (hstate_is_gigantic(h
)) {
2035 if (!alloc_bootmem_huge_page(h
))
2037 } else if (!alloc_fresh_huge_page(h
,
2038 &node_states
[N_MEMORY
]))
2041 h
->max_huge_pages
= i
;
2044 static void __init
hugetlb_init_hstates(void)
2048 for_each_hstate(h
) {
2049 if (minimum_order
> huge_page_order(h
))
2050 minimum_order
= huge_page_order(h
);
2052 /* oversize hugepages were init'ed in early boot */
2053 if (!hstate_is_gigantic(h
))
2054 hugetlb_hstate_alloc_pages(h
);
2056 VM_BUG_ON(minimum_order
== UINT_MAX
);
2059 static char * __init
memfmt(char *buf
, unsigned long n
)
2061 if (n
>= (1UL << 30))
2062 sprintf(buf
, "%lu GB", n
>> 30);
2063 else if (n
>= (1UL << 20))
2064 sprintf(buf
, "%lu MB", n
>> 20);
2066 sprintf(buf
, "%lu KB", n
>> 10);
2070 static void __init
report_hugepages(void)
2074 for_each_hstate(h
) {
2076 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2077 memfmt(buf
, huge_page_size(h
)),
2078 h
->free_huge_pages
);
2082 #ifdef CONFIG_HIGHMEM
2083 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
2084 nodemask_t
*nodes_allowed
)
2088 if (hstate_is_gigantic(h
))
2091 for_each_node_mask(i
, *nodes_allowed
) {
2092 struct page
*page
, *next
;
2093 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
2094 list_for_each_entry_safe(page
, next
, freel
, lru
) {
2095 if (count
>= h
->nr_huge_pages
)
2097 if (PageHighMem(page
))
2099 list_del(&page
->lru
);
2100 update_and_free_page(h
, page
);
2101 h
->free_huge_pages
--;
2102 h
->free_huge_pages_node
[page_to_nid(page
)]--;
2107 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
2108 nodemask_t
*nodes_allowed
)
2114 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2115 * balanced by operating on them in a round-robin fashion.
2116 * Returns 1 if an adjustment was made.
2118 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
2123 VM_BUG_ON(delta
!= -1 && delta
!= 1);
2126 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
2127 if (h
->surplus_huge_pages_node
[node
])
2131 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
2132 if (h
->surplus_huge_pages_node
[node
] <
2133 h
->nr_huge_pages_node
[node
])
2140 h
->surplus_huge_pages
+= delta
;
2141 h
->surplus_huge_pages_node
[node
] += delta
;
2145 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2146 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
2147 nodemask_t
*nodes_allowed
)
2149 unsigned long min_count
, ret
;
2151 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
2152 return h
->max_huge_pages
;
2155 * Increase the pool size
2156 * First take pages out of surplus state. Then make up the
2157 * remaining difference by allocating fresh huge pages.
2159 * We might race with __alloc_buddy_huge_page() here and be unable
2160 * to convert a surplus huge page to a normal huge page. That is
2161 * not critical, though, it just means the overall size of the
2162 * pool might be one hugepage larger than it needs to be, but
2163 * within all the constraints specified by the sysctls.
2165 spin_lock(&hugetlb_lock
);
2166 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
2167 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
2171 while (count
> persistent_huge_pages(h
)) {
2173 * If this allocation races such that we no longer need the
2174 * page, free_huge_page will handle it by freeing the page
2175 * and reducing the surplus.
2177 spin_unlock(&hugetlb_lock
);
2178 if (hstate_is_gigantic(h
))
2179 ret
= alloc_fresh_gigantic_page(h
, nodes_allowed
);
2181 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
2182 spin_lock(&hugetlb_lock
);
2186 /* Bail for signals. Probably ctrl-c from user */
2187 if (signal_pending(current
))
2192 * Decrease the pool size
2193 * First return free pages to the buddy allocator (being careful
2194 * to keep enough around to satisfy reservations). Then place
2195 * pages into surplus state as needed so the pool will shrink
2196 * to the desired size as pages become free.
2198 * By placing pages into the surplus state independent of the
2199 * overcommit value, we are allowing the surplus pool size to
2200 * exceed overcommit. There are few sane options here. Since
2201 * __alloc_buddy_huge_page() is checking the global counter,
2202 * though, we'll note that we're not allowed to exceed surplus
2203 * and won't grow the pool anywhere else. Not until one of the
2204 * sysctls are changed, or the surplus pages go out of use.
2206 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
2207 min_count
= max(count
, min_count
);
2208 try_to_free_low(h
, min_count
, nodes_allowed
);
2209 while (min_count
< persistent_huge_pages(h
)) {
2210 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
2212 cond_resched_lock(&hugetlb_lock
);
2214 while (count
< persistent_huge_pages(h
)) {
2215 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
2219 ret
= persistent_huge_pages(h
);
2220 spin_unlock(&hugetlb_lock
);
2224 #define HSTATE_ATTR_RO(_name) \
2225 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2227 #define HSTATE_ATTR(_name) \
2228 static struct kobj_attribute _name##_attr = \
2229 __ATTR(_name, 0644, _name##_show, _name##_store)
2231 static struct kobject
*hugepages_kobj
;
2232 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2234 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
2236 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
2240 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2241 if (hstate_kobjs
[i
] == kobj
) {
2243 *nidp
= NUMA_NO_NODE
;
2247 return kobj_to_node_hstate(kobj
, nidp
);
2250 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
2251 struct kobj_attribute
*attr
, char *buf
)
2254 unsigned long nr_huge_pages
;
2257 h
= kobj_to_hstate(kobj
, &nid
);
2258 if (nid
== NUMA_NO_NODE
)
2259 nr_huge_pages
= h
->nr_huge_pages
;
2261 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
2263 return sprintf(buf
, "%lu\n", nr_huge_pages
);
2266 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
2267 struct hstate
*h
, int nid
,
2268 unsigned long count
, size_t len
)
2271 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
2273 if (hstate_is_gigantic(h
) && !gigantic_page_supported()) {
2278 if (nid
== NUMA_NO_NODE
) {
2280 * global hstate attribute
2282 if (!(obey_mempolicy
&&
2283 init_nodemask_of_mempolicy(nodes_allowed
))) {
2284 NODEMASK_FREE(nodes_allowed
);
2285 nodes_allowed
= &node_states
[N_MEMORY
];
2287 } else if (nodes_allowed
) {
2289 * per node hstate attribute: adjust count to global,
2290 * but restrict alloc/free to the specified node.
2292 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
2293 init_nodemask_of_node(nodes_allowed
, nid
);
2295 nodes_allowed
= &node_states
[N_MEMORY
];
2297 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
2299 if (nodes_allowed
!= &node_states
[N_MEMORY
])
2300 NODEMASK_FREE(nodes_allowed
);
2304 NODEMASK_FREE(nodes_allowed
);
2308 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
2309 struct kobject
*kobj
, const char *buf
,
2313 unsigned long count
;
2317 err
= kstrtoul(buf
, 10, &count
);
2321 h
= kobj_to_hstate(kobj
, &nid
);
2322 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
2325 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
2326 struct kobj_attribute
*attr
, char *buf
)
2328 return nr_hugepages_show_common(kobj
, attr
, buf
);
2331 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
2332 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2334 return nr_hugepages_store_common(false, kobj
, buf
, len
);
2336 HSTATE_ATTR(nr_hugepages
);
2341 * hstate attribute for optionally mempolicy-based constraint on persistent
2342 * huge page alloc/free.
2344 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
2345 struct kobj_attribute
*attr
, char *buf
)
2347 return nr_hugepages_show_common(kobj
, attr
, buf
);
2350 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
2351 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2353 return nr_hugepages_store_common(true, kobj
, buf
, len
);
2355 HSTATE_ATTR(nr_hugepages_mempolicy
);
2359 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
2360 struct kobj_attribute
*attr
, char *buf
)
2362 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2363 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
2366 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
2367 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
2370 unsigned long input
;
2371 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2373 if (hstate_is_gigantic(h
))
2376 err
= kstrtoul(buf
, 10, &input
);
2380 spin_lock(&hugetlb_lock
);
2381 h
->nr_overcommit_huge_pages
= input
;
2382 spin_unlock(&hugetlb_lock
);
2386 HSTATE_ATTR(nr_overcommit_hugepages
);
2388 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
2389 struct kobj_attribute
*attr
, char *buf
)
2392 unsigned long free_huge_pages
;
2395 h
= kobj_to_hstate(kobj
, &nid
);
2396 if (nid
== NUMA_NO_NODE
)
2397 free_huge_pages
= h
->free_huge_pages
;
2399 free_huge_pages
= h
->free_huge_pages_node
[nid
];
2401 return sprintf(buf
, "%lu\n", free_huge_pages
);
2403 HSTATE_ATTR_RO(free_hugepages
);
2405 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
2406 struct kobj_attribute
*attr
, char *buf
)
2408 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2409 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
2411 HSTATE_ATTR_RO(resv_hugepages
);
2413 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
2414 struct kobj_attribute
*attr
, char *buf
)
2417 unsigned long surplus_huge_pages
;
2420 h
= kobj_to_hstate(kobj
, &nid
);
2421 if (nid
== NUMA_NO_NODE
)
2422 surplus_huge_pages
= h
->surplus_huge_pages
;
2424 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
2426 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
2428 HSTATE_ATTR_RO(surplus_hugepages
);
2430 static struct attribute
*hstate_attrs
[] = {
2431 &nr_hugepages_attr
.attr
,
2432 &nr_overcommit_hugepages_attr
.attr
,
2433 &free_hugepages_attr
.attr
,
2434 &resv_hugepages_attr
.attr
,
2435 &surplus_hugepages_attr
.attr
,
2437 &nr_hugepages_mempolicy_attr
.attr
,
2442 static struct attribute_group hstate_attr_group
= {
2443 .attrs
= hstate_attrs
,
2446 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
2447 struct kobject
**hstate_kobjs
,
2448 struct attribute_group
*hstate_attr_group
)
2451 int hi
= hstate_index(h
);
2453 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
2454 if (!hstate_kobjs
[hi
])
2457 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
2459 kobject_put(hstate_kobjs
[hi
]);
2464 static void __init
hugetlb_sysfs_init(void)
2469 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
2470 if (!hugepages_kobj
)
2473 for_each_hstate(h
) {
2474 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
2475 hstate_kobjs
, &hstate_attr_group
);
2477 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
2484 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2485 * with node devices in node_devices[] using a parallel array. The array
2486 * index of a node device or _hstate == node id.
2487 * This is here to avoid any static dependency of the node device driver, in
2488 * the base kernel, on the hugetlb module.
2490 struct node_hstate
{
2491 struct kobject
*hugepages_kobj
;
2492 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2494 static struct node_hstate node_hstates
[MAX_NUMNODES
];
2497 * A subset of global hstate attributes for node devices
2499 static struct attribute
*per_node_hstate_attrs
[] = {
2500 &nr_hugepages_attr
.attr
,
2501 &free_hugepages_attr
.attr
,
2502 &surplus_hugepages_attr
.attr
,
2506 static struct attribute_group per_node_hstate_attr_group
= {
2507 .attrs
= per_node_hstate_attrs
,
2511 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2512 * Returns node id via non-NULL nidp.
2514 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2518 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
2519 struct node_hstate
*nhs
= &node_hstates
[nid
];
2521 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2522 if (nhs
->hstate_kobjs
[i
] == kobj
) {
2534 * Unregister hstate attributes from a single node device.
2535 * No-op if no hstate attributes attached.
2537 static void hugetlb_unregister_node(struct node
*node
)
2540 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2542 if (!nhs
->hugepages_kobj
)
2543 return; /* no hstate attributes */
2545 for_each_hstate(h
) {
2546 int idx
= hstate_index(h
);
2547 if (nhs
->hstate_kobjs
[idx
]) {
2548 kobject_put(nhs
->hstate_kobjs
[idx
]);
2549 nhs
->hstate_kobjs
[idx
] = NULL
;
2553 kobject_put(nhs
->hugepages_kobj
);
2554 nhs
->hugepages_kobj
= NULL
;
2559 * Register hstate attributes for a single node device.
2560 * No-op if attributes already registered.
2562 static void hugetlb_register_node(struct node
*node
)
2565 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2568 if (nhs
->hugepages_kobj
)
2569 return; /* already allocated */
2571 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
2573 if (!nhs
->hugepages_kobj
)
2576 for_each_hstate(h
) {
2577 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
2579 &per_node_hstate_attr_group
);
2581 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2582 h
->name
, node
->dev
.id
);
2583 hugetlb_unregister_node(node
);
2590 * hugetlb init time: register hstate attributes for all registered node
2591 * devices of nodes that have memory. All on-line nodes should have
2592 * registered their associated device by this time.
2594 static void __init
hugetlb_register_all_nodes(void)
2598 for_each_node_state(nid
, N_MEMORY
) {
2599 struct node
*node
= node_devices
[nid
];
2600 if (node
->dev
.id
== nid
)
2601 hugetlb_register_node(node
);
2605 * Let the node device driver know we're here so it can
2606 * [un]register hstate attributes on node hotplug.
2608 register_hugetlbfs_with_node(hugetlb_register_node
,
2609 hugetlb_unregister_node
);
2611 #else /* !CONFIG_NUMA */
2613 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2621 static void hugetlb_register_all_nodes(void) { }
2625 static int __init
hugetlb_init(void)
2629 if (!hugepages_supported())
2632 if (!size_to_hstate(default_hstate_size
)) {
2633 default_hstate_size
= HPAGE_SIZE
;
2634 if (!size_to_hstate(default_hstate_size
))
2635 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2637 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2638 if (default_hstate_max_huge_pages
) {
2639 if (!default_hstate
.max_huge_pages
)
2640 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2643 hugetlb_init_hstates();
2644 gather_bootmem_prealloc();
2647 hugetlb_sysfs_init();
2648 hugetlb_register_all_nodes();
2649 hugetlb_cgroup_file_init();
2652 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2654 num_fault_mutexes
= 1;
2656 hugetlb_fault_mutex_table
=
2657 kmalloc(sizeof(struct mutex
) * num_fault_mutexes
, GFP_KERNEL
);
2658 BUG_ON(!hugetlb_fault_mutex_table
);
2660 for (i
= 0; i
< num_fault_mutexes
; i
++)
2661 mutex_init(&hugetlb_fault_mutex_table
[i
]);
2664 subsys_initcall(hugetlb_init
);
2666 /* Should be called on processing a hugepagesz=... option */
2667 void __init
hugetlb_bad_size(void)
2669 parsed_valid_hugepagesz
= false;
2672 void __init
hugetlb_add_hstate(unsigned int order
)
2677 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2678 pr_warn("hugepagesz= specified twice, ignoring\n");
2681 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2683 h
= &hstates
[hugetlb_max_hstate
++];
2685 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2686 h
->nr_huge_pages
= 0;
2687 h
->free_huge_pages
= 0;
2688 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2689 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2690 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2691 h
->next_nid_to_alloc
= first_memory_node
;
2692 h
->next_nid_to_free
= first_memory_node
;
2693 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2694 huge_page_size(h
)/1024);
2699 static int __init
hugetlb_nrpages_setup(char *s
)
2702 static unsigned long *last_mhp
;
2704 if (!parsed_valid_hugepagesz
) {
2705 pr_warn("hugepages = %s preceded by "
2706 "an unsupported hugepagesz, ignoring\n", s
);
2707 parsed_valid_hugepagesz
= true;
2711 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2712 * so this hugepages= parameter goes to the "default hstate".
2714 else if (!hugetlb_max_hstate
)
2715 mhp
= &default_hstate_max_huge_pages
;
2717 mhp
= &parsed_hstate
->max_huge_pages
;
2719 if (mhp
== last_mhp
) {
2720 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2724 if (sscanf(s
, "%lu", mhp
) <= 0)
2728 * Global state is always initialized later in hugetlb_init.
2729 * But we need to allocate >= MAX_ORDER hstates here early to still
2730 * use the bootmem allocator.
2732 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2733 hugetlb_hstate_alloc_pages(parsed_hstate
);
2739 __setup("hugepages=", hugetlb_nrpages_setup
);
2741 static int __init
hugetlb_default_setup(char *s
)
2743 default_hstate_size
= memparse(s
, &s
);
2746 __setup("default_hugepagesz=", hugetlb_default_setup
);
2748 static unsigned int cpuset_mems_nr(unsigned int *array
)
2751 unsigned int nr
= 0;
2753 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2759 #ifdef CONFIG_SYSCTL
2760 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2761 struct ctl_table
*table
, int write
,
2762 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2764 struct hstate
*h
= &default_hstate
;
2765 unsigned long tmp
= h
->max_huge_pages
;
2768 if (!hugepages_supported())
2772 table
->maxlen
= sizeof(unsigned long);
2773 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2778 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
2779 NUMA_NO_NODE
, tmp
, *length
);
2784 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2785 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2788 return hugetlb_sysctl_handler_common(false, table
, write
,
2789 buffer
, length
, ppos
);
2793 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2794 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2796 return hugetlb_sysctl_handler_common(true, table
, write
,
2797 buffer
, length
, ppos
);
2799 #endif /* CONFIG_NUMA */
2801 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2802 void __user
*buffer
,
2803 size_t *length
, loff_t
*ppos
)
2805 struct hstate
*h
= &default_hstate
;
2809 if (!hugepages_supported())
2812 tmp
= h
->nr_overcommit_huge_pages
;
2814 if (write
&& hstate_is_gigantic(h
))
2818 table
->maxlen
= sizeof(unsigned long);
2819 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2824 spin_lock(&hugetlb_lock
);
2825 h
->nr_overcommit_huge_pages
= tmp
;
2826 spin_unlock(&hugetlb_lock
);
2832 #endif /* CONFIG_SYSCTL */
2834 void hugetlb_report_meminfo(struct seq_file
*m
)
2836 struct hstate
*h
= &default_hstate
;
2837 if (!hugepages_supported())
2840 "HugePages_Total: %5lu\n"
2841 "HugePages_Free: %5lu\n"
2842 "HugePages_Rsvd: %5lu\n"
2843 "HugePages_Surp: %5lu\n"
2844 "Hugepagesize: %8lu kB\n",
2848 h
->surplus_huge_pages
,
2849 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2852 int hugetlb_report_node_meminfo(int nid
, char *buf
)
2854 struct hstate
*h
= &default_hstate
;
2855 if (!hugepages_supported())
2858 "Node %d HugePages_Total: %5u\n"
2859 "Node %d HugePages_Free: %5u\n"
2860 "Node %d HugePages_Surp: %5u\n",
2861 nid
, h
->nr_huge_pages_node
[nid
],
2862 nid
, h
->free_huge_pages_node
[nid
],
2863 nid
, h
->surplus_huge_pages_node
[nid
]);
2866 void hugetlb_show_meminfo(void)
2871 if (!hugepages_supported())
2874 for_each_node_state(nid
, N_MEMORY
)
2876 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2878 h
->nr_huge_pages_node
[nid
],
2879 h
->free_huge_pages_node
[nid
],
2880 h
->surplus_huge_pages_node
[nid
],
2881 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2884 void hugetlb_report_usage(struct seq_file
*m
, struct mm_struct
*mm
)
2886 seq_printf(m
, "HugetlbPages:\t%8lu kB\n",
2887 atomic_long_read(&mm
->hugetlb_usage
) << (PAGE_SHIFT
- 10));
2890 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2891 unsigned long hugetlb_total_pages(void)
2894 unsigned long nr_total_pages
= 0;
2897 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
2898 return nr_total_pages
;
2901 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2905 spin_lock(&hugetlb_lock
);
2907 * When cpuset is configured, it breaks the strict hugetlb page
2908 * reservation as the accounting is done on a global variable. Such
2909 * reservation is completely rubbish in the presence of cpuset because
2910 * the reservation is not checked against page availability for the
2911 * current cpuset. Application can still potentially OOM'ed by kernel
2912 * with lack of free htlb page in cpuset that the task is in.
2913 * Attempt to enforce strict accounting with cpuset is almost
2914 * impossible (or too ugly) because cpuset is too fluid that
2915 * task or memory node can be dynamically moved between cpusets.
2917 * The change of semantics for shared hugetlb mapping with cpuset is
2918 * undesirable. However, in order to preserve some of the semantics,
2919 * we fall back to check against current free page availability as
2920 * a best attempt and hopefully to minimize the impact of changing
2921 * semantics that cpuset has.
2924 if (gather_surplus_pages(h
, delta
) < 0)
2927 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2928 return_unused_surplus_pages(h
, delta
);
2935 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2938 spin_unlock(&hugetlb_lock
);
2942 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2944 struct resv_map
*resv
= vma_resv_map(vma
);
2947 * This new VMA should share its siblings reservation map if present.
2948 * The VMA will only ever have a valid reservation map pointer where
2949 * it is being copied for another still existing VMA. As that VMA
2950 * has a reference to the reservation map it cannot disappear until
2951 * after this open call completes. It is therefore safe to take a
2952 * new reference here without additional locking.
2954 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
2955 kref_get(&resv
->refs
);
2958 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2960 struct hstate
*h
= hstate_vma(vma
);
2961 struct resv_map
*resv
= vma_resv_map(vma
);
2962 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2963 unsigned long reserve
, start
, end
;
2966 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
2969 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2970 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2972 reserve
= (end
- start
) - region_count(resv
, start
, end
);
2974 kref_put(&resv
->refs
, resv_map_release
);
2978 * Decrement reserve counts. The global reserve count may be
2979 * adjusted if the subpool has a minimum size.
2981 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
2982 hugetlb_acct_memory(h
, -gbl_reserve
);
2987 * We cannot handle pagefaults against hugetlb pages at all. They cause
2988 * handle_mm_fault() to try to instantiate regular-sized pages in the
2989 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2992 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2998 const struct vm_operations_struct hugetlb_vm_ops
= {
2999 .fault
= hugetlb_vm_op_fault
,
3000 .open
= hugetlb_vm_op_open
,
3001 .close
= hugetlb_vm_op_close
,
3004 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
3010 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
3011 vma
->vm_page_prot
)));
3013 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
3014 vma
->vm_page_prot
));
3016 entry
= pte_mkyoung(entry
);
3017 entry
= pte_mkhuge(entry
);
3018 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
3023 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
3024 unsigned long address
, pte_t
*ptep
)
3028 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
3029 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
3030 update_mmu_cache(vma
, address
, ptep
);
3033 static int is_hugetlb_entry_migration(pte_t pte
)
3037 if (huge_pte_none(pte
) || pte_present(pte
))
3039 swp
= pte_to_swp_entry(pte
);
3040 if (non_swap_entry(swp
) && is_migration_entry(swp
))
3046 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
3050 if (huge_pte_none(pte
) || pte_present(pte
))
3052 swp
= pte_to_swp_entry(pte
);
3053 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
3059 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
3060 struct vm_area_struct
*vma
)
3062 pte_t
*src_pte
, *dst_pte
, entry
;
3063 struct page
*ptepage
;
3066 struct hstate
*h
= hstate_vma(vma
);
3067 unsigned long sz
= huge_page_size(h
);
3068 unsigned long mmun_start
; /* For mmu_notifiers */
3069 unsigned long mmun_end
; /* For mmu_notifiers */
3072 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
3074 mmun_start
= vma
->vm_start
;
3075 mmun_end
= vma
->vm_end
;
3077 mmu_notifier_invalidate_range_start(src
, mmun_start
, mmun_end
);
3079 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
3080 spinlock_t
*src_ptl
, *dst_ptl
;
3081 src_pte
= huge_pte_offset(src
, addr
);
3084 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
3090 /* If the pagetables are shared don't copy or take references */
3091 if (dst_pte
== src_pte
)
3094 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
3095 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
3096 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
3097 entry
= huge_ptep_get(src_pte
);
3098 if (huge_pte_none(entry
)) { /* skip none entry */
3100 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
3101 is_hugetlb_entry_hwpoisoned(entry
))) {
3102 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
3104 if (is_write_migration_entry(swp_entry
) && cow
) {
3106 * COW mappings require pages in both
3107 * parent and child to be set to read.
3109 make_migration_entry_read(&swp_entry
);
3110 entry
= swp_entry_to_pte(swp_entry
);
3111 set_huge_pte_at(src
, addr
, src_pte
, entry
);
3113 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3116 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
3117 mmu_notifier_invalidate_range(src
, mmun_start
,
3120 entry
= huge_ptep_get(src_pte
);
3121 ptepage
= pte_page(entry
);
3123 page_dup_rmap(ptepage
, true);
3124 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3125 hugetlb_count_add(pages_per_huge_page(h
), dst
);
3127 spin_unlock(src_ptl
);
3128 spin_unlock(dst_ptl
);
3132 mmu_notifier_invalidate_range_end(src
, mmun_start
, mmun_end
);
3137 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
3138 unsigned long start
, unsigned long end
,
3139 struct page
*ref_page
)
3141 int force_flush
= 0;
3142 struct mm_struct
*mm
= vma
->vm_mm
;
3143 unsigned long address
;
3148 struct hstate
*h
= hstate_vma(vma
);
3149 unsigned long sz
= huge_page_size(h
);
3150 const unsigned long mmun_start
= start
; /* For mmu_notifiers */
3151 const unsigned long mmun_end
= end
; /* For mmu_notifiers */
3153 WARN_ON(!is_vm_hugetlb_page(vma
));
3154 BUG_ON(start
& ~huge_page_mask(h
));
3155 BUG_ON(end
& ~huge_page_mask(h
));
3157 tlb_start_vma(tlb
, vma
);
3158 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
3161 for (; address
< end
; address
+= sz
) {
3162 ptep
= huge_pte_offset(mm
, address
);
3166 ptl
= huge_pte_lock(h
, mm
, ptep
);
3167 if (huge_pmd_unshare(mm
, &address
, ptep
))
3170 pte
= huge_ptep_get(ptep
);
3171 if (huge_pte_none(pte
))
3175 * Migrating hugepage or HWPoisoned hugepage is already
3176 * unmapped and its refcount is dropped, so just clear pte here.
3178 if (unlikely(!pte_present(pte
))) {
3179 huge_pte_clear(mm
, address
, ptep
);
3183 page
= pte_page(pte
);
3185 * If a reference page is supplied, it is because a specific
3186 * page is being unmapped, not a range. Ensure the page we
3187 * are about to unmap is the actual page of interest.
3190 if (page
!= ref_page
)
3194 * Mark the VMA as having unmapped its page so that
3195 * future faults in this VMA will fail rather than
3196 * looking like data was lost
3198 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
3201 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3202 tlb_remove_tlb_entry(tlb
, ptep
, address
);
3203 if (huge_pte_dirty(pte
))
3204 set_page_dirty(page
);
3206 hugetlb_count_sub(pages_per_huge_page(h
), mm
);
3207 page_remove_rmap(page
, true);
3208 force_flush
= !__tlb_remove_page(tlb
, page
);
3214 /* Bail out after unmapping reference page if supplied */
3223 * mmu_gather ran out of room to batch pages, we break out of
3224 * the PTE lock to avoid doing the potential expensive TLB invalidate
3225 * and page-free while holding it.
3230 if (address
< end
&& !ref_page
)
3233 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
3234 tlb_end_vma(tlb
, vma
);
3237 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
3238 struct vm_area_struct
*vma
, unsigned long start
,
3239 unsigned long end
, struct page
*ref_page
)
3241 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
3244 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3245 * test will fail on a vma being torn down, and not grab a page table
3246 * on its way out. We're lucky that the flag has such an appropriate
3247 * name, and can in fact be safely cleared here. We could clear it
3248 * before the __unmap_hugepage_range above, but all that's necessary
3249 * is to clear it before releasing the i_mmap_rwsem. This works
3250 * because in the context this is called, the VMA is about to be
3251 * destroyed and the i_mmap_rwsem is held.
3253 vma
->vm_flags
&= ~VM_MAYSHARE
;
3256 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
3257 unsigned long end
, struct page
*ref_page
)
3259 struct mm_struct
*mm
;
3260 struct mmu_gather tlb
;
3264 tlb_gather_mmu(&tlb
, mm
, start
, end
);
3265 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
3266 tlb_finish_mmu(&tlb
, start
, end
);
3270 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3271 * mappping it owns the reserve page for. The intention is to unmap the page
3272 * from other VMAs and let the children be SIGKILLed if they are faulting the
3275 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3276 struct page
*page
, unsigned long address
)
3278 struct hstate
*h
= hstate_vma(vma
);
3279 struct vm_area_struct
*iter_vma
;
3280 struct address_space
*mapping
;
3284 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3285 * from page cache lookup which is in HPAGE_SIZE units.
3287 address
= address
& huge_page_mask(h
);
3288 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
3290 mapping
= file_inode(vma
->vm_file
)->i_mapping
;
3293 * Take the mapping lock for the duration of the table walk. As
3294 * this mapping should be shared between all the VMAs,
3295 * __unmap_hugepage_range() is called as the lock is already held
3297 i_mmap_lock_write(mapping
);
3298 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
3299 /* Do not unmap the current VMA */
3300 if (iter_vma
== vma
)
3304 * Shared VMAs have their own reserves and do not affect
3305 * MAP_PRIVATE accounting but it is possible that a shared
3306 * VMA is using the same page so check and skip such VMAs.
3308 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
3312 * Unmap the page from other VMAs without their own reserves.
3313 * They get marked to be SIGKILLed if they fault in these
3314 * areas. This is because a future no-page fault on this VMA
3315 * could insert a zeroed page instead of the data existing
3316 * from the time of fork. This would look like data corruption
3318 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
3319 unmap_hugepage_range(iter_vma
, address
,
3320 address
+ huge_page_size(h
), page
);
3322 i_mmap_unlock_write(mapping
);
3326 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3327 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3328 * cannot race with other handlers or page migration.
3329 * Keep the pte_same checks anyway to make transition from the mutex easier.
3331 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3332 unsigned long address
, pte_t
*ptep
, pte_t pte
,
3333 struct page
*pagecache_page
, spinlock_t
*ptl
)
3335 struct hstate
*h
= hstate_vma(vma
);
3336 struct page
*old_page
, *new_page
;
3337 int ret
= 0, outside_reserve
= 0;
3338 unsigned long mmun_start
; /* For mmu_notifiers */
3339 unsigned long mmun_end
; /* For mmu_notifiers */
3341 old_page
= pte_page(pte
);
3344 /* If no-one else is actually using this page, avoid the copy
3345 * and just make the page writable */
3346 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
3347 page_move_anon_rmap(old_page
, vma
, address
);
3348 set_huge_ptep_writable(vma
, address
, ptep
);
3353 * If the process that created a MAP_PRIVATE mapping is about to
3354 * perform a COW due to a shared page count, attempt to satisfy
3355 * the allocation without using the existing reserves. The pagecache
3356 * page is used to determine if the reserve at this address was
3357 * consumed or not. If reserves were used, a partial faulted mapping
3358 * at the time of fork() could consume its reserves on COW instead
3359 * of the full address range.
3361 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
3362 old_page
!= pagecache_page
)
3363 outside_reserve
= 1;
3368 * Drop page table lock as buddy allocator may be called. It will
3369 * be acquired again before returning to the caller, as expected.
3372 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
3374 if (IS_ERR(new_page
)) {
3376 * If a process owning a MAP_PRIVATE mapping fails to COW,
3377 * it is due to references held by a child and an insufficient
3378 * huge page pool. To guarantee the original mappers
3379 * reliability, unmap the page from child processes. The child
3380 * may get SIGKILLed if it later faults.
3382 if (outside_reserve
) {
3384 BUG_ON(huge_pte_none(pte
));
3385 unmap_ref_private(mm
, vma
, old_page
, address
);
3386 BUG_ON(huge_pte_none(pte
));
3388 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
3390 pte_same(huge_ptep_get(ptep
), pte
)))
3391 goto retry_avoidcopy
;
3393 * race occurs while re-acquiring page table
3394 * lock, and our job is done.
3399 ret
= (PTR_ERR(new_page
) == -ENOMEM
) ?
3400 VM_FAULT_OOM
: VM_FAULT_SIGBUS
;
3401 goto out_release_old
;
3405 * When the original hugepage is shared one, it does not have
3406 * anon_vma prepared.
3408 if (unlikely(anon_vma_prepare(vma
))) {
3410 goto out_release_all
;
3413 copy_user_huge_page(new_page
, old_page
, address
, vma
,
3414 pages_per_huge_page(h
));
3415 __SetPageUptodate(new_page
);
3416 set_page_huge_active(new_page
);
3418 mmun_start
= address
& huge_page_mask(h
);
3419 mmun_end
= mmun_start
+ huge_page_size(h
);
3420 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
3423 * Retake the page table lock to check for racing updates
3424 * before the page tables are altered
3427 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
3428 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
3429 ClearPagePrivate(new_page
);
3432 huge_ptep_clear_flush(vma
, address
, ptep
);
3433 mmu_notifier_invalidate_range(mm
, mmun_start
, mmun_end
);
3434 set_huge_pte_at(mm
, address
, ptep
,
3435 make_huge_pte(vma
, new_page
, 1));
3436 page_remove_rmap(old_page
, true);
3437 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
3438 /* Make the old page be freed below */
3439 new_page
= old_page
;
3442 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
3448 spin_lock(ptl
); /* Caller expects lock to be held */
3452 /* Return the pagecache page at a given address within a VMA */
3453 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
3454 struct vm_area_struct
*vma
, unsigned long address
)
3456 struct address_space
*mapping
;
3459 mapping
= vma
->vm_file
->f_mapping
;
3460 idx
= vma_hugecache_offset(h
, vma
, address
);
3462 return find_lock_page(mapping
, idx
);
3466 * Return whether there is a pagecache page to back given address within VMA.
3467 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3469 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
3470 struct vm_area_struct
*vma
, unsigned long address
)
3472 struct address_space
*mapping
;
3476 mapping
= vma
->vm_file
->f_mapping
;
3477 idx
= vma_hugecache_offset(h
, vma
, address
);
3479 page
= find_get_page(mapping
, idx
);
3482 return page
!= NULL
;
3485 int huge_add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
3488 struct inode
*inode
= mapping
->host
;
3489 struct hstate
*h
= hstate_inode(inode
);
3490 int err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
3494 ClearPagePrivate(page
);
3496 spin_lock(&inode
->i_lock
);
3497 inode
->i_blocks
+= blocks_per_huge_page(h
);
3498 spin_unlock(&inode
->i_lock
);
3502 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3503 struct address_space
*mapping
, pgoff_t idx
,
3504 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
3506 struct hstate
*h
= hstate_vma(vma
);
3507 int ret
= VM_FAULT_SIGBUS
;
3515 * Currently, we are forced to kill the process in the event the
3516 * original mapper has unmapped pages from the child due to a failed
3517 * COW. Warn that such a situation has occurred as it may not be obvious
3519 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
3520 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3526 * Use page lock to guard against racing truncation
3527 * before we get page_table_lock.
3530 page
= find_lock_page(mapping
, idx
);
3532 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3535 page
= alloc_huge_page(vma
, address
, 0);
3537 ret
= PTR_ERR(page
);
3541 ret
= VM_FAULT_SIGBUS
;
3544 clear_huge_page(page
, address
, pages_per_huge_page(h
));
3545 __SetPageUptodate(page
);
3546 set_page_huge_active(page
);
3548 if (vma
->vm_flags
& VM_MAYSHARE
) {
3549 int err
= huge_add_to_page_cache(page
, mapping
, idx
);
3558 if (unlikely(anon_vma_prepare(vma
))) {
3560 goto backout_unlocked
;
3566 * If memory error occurs between mmap() and fault, some process
3567 * don't have hwpoisoned swap entry for errored virtual address.
3568 * So we need to block hugepage fault by PG_hwpoison bit check.
3570 if (unlikely(PageHWPoison(page
))) {
3571 ret
= VM_FAULT_HWPOISON
|
3572 VM_FAULT_SET_HINDEX(hstate_index(h
));
3573 goto backout_unlocked
;
3578 * If we are going to COW a private mapping later, we examine the
3579 * pending reservations for this page now. This will ensure that
3580 * any allocations necessary to record that reservation occur outside
3583 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3584 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3586 goto backout_unlocked
;
3588 /* Just decrements count, does not deallocate */
3589 vma_end_reservation(h
, vma
, address
);
3592 ptl
= huge_pte_lockptr(h
, mm
, ptep
);
3594 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3599 if (!huge_pte_none(huge_ptep_get(ptep
)))
3603 ClearPagePrivate(page
);
3604 hugepage_add_new_anon_rmap(page
, vma
, address
);
3606 page_dup_rmap(page
, true);
3607 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
3608 && (vma
->vm_flags
& VM_SHARED
)));
3609 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
3611 hugetlb_count_add(pages_per_huge_page(h
), mm
);
3612 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3613 /* Optimization, do the COW without a second fault */
3614 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
, ptl
);
3631 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3632 struct vm_area_struct
*vma
,
3633 struct address_space
*mapping
,
3634 pgoff_t idx
, unsigned long address
)
3636 unsigned long key
[2];
3639 if (vma
->vm_flags
& VM_SHARED
) {
3640 key
[0] = (unsigned long) mapping
;
3643 key
[0] = (unsigned long) mm
;
3644 key
[1] = address
>> huge_page_shift(h
);
3647 hash
= jhash2((u32
*)&key
, sizeof(key
)/sizeof(u32
), 0);
3649 return hash
& (num_fault_mutexes
- 1);
3653 * For uniprocesor systems we always use a single mutex, so just
3654 * return 0 and avoid the hashing overhead.
3656 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3657 struct vm_area_struct
*vma
,
3658 struct address_space
*mapping
,
3659 pgoff_t idx
, unsigned long address
)
3665 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3666 unsigned long address
, unsigned int flags
)
3673 struct page
*page
= NULL
;
3674 struct page
*pagecache_page
= NULL
;
3675 struct hstate
*h
= hstate_vma(vma
);
3676 struct address_space
*mapping
;
3677 int need_wait_lock
= 0;
3679 address
&= huge_page_mask(h
);
3681 ptep
= huge_pte_offset(mm
, address
);
3683 entry
= huge_ptep_get(ptep
);
3684 if (unlikely(is_hugetlb_entry_migration(entry
))) {
3685 migration_entry_wait_huge(vma
, mm
, ptep
);
3687 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
3688 return VM_FAULT_HWPOISON_LARGE
|
3689 VM_FAULT_SET_HINDEX(hstate_index(h
));
3691 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
3693 return VM_FAULT_OOM
;
3696 mapping
= vma
->vm_file
->f_mapping
;
3697 idx
= vma_hugecache_offset(h
, vma
, address
);
3700 * Serialize hugepage allocation and instantiation, so that we don't
3701 * get spurious allocation failures if two CPUs race to instantiate
3702 * the same page in the page cache.
3704 hash
= hugetlb_fault_mutex_hash(h
, mm
, vma
, mapping
, idx
, address
);
3705 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3707 entry
= huge_ptep_get(ptep
);
3708 if (huge_pte_none(entry
)) {
3709 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
3716 * entry could be a migration/hwpoison entry at this point, so this
3717 * check prevents the kernel from going below assuming that we have
3718 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3719 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3722 if (!pte_present(entry
))
3726 * If we are going to COW the mapping later, we examine the pending
3727 * reservations for this page now. This will ensure that any
3728 * allocations necessary to record that reservation occur outside the
3729 * spinlock. For private mappings, we also lookup the pagecache
3730 * page now as it is used to determine if a reservation has been
3733 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
3734 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3738 /* Just decrements count, does not deallocate */
3739 vma_end_reservation(h
, vma
, address
);
3741 if (!(vma
->vm_flags
& VM_MAYSHARE
))
3742 pagecache_page
= hugetlbfs_pagecache_page(h
,
3746 ptl
= huge_pte_lock(h
, mm
, ptep
);
3748 /* Check for a racing update before calling hugetlb_cow */
3749 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
3753 * hugetlb_cow() requires page locks of pte_page(entry) and
3754 * pagecache_page, so here we need take the former one
3755 * when page != pagecache_page or !pagecache_page.
3757 page
= pte_page(entry
);
3758 if (page
!= pagecache_page
)
3759 if (!trylock_page(page
)) {
3766 if (flags
& FAULT_FLAG_WRITE
) {
3767 if (!huge_pte_write(entry
)) {
3768 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
3769 pagecache_page
, ptl
);
3772 entry
= huge_pte_mkdirty(entry
);
3774 entry
= pte_mkyoung(entry
);
3775 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
3776 flags
& FAULT_FLAG_WRITE
))
3777 update_mmu_cache(vma
, address
, ptep
);
3779 if (page
!= pagecache_page
)
3785 if (pagecache_page
) {
3786 unlock_page(pagecache_page
);
3787 put_page(pagecache_page
);
3790 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
3792 * Generally it's safe to hold refcount during waiting page lock. But
3793 * here we just wait to defer the next page fault to avoid busy loop and
3794 * the page is not used after unlocked before returning from the current
3795 * page fault. So we are safe from accessing freed page, even if we wait
3796 * here without taking refcount.
3799 wait_on_page_locked(page
);
3803 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3804 struct page
**pages
, struct vm_area_struct
**vmas
,
3805 unsigned long *position
, unsigned long *nr_pages
,
3806 long i
, unsigned int flags
)
3808 unsigned long pfn_offset
;
3809 unsigned long vaddr
= *position
;
3810 unsigned long remainder
= *nr_pages
;
3811 struct hstate
*h
= hstate_vma(vma
);
3813 while (vaddr
< vma
->vm_end
&& remainder
) {
3815 spinlock_t
*ptl
= NULL
;
3820 * If we have a pending SIGKILL, don't keep faulting pages and
3821 * potentially allocating memory.
3823 if (unlikely(fatal_signal_pending(current
))) {
3829 * Some archs (sparc64, sh*) have multiple pte_ts to
3830 * each hugepage. We have to make sure we get the
3831 * first, for the page indexing below to work.
3833 * Note that page table lock is not held when pte is null.
3835 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
3837 ptl
= huge_pte_lock(h
, mm
, pte
);
3838 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
3841 * When coredumping, it suits get_dump_page if we just return
3842 * an error where there's an empty slot with no huge pagecache
3843 * to back it. This way, we avoid allocating a hugepage, and
3844 * the sparse dumpfile avoids allocating disk blocks, but its
3845 * huge holes still show up with zeroes where they need to be.
3847 if (absent
&& (flags
& FOLL_DUMP
) &&
3848 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
3856 * We need call hugetlb_fault for both hugepages under migration
3857 * (in which case hugetlb_fault waits for the migration,) and
3858 * hwpoisoned hugepages (in which case we need to prevent the
3859 * caller from accessing to them.) In order to do this, we use
3860 * here is_swap_pte instead of is_hugetlb_entry_migration and
3861 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3862 * both cases, and because we can't follow correct pages
3863 * directly from any kind of swap entries.
3865 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
3866 ((flags
& FOLL_WRITE
) &&
3867 !huge_pte_write(huge_ptep_get(pte
)))) {
3872 ret
= hugetlb_fault(mm
, vma
, vaddr
,
3873 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
3874 if (!(ret
& VM_FAULT_ERROR
))
3881 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
3882 page
= pte_page(huge_ptep_get(pte
));
3885 pages
[i
] = mem_map_offset(page
, pfn_offset
);
3896 if (vaddr
< vma
->vm_end
&& remainder
&&
3897 pfn_offset
< pages_per_huge_page(h
)) {
3899 * We use pfn_offset to avoid touching the pageframes
3900 * of this compound page.
3906 *nr_pages
= remainder
;
3909 return i
? i
: -EFAULT
;
3912 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
3913 unsigned long address
, unsigned long end
, pgprot_t newprot
)
3915 struct mm_struct
*mm
= vma
->vm_mm
;
3916 unsigned long start
= address
;
3919 struct hstate
*h
= hstate_vma(vma
);
3920 unsigned long pages
= 0;
3922 BUG_ON(address
>= end
);
3923 flush_cache_range(vma
, address
, end
);
3925 mmu_notifier_invalidate_range_start(mm
, start
, end
);
3926 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
3927 for (; address
< end
; address
+= huge_page_size(h
)) {
3929 ptep
= huge_pte_offset(mm
, address
);
3932 ptl
= huge_pte_lock(h
, mm
, ptep
);
3933 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3938 pte
= huge_ptep_get(ptep
);
3939 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
3943 if (unlikely(is_hugetlb_entry_migration(pte
))) {
3944 swp_entry_t entry
= pte_to_swp_entry(pte
);
3946 if (is_write_migration_entry(entry
)) {
3949 make_migration_entry_read(&entry
);
3950 newpte
= swp_entry_to_pte(entry
);
3951 set_huge_pte_at(mm
, address
, ptep
, newpte
);
3957 if (!huge_pte_none(pte
)) {
3958 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3959 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
3960 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
3961 set_huge_pte_at(mm
, address
, ptep
, pte
);
3967 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3968 * may have cleared our pud entry and done put_page on the page table:
3969 * once we release i_mmap_rwsem, another task can do the final put_page
3970 * and that page table be reused and filled with junk.
3972 flush_tlb_range(vma
, start
, end
);
3973 mmu_notifier_invalidate_range(mm
, start
, end
);
3974 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
3975 mmu_notifier_invalidate_range_end(mm
, start
, end
);
3977 return pages
<< h
->order
;
3980 int hugetlb_reserve_pages(struct inode
*inode
,
3982 struct vm_area_struct
*vma
,
3983 vm_flags_t vm_flags
)
3986 struct hstate
*h
= hstate_inode(inode
);
3987 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3988 struct resv_map
*resv_map
;
3992 * Only apply hugepage reservation if asked. At fault time, an
3993 * attempt will be made for VM_NORESERVE to allocate a page
3994 * without using reserves
3996 if (vm_flags
& VM_NORESERVE
)
4000 * Shared mappings base their reservation on the number of pages that
4001 * are already allocated on behalf of the file. Private mappings need
4002 * to reserve the full area even if read-only as mprotect() may be
4003 * called to make the mapping read-write. Assume !vma is a shm mapping
4005 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4006 resv_map
= inode_resv_map(inode
);
4008 chg
= region_chg(resv_map
, from
, to
);
4011 resv_map
= resv_map_alloc();
4017 set_vma_resv_map(vma
, resv_map
);
4018 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
4027 * There must be enough pages in the subpool for the mapping. If
4028 * the subpool has a minimum size, there may be some global
4029 * reservations already in place (gbl_reserve).
4031 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
4032 if (gbl_reserve
< 0) {
4038 * Check enough hugepages are available for the reservation.
4039 * Hand the pages back to the subpool if there are not
4041 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
4043 /* put back original number of pages, chg */
4044 (void)hugepage_subpool_put_pages(spool
, chg
);
4049 * Account for the reservations made. Shared mappings record regions
4050 * that have reservations as they are shared by multiple VMAs.
4051 * When the last VMA disappears, the region map says how much
4052 * the reservation was and the page cache tells how much of
4053 * the reservation was consumed. Private mappings are per-VMA and
4054 * only the consumed reservations are tracked. When the VMA
4055 * disappears, the original reservation is the VMA size and the
4056 * consumed reservations are stored in the map. Hence, nothing
4057 * else has to be done for private mappings here
4059 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4060 long add
= region_add(resv_map
, from
, to
);
4062 if (unlikely(chg
> add
)) {
4064 * pages in this range were added to the reserve
4065 * map between region_chg and region_add. This
4066 * indicates a race with alloc_huge_page. Adjust
4067 * the subpool and reserve counts modified above
4068 * based on the difference.
4072 rsv_adjust
= hugepage_subpool_put_pages(spool
,
4074 hugetlb_acct_memory(h
, -rsv_adjust
);
4079 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
4080 region_abort(resv_map
, from
, to
);
4081 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
4082 kref_put(&resv_map
->refs
, resv_map_release
);
4086 long hugetlb_unreserve_pages(struct inode
*inode
, long start
, long end
,
4089 struct hstate
*h
= hstate_inode(inode
);
4090 struct resv_map
*resv_map
= inode_resv_map(inode
);
4092 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4096 chg
= region_del(resv_map
, start
, end
);
4098 * region_del() can fail in the rare case where a region
4099 * must be split and another region descriptor can not be
4100 * allocated. If end == LONG_MAX, it will not fail.
4106 spin_lock(&inode
->i_lock
);
4107 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
4108 spin_unlock(&inode
->i_lock
);
4111 * If the subpool has a minimum size, the number of global
4112 * reservations to be released may be adjusted.
4114 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
4115 hugetlb_acct_memory(h
, -gbl_reserve
);
4120 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4121 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
4122 struct vm_area_struct
*vma
,
4123 unsigned long addr
, pgoff_t idx
)
4125 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
4127 unsigned long sbase
= saddr
& PUD_MASK
;
4128 unsigned long s_end
= sbase
+ PUD_SIZE
;
4130 /* Allow segments to share if only one is marked locked */
4131 unsigned long vm_flags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4132 unsigned long svm_flags
= svma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4135 * match the virtual addresses, permission and the alignment of the
4138 if (pmd_index(addr
) != pmd_index(saddr
) ||
4139 vm_flags
!= svm_flags
||
4140 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
4146 static bool vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
4148 unsigned long base
= addr
& PUD_MASK
;
4149 unsigned long end
= base
+ PUD_SIZE
;
4152 * check on proper vm_flags and page table alignment
4154 if (vma
->vm_flags
& VM_MAYSHARE
&&
4155 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
4161 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4162 * and returns the corresponding pte. While this is not necessary for the
4163 * !shared pmd case because we can allocate the pmd later as well, it makes the
4164 * code much cleaner. pmd allocation is essential for the shared case because
4165 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4166 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4167 * bad pmd for sharing.
4169 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4171 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
4172 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
4173 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
4175 struct vm_area_struct
*svma
;
4176 unsigned long saddr
;
4181 if (!vma_shareable(vma
, addr
))
4182 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4184 i_mmap_lock_write(mapping
);
4185 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
4189 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
4191 spte
= huge_pte_offset(svma
->vm_mm
, saddr
);
4194 get_page(virt_to_page(spte
));
4203 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, spte
);
4205 if (pud_none(*pud
)) {
4206 pud_populate(mm
, pud
,
4207 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
4209 put_page(virt_to_page(spte
));
4214 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4215 i_mmap_unlock_write(mapping
);
4220 * unmap huge page backed by shared pte.
4222 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4223 * indicated by page_count > 1, unmap is achieved by clearing pud and
4224 * decrementing the ref count. If count == 1, the pte page is not shared.
4226 * called with page table lock held.
4228 * returns: 1 successfully unmapped a shared pte page
4229 * 0 the underlying pte page is not shared, or it is the last user
4231 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4233 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
4234 pud_t
*pud
= pud_offset(pgd
, *addr
);
4236 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
4237 if (page_count(virt_to_page(ptep
)) == 1)
4241 put_page(virt_to_page(ptep
));
4243 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
4246 #define want_pmd_share() (1)
4247 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4248 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4253 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4257 #define want_pmd_share() (0)
4258 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4260 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4261 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
4262 unsigned long addr
, unsigned long sz
)
4268 pgd
= pgd_offset(mm
, addr
);
4269 pud
= pud_alloc(mm
, pgd
, addr
);
4271 if (sz
== PUD_SIZE
) {
4274 BUG_ON(sz
!= PMD_SIZE
);
4275 if (want_pmd_share() && pud_none(*pud
))
4276 pte
= huge_pmd_share(mm
, addr
, pud
);
4278 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4281 BUG_ON(pte
&& !pte_none(*pte
) && !pte_huge(*pte
));
4286 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
4292 pgd
= pgd_offset(mm
, addr
);
4293 if (pgd_present(*pgd
)) {
4294 pud
= pud_offset(pgd
, addr
);
4295 if (pud_present(*pud
)) {
4297 return (pte_t
*)pud
;
4298 pmd
= pmd_offset(pud
, addr
);
4301 return (pte_t
*) pmd
;
4304 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4307 * These functions are overwritable if your architecture needs its own
4310 struct page
* __weak
4311 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
4314 return ERR_PTR(-EINVAL
);
4317 struct page
* __weak
4318 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
4319 pmd_t
*pmd
, int flags
)
4321 struct page
*page
= NULL
;
4324 ptl
= pmd_lockptr(mm
, pmd
);
4327 * make sure that the address range covered by this pmd is not
4328 * unmapped from other threads.
4330 if (!pmd_huge(*pmd
))
4332 if (pmd_present(*pmd
)) {
4333 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
4334 if (flags
& FOLL_GET
)
4337 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t
*)pmd
))) {
4339 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
4343 * hwpoisoned entry is treated as no_page_table in
4344 * follow_page_mask().
4352 struct page
* __weak
4353 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
4354 pud_t
*pud
, int flags
)
4356 if (flags
& FOLL_GET
)
4359 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
4362 #ifdef CONFIG_MEMORY_FAILURE
4365 * This function is called from memory failure code.
4366 * Assume the caller holds page lock of the head page.
4368 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
4370 struct hstate
*h
= page_hstate(hpage
);
4371 int nid
= page_to_nid(hpage
);
4374 spin_lock(&hugetlb_lock
);
4376 * Just checking !page_huge_active is not enough, because that could be
4377 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4379 if (!page_huge_active(hpage
) && !page_count(hpage
)) {
4381 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4382 * but dangling hpage->lru can trigger list-debug warnings
4383 * (this happens when we call unpoison_memory() on it),
4384 * so let it point to itself with list_del_init().
4386 list_del_init(&hpage
->lru
);
4387 set_page_refcounted(hpage
);
4388 h
->free_huge_pages
--;
4389 h
->free_huge_pages_node
[nid
]--;
4392 spin_unlock(&hugetlb_lock
);
4397 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
4401 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4402 spin_lock(&hugetlb_lock
);
4403 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
4407 clear_page_huge_active(page
);
4408 list_move_tail(&page
->lru
, list
);
4410 spin_unlock(&hugetlb_lock
);
4414 void putback_active_hugepage(struct page
*page
)
4416 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4417 spin_lock(&hugetlb_lock
);
4418 set_page_huge_active(page
);
4419 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
4420 spin_unlock(&hugetlb_lock
);