1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
71 #include <asm/uaccess.h>
73 #include <trace/events/vmscan.h>
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
76 EXPORT_SYMBOL(memory_cgrp_subsys
);
78 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket
;
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem
;
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly
;
92 #define do_swap_account 0
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys
) && do_swap_account
;
101 static const char * const mem_cgroup_stat_names
[] = {
111 static const char * const mem_cgroup_events_names
[] = {
118 static const char * const mem_cgroup_lru_names
[] = {
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
135 struct mem_cgroup_tree_per_node
{
136 struct rb_root rb_root
;
140 struct mem_cgroup_tree
{
141 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
147 struct mem_cgroup_eventfd_list
{
148 struct list_head list
;
149 struct eventfd_ctx
*eventfd
;
153 * cgroup_event represents events which userspace want to receive.
155 struct mem_cgroup_event
{
157 * memcg which the event belongs to.
159 struct mem_cgroup
*memcg
;
161 * eventfd to signal userspace about the event.
163 struct eventfd_ctx
*eventfd
;
165 * Each of these stored in a list by the cgroup.
167 struct list_head list
;
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
173 int (*register_event
)(struct mem_cgroup
*memcg
,
174 struct eventfd_ctx
*eventfd
, const char *args
);
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
180 void (*unregister_event
)(struct mem_cgroup
*memcg
,
181 struct eventfd_ctx
*eventfd
);
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
187 wait_queue_head_t
*wqh
;
189 struct work_struct remove
;
192 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
193 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
195 /* Stuffs for move charges at task migration. */
197 * Types of charges to be moved.
199 #define MOVE_ANON 0x1U
200 #define MOVE_FILE 0x2U
201 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct
{
205 spinlock_t lock
; /* for from, to */
206 struct mm_struct
*mm
;
207 struct mem_cgroup
*from
;
208 struct mem_cgroup
*to
;
210 unsigned long precharge
;
211 unsigned long moved_charge
;
212 unsigned long moved_swap
;
213 struct task_struct
*moving_task
; /* a task moving charges */
214 wait_queue_head_t waitq
; /* a waitq for other context */
216 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
217 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
224 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
225 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
228 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
229 MEM_CGROUP_CHARGE_TYPE_ANON
,
230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
231 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
235 /* for encoding cft->private value on file */
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
254 memcg
= root_mem_cgroup
;
255 return &memcg
->vmpressure
;
258 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
260 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
263 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
265 return (memcg
== root_mem_cgroup
);
270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
280 static DEFINE_IDA(memcg_cache_ida
);
281 int memcg_nr_cache_ids
;
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem
);
286 void memcg_get_cache_ids(void)
288 down_read(&memcg_cache_ids_sem
);
291 void memcg_put_cache_ids(void)
293 up_read(&memcg_cache_ids_sem
);
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 * increase ours as well if it increases.
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key
);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
320 #endif /* !CONFIG_SLOB */
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
333 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
335 struct mem_cgroup
*memcg
;
337 memcg
= page
->mem_cgroup
;
339 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
340 memcg
= root_mem_cgroup
;
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
358 ino_t
page_cgroup_ino(struct page
*page
)
360 struct mem_cgroup
*memcg
;
361 unsigned long ino
= 0;
364 memcg
= READ_ONCE(page
->mem_cgroup
);
365 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
366 memcg
= parent_mem_cgroup(memcg
);
368 ino
= cgroup_ino(memcg
->css
.cgroup
);
373 static struct mem_cgroup_per_node
*
374 mem_cgroup_page_nodeinfo(struct mem_cgroup
*memcg
, struct page
*page
)
376 int nid
= page_to_nid(page
);
378 return memcg
->nodeinfo
[nid
];
381 static struct mem_cgroup_tree_per_node
*
382 soft_limit_tree_node(int nid
)
384 return soft_limit_tree
.rb_tree_per_node
[nid
];
387 static struct mem_cgroup_tree_per_node
*
388 soft_limit_tree_from_page(struct page
*page
)
390 int nid
= page_to_nid(page
);
392 return soft_limit_tree
.rb_tree_per_node
[nid
];
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node
*mz
,
396 struct mem_cgroup_tree_per_node
*mctz
,
397 unsigned long new_usage_in_excess
)
399 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
400 struct rb_node
*parent
= NULL
;
401 struct mem_cgroup_per_node
*mz_node
;
406 mz
->usage_in_excess
= new_usage_in_excess
;
407 if (!mz
->usage_in_excess
)
411 mz_node
= rb_entry(parent
, struct mem_cgroup_per_node
,
413 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
419 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
422 rb_link_node(&mz
->tree_node
, parent
, p
);
423 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
428 struct mem_cgroup_tree_per_node
*mctz
)
432 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
437 struct mem_cgroup_tree_per_node
*mctz
)
441 spin_lock_irqsave(&mctz
->lock
, flags
);
442 __mem_cgroup_remove_exceeded(mz
, mctz
);
443 spin_unlock_irqrestore(&mctz
->lock
, flags
);
446 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
448 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
449 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
450 unsigned long excess
= 0;
452 if (nr_pages
> soft_limit
)
453 excess
= nr_pages
- soft_limit
;
458 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
460 unsigned long excess
;
461 struct mem_cgroup_per_node
*mz
;
462 struct mem_cgroup_tree_per_node
*mctz
;
464 mctz
= soft_limit_tree_from_page(page
);
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
471 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
472 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
473 excess
= soft_limit_excess(memcg
);
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
478 if (excess
|| mz
->on_tree
) {
481 spin_lock_irqsave(&mctz
->lock
, flags
);
482 /* if on-tree, remove it */
484 __mem_cgroup_remove_exceeded(mz
, mctz
);
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
489 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
490 spin_unlock_irqrestore(&mctz
->lock
, flags
);
495 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
497 struct mem_cgroup_tree_per_node
*mctz
;
498 struct mem_cgroup_per_node
*mz
;
502 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
503 mctz
= soft_limit_tree_node(nid
);
505 mem_cgroup_remove_exceeded(mz
, mctz
);
509 static struct mem_cgroup_per_node
*
510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
512 struct rb_node
*rightmost
= NULL
;
513 struct mem_cgroup_per_node
*mz
;
517 rightmost
= rb_last(&mctz
->rb_root
);
519 goto done
; /* Nothing to reclaim from */
521 mz
= rb_entry(rightmost
, struct mem_cgroup_per_node
, tree_node
);
523 * Remove the node now but someone else can add it back,
524 * we will to add it back at the end of reclaim to its correct
525 * position in the tree.
527 __mem_cgroup_remove_exceeded(mz
, mctz
);
528 if (!soft_limit_excess(mz
->memcg
) ||
529 !css_tryget_online(&mz
->memcg
->css
))
535 static struct mem_cgroup_per_node
*
536 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
538 struct mem_cgroup_per_node
*mz
;
540 spin_lock_irq(&mctz
->lock
);
541 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
542 spin_unlock_irq(&mctz
->lock
);
547 * Return page count for single (non recursive) @memcg.
549 * Implementation Note: reading percpu statistics for memcg.
551 * Both of vmstat[] and percpu_counter has threshold and do periodic
552 * synchronization to implement "quick" read. There are trade-off between
553 * reading cost and precision of value. Then, we may have a chance to implement
554 * a periodic synchronization of counter in memcg's counter.
556 * But this _read() function is used for user interface now. The user accounts
557 * memory usage by memory cgroup and he _always_ requires exact value because
558 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
559 * have to visit all online cpus and make sum. So, for now, unnecessary
560 * synchronization is not implemented. (just implemented for cpu hotplug)
562 * If there are kernel internal actions which can make use of some not-exact
563 * value, and reading all cpu value can be performance bottleneck in some
564 * common workload, threshold and synchronization as vmstat[] should be
568 mem_cgroup_read_stat(struct mem_cgroup
*memcg
, enum mem_cgroup_stat_index idx
)
573 /* Per-cpu values can be negative, use a signed accumulator */
574 for_each_possible_cpu(cpu
)
575 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
577 * Summing races with updates, so val may be negative. Avoid exposing
578 * transient negative values.
585 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
586 enum mem_cgroup_events_index idx
)
588 unsigned long val
= 0;
591 for_each_possible_cpu(cpu
)
592 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
596 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
598 bool compound
, int nr_pages
)
601 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
602 * counted as CACHE even if it's on ANON LRU.
605 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
608 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
612 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
613 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
617 /* pagein of a big page is an event. So, ignore page size */
619 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
621 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
622 nr_pages
= -nr_pages
; /* for event */
625 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
628 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
629 int nid
, unsigned int lru_mask
)
631 struct lruvec
*lruvec
= mem_cgroup_lruvec(NODE_DATA(nid
), memcg
);
632 unsigned long nr
= 0;
635 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
638 if (!(BIT(lru
) & lru_mask
))
640 nr
+= mem_cgroup_get_lru_size(lruvec
, lru
);
645 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
646 unsigned int lru_mask
)
648 unsigned long nr
= 0;
651 for_each_node_state(nid
, N_MEMORY
)
652 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
656 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
657 enum mem_cgroup_events_target target
)
659 unsigned long val
, next
;
661 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
662 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
663 /* from time_after() in jiffies.h */
664 if ((long)next
- (long)val
< 0) {
666 case MEM_CGROUP_TARGET_THRESH
:
667 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
669 case MEM_CGROUP_TARGET_SOFTLIMIT
:
670 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
672 case MEM_CGROUP_TARGET_NUMAINFO
:
673 next
= val
+ NUMAINFO_EVENTS_TARGET
;
678 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
685 * Check events in order.
688 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
690 /* threshold event is triggered in finer grain than soft limit */
691 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
692 MEM_CGROUP_TARGET_THRESH
))) {
694 bool do_numainfo __maybe_unused
;
696 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
697 MEM_CGROUP_TARGET_SOFTLIMIT
);
699 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
700 MEM_CGROUP_TARGET_NUMAINFO
);
702 mem_cgroup_threshold(memcg
);
703 if (unlikely(do_softlimit
))
704 mem_cgroup_update_tree(memcg
, page
);
706 if (unlikely(do_numainfo
))
707 atomic_inc(&memcg
->numainfo_events
);
712 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
715 * mm_update_next_owner() may clear mm->owner to NULL
716 * if it races with swapoff, page migration, etc.
717 * So this can be called with p == NULL.
722 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
724 EXPORT_SYMBOL(mem_cgroup_from_task
);
726 static struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
728 struct mem_cgroup
*memcg
= NULL
;
733 * Page cache insertions can happen withou an
734 * actual mm context, e.g. during disk probing
735 * on boot, loopback IO, acct() writes etc.
738 memcg
= root_mem_cgroup
;
740 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
741 if (unlikely(!memcg
))
742 memcg
= root_mem_cgroup
;
744 } while (!css_tryget_online(&memcg
->css
));
750 * mem_cgroup_iter - iterate over memory cgroup hierarchy
751 * @root: hierarchy root
752 * @prev: previously returned memcg, NULL on first invocation
753 * @reclaim: cookie for shared reclaim walks, NULL for full walks
755 * Returns references to children of the hierarchy below @root, or
756 * @root itself, or %NULL after a full round-trip.
758 * Caller must pass the return value in @prev on subsequent
759 * invocations for reference counting, or use mem_cgroup_iter_break()
760 * to cancel a hierarchy walk before the round-trip is complete.
762 * Reclaimers can specify a zone and a priority level in @reclaim to
763 * divide up the memcgs in the hierarchy among all concurrent
764 * reclaimers operating on the same zone and priority.
766 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
767 struct mem_cgroup
*prev
,
768 struct mem_cgroup_reclaim_cookie
*reclaim
)
770 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
771 struct cgroup_subsys_state
*css
= NULL
;
772 struct mem_cgroup
*memcg
= NULL
;
773 struct mem_cgroup
*pos
= NULL
;
775 if (mem_cgroup_disabled())
779 root
= root_mem_cgroup
;
781 if (prev
&& !reclaim
)
784 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
793 struct mem_cgroup_per_node
*mz
;
795 mz
= mem_cgroup_nodeinfo(root
, reclaim
->pgdat
->node_id
);
796 iter
= &mz
->iter
[reclaim
->priority
];
798 if (prev
&& reclaim
->generation
!= iter
->generation
)
802 pos
= READ_ONCE(iter
->position
);
803 if (!pos
|| css_tryget(&pos
->css
))
806 * css reference reached zero, so iter->position will
807 * be cleared by ->css_released. However, we should not
808 * rely on this happening soon, because ->css_released
809 * is called from a work queue, and by busy-waiting we
810 * might block it. So we clear iter->position right
813 (void)cmpxchg(&iter
->position
, pos
, NULL
);
821 css
= css_next_descendant_pre(css
, &root
->css
);
824 * Reclaimers share the hierarchy walk, and a
825 * new one might jump in right at the end of
826 * the hierarchy - make sure they see at least
827 * one group and restart from the beginning.
835 * Verify the css and acquire a reference. The root
836 * is provided by the caller, so we know it's alive
837 * and kicking, and don't take an extra reference.
839 memcg
= mem_cgroup_from_css(css
);
841 if (css
== &root
->css
)
852 * The position could have already been updated by a competing
853 * thread, so check that the value hasn't changed since we read
854 * it to avoid reclaiming from the same cgroup twice.
856 (void)cmpxchg(&iter
->position
, pos
, memcg
);
864 reclaim
->generation
= iter
->generation
;
870 if (prev
&& prev
!= root
)
877 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
878 * @root: hierarchy root
879 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
881 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
882 struct mem_cgroup
*prev
)
885 root
= root_mem_cgroup
;
886 if (prev
&& prev
!= root
)
890 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
892 struct mem_cgroup
*memcg
= dead_memcg
;
893 struct mem_cgroup_reclaim_iter
*iter
;
894 struct mem_cgroup_per_node
*mz
;
898 while ((memcg
= parent_mem_cgroup(memcg
))) {
900 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
901 for (i
= 0; i
<= DEF_PRIORITY
; i
++) {
903 cmpxchg(&iter
->position
,
911 * Iteration constructs for visiting all cgroups (under a tree). If
912 * loops are exited prematurely (break), mem_cgroup_iter_break() must
913 * be used for reference counting.
915 #define for_each_mem_cgroup_tree(iter, root) \
916 for (iter = mem_cgroup_iter(root, NULL, NULL); \
918 iter = mem_cgroup_iter(root, iter, NULL))
920 #define for_each_mem_cgroup(iter) \
921 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
923 iter = mem_cgroup_iter(NULL, iter, NULL))
926 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
927 * @memcg: hierarchy root
928 * @fn: function to call for each task
929 * @arg: argument passed to @fn
931 * This function iterates over tasks attached to @memcg or to any of its
932 * descendants and calls @fn for each task. If @fn returns a non-zero
933 * value, the function breaks the iteration loop and returns the value.
934 * Otherwise, it will iterate over all tasks and return 0.
936 * This function must not be called for the root memory cgroup.
938 int mem_cgroup_scan_tasks(struct mem_cgroup
*memcg
,
939 int (*fn
)(struct task_struct
*, void *), void *arg
)
941 struct mem_cgroup
*iter
;
944 BUG_ON(memcg
== root_mem_cgroup
);
946 for_each_mem_cgroup_tree(iter
, memcg
) {
947 struct css_task_iter it
;
948 struct task_struct
*task
;
950 css_task_iter_start(&iter
->css
, &it
);
951 while (!ret
&& (task
= css_task_iter_next(&it
)))
953 css_task_iter_end(&it
);
955 mem_cgroup_iter_break(memcg
, iter
);
963 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
965 * @zone: zone of the page
967 * This function is only safe when following the LRU page isolation
968 * and putback protocol: the LRU lock must be held, and the page must
969 * either be PageLRU() or the caller must have isolated/allocated it.
971 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct pglist_data
*pgdat
)
973 struct mem_cgroup_per_node
*mz
;
974 struct mem_cgroup
*memcg
;
975 struct lruvec
*lruvec
;
977 if (mem_cgroup_disabled()) {
978 lruvec
= &pgdat
->lruvec
;
982 memcg
= page
->mem_cgroup
;
984 * Swapcache readahead pages are added to the LRU - and
985 * possibly migrated - before they are charged.
988 memcg
= root_mem_cgroup
;
990 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
991 lruvec
= &mz
->lruvec
;
994 * Since a node can be onlined after the mem_cgroup was created,
995 * we have to be prepared to initialize lruvec->zone here;
996 * and if offlined then reonlined, we need to reinitialize it.
998 if (unlikely(lruvec
->pgdat
!= pgdat
))
999 lruvec
->pgdat
= pgdat
;
1004 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1005 * @lruvec: mem_cgroup per zone lru vector
1006 * @lru: index of lru list the page is sitting on
1007 * @zid: zone id of the accounted pages
1008 * @nr_pages: positive when adding or negative when removing
1010 * This function must be called under lru_lock, just before a page is added
1011 * to or just after a page is removed from an lru list (that ordering being
1012 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1014 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1015 int zid
, int nr_pages
)
1017 struct mem_cgroup_per_node
*mz
;
1018 unsigned long *lru_size
;
1021 if (mem_cgroup_disabled())
1024 mz
= container_of(lruvec
, struct mem_cgroup_per_node
, lruvec
);
1025 lru_size
= &mz
->lru_zone_size
[zid
][lru
];
1028 *lru_size
+= nr_pages
;
1031 if (WARN_ONCE(size
< 0,
1032 "%s(%p, %d, %d): lru_size %ld\n",
1033 __func__
, lruvec
, lru
, nr_pages
, size
)) {
1039 *lru_size
+= nr_pages
;
1042 bool task_in_mem_cgroup(struct task_struct
*task
, struct mem_cgroup
*memcg
)
1044 struct mem_cgroup
*task_memcg
;
1045 struct task_struct
*p
;
1048 p
= find_lock_task_mm(task
);
1050 task_memcg
= get_mem_cgroup_from_mm(p
->mm
);
1054 * All threads may have already detached their mm's, but the oom
1055 * killer still needs to detect if they have already been oom
1056 * killed to prevent needlessly killing additional tasks.
1059 task_memcg
= mem_cgroup_from_task(task
);
1060 css_get(&task_memcg
->css
);
1063 ret
= mem_cgroup_is_descendant(task_memcg
, memcg
);
1064 css_put(&task_memcg
->css
);
1069 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1070 * @memcg: the memory cgroup
1072 * Returns the maximum amount of memory @mem can be charged with, in
1075 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1077 unsigned long margin
= 0;
1078 unsigned long count
;
1079 unsigned long limit
;
1081 count
= page_counter_read(&memcg
->memory
);
1082 limit
= READ_ONCE(memcg
->memory
.limit
);
1084 margin
= limit
- count
;
1086 if (do_memsw_account()) {
1087 count
= page_counter_read(&memcg
->memsw
);
1088 limit
= READ_ONCE(memcg
->memsw
.limit
);
1090 margin
= min(margin
, limit
- count
);
1099 * A routine for checking "mem" is under move_account() or not.
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1105 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1107 struct mem_cgroup
*from
;
1108 struct mem_cgroup
*to
;
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1114 spin_lock(&mc
.lock
);
1120 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1121 mem_cgroup_is_descendant(to
, memcg
);
1123 spin_unlock(&mc
.lock
);
1127 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1129 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1130 if (mem_cgroup_under_move(memcg
)) {
1132 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1133 /* moving charge context might have finished. */
1136 finish_wait(&mc
.waitq
, &wait
);
1143 #define K(x) ((x) << (PAGE_SHIFT-10))
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1152 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1154 struct mem_cgroup
*iter
;
1160 pr_info("Task in ");
1161 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1162 pr_cont(" killed as a result of limit of ");
1164 pr_info("Memory limit reached of cgroup ");
1167 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1172 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64
)page_counter_read(&memcg
->memory
)),
1174 K((u64
)memcg
->memory
.limit
), memcg
->memory
.failcnt
);
1175 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64
)page_counter_read(&memcg
->memsw
)),
1177 K((u64
)memcg
->memsw
.limit
), memcg
->memsw
.failcnt
);
1178 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64
)page_counter_read(&memcg
->kmem
)),
1180 K((u64
)memcg
->kmem
.limit
), memcg
->kmem
.failcnt
);
1182 for_each_mem_cgroup_tree(iter
, memcg
) {
1183 pr_info("Memory cgroup stats for ");
1184 pr_cont_cgroup_path(iter
->css
.cgroup
);
1187 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
1188 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
1190 pr_cont(" %s:%luKB", mem_cgroup_stat_names
[i
],
1191 K(mem_cgroup_read_stat(iter
, i
)));
1194 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1195 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1196 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1206 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1209 struct mem_cgroup
*iter
;
1211 for_each_mem_cgroup_tree(iter
, memcg
)
1217 * Return the memory (and swap, if configured) limit for a memcg.
1219 unsigned long mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1221 unsigned long limit
;
1223 limit
= memcg
->memory
.limit
;
1224 if (mem_cgroup_swappiness(memcg
)) {
1225 unsigned long memsw_limit
;
1226 unsigned long swap_limit
;
1228 memsw_limit
= memcg
->memsw
.limit
;
1229 swap_limit
= memcg
->swap
.limit
;
1230 swap_limit
= min(swap_limit
, (unsigned long)total_swap_pages
);
1231 limit
= min(limit
+ swap_limit
, memsw_limit
);
1236 static bool mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1239 struct oom_control oc
= {
1243 .gfp_mask
= gfp_mask
,
1248 mutex_lock(&oom_lock
);
1249 ret
= out_of_memory(&oc
);
1250 mutex_unlock(&oom_lock
);
1254 #if MAX_NUMNODES > 1
1257 * test_mem_cgroup_node_reclaimable
1258 * @memcg: the target memcg
1259 * @nid: the node ID to be checked.
1260 * @noswap : specify true here if the user wants flle only information.
1262 * This function returns whether the specified memcg contains any
1263 * reclaimable pages on a node. Returns true if there are any reclaimable
1264 * pages in the node.
1266 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1267 int nid
, bool noswap
)
1269 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1271 if (noswap
|| !total_swap_pages
)
1273 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1280 * Always updating the nodemask is not very good - even if we have an empty
1281 * list or the wrong list here, we can start from some node and traverse all
1282 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1285 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1289 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1290 * pagein/pageout changes since the last update.
1292 if (!atomic_read(&memcg
->numainfo_events
))
1294 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1297 /* make a nodemask where this memcg uses memory from */
1298 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1300 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1302 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1303 node_clear(nid
, memcg
->scan_nodes
);
1306 atomic_set(&memcg
->numainfo_events
, 0);
1307 atomic_set(&memcg
->numainfo_updating
, 0);
1311 * Selecting a node where we start reclaim from. Because what we need is just
1312 * reducing usage counter, start from anywhere is O,K. Considering
1313 * memory reclaim from current node, there are pros. and cons.
1315 * Freeing memory from current node means freeing memory from a node which
1316 * we'll use or we've used. So, it may make LRU bad. And if several threads
1317 * hit limits, it will see a contention on a node. But freeing from remote
1318 * node means more costs for memory reclaim because of memory latency.
1320 * Now, we use round-robin. Better algorithm is welcomed.
1322 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1326 mem_cgroup_may_update_nodemask(memcg
);
1327 node
= memcg
->last_scanned_node
;
1329 node
= next_node_in(node
, memcg
->scan_nodes
);
1331 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1332 * last time it really checked all the LRUs due to rate limiting.
1333 * Fallback to the current node in that case for simplicity.
1335 if (unlikely(node
== MAX_NUMNODES
))
1336 node
= numa_node_id();
1338 memcg
->last_scanned_node
= node
;
1342 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1348 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1351 unsigned long *total_scanned
)
1353 struct mem_cgroup
*victim
= NULL
;
1356 unsigned long excess
;
1357 unsigned long nr_scanned
;
1358 struct mem_cgroup_reclaim_cookie reclaim
= {
1363 excess
= soft_limit_excess(root_memcg
);
1366 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1371 * If we have not been able to reclaim
1372 * anything, it might because there are
1373 * no reclaimable pages under this hierarchy
1378 * We want to do more targeted reclaim.
1379 * excess >> 2 is not to excessive so as to
1380 * reclaim too much, nor too less that we keep
1381 * coming back to reclaim from this cgroup
1383 if (total
>= (excess
>> 2) ||
1384 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1389 total
+= mem_cgroup_shrink_node(victim
, gfp_mask
, false,
1390 pgdat
, &nr_scanned
);
1391 *total_scanned
+= nr_scanned
;
1392 if (!soft_limit_excess(root_memcg
))
1395 mem_cgroup_iter_break(root_memcg
, victim
);
1399 #ifdef CONFIG_LOCKDEP
1400 static struct lockdep_map memcg_oom_lock_dep_map
= {
1401 .name
= "memcg_oom_lock",
1405 static DEFINE_SPINLOCK(memcg_oom_lock
);
1408 * Check OOM-Killer is already running under our hierarchy.
1409 * If someone is running, return false.
1411 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1413 struct mem_cgroup
*iter
, *failed
= NULL
;
1415 spin_lock(&memcg_oom_lock
);
1417 for_each_mem_cgroup_tree(iter
, memcg
) {
1418 if (iter
->oom_lock
) {
1420 * this subtree of our hierarchy is already locked
1421 * so we cannot give a lock.
1424 mem_cgroup_iter_break(memcg
, iter
);
1427 iter
->oom_lock
= true;
1432 * OK, we failed to lock the whole subtree so we have
1433 * to clean up what we set up to the failing subtree
1435 for_each_mem_cgroup_tree(iter
, memcg
) {
1436 if (iter
== failed
) {
1437 mem_cgroup_iter_break(memcg
, iter
);
1440 iter
->oom_lock
= false;
1443 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1445 spin_unlock(&memcg_oom_lock
);
1450 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1452 struct mem_cgroup
*iter
;
1454 spin_lock(&memcg_oom_lock
);
1455 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1456 for_each_mem_cgroup_tree(iter
, memcg
)
1457 iter
->oom_lock
= false;
1458 spin_unlock(&memcg_oom_lock
);
1461 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1463 struct mem_cgroup
*iter
;
1465 spin_lock(&memcg_oom_lock
);
1466 for_each_mem_cgroup_tree(iter
, memcg
)
1468 spin_unlock(&memcg_oom_lock
);
1471 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1473 struct mem_cgroup
*iter
;
1476 * When a new child is created while the hierarchy is under oom,
1477 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1479 spin_lock(&memcg_oom_lock
);
1480 for_each_mem_cgroup_tree(iter
, memcg
)
1481 if (iter
->under_oom
> 0)
1483 spin_unlock(&memcg_oom_lock
);
1486 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1488 struct oom_wait_info
{
1489 struct mem_cgroup
*memcg
;
1493 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1494 unsigned mode
, int sync
, void *arg
)
1496 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1497 struct mem_cgroup
*oom_wait_memcg
;
1498 struct oom_wait_info
*oom_wait_info
;
1500 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1501 oom_wait_memcg
= oom_wait_info
->memcg
;
1503 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1504 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1506 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1509 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1512 * For the following lockless ->under_oom test, the only required
1513 * guarantee is that it must see the state asserted by an OOM when
1514 * this function is called as a result of userland actions
1515 * triggered by the notification of the OOM. This is trivially
1516 * achieved by invoking mem_cgroup_mark_under_oom() before
1517 * triggering notification.
1519 if (memcg
&& memcg
->under_oom
)
1520 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1523 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1525 if (!current
->memcg_may_oom
)
1528 * We are in the middle of the charge context here, so we
1529 * don't want to block when potentially sitting on a callstack
1530 * that holds all kinds of filesystem and mm locks.
1532 * Also, the caller may handle a failed allocation gracefully
1533 * (like optional page cache readahead) and so an OOM killer
1534 * invocation might not even be necessary.
1536 * That's why we don't do anything here except remember the
1537 * OOM context and then deal with it at the end of the page
1538 * fault when the stack is unwound, the locks are released,
1539 * and when we know whether the fault was overall successful.
1541 css_get(&memcg
->css
);
1542 current
->memcg_in_oom
= memcg
;
1543 current
->memcg_oom_gfp_mask
= mask
;
1544 current
->memcg_oom_order
= order
;
1548 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1549 * @handle: actually kill/wait or just clean up the OOM state
1551 * This has to be called at the end of a page fault if the memcg OOM
1552 * handler was enabled.
1554 * Memcg supports userspace OOM handling where failed allocations must
1555 * sleep on a waitqueue until the userspace task resolves the
1556 * situation. Sleeping directly in the charge context with all kinds
1557 * of locks held is not a good idea, instead we remember an OOM state
1558 * in the task and mem_cgroup_oom_synchronize() has to be called at
1559 * the end of the page fault to complete the OOM handling.
1561 * Returns %true if an ongoing memcg OOM situation was detected and
1562 * completed, %false otherwise.
1564 bool mem_cgroup_oom_synchronize(bool handle
)
1566 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1567 struct oom_wait_info owait
;
1570 /* OOM is global, do not handle */
1577 owait
.memcg
= memcg
;
1578 owait
.wait
.flags
= 0;
1579 owait
.wait
.func
= memcg_oom_wake_function
;
1580 owait
.wait
.private = current
;
1581 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1583 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1584 mem_cgroup_mark_under_oom(memcg
);
1586 locked
= mem_cgroup_oom_trylock(memcg
);
1589 mem_cgroup_oom_notify(memcg
);
1591 if (locked
&& !memcg
->oom_kill_disable
) {
1592 mem_cgroup_unmark_under_oom(memcg
);
1593 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1594 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1595 current
->memcg_oom_order
);
1598 mem_cgroup_unmark_under_oom(memcg
);
1599 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1603 mem_cgroup_oom_unlock(memcg
);
1605 * There is no guarantee that an OOM-lock contender
1606 * sees the wakeups triggered by the OOM kill
1607 * uncharges. Wake any sleepers explicitely.
1609 memcg_oom_recover(memcg
);
1612 current
->memcg_in_oom
= NULL
;
1613 css_put(&memcg
->css
);
1618 * lock_page_memcg - lock a page->mem_cgroup binding
1621 * This function protects unlocked LRU pages from being moved to
1622 * another cgroup and stabilizes their page->mem_cgroup binding.
1624 void lock_page_memcg(struct page
*page
)
1626 struct mem_cgroup
*memcg
;
1627 unsigned long flags
;
1630 * The RCU lock is held throughout the transaction. The fast
1631 * path can get away without acquiring the memcg->move_lock
1632 * because page moving starts with an RCU grace period.
1636 if (mem_cgroup_disabled())
1639 memcg
= page
->mem_cgroup
;
1640 if (unlikely(!memcg
))
1643 if (atomic_read(&memcg
->moving_account
) <= 0)
1646 spin_lock_irqsave(&memcg
->move_lock
, flags
);
1647 if (memcg
!= page
->mem_cgroup
) {
1648 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1653 * When charge migration first begins, we can have locked and
1654 * unlocked page stat updates happening concurrently. Track
1655 * the task who has the lock for unlock_page_memcg().
1657 memcg
->move_lock_task
= current
;
1658 memcg
->move_lock_flags
= flags
;
1662 EXPORT_SYMBOL(lock_page_memcg
);
1665 * unlock_page_memcg - unlock a page->mem_cgroup binding
1668 void unlock_page_memcg(struct page
*page
)
1670 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
1672 if (memcg
&& memcg
->move_lock_task
== current
) {
1673 unsigned long flags
= memcg
->move_lock_flags
;
1675 memcg
->move_lock_task
= NULL
;
1676 memcg
->move_lock_flags
= 0;
1678 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1683 EXPORT_SYMBOL(unlock_page_memcg
);
1686 * size of first charge trial. "32" comes from vmscan.c's magic value.
1687 * TODO: maybe necessary to use big numbers in big irons.
1689 #define CHARGE_BATCH 32U
1690 struct memcg_stock_pcp
{
1691 struct mem_cgroup
*cached
; /* this never be root cgroup */
1692 unsigned int nr_pages
;
1693 struct work_struct work
;
1694 unsigned long flags
;
1695 #define FLUSHING_CACHED_CHARGE 0
1697 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1698 static DEFINE_MUTEX(percpu_charge_mutex
);
1701 * consume_stock: Try to consume stocked charge on this cpu.
1702 * @memcg: memcg to consume from.
1703 * @nr_pages: how many pages to charge.
1705 * The charges will only happen if @memcg matches the current cpu's memcg
1706 * stock, and at least @nr_pages are available in that stock. Failure to
1707 * service an allocation will refill the stock.
1709 * returns true if successful, false otherwise.
1711 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1713 struct memcg_stock_pcp
*stock
;
1714 unsigned long flags
;
1717 if (nr_pages
> CHARGE_BATCH
)
1720 local_irq_save(flags
);
1722 stock
= this_cpu_ptr(&memcg_stock
);
1723 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
1724 stock
->nr_pages
-= nr_pages
;
1728 local_irq_restore(flags
);
1734 * Returns stocks cached in percpu and reset cached information.
1736 static void drain_stock(struct memcg_stock_pcp
*stock
)
1738 struct mem_cgroup
*old
= stock
->cached
;
1740 if (stock
->nr_pages
) {
1741 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
1742 if (do_memsw_account())
1743 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
1744 css_put_many(&old
->css
, stock
->nr_pages
);
1745 stock
->nr_pages
= 0;
1747 stock
->cached
= NULL
;
1750 static void drain_local_stock(struct work_struct
*dummy
)
1752 struct memcg_stock_pcp
*stock
;
1753 unsigned long flags
;
1755 local_irq_save(flags
);
1757 stock
= this_cpu_ptr(&memcg_stock
);
1759 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
1761 local_irq_restore(flags
);
1765 * Cache charges(val) to local per_cpu area.
1766 * This will be consumed by consume_stock() function, later.
1768 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1770 struct memcg_stock_pcp
*stock
;
1771 unsigned long flags
;
1773 local_irq_save(flags
);
1775 stock
= this_cpu_ptr(&memcg_stock
);
1776 if (stock
->cached
!= memcg
) { /* reset if necessary */
1778 stock
->cached
= memcg
;
1780 stock
->nr_pages
+= nr_pages
;
1782 local_irq_restore(flags
);
1786 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1787 * of the hierarchy under it.
1789 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
1793 /* If someone's already draining, avoid adding running more workers. */
1794 if (!mutex_trylock(&percpu_charge_mutex
))
1796 /* Notify other cpus that system-wide "drain" is running */
1799 for_each_online_cpu(cpu
) {
1800 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1801 struct mem_cgroup
*memcg
;
1803 memcg
= stock
->cached
;
1804 if (!memcg
|| !stock
->nr_pages
)
1806 if (!mem_cgroup_is_descendant(memcg
, root_memcg
))
1808 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
1810 drain_local_stock(&stock
->work
);
1812 schedule_work_on(cpu
, &stock
->work
);
1817 mutex_unlock(&percpu_charge_mutex
);
1820 static int memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
1821 unsigned long action
,
1824 int cpu
= (unsigned long)hcpu
;
1825 struct memcg_stock_pcp
*stock
;
1827 if (action
== CPU_ONLINE
)
1830 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
1833 stock
= &per_cpu(memcg_stock
, cpu
);
1838 static void reclaim_high(struct mem_cgroup
*memcg
,
1839 unsigned int nr_pages
,
1843 if (page_counter_read(&memcg
->memory
) <= memcg
->high
)
1845 mem_cgroup_events(memcg
, MEMCG_HIGH
, 1);
1846 try_to_free_mem_cgroup_pages(memcg
, nr_pages
, gfp_mask
, true);
1847 } while ((memcg
= parent_mem_cgroup(memcg
)));
1850 static void high_work_func(struct work_struct
*work
)
1852 struct mem_cgroup
*memcg
;
1854 memcg
= container_of(work
, struct mem_cgroup
, high_work
);
1855 reclaim_high(memcg
, CHARGE_BATCH
, GFP_KERNEL
);
1859 * Scheduled by try_charge() to be executed from the userland return path
1860 * and reclaims memory over the high limit.
1862 void mem_cgroup_handle_over_high(void)
1864 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
1865 struct mem_cgroup
*memcg
;
1867 if (likely(!nr_pages
))
1870 memcg
= get_mem_cgroup_from_mm(current
->mm
);
1871 reclaim_high(memcg
, nr_pages
, GFP_KERNEL
);
1872 css_put(&memcg
->css
);
1873 current
->memcg_nr_pages_over_high
= 0;
1876 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1877 unsigned int nr_pages
)
1879 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
1880 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1881 struct mem_cgroup
*mem_over_limit
;
1882 struct page_counter
*counter
;
1883 unsigned long nr_reclaimed
;
1884 bool may_swap
= true;
1885 bool drained
= false;
1887 if (mem_cgroup_is_root(memcg
))
1890 if (consume_stock(memcg
, nr_pages
))
1893 if (!do_memsw_account() ||
1894 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
1895 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
1897 if (do_memsw_account())
1898 page_counter_uncharge(&memcg
->memsw
, batch
);
1899 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
1901 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
1905 if (batch
> nr_pages
) {
1911 * Unlike in global OOM situations, memcg is not in a physical
1912 * memory shortage. Allow dying and OOM-killed tasks to
1913 * bypass the last charges so that they can exit quickly and
1914 * free their memory.
1916 if (unlikely(test_thread_flag(TIF_MEMDIE
) ||
1917 fatal_signal_pending(current
) ||
1918 current
->flags
& PF_EXITING
))
1922 * Prevent unbounded recursion when reclaim operations need to
1923 * allocate memory. This might exceed the limits temporarily,
1924 * but we prefer facilitating memory reclaim and getting back
1925 * under the limit over triggering OOM kills in these cases.
1927 if (unlikely(current
->flags
& PF_MEMALLOC
))
1930 if (unlikely(task_in_memcg_oom(current
)))
1933 if (!gfpflags_allow_blocking(gfp_mask
))
1936 mem_cgroup_events(mem_over_limit
, MEMCG_MAX
, 1);
1938 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
1939 gfp_mask
, may_swap
);
1941 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
1945 drain_all_stock(mem_over_limit
);
1950 if (gfp_mask
& __GFP_NORETRY
)
1953 * Even though the limit is exceeded at this point, reclaim
1954 * may have been able to free some pages. Retry the charge
1955 * before killing the task.
1957 * Only for regular pages, though: huge pages are rather
1958 * unlikely to succeed so close to the limit, and we fall back
1959 * to regular pages anyway in case of failure.
1961 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
1964 * At task move, charge accounts can be doubly counted. So, it's
1965 * better to wait until the end of task_move if something is going on.
1967 if (mem_cgroup_wait_acct_move(mem_over_limit
))
1973 if (gfp_mask
& __GFP_NOFAIL
)
1976 if (fatal_signal_pending(current
))
1979 mem_cgroup_events(mem_over_limit
, MEMCG_OOM
, 1);
1981 mem_cgroup_oom(mem_over_limit
, gfp_mask
,
1982 get_order(nr_pages
* PAGE_SIZE
));
1984 if (!(gfp_mask
& __GFP_NOFAIL
))
1988 * The allocation either can't fail or will lead to more memory
1989 * being freed very soon. Allow memory usage go over the limit
1990 * temporarily by force charging it.
1992 page_counter_charge(&memcg
->memory
, nr_pages
);
1993 if (do_memsw_account())
1994 page_counter_charge(&memcg
->memsw
, nr_pages
);
1995 css_get_many(&memcg
->css
, nr_pages
);
2000 css_get_many(&memcg
->css
, batch
);
2001 if (batch
> nr_pages
)
2002 refill_stock(memcg
, batch
- nr_pages
);
2005 * If the hierarchy is above the normal consumption range, schedule
2006 * reclaim on returning to userland. We can perform reclaim here
2007 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2008 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2009 * not recorded as it most likely matches current's and won't
2010 * change in the meantime. As high limit is checked again before
2011 * reclaim, the cost of mismatch is negligible.
2014 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2015 /* Don't bother a random interrupted task */
2016 if (in_interrupt()) {
2017 schedule_work(&memcg
->high_work
);
2020 current
->memcg_nr_pages_over_high
+= batch
;
2021 set_notify_resume(current
);
2024 } while ((memcg
= parent_mem_cgroup(memcg
)));
2029 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2031 if (mem_cgroup_is_root(memcg
))
2034 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2035 if (do_memsw_account())
2036 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2038 css_put_many(&memcg
->css
, nr_pages
);
2041 static void lock_page_lru(struct page
*page
, int *isolated
)
2043 struct zone
*zone
= page_zone(page
);
2045 spin_lock_irq(zone_lru_lock(zone
));
2046 if (PageLRU(page
)) {
2047 struct lruvec
*lruvec
;
2049 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
2051 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2057 static void unlock_page_lru(struct page
*page
, int isolated
)
2059 struct zone
*zone
= page_zone(page
);
2062 struct lruvec
*lruvec
;
2064 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
2065 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2067 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2069 spin_unlock_irq(zone_lru_lock(zone
));
2072 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2077 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2080 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2081 * may already be on some other mem_cgroup's LRU. Take care of it.
2084 lock_page_lru(page
, &isolated
);
2087 * Nobody should be changing or seriously looking at
2088 * page->mem_cgroup at this point:
2090 * - the page is uncharged
2092 * - the page is off-LRU
2094 * - an anonymous fault has exclusive page access, except for
2095 * a locked page table
2097 * - a page cache insertion, a swapin fault, or a migration
2098 * have the page locked
2100 page
->mem_cgroup
= memcg
;
2103 unlock_page_lru(page
, isolated
);
2107 static int memcg_alloc_cache_id(void)
2112 id
= ida_simple_get(&memcg_cache_ida
,
2113 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2117 if (id
< memcg_nr_cache_ids
)
2121 * There's no space for the new id in memcg_caches arrays,
2122 * so we have to grow them.
2124 down_write(&memcg_cache_ids_sem
);
2126 size
= 2 * (id
+ 1);
2127 if (size
< MEMCG_CACHES_MIN_SIZE
)
2128 size
= MEMCG_CACHES_MIN_SIZE
;
2129 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2130 size
= MEMCG_CACHES_MAX_SIZE
;
2132 err
= memcg_update_all_caches(size
);
2134 err
= memcg_update_all_list_lrus(size
);
2136 memcg_nr_cache_ids
= size
;
2138 up_write(&memcg_cache_ids_sem
);
2141 ida_simple_remove(&memcg_cache_ida
, id
);
2147 static void memcg_free_cache_id(int id
)
2149 ida_simple_remove(&memcg_cache_ida
, id
);
2152 struct memcg_kmem_cache_create_work
{
2153 struct mem_cgroup
*memcg
;
2154 struct kmem_cache
*cachep
;
2155 struct work_struct work
;
2158 static struct workqueue_struct
*memcg_kmem_cache_create_wq
;
2160 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2162 struct memcg_kmem_cache_create_work
*cw
=
2163 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2164 struct mem_cgroup
*memcg
= cw
->memcg
;
2165 struct kmem_cache
*cachep
= cw
->cachep
;
2167 memcg_create_kmem_cache(memcg
, cachep
);
2169 css_put(&memcg
->css
);
2174 * Enqueue the creation of a per-memcg kmem_cache.
2176 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2177 struct kmem_cache
*cachep
)
2179 struct memcg_kmem_cache_create_work
*cw
;
2181 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
);
2185 css_get(&memcg
->css
);
2188 cw
->cachep
= cachep
;
2189 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2191 queue_work(memcg_kmem_cache_create_wq
, &cw
->work
);
2194 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2195 struct kmem_cache
*cachep
)
2198 * We need to stop accounting when we kmalloc, because if the
2199 * corresponding kmalloc cache is not yet created, the first allocation
2200 * in __memcg_schedule_kmem_cache_create will recurse.
2202 * However, it is better to enclose the whole function. Depending on
2203 * the debugging options enabled, INIT_WORK(), for instance, can
2204 * trigger an allocation. This too, will make us recurse. Because at
2205 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2206 * the safest choice is to do it like this, wrapping the whole function.
2208 current
->memcg_kmem_skip_account
= 1;
2209 __memcg_schedule_kmem_cache_create(memcg
, cachep
);
2210 current
->memcg_kmem_skip_account
= 0;
2213 static inline bool memcg_kmem_bypass(void)
2215 if (in_interrupt() || !current
->mm
|| (current
->flags
& PF_KTHREAD
))
2221 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2222 * @cachep: the original global kmem cache
2224 * Return the kmem_cache we're supposed to use for a slab allocation.
2225 * We try to use the current memcg's version of the cache.
2227 * If the cache does not exist yet, if we are the first user of it, we
2228 * create it asynchronously in a workqueue and let the current allocation
2229 * go through with the original cache.
2231 * This function takes a reference to the cache it returns to assure it
2232 * won't get destroyed while we are working with it. Once the caller is
2233 * done with it, memcg_kmem_put_cache() must be called to release the
2236 struct kmem_cache
*memcg_kmem_get_cache(struct kmem_cache
*cachep
)
2238 struct mem_cgroup
*memcg
;
2239 struct kmem_cache
*memcg_cachep
;
2242 VM_BUG_ON(!is_root_cache(cachep
));
2244 if (memcg_kmem_bypass())
2247 if (current
->memcg_kmem_skip_account
)
2250 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2251 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2255 memcg_cachep
= cache_from_memcg_idx(cachep
, kmemcg_id
);
2256 if (likely(memcg_cachep
))
2257 return memcg_cachep
;
2260 * If we are in a safe context (can wait, and not in interrupt
2261 * context), we could be be predictable and return right away.
2262 * This would guarantee that the allocation being performed
2263 * already belongs in the new cache.
2265 * However, there are some clashes that can arrive from locking.
2266 * For instance, because we acquire the slab_mutex while doing
2267 * memcg_create_kmem_cache, this means no further allocation
2268 * could happen with the slab_mutex held. So it's better to
2271 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2273 css_put(&memcg
->css
);
2278 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2279 * @cachep: the cache returned by memcg_kmem_get_cache
2281 void memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2283 if (!is_root_cache(cachep
))
2284 css_put(&cachep
->memcg_params
.memcg
->css
);
2288 * memcg_kmem_charge: charge a kmem page
2289 * @page: page to charge
2290 * @gfp: reclaim mode
2291 * @order: allocation order
2292 * @memcg: memory cgroup to charge
2294 * Returns 0 on success, an error code on failure.
2296 int memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2297 struct mem_cgroup
*memcg
)
2299 unsigned int nr_pages
= 1 << order
;
2300 struct page_counter
*counter
;
2303 ret
= try_charge(memcg
, gfp
, nr_pages
);
2307 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) &&
2308 !page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
)) {
2309 cancel_charge(memcg
, nr_pages
);
2313 page
->mem_cgroup
= memcg
;
2319 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2320 * @page: page to charge
2321 * @gfp: reclaim mode
2322 * @order: allocation order
2324 * Returns 0 on success, an error code on failure.
2326 int memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2328 struct mem_cgroup
*memcg
;
2331 if (memcg_kmem_bypass())
2334 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2335 if (!mem_cgroup_is_root(memcg
)) {
2336 ret
= memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2338 __SetPageKmemcg(page
);
2340 css_put(&memcg
->css
);
2344 * memcg_kmem_uncharge: uncharge a kmem page
2345 * @page: page to uncharge
2346 * @order: allocation order
2348 void memcg_kmem_uncharge(struct page
*page
, int order
)
2350 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2351 unsigned int nr_pages
= 1 << order
;
2356 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2358 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2359 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2361 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2362 if (do_memsw_account())
2363 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2365 page
->mem_cgroup
= NULL
;
2367 /* slab pages do not have PageKmemcg flag set */
2368 if (PageKmemcg(page
))
2369 __ClearPageKmemcg(page
);
2371 css_put_many(&memcg
->css
, nr_pages
);
2373 #endif /* !CONFIG_SLOB */
2375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2378 * Because tail pages are not marked as "used", set it. We're under
2379 * zone_lru_lock and migration entries setup in all page mappings.
2381 void mem_cgroup_split_huge_fixup(struct page
*head
)
2385 if (mem_cgroup_disabled())
2388 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2389 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2391 __this_cpu_sub(head
->mem_cgroup
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
2394 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2396 #ifdef CONFIG_MEMCG_SWAP
2397 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
2400 int val
= (charge
) ? 1 : -1;
2401 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
2405 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2406 * @entry: swap entry to be moved
2407 * @from: mem_cgroup which the entry is moved from
2408 * @to: mem_cgroup which the entry is moved to
2410 * It succeeds only when the swap_cgroup's record for this entry is the same
2411 * as the mem_cgroup's id of @from.
2413 * Returns 0 on success, -EINVAL on failure.
2415 * The caller must have charged to @to, IOW, called page_counter_charge() about
2416 * both res and memsw, and called css_get().
2418 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2419 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2421 unsigned short old_id
, new_id
;
2423 old_id
= mem_cgroup_id(from
);
2424 new_id
= mem_cgroup_id(to
);
2426 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2427 mem_cgroup_swap_statistics(from
, false);
2428 mem_cgroup_swap_statistics(to
, true);
2434 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2435 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2441 static DEFINE_MUTEX(memcg_limit_mutex
);
2443 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2444 unsigned long limit
)
2446 unsigned long curusage
;
2447 unsigned long oldusage
;
2448 bool enlarge
= false;
2453 * For keeping hierarchical_reclaim simple, how long we should retry
2454 * is depends on callers. We set our retry-count to be function
2455 * of # of children which we should visit in this loop.
2457 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2458 mem_cgroup_count_children(memcg
);
2460 oldusage
= page_counter_read(&memcg
->memory
);
2463 if (signal_pending(current
)) {
2468 mutex_lock(&memcg_limit_mutex
);
2469 if (limit
> memcg
->memsw
.limit
) {
2470 mutex_unlock(&memcg_limit_mutex
);
2474 if (limit
> memcg
->memory
.limit
)
2476 ret
= page_counter_limit(&memcg
->memory
, limit
);
2477 mutex_unlock(&memcg_limit_mutex
);
2482 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, true);
2484 curusage
= page_counter_read(&memcg
->memory
);
2485 /* Usage is reduced ? */
2486 if (curusage
>= oldusage
)
2489 oldusage
= curusage
;
2490 } while (retry_count
);
2492 if (!ret
&& enlarge
)
2493 memcg_oom_recover(memcg
);
2498 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2499 unsigned long limit
)
2501 unsigned long curusage
;
2502 unsigned long oldusage
;
2503 bool enlarge
= false;
2507 /* see mem_cgroup_resize_res_limit */
2508 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2509 mem_cgroup_count_children(memcg
);
2511 oldusage
= page_counter_read(&memcg
->memsw
);
2514 if (signal_pending(current
)) {
2519 mutex_lock(&memcg_limit_mutex
);
2520 if (limit
< memcg
->memory
.limit
) {
2521 mutex_unlock(&memcg_limit_mutex
);
2525 if (limit
> memcg
->memsw
.limit
)
2527 ret
= page_counter_limit(&memcg
->memsw
, limit
);
2528 mutex_unlock(&memcg_limit_mutex
);
2533 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, false);
2535 curusage
= page_counter_read(&memcg
->memsw
);
2536 /* Usage is reduced ? */
2537 if (curusage
>= oldusage
)
2540 oldusage
= curusage
;
2541 } while (retry_count
);
2543 if (!ret
&& enlarge
)
2544 memcg_oom_recover(memcg
);
2549 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t
*pgdat
, int order
,
2551 unsigned long *total_scanned
)
2553 unsigned long nr_reclaimed
= 0;
2554 struct mem_cgroup_per_node
*mz
, *next_mz
= NULL
;
2555 unsigned long reclaimed
;
2557 struct mem_cgroup_tree_per_node
*mctz
;
2558 unsigned long excess
;
2559 unsigned long nr_scanned
;
2564 mctz
= soft_limit_tree_node(pgdat
->node_id
);
2567 * Do not even bother to check the largest node if the root
2568 * is empty. Do it lockless to prevent lock bouncing. Races
2569 * are acceptable as soft limit is best effort anyway.
2571 if (!mctz
|| RB_EMPTY_ROOT(&mctz
->rb_root
))
2575 * This loop can run a while, specially if mem_cgroup's continuously
2576 * keep exceeding their soft limit and putting the system under
2583 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2588 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, pgdat
,
2589 gfp_mask
, &nr_scanned
);
2590 nr_reclaimed
+= reclaimed
;
2591 *total_scanned
+= nr_scanned
;
2592 spin_lock_irq(&mctz
->lock
);
2593 __mem_cgroup_remove_exceeded(mz
, mctz
);
2596 * If we failed to reclaim anything from this memory cgroup
2597 * it is time to move on to the next cgroup
2601 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
2603 excess
= soft_limit_excess(mz
->memcg
);
2605 * One school of thought says that we should not add
2606 * back the node to the tree if reclaim returns 0.
2607 * But our reclaim could return 0, simply because due
2608 * to priority we are exposing a smaller subset of
2609 * memory to reclaim from. Consider this as a longer
2612 /* If excess == 0, no tree ops */
2613 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
2614 spin_unlock_irq(&mctz
->lock
);
2615 css_put(&mz
->memcg
->css
);
2618 * Could not reclaim anything and there are no more
2619 * mem cgroups to try or we seem to be looping without
2620 * reclaiming anything.
2622 if (!nr_reclaimed
&&
2624 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2626 } while (!nr_reclaimed
);
2628 css_put(&next_mz
->memcg
->css
);
2629 return nr_reclaimed
;
2633 * Test whether @memcg has children, dead or alive. Note that this
2634 * function doesn't care whether @memcg has use_hierarchy enabled and
2635 * returns %true if there are child csses according to the cgroup
2636 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2638 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
2643 ret
= css_next_child(NULL
, &memcg
->css
);
2649 * Reclaims as many pages from the given memcg as possible.
2651 * Caller is responsible for holding css reference for memcg.
2653 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
2655 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2657 /* we call try-to-free pages for make this cgroup empty */
2658 lru_add_drain_all();
2659 /* try to free all pages in this cgroup */
2660 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
2663 if (signal_pending(current
))
2666 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
2670 /* maybe some writeback is necessary */
2671 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2679 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
2680 char *buf
, size_t nbytes
,
2683 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2685 if (mem_cgroup_is_root(memcg
))
2687 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
2690 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
2693 return mem_cgroup_from_css(css
)->use_hierarchy
;
2696 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
2697 struct cftype
*cft
, u64 val
)
2700 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2701 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
2703 if (memcg
->use_hierarchy
== val
)
2707 * If parent's use_hierarchy is set, we can't make any modifications
2708 * in the child subtrees. If it is unset, then the change can
2709 * occur, provided the current cgroup has no children.
2711 * For the root cgroup, parent_mem is NULL, we allow value to be
2712 * set if there are no children.
2714 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
2715 (val
== 1 || val
== 0)) {
2716 if (!memcg_has_children(memcg
))
2717 memcg
->use_hierarchy
= val
;
2726 static void tree_stat(struct mem_cgroup
*memcg
, unsigned long *stat
)
2728 struct mem_cgroup
*iter
;
2731 memset(stat
, 0, sizeof(*stat
) * MEMCG_NR_STAT
);
2733 for_each_mem_cgroup_tree(iter
, memcg
) {
2734 for (i
= 0; i
< MEMCG_NR_STAT
; i
++)
2735 stat
[i
] += mem_cgroup_read_stat(iter
, i
);
2739 static void tree_events(struct mem_cgroup
*memcg
, unsigned long *events
)
2741 struct mem_cgroup
*iter
;
2744 memset(events
, 0, sizeof(*events
) * MEMCG_NR_EVENTS
);
2746 for_each_mem_cgroup_tree(iter
, memcg
) {
2747 for (i
= 0; i
< MEMCG_NR_EVENTS
; i
++)
2748 events
[i
] += mem_cgroup_read_events(iter
, i
);
2752 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
2754 unsigned long val
= 0;
2756 if (mem_cgroup_is_root(memcg
)) {
2757 struct mem_cgroup
*iter
;
2759 for_each_mem_cgroup_tree(iter
, memcg
) {
2760 val
+= mem_cgroup_read_stat(iter
,
2761 MEM_CGROUP_STAT_CACHE
);
2762 val
+= mem_cgroup_read_stat(iter
,
2763 MEM_CGROUP_STAT_RSS
);
2765 val
+= mem_cgroup_read_stat(iter
,
2766 MEM_CGROUP_STAT_SWAP
);
2770 val
= page_counter_read(&memcg
->memory
);
2772 val
= page_counter_read(&memcg
->memsw
);
2785 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
2788 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2789 struct page_counter
*counter
;
2791 switch (MEMFILE_TYPE(cft
->private)) {
2793 counter
= &memcg
->memory
;
2796 counter
= &memcg
->memsw
;
2799 counter
= &memcg
->kmem
;
2802 counter
= &memcg
->tcpmem
;
2808 switch (MEMFILE_ATTR(cft
->private)) {
2810 if (counter
== &memcg
->memory
)
2811 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
2812 if (counter
== &memcg
->memsw
)
2813 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
2814 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
2816 return (u64
)counter
->limit
* PAGE_SIZE
;
2818 return (u64
)counter
->watermark
* PAGE_SIZE
;
2820 return counter
->failcnt
;
2821 case RES_SOFT_LIMIT
:
2822 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
2829 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2833 if (cgroup_memory_nokmem
)
2836 BUG_ON(memcg
->kmemcg_id
>= 0);
2837 BUG_ON(memcg
->kmem_state
);
2839 memcg_id
= memcg_alloc_cache_id();
2843 static_branch_inc(&memcg_kmem_enabled_key
);
2845 * A memory cgroup is considered kmem-online as soon as it gets
2846 * kmemcg_id. Setting the id after enabling static branching will
2847 * guarantee no one starts accounting before all call sites are
2850 memcg
->kmemcg_id
= memcg_id
;
2851 memcg
->kmem_state
= KMEM_ONLINE
;
2856 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2858 struct cgroup_subsys_state
*css
;
2859 struct mem_cgroup
*parent
, *child
;
2862 if (memcg
->kmem_state
!= KMEM_ONLINE
)
2865 * Clear the online state before clearing memcg_caches array
2866 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2867 * guarantees that no cache will be created for this cgroup
2868 * after we are done (see memcg_create_kmem_cache()).
2870 memcg
->kmem_state
= KMEM_ALLOCATED
;
2872 memcg_deactivate_kmem_caches(memcg
);
2874 kmemcg_id
= memcg
->kmemcg_id
;
2875 BUG_ON(kmemcg_id
< 0);
2877 parent
= parent_mem_cgroup(memcg
);
2879 parent
= root_mem_cgroup
;
2882 * Change kmemcg_id of this cgroup and all its descendants to the
2883 * parent's id, and then move all entries from this cgroup's list_lrus
2884 * to ones of the parent. After we have finished, all list_lrus
2885 * corresponding to this cgroup are guaranteed to remain empty. The
2886 * ordering is imposed by list_lru_node->lock taken by
2887 * memcg_drain_all_list_lrus().
2889 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2890 css_for_each_descendant_pre(css
, &memcg
->css
) {
2891 child
= mem_cgroup_from_css(css
);
2892 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
2893 child
->kmemcg_id
= parent
->kmemcg_id
;
2894 if (!memcg
->use_hierarchy
)
2899 memcg_drain_all_list_lrus(kmemcg_id
, parent
->kmemcg_id
);
2901 memcg_free_cache_id(kmemcg_id
);
2904 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2906 /* css_alloc() failed, offlining didn't happen */
2907 if (unlikely(memcg
->kmem_state
== KMEM_ONLINE
))
2908 memcg_offline_kmem(memcg
);
2910 if (memcg
->kmem_state
== KMEM_ALLOCATED
) {
2911 memcg_destroy_kmem_caches(memcg
);
2912 static_branch_dec(&memcg_kmem_enabled_key
);
2913 WARN_ON(page_counter_read(&memcg
->kmem
));
2917 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2921 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2924 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2927 #endif /* !CONFIG_SLOB */
2929 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
2930 unsigned long limit
)
2934 mutex_lock(&memcg_limit_mutex
);
2935 ret
= page_counter_limit(&memcg
->kmem
, limit
);
2936 mutex_unlock(&memcg_limit_mutex
);
2940 static int memcg_update_tcp_limit(struct mem_cgroup
*memcg
, unsigned long limit
)
2944 mutex_lock(&memcg_limit_mutex
);
2946 ret
= page_counter_limit(&memcg
->tcpmem
, limit
);
2950 if (!memcg
->tcpmem_active
) {
2952 * The active flag needs to be written after the static_key
2953 * update. This is what guarantees that the socket activation
2954 * function is the last one to run. See mem_cgroup_sk_alloc()
2955 * for details, and note that we don't mark any socket as
2956 * belonging to this memcg until that flag is up.
2958 * We need to do this, because static_keys will span multiple
2959 * sites, but we can't control their order. If we mark a socket
2960 * as accounted, but the accounting functions are not patched in
2961 * yet, we'll lose accounting.
2963 * We never race with the readers in mem_cgroup_sk_alloc(),
2964 * because when this value change, the code to process it is not
2967 static_branch_inc(&memcg_sockets_enabled_key
);
2968 memcg
->tcpmem_active
= true;
2971 mutex_unlock(&memcg_limit_mutex
);
2976 * The user of this function is...
2979 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
2980 char *buf
, size_t nbytes
, loff_t off
)
2982 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2983 unsigned long nr_pages
;
2986 buf
= strstrip(buf
);
2987 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
2991 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
2993 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
2997 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
2999 ret
= mem_cgroup_resize_limit(memcg
, nr_pages
);
3002 ret
= mem_cgroup_resize_memsw_limit(memcg
, nr_pages
);
3005 ret
= memcg_update_kmem_limit(memcg
, nr_pages
);
3008 ret
= memcg_update_tcp_limit(memcg
, nr_pages
);
3012 case RES_SOFT_LIMIT
:
3013 memcg
->soft_limit
= nr_pages
;
3017 return ret
?: nbytes
;
3020 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3021 size_t nbytes
, loff_t off
)
3023 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3024 struct page_counter
*counter
;
3026 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3028 counter
= &memcg
->memory
;
3031 counter
= &memcg
->memsw
;
3034 counter
= &memcg
->kmem
;
3037 counter
= &memcg
->tcpmem
;
3043 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3045 page_counter_reset_watermark(counter
);
3048 counter
->failcnt
= 0;
3057 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3060 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3064 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3065 struct cftype
*cft
, u64 val
)
3067 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3069 if (val
& ~MOVE_MASK
)
3073 * No kind of locking is needed in here, because ->can_attach() will
3074 * check this value once in the beginning of the process, and then carry
3075 * on with stale data. This means that changes to this value will only
3076 * affect task migrations starting after the change.
3078 memcg
->move_charge_at_immigrate
= val
;
3082 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3083 struct cftype
*cft
, u64 val
)
3090 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3094 unsigned int lru_mask
;
3097 static const struct numa_stat stats
[] = {
3098 { "total", LRU_ALL
},
3099 { "file", LRU_ALL_FILE
},
3100 { "anon", LRU_ALL_ANON
},
3101 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3103 const struct numa_stat
*stat
;
3106 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3108 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3109 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3110 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3111 for_each_node_state(nid
, N_MEMORY
) {
3112 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3114 seq_printf(m
, " N%d=%lu", nid
, nr
);
3119 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3120 struct mem_cgroup
*iter
;
3123 for_each_mem_cgroup_tree(iter
, memcg
)
3124 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3125 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3126 for_each_node_state(nid
, N_MEMORY
) {
3128 for_each_mem_cgroup_tree(iter
, memcg
)
3129 nr
+= mem_cgroup_node_nr_lru_pages(
3130 iter
, nid
, stat
->lru_mask
);
3131 seq_printf(m
, " N%d=%lu", nid
, nr
);
3138 #endif /* CONFIG_NUMA */
3140 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3142 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3143 unsigned long memory
, memsw
;
3144 struct mem_cgroup
*mi
;
3147 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names
) !=
3148 MEM_CGROUP_STAT_NSTATS
);
3149 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names
) !=
3150 MEM_CGROUP_EVENTS_NSTATS
);
3151 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3153 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3154 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_memsw_account())
3156 seq_printf(m
, "%s %lu\n", mem_cgroup_stat_names
[i
],
3157 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
3160 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
3161 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
3162 mem_cgroup_read_events(memcg
, i
));
3164 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3165 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3166 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
3168 /* Hierarchical information */
3169 memory
= memsw
= PAGE_COUNTER_MAX
;
3170 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3171 memory
= min(memory
, mi
->memory
.limit
);
3172 memsw
= min(memsw
, mi
->memsw
.limit
);
3174 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3175 (u64
)memory
* PAGE_SIZE
);
3176 if (do_memsw_account())
3177 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3178 (u64
)memsw
* PAGE_SIZE
);
3180 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3181 unsigned long long val
= 0;
3183 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_memsw_account())
3185 for_each_mem_cgroup_tree(mi
, memcg
)
3186 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
3187 seq_printf(m
, "total_%s %llu\n", mem_cgroup_stat_names
[i
], val
);
3190 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
3191 unsigned long long val
= 0;
3193 for_each_mem_cgroup_tree(mi
, memcg
)
3194 val
+= mem_cgroup_read_events(mi
, i
);
3195 seq_printf(m
, "total_%s %llu\n",
3196 mem_cgroup_events_names
[i
], val
);
3199 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
3200 unsigned long long val
= 0;
3202 for_each_mem_cgroup_tree(mi
, memcg
)
3203 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
3204 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
3207 #ifdef CONFIG_DEBUG_VM
3210 struct mem_cgroup_per_node
*mz
;
3211 struct zone_reclaim_stat
*rstat
;
3212 unsigned long recent_rotated
[2] = {0, 0};
3213 unsigned long recent_scanned
[2] = {0, 0};
3215 for_each_online_pgdat(pgdat
) {
3216 mz
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
3217 rstat
= &mz
->lruvec
.reclaim_stat
;
3219 recent_rotated
[0] += rstat
->recent_rotated
[0];
3220 recent_rotated
[1] += rstat
->recent_rotated
[1];
3221 recent_scanned
[0] += rstat
->recent_scanned
[0];
3222 recent_scanned
[1] += rstat
->recent_scanned
[1];
3224 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3225 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3226 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3227 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3234 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3237 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3239 return mem_cgroup_swappiness(memcg
);
3242 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3243 struct cftype
*cft
, u64 val
)
3245 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3251 memcg
->swappiness
= val
;
3253 vm_swappiness
= val
;
3258 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3260 struct mem_cgroup_threshold_ary
*t
;
3261 unsigned long usage
;
3266 t
= rcu_dereference(memcg
->thresholds
.primary
);
3268 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3273 usage
= mem_cgroup_usage(memcg
, swap
);
3276 * current_threshold points to threshold just below or equal to usage.
3277 * If it's not true, a threshold was crossed after last
3278 * call of __mem_cgroup_threshold().
3280 i
= t
->current_threshold
;
3283 * Iterate backward over array of thresholds starting from
3284 * current_threshold and check if a threshold is crossed.
3285 * If none of thresholds below usage is crossed, we read
3286 * only one element of the array here.
3288 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3289 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3291 /* i = current_threshold + 1 */
3295 * Iterate forward over array of thresholds starting from
3296 * current_threshold+1 and check if a threshold is crossed.
3297 * If none of thresholds above usage is crossed, we read
3298 * only one element of the array here.
3300 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3301 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3303 /* Update current_threshold */
3304 t
->current_threshold
= i
- 1;
3309 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3312 __mem_cgroup_threshold(memcg
, false);
3313 if (do_memsw_account())
3314 __mem_cgroup_threshold(memcg
, true);
3316 memcg
= parent_mem_cgroup(memcg
);
3320 static int compare_thresholds(const void *a
, const void *b
)
3322 const struct mem_cgroup_threshold
*_a
= a
;
3323 const struct mem_cgroup_threshold
*_b
= b
;
3325 if (_a
->threshold
> _b
->threshold
)
3328 if (_a
->threshold
< _b
->threshold
)
3334 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3336 struct mem_cgroup_eventfd_list
*ev
;
3338 spin_lock(&memcg_oom_lock
);
3340 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3341 eventfd_signal(ev
->eventfd
, 1);
3343 spin_unlock(&memcg_oom_lock
);
3347 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3349 struct mem_cgroup
*iter
;
3351 for_each_mem_cgroup_tree(iter
, memcg
)
3352 mem_cgroup_oom_notify_cb(iter
);
3355 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3356 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3358 struct mem_cgroup_thresholds
*thresholds
;
3359 struct mem_cgroup_threshold_ary
*new;
3360 unsigned long threshold
;
3361 unsigned long usage
;
3364 ret
= page_counter_memparse(args
, "-1", &threshold
);
3368 mutex_lock(&memcg
->thresholds_lock
);
3371 thresholds
= &memcg
->thresholds
;
3372 usage
= mem_cgroup_usage(memcg
, false);
3373 } else if (type
== _MEMSWAP
) {
3374 thresholds
= &memcg
->memsw_thresholds
;
3375 usage
= mem_cgroup_usage(memcg
, true);
3379 /* Check if a threshold crossed before adding a new one */
3380 if (thresholds
->primary
)
3381 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3383 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3385 /* Allocate memory for new array of thresholds */
3386 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3394 /* Copy thresholds (if any) to new array */
3395 if (thresholds
->primary
) {
3396 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3397 sizeof(struct mem_cgroup_threshold
));
3400 /* Add new threshold */
3401 new->entries
[size
- 1].eventfd
= eventfd
;
3402 new->entries
[size
- 1].threshold
= threshold
;
3404 /* Sort thresholds. Registering of new threshold isn't time-critical */
3405 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3406 compare_thresholds
, NULL
);
3408 /* Find current threshold */
3409 new->current_threshold
= -1;
3410 for (i
= 0; i
< size
; i
++) {
3411 if (new->entries
[i
].threshold
<= usage
) {
3413 * new->current_threshold will not be used until
3414 * rcu_assign_pointer(), so it's safe to increment
3417 ++new->current_threshold
;
3422 /* Free old spare buffer and save old primary buffer as spare */
3423 kfree(thresholds
->spare
);
3424 thresholds
->spare
= thresholds
->primary
;
3426 rcu_assign_pointer(thresholds
->primary
, new);
3428 /* To be sure that nobody uses thresholds */
3432 mutex_unlock(&memcg
->thresholds_lock
);
3437 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3438 struct eventfd_ctx
*eventfd
, const char *args
)
3440 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
3443 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3444 struct eventfd_ctx
*eventfd
, const char *args
)
3446 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
3449 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3450 struct eventfd_ctx
*eventfd
, enum res_type type
)
3452 struct mem_cgroup_thresholds
*thresholds
;
3453 struct mem_cgroup_threshold_ary
*new;
3454 unsigned long usage
;
3457 mutex_lock(&memcg
->thresholds_lock
);
3460 thresholds
= &memcg
->thresholds
;
3461 usage
= mem_cgroup_usage(memcg
, false);
3462 } else if (type
== _MEMSWAP
) {
3463 thresholds
= &memcg
->memsw_thresholds
;
3464 usage
= mem_cgroup_usage(memcg
, true);
3468 if (!thresholds
->primary
)
3471 /* Check if a threshold crossed before removing */
3472 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3474 /* Calculate new number of threshold */
3476 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3477 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3481 new = thresholds
->spare
;
3483 /* Set thresholds array to NULL if we don't have thresholds */
3492 /* Copy thresholds and find current threshold */
3493 new->current_threshold
= -1;
3494 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3495 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3498 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3499 if (new->entries
[j
].threshold
<= usage
) {
3501 * new->current_threshold will not be used
3502 * until rcu_assign_pointer(), so it's safe to increment
3505 ++new->current_threshold
;
3511 /* Swap primary and spare array */
3512 thresholds
->spare
= thresholds
->primary
;
3514 rcu_assign_pointer(thresholds
->primary
, new);
3516 /* To be sure that nobody uses thresholds */
3519 /* If all events are unregistered, free the spare array */
3521 kfree(thresholds
->spare
);
3522 thresholds
->spare
= NULL
;
3525 mutex_unlock(&memcg
->thresholds_lock
);
3528 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3529 struct eventfd_ctx
*eventfd
)
3531 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
3534 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3535 struct eventfd_ctx
*eventfd
)
3537 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
3540 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
3541 struct eventfd_ctx
*eventfd
, const char *args
)
3543 struct mem_cgroup_eventfd_list
*event
;
3545 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3549 spin_lock(&memcg_oom_lock
);
3551 event
->eventfd
= eventfd
;
3552 list_add(&event
->list
, &memcg
->oom_notify
);
3554 /* already in OOM ? */
3555 if (memcg
->under_oom
)
3556 eventfd_signal(eventfd
, 1);
3557 spin_unlock(&memcg_oom_lock
);
3562 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
3563 struct eventfd_ctx
*eventfd
)
3565 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3567 spin_lock(&memcg_oom_lock
);
3569 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
3570 if (ev
->eventfd
== eventfd
) {
3571 list_del(&ev
->list
);
3576 spin_unlock(&memcg_oom_lock
);
3579 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
3581 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
3583 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
3584 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
3588 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
3589 struct cftype
*cft
, u64 val
)
3591 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3593 /* cannot set to root cgroup and only 0 and 1 are allowed */
3594 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
3597 memcg
->oom_kill_disable
= val
;
3599 memcg_oom_recover(memcg
);
3604 #ifdef CONFIG_CGROUP_WRITEBACK
3606 struct list_head
*mem_cgroup_cgwb_list(struct mem_cgroup
*memcg
)
3608 return &memcg
->cgwb_list
;
3611 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3613 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
3616 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3618 wb_domain_exit(&memcg
->cgwb_domain
);
3621 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3623 wb_domain_size_changed(&memcg
->cgwb_domain
);
3626 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
3628 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3630 if (!memcg
->css
.parent
)
3633 return &memcg
->cgwb_domain
;
3637 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3638 * @wb: bdi_writeback in question
3639 * @pfilepages: out parameter for number of file pages
3640 * @pheadroom: out parameter for number of allocatable pages according to memcg
3641 * @pdirty: out parameter for number of dirty pages
3642 * @pwriteback: out parameter for number of pages under writeback
3644 * Determine the numbers of file, headroom, dirty, and writeback pages in
3645 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3646 * is a bit more involved.
3648 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3649 * headroom is calculated as the lowest headroom of itself and the
3650 * ancestors. Note that this doesn't consider the actual amount of
3651 * available memory in the system. The caller should further cap
3652 * *@pheadroom accordingly.
3654 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
3655 unsigned long *pheadroom
, unsigned long *pdirty
,
3656 unsigned long *pwriteback
)
3658 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3659 struct mem_cgroup
*parent
;
3661 *pdirty
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_DIRTY
);
3663 /* this should eventually include NR_UNSTABLE_NFS */
3664 *pwriteback
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_WRITEBACK
);
3665 *pfilepages
= mem_cgroup_nr_lru_pages(memcg
, (1 << LRU_INACTIVE_FILE
) |
3666 (1 << LRU_ACTIVE_FILE
));
3667 *pheadroom
= PAGE_COUNTER_MAX
;
3669 while ((parent
= parent_mem_cgroup(memcg
))) {
3670 unsigned long ceiling
= min(memcg
->memory
.limit
, memcg
->high
);
3671 unsigned long used
= page_counter_read(&memcg
->memory
);
3673 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
3678 #else /* CONFIG_CGROUP_WRITEBACK */
3680 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3685 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3689 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3693 #endif /* CONFIG_CGROUP_WRITEBACK */
3696 * DO NOT USE IN NEW FILES.
3698 * "cgroup.event_control" implementation.
3700 * This is way over-engineered. It tries to support fully configurable
3701 * events for each user. Such level of flexibility is completely
3702 * unnecessary especially in the light of the planned unified hierarchy.
3704 * Please deprecate this and replace with something simpler if at all
3709 * Unregister event and free resources.
3711 * Gets called from workqueue.
3713 static void memcg_event_remove(struct work_struct
*work
)
3715 struct mem_cgroup_event
*event
=
3716 container_of(work
, struct mem_cgroup_event
, remove
);
3717 struct mem_cgroup
*memcg
= event
->memcg
;
3719 remove_wait_queue(event
->wqh
, &event
->wait
);
3721 event
->unregister_event(memcg
, event
->eventfd
);
3723 /* Notify userspace the event is going away. */
3724 eventfd_signal(event
->eventfd
, 1);
3726 eventfd_ctx_put(event
->eventfd
);
3728 css_put(&memcg
->css
);
3732 * Gets called on POLLHUP on eventfd when user closes it.
3734 * Called with wqh->lock held and interrupts disabled.
3736 static int memcg_event_wake(wait_queue_t
*wait
, unsigned mode
,
3737 int sync
, void *key
)
3739 struct mem_cgroup_event
*event
=
3740 container_of(wait
, struct mem_cgroup_event
, wait
);
3741 struct mem_cgroup
*memcg
= event
->memcg
;
3742 unsigned long flags
= (unsigned long)key
;
3744 if (flags
& POLLHUP
) {
3746 * If the event has been detached at cgroup removal, we
3747 * can simply return knowing the other side will cleanup
3750 * We can't race against event freeing since the other
3751 * side will require wqh->lock via remove_wait_queue(),
3754 spin_lock(&memcg
->event_list_lock
);
3755 if (!list_empty(&event
->list
)) {
3756 list_del_init(&event
->list
);
3758 * We are in atomic context, but cgroup_event_remove()
3759 * may sleep, so we have to call it in workqueue.
3761 schedule_work(&event
->remove
);
3763 spin_unlock(&memcg
->event_list_lock
);
3769 static void memcg_event_ptable_queue_proc(struct file
*file
,
3770 wait_queue_head_t
*wqh
, poll_table
*pt
)
3772 struct mem_cgroup_event
*event
=
3773 container_of(pt
, struct mem_cgroup_event
, pt
);
3776 add_wait_queue(wqh
, &event
->wait
);
3780 * DO NOT USE IN NEW FILES.
3782 * Parse input and register new cgroup event handler.
3784 * Input must be in format '<event_fd> <control_fd> <args>'.
3785 * Interpretation of args is defined by control file implementation.
3787 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
3788 char *buf
, size_t nbytes
, loff_t off
)
3790 struct cgroup_subsys_state
*css
= of_css(of
);
3791 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3792 struct mem_cgroup_event
*event
;
3793 struct cgroup_subsys_state
*cfile_css
;
3794 unsigned int efd
, cfd
;
3801 buf
= strstrip(buf
);
3803 efd
= simple_strtoul(buf
, &endp
, 10);
3808 cfd
= simple_strtoul(buf
, &endp
, 10);
3809 if ((*endp
!= ' ') && (*endp
!= '\0'))
3813 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3817 event
->memcg
= memcg
;
3818 INIT_LIST_HEAD(&event
->list
);
3819 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
3820 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
3821 INIT_WORK(&event
->remove
, memcg_event_remove
);
3829 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
3830 if (IS_ERR(event
->eventfd
)) {
3831 ret
= PTR_ERR(event
->eventfd
);
3838 goto out_put_eventfd
;
3841 /* the process need read permission on control file */
3842 /* AV: shouldn't we check that it's been opened for read instead? */
3843 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
3848 * Determine the event callbacks and set them in @event. This used
3849 * to be done via struct cftype but cgroup core no longer knows
3850 * about these events. The following is crude but the whole thing
3851 * is for compatibility anyway.
3853 * DO NOT ADD NEW FILES.
3855 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
3857 if (!strcmp(name
, "memory.usage_in_bytes")) {
3858 event
->register_event
= mem_cgroup_usage_register_event
;
3859 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
3860 } else if (!strcmp(name
, "memory.oom_control")) {
3861 event
->register_event
= mem_cgroup_oom_register_event
;
3862 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
3863 } else if (!strcmp(name
, "memory.pressure_level")) {
3864 event
->register_event
= vmpressure_register_event
;
3865 event
->unregister_event
= vmpressure_unregister_event
;
3866 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
3867 event
->register_event
= memsw_cgroup_usage_register_event
;
3868 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
3875 * Verify @cfile should belong to @css. Also, remaining events are
3876 * automatically removed on cgroup destruction but the removal is
3877 * asynchronous, so take an extra ref on @css.
3879 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
3880 &memory_cgrp_subsys
);
3882 if (IS_ERR(cfile_css
))
3884 if (cfile_css
!= css
) {
3889 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
3893 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
3895 spin_lock(&memcg
->event_list_lock
);
3896 list_add(&event
->list
, &memcg
->event_list
);
3897 spin_unlock(&memcg
->event_list_lock
);
3909 eventfd_ctx_put(event
->eventfd
);
3918 static struct cftype mem_cgroup_legacy_files
[] = {
3920 .name
= "usage_in_bytes",
3921 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
3922 .read_u64
= mem_cgroup_read_u64
,
3925 .name
= "max_usage_in_bytes",
3926 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
3927 .write
= mem_cgroup_reset
,
3928 .read_u64
= mem_cgroup_read_u64
,
3931 .name
= "limit_in_bytes",
3932 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
3933 .write
= mem_cgroup_write
,
3934 .read_u64
= mem_cgroup_read_u64
,
3937 .name
= "soft_limit_in_bytes",
3938 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
3939 .write
= mem_cgroup_write
,
3940 .read_u64
= mem_cgroup_read_u64
,
3944 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
3945 .write
= mem_cgroup_reset
,
3946 .read_u64
= mem_cgroup_read_u64
,
3950 .seq_show
= memcg_stat_show
,
3953 .name
= "force_empty",
3954 .write
= mem_cgroup_force_empty_write
,
3957 .name
= "use_hierarchy",
3958 .write_u64
= mem_cgroup_hierarchy_write
,
3959 .read_u64
= mem_cgroup_hierarchy_read
,
3962 .name
= "cgroup.event_control", /* XXX: for compat */
3963 .write
= memcg_write_event_control
,
3964 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
3967 .name
= "swappiness",
3968 .read_u64
= mem_cgroup_swappiness_read
,
3969 .write_u64
= mem_cgroup_swappiness_write
,
3972 .name
= "move_charge_at_immigrate",
3973 .read_u64
= mem_cgroup_move_charge_read
,
3974 .write_u64
= mem_cgroup_move_charge_write
,
3977 .name
= "oom_control",
3978 .seq_show
= mem_cgroup_oom_control_read
,
3979 .write_u64
= mem_cgroup_oom_control_write
,
3980 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
3983 .name
= "pressure_level",
3987 .name
= "numa_stat",
3988 .seq_show
= memcg_numa_stat_show
,
3992 .name
= "kmem.limit_in_bytes",
3993 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
3994 .write
= mem_cgroup_write
,
3995 .read_u64
= mem_cgroup_read_u64
,
3998 .name
= "kmem.usage_in_bytes",
3999 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
4000 .read_u64
= mem_cgroup_read_u64
,
4003 .name
= "kmem.failcnt",
4004 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
4005 .write
= mem_cgroup_reset
,
4006 .read_u64
= mem_cgroup_read_u64
,
4009 .name
= "kmem.max_usage_in_bytes",
4010 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
4011 .write
= mem_cgroup_reset
,
4012 .read_u64
= mem_cgroup_read_u64
,
4014 #ifdef CONFIG_SLABINFO
4016 .name
= "kmem.slabinfo",
4017 .seq_start
= slab_start
,
4018 .seq_next
= slab_next
,
4019 .seq_stop
= slab_stop
,
4020 .seq_show
= memcg_slab_show
,
4024 .name
= "kmem.tcp.limit_in_bytes",
4025 .private = MEMFILE_PRIVATE(_TCP
, RES_LIMIT
),
4026 .write
= mem_cgroup_write
,
4027 .read_u64
= mem_cgroup_read_u64
,
4030 .name
= "kmem.tcp.usage_in_bytes",
4031 .private = MEMFILE_PRIVATE(_TCP
, RES_USAGE
),
4032 .read_u64
= mem_cgroup_read_u64
,
4035 .name
= "kmem.tcp.failcnt",
4036 .private = MEMFILE_PRIVATE(_TCP
, RES_FAILCNT
),
4037 .write
= mem_cgroup_reset
,
4038 .read_u64
= mem_cgroup_read_u64
,
4041 .name
= "kmem.tcp.max_usage_in_bytes",
4042 .private = MEMFILE_PRIVATE(_TCP
, RES_MAX_USAGE
),
4043 .write
= mem_cgroup_reset
,
4044 .read_u64
= mem_cgroup_read_u64
,
4046 { }, /* terminate */
4050 * Private memory cgroup IDR
4052 * Swap-out records and page cache shadow entries need to store memcg
4053 * references in constrained space, so we maintain an ID space that is
4054 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4055 * memory-controlled cgroups to 64k.
4057 * However, there usually are many references to the oflline CSS after
4058 * the cgroup has been destroyed, such as page cache or reclaimable
4059 * slab objects, that don't need to hang on to the ID. We want to keep
4060 * those dead CSS from occupying IDs, or we might quickly exhaust the
4061 * relatively small ID space and prevent the creation of new cgroups
4062 * even when there are much fewer than 64k cgroups - possibly none.
4064 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4065 * be freed and recycled when it's no longer needed, which is usually
4066 * when the CSS is offlined.
4068 * The only exception to that are records of swapped out tmpfs/shmem
4069 * pages that need to be attributed to live ancestors on swapin. But
4070 * those references are manageable from userspace.
4073 static DEFINE_IDR(mem_cgroup_idr
);
4075 static void mem_cgroup_id_get_many(struct mem_cgroup
*memcg
, unsigned int n
)
4077 VM_BUG_ON(atomic_read(&memcg
->id
.ref
) <= 0);
4078 atomic_add(n
, &memcg
->id
.ref
);
4081 static void mem_cgroup_id_put_many(struct mem_cgroup
*memcg
, unsigned int n
)
4083 VM_BUG_ON(atomic_read(&memcg
->id
.ref
) < n
);
4084 if (atomic_sub_and_test(n
, &memcg
->id
.ref
)) {
4085 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4088 /* Memcg ID pins CSS */
4089 css_put(&memcg
->css
);
4093 static inline void mem_cgroup_id_get(struct mem_cgroup
*memcg
)
4095 mem_cgroup_id_get_many(memcg
, 1);
4098 static inline void mem_cgroup_id_put(struct mem_cgroup
*memcg
)
4100 mem_cgroup_id_put_many(memcg
, 1);
4104 * mem_cgroup_from_id - look up a memcg from a memcg id
4105 * @id: the memcg id to look up
4107 * Caller must hold rcu_read_lock().
4109 struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
4111 WARN_ON_ONCE(!rcu_read_lock_held());
4112 return idr_find(&mem_cgroup_idr
, id
);
4115 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4117 struct mem_cgroup_per_node
*pn
;
4120 * This routine is called against possible nodes.
4121 * But it's BUG to call kmalloc() against offline node.
4123 * TODO: this routine can waste much memory for nodes which will
4124 * never be onlined. It's better to use memory hotplug callback
4127 if (!node_state(node
, N_NORMAL_MEMORY
))
4129 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4133 lruvec_init(&pn
->lruvec
);
4134 pn
->usage_in_excess
= 0;
4135 pn
->on_tree
= false;
4138 memcg
->nodeinfo
[node
] = pn
;
4142 static void free_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4144 kfree(memcg
->nodeinfo
[node
]);
4147 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4152 free_mem_cgroup_per_node_info(memcg
, node
);
4153 free_percpu(memcg
->stat
);
4157 static void mem_cgroup_free(struct mem_cgroup
*memcg
)
4159 memcg_wb_domain_exit(memcg
);
4160 __mem_cgroup_free(memcg
);
4163 static struct mem_cgroup
*mem_cgroup_alloc(void)
4165 struct mem_cgroup
*memcg
;
4169 size
= sizeof(struct mem_cgroup
);
4170 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4172 memcg
= kzalloc(size
, GFP_KERNEL
);
4176 memcg
->id
.id
= idr_alloc(&mem_cgroup_idr
, NULL
,
4177 1, MEM_CGROUP_ID_MAX
,
4179 if (memcg
->id
.id
< 0)
4182 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4187 if (alloc_mem_cgroup_per_node_info(memcg
, node
))
4190 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4193 INIT_WORK(&memcg
->high_work
, high_work_func
);
4194 memcg
->last_scanned_node
= MAX_NUMNODES
;
4195 INIT_LIST_HEAD(&memcg
->oom_notify
);
4196 mutex_init(&memcg
->thresholds_lock
);
4197 spin_lock_init(&memcg
->move_lock
);
4198 vmpressure_init(&memcg
->vmpressure
);
4199 INIT_LIST_HEAD(&memcg
->event_list
);
4200 spin_lock_init(&memcg
->event_list_lock
);
4201 memcg
->socket_pressure
= jiffies
;
4203 memcg
->kmemcg_id
= -1;
4205 #ifdef CONFIG_CGROUP_WRITEBACK
4206 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4208 idr_replace(&mem_cgroup_idr
, memcg
, memcg
->id
.id
);
4211 if (memcg
->id
.id
> 0)
4212 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4213 __mem_cgroup_free(memcg
);
4217 static struct cgroup_subsys_state
* __ref
4218 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4220 struct mem_cgroup
*parent
= mem_cgroup_from_css(parent_css
);
4221 struct mem_cgroup
*memcg
;
4222 long error
= -ENOMEM
;
4224 memcg
= mem_cgroup_alloc();
4226 return ERR_PTR(error
);
4228 memcg
->high
= PAGE_COUNTER_MAX
;
4229 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4231 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4232 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4234 if (parent
&& parent
->use_hierarchy
) {
4235 memcg
->use_hierarchy
= true;
4236 page_counter_init(&memcg
->memory
, &parent
->memory
);
4237 page_counter_init(&memcg
->swap
, &parent
->swap
);
4238 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4239 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4240 page_counter_init(&memcg
->tcpmem
, &parent
->tcpmem
);
4242 page_counter_init(&memcg
->memory
, NULL
);
4243 page_counter_init(&memcg
->swap
, NULL
);
4244 page_counter_init(&memcg
->memsw
, NULL
);
4245 page_counter_init(&memcg
->kmem
, NULL
);
4246 page_counter_init(&memcg
->tcpmem
, NULL
);
4248 * Deeper hierachy with use_hierarchy == false doesn't make
4249 * much sense so let cgroup subsystem know about this
4250 * unfortunate state in our controller.
4252 if (parent
!= root_mem_cgroup
)
4253 memory_cgrp_subsys
.broken_hierarchy
= true;
4256 /* The following stuff does not apply to the root */
4258 root_mem_cgroup
= memcg
;
4262 error
= memcg_online_kmem(memcg
);
4266 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4267 static_branch_inc(&memcg_sockets_enabled_key
);
4271 mem_cgroup_free(memcg
);
4272 return ERR_PTR(-ENOMEM
);
4275 static int mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
4277 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4279 /* Online state pins memcg ID, memcg ID pins CSS */
4280 atomic_set(&memcg
->id
.ref
, 1);
4285 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
4287 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4288 struct mem_cgroup_event
*event
, *tmp
;
4291 * Unregister events and notify userspace.
4292 * Notify userspace about cgroup removing only after rmdir of cgroup
4293 * directory to avoid race between userspace and kernelspace.
4295 spin_lock(&memcg
->event_list_lock
);
4296 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
4297 list_del_init(&event
->list
);
4298 schedule_work(&event
->remove
);
4300 spin_unlock(&memcg
->event_list_lock
);
4302 memcg_offline_kmem(memcg
);
4303 wb_memcg_offline(memcg
);
4305 mem_cgroup_id_put(memcg
);
4308 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
4310 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4312 invalidate_reclaim_iterators(memcg
);
4315 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
4317 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4319 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4320 static_branch_dec(&memcg_sockets_enabled_key
);
4322 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && memcg
->tcpmem_active
)
4323 static_branch_dec(&memcg_sockets_enabled_key
);
4325 vmpressure_cleanup(&memcg
->vmpressure
);
4326 cancel_work_sync(&memcg
->high_work
);
4327 mem_cgroup_remove_from_trees(memcg
);
4328 memcg_free_kmem(memcg
);
4329 mem_cgroup_free(memcg
);
4333 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4334 * @css: the target css
4336 * Reset the states of the mem_cgroup associated with @css. This is
4337 * invoked when the userland requests disabling on the default hierarchy
4338 * but the memcg is pinned through dependency. The memcg should stop
4339 * applying policies and should revert to the vanilla state as it may be
4340 * made visible again.
4342 * The current implementation only resets the essential configurations.
4343 * This needs to be expanded to cover all the visible parts.
4345 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
4347 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4349 page_counter_limit(&memcg
->memory
, PAGE_COUNTER_MAX
);
4350 page_counter_limit(&memcg
->swap
, PAGE_COUNTER_MAX
);
4351 page_counter_limit(&memcg
->memsw
, PAGE_COUNTER_MAX
);
4352 page_counter_limit(&memcg
->kmem
, PAGE_COUNTER_MAX
);
4353 page_counter_limit(&memcg
->tcpmem
, PAGE_COUNTER_MAX
);
4355 memcg
->high
= PAGE_COUNTER_MAX
;
4356 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4357 memcg_wb_domain_size_changed(memcg
);
4361 /* Handlers for move charge at task migration. */
4362 static int mem_cgroup_do_precharge(unsigned long count
)
4366 /* Try a single bulk charge without reclaim first, kswapd may wake */
4367 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
4369 mc
.precharge
+= count
;
4373 /* Try charges one by one with reclaim, but do not retry */
4375 ret
= try_charge(mc
.to
, GFP_KERNEL
| __GFP_NORETRY
, 1);
4389 enum mc_target_type
{
4395 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4396 unsigned long addr
, pte_t ptent
)
4398 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4400 if (!page
|| !page_mapped(page
))
4402 if (PageAnon(page
)) {
4403 if (!(mc
.flags
& MOVE_ANON
))
4406 if (!(mc
.flags
& MOVE_FILE
))
4409 if (!get_page_unless_zero(page
))
4416 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4417 pte_t ptent
, swp_entry_t
*entry
)
4419 struct page
*page
= NULL
;
4420 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4422 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
4425 * Because lookup_swap_cache() updates some statistics counter,
4426 * we call find_get_page() with swapper_space directly.
4428 page
= find_get_page(swap_address_space(ent
), swp_offset(ent
));
4429 if (do_memsw_account())
4430 entry
->val
= ent
.val
;
4435 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4436 pte_t ptent
, swp_entry_t
*entry
)
4442 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4443 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4445 struct page
*page
= NULL
;
4446 struct address_space
*mapping
;
4449 if (!vma
->vm_file
) /* anonymous vma */
4451 if (!(mc
.flags
& MOVE_FILE
))
4454 mapping
= vma
->vm_file
->f_mapping
;
4455 pgoff
= linear_page_index(vma
, addr
);
4457 /* page is moved even if it's not RSS of this task(page-faulted). */
4459 /* shmem/tmpfs may report page out on swap: account for that too. */
4460 if (shmem_mapping(mapping
)) {
4461 page
= find_get_entry(mapping
, pgoff
);
4462 if (radix_tree_exceptional_entry(page
)) {
4463 swp_entry_t swp
= radix_to_swp_entry(page
);
4464 if (do_memsw_account())
4466 page
= find_get_page(swap_address_space(swp
),
4470 page
= find_get_page(mapping
, pgoff
);
4472 page
= find_get_page(mapping
, pgoff
);
4478 * mem_cgroup_move_account - move account of the page
4480 * @compound: charge the page as compound or small page
4481 * @from: mem_cgroup which the page is moved from.
4482 * @to: mem_cgroup which the page is moved to. @from != @to.
4484 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4486 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4489 static int mem_cgroup_move_account(struct page
*page
,
4491 struct mem_cgroup
*from
,
4492 struct mem_cgroup
*to
)
4494 unsigned long flags
;
4495 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
4499 VM_BUG_ON(from
== to
);
4500 VM_BUG_ON_PAGE(PageLRU(page
), page
);
4501 VM_BUG_ON(compound
&& !PageTransHuge(page
));
4504 * Prevent mem_cgroup_migrate() from looking at
4505 * page->mem_cgroup of its source page while we change it.
4508 if (!trylock_page(page
))
4512 if (page
->mem_cgroup
!= from
)
4515 anon
= PageAnon(page
);
4517 spin_lock_irqsave(&from
->move_lock
, flags
);
4519 if (!anon
&& page_mapped(page
)) {
4520 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4522 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4527 * move_lock grabbed above and caller set from->moving_account, so
4528 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4529 * So mapping should be stable for dirty pages.
4531 if (!anon
&& PageDirty(page
)) {
4532 struct address_space
*mapping
= page_mapping(page
);
4534 if (mapping_cap_account_dirty(mapping
)) {
4535 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4537 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4542 if (PageWriteback(page
)) {
4543 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4545 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4550 * It is safe to change page->mem_cgroup here because the page
4551 * is referenced, charged, and isolated - we can't race with
4552 * uncharging, charging, migration, or LRU putback.
4555 /* caller should have done css_get */
4556 page
->mem_cgroup
= to
;
4557 spin_unlock_irqrestore(&from
->move_lock
, flags
);
4561 local_irq_disable();
4562 mem_cgroup_charge_statistics(to
, page
, compound
, nr_pages
);
4563 memcg_check_events(to
, page
);
4564 mem_cgroup_charge_statistics(from
, page
, compound
, -nr_pages
);
4565 memcg_check_events(from
, page
);
4574 * get_mctgt_type - get target type of moving charge
4575 * @vma: the vma the pte to be checked belongs
4576 * @addr: the address corresponding to the pte to be checked
4577 * @ptent: the pte to be checked
4578 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4581 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4582 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4583 * move charge. if @target is not NULL, the page is stored in target->page
4584 * with extra refcnt got(Callers should handle it).
4585 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4586 * target for charge migration. if @target is not NULL, the entry is stored
4589 * Called with pte lock held.
4592 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
4593 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4595 struct page
*page
= NULL
;
4596 enum mc_target_type ret
= MC_TARGET_NONE
;
4597 swp_entry_t ent
= { .val
= 0 };
4599 if (pte_present(ptent
))
4600 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4601 else if (is_swap_pte(ptent
))
4602 page
= mc_handle_swap_pte(vma
, ptent
, &ent
);
4603 else if (pte_none(ptent
))
4604 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4606 if (!page
&& !ent
.val
)
4610 * Do only loose check w/o serialization.
4611 * mem_cgroup_move_account() checks the page is valid or
4612 * not under LRU exclusion.
4614 if (page
->mem_cgroup
== mc
.from
) {
4615 ret
= MC_TARGET_PAGE
;
4617 target
->page
= page
;
4619 if (!ret
|| !target
)
4622 /* There is a swap entry and a page doesn't exist or isn't charged */
4623 if (ent
.val
&& !ret
&&
4624 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
4625 ret
= MC_TARGET_SWAP
;
4632 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4634 * We don't consider swapping or file mapped pages because THP does not
4635 * support them for now.
4636 * Caller should make sure that pmd_trans_huge(pmd) is true.
4638 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4639 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4641 struct page
*page
= NULL
;
4642 enum mc_target_type ret
= MC_TARGET_NONE
;
4644 page
= pmd_page(pmd
);
4645 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
4646 if (!(mc
.flags
& MOVE_ANON
))
4648 if (page
->mem_cgroup
== mc
.from
) {
4649 ret
= MC_TARGET_PAGE
;
4652 target
->page
= page
;
4658 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4659 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4661 return MC_TARGET_NONE
;
4665 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4666 unsigned long addr
, unsigned long end
,
4667 struct mm_walk
*walk
)
4669 struct vm_area_struct
*vma
= walk
->vma
;
4673 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4675 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
4676 mc
.precharge
+= HPAGE_PMD_NR
;
4681 if (pmd_trans_unstable(pmd
))
4683 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4684 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4685 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
4686 mc
.precharge
++; /* increment precharge temporarily */
4687 pte_unmap_unlock(pte
- 1, ptl
);
4693 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4695 unsigned long precharge
;
4697 struct mm_walk mem_cgroup_count_precharge_walk
= {
4698 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4701 down_read(&mm
->mmap_sem
);
4702 walk_page_range(0, mm
->highest_vm_end
,
4703 &mem_cgroup_count_precharge_walk
);
4704 up_read(&mm
->mmap_sem
);
4706 precharge
= mc
.precharge
;
4712 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4714 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
4716 VM_BUG_ON(mc
.moving_task
);
4717 mc
.moving_task
= current
;
4718 return mem_cgroup_do_precharge(precharge
);
4721 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4722 static void __mem_cgroup_clear_mc(void)
4724 struct mem_cgroup
*from
= mc
.from
;
4725 struct mem_cgroup
*to
= mc
.to
;
4727 /* we must uncharge all the leftover precharges from mc.to */
4729 cancel_charge(mc
.to
, mc
.precharge
);
4733 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4734 * we must uncharge here.
4736 if (mc
.moved_charge
) {
4737 cancel_charge(mc
.from
, mc
.moved_charge
);
4738 mc
.moved_charge
= 0;
4740 /* we must fixup refcnts and charges */
4741 if (mc
.moved_swap
) {
4742 /* uncharge swap account from the old cgroup */
4743 if (!mem_cgroup_is_root(mc
.from
))
4744 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
4746 mem_cgroup_id_put_many(mc
.from
, mc
.moved_swap
);
4749 * we charged both to->memory and to->memsw, so we
4750 * should uncharge to->memory.
4752 if (!mem_cgroup_is_root(mc
.to
))
4753 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
4755 mem_cgroup_id_get_many(mc
.to
, mc
.moved_swap
);
4756 css_put_many(&mc
.to
->css
, mc
.moved_swap
);
4760 memcg_oom_recover(from
);
4761 memcg_oom_recover(to
);
4762 wake_up_all(&mc
.waitq
);
4765 static void mem_cgroup_clear_mc(void)
4767 struct mm_struct
*mm
= mc
.mm
;
4770 * we must clear moving_task before waking up waiters at the end of
4773 mc
.moving_task
= NULL
;
4774 __mem_cgroup_clear_mc();
4775 spin_lock(&mc
.lock
);
4779 spin_unlock(&mc
.lock
);
4784 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4786 struct cgroup_subsys_state
*css
;
4787 struct mem_cgroup
*memcg
= NULL
; /* unneeded init to make gcc happy */
4788 struct mem_cgroup
*from
;
4789 struct task_struct
*leader
, *p
;
4790 struct mm_struct
*mm
;
4791 unsigned long move_flags
;
4794 /* charge immigration isn't supported on the default hierarchy */
4795 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
4799 * Multi-process migrations only happen on the default hierarchy
4800 * where charge immigration is not used. Perform charge
4801 * immigration if @tset contains a leader and whine if there are
4805 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
4808 memcg
= mem_cgroup_from_css(css
);
4814 * We are now commited to this value whatever it is. Changes in this
4815 * tunable will only affect upcoming migrations, not the current one.
4816 * So we need to save it, and keep it going.
4818 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
4822 from
= mem_cgroup_from_task(p
);
4824 VM_BUG_ON(from
== memcg
);
4826 mm
= get_task_mm(p
);
4829 /* We move charges only when we move a owner of the mm */
4830 if (mm
->owner
== p
) {
4833 VM_BUG_ON(mc
.precharge
);
4834 VM_BUG_ON(mc
.moved_charge
);
4835 VM_BUG_ON(mc
.moved_swap
);
4837 spin_lock(&mc
.lock
);
4841 mc
.flags
= move_flags
;
4842 spin_unlock(&mc
.lock
);
4843 /* We set mc.moving_task later */
4845 ret
= mem_cgroup_precharge_mc(mm
);
4847 mem_cgroup_clear_mc();
4854 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4857 mem_cgroup_clear_mc();
4860 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4861 unsigned long addr
, unsigned long end
,
4862 struct mm_walk
*walk
)
4865 struct vm_area_struct
*vma
= walk
->vma
;
4868 enum mc_target_type target_type
;
4869 union mc_target target
;
4872 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4874 if (mc
.precharge
< HPAGE_PMD_NR
) {
4878 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
4879 if (target_type
== MC_TARGET_PAGE
) {
4881 if (!isolate_lru_page(page
)) {
4882 if (!mem_cgroup_move_account(page
, true,
4884 mc
.precharge
-= HPAGE_PMD_NR
;
4885 mc
.moved_charge
+= HPAGE_PMD_NR
;
4887 putback_lru_page(page
);
4895 if (pmd_trans_unstable(pmd
))
4898 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4899 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
4900 pte_t ptent
= *(pte
++);
4906 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
4907 case MC_TARGET_PAGE
:
4910 * We can have a part of the split pmd here. Moving it
4911 * can be done but it would be too convoluted so simply
4912 * ignore such a partial THP and keep it in original
4913 * memcg. There should be somebody mapping the head.
4915 if (PageTransCompound(page
))
4917 if (isolate_lru_page(page
))
4919 if (!mem_cgroup_move_account(page
, false,
4922 /* we uncharge from mc.from later. */
4925 putback_lru_page(page
);
4926 put
: /* get_mctgt_type() gets the page */
4929 case MC_TARGET_SWAP
:
4931 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
4933 /* we fixup refcnts and charges later. */
4941 pte_unmap_unlock(pte
- 1, ptl
);
4946 * We have consumed all precharges we got in can_attach().
4947 * We try charge one by one, but don't do any additional
4948 * charges to mc.to if we have failed in charge once in attach()
4951 ret
= mem_cgroup_do_precharge(1);
4959 static void mem_cgroup_move_charge(void)
4961 struct mm_walk mem_cgroup_move_charge_walk
= {
4962 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
4966 lru_add_drain_all();
4968 * Signal lock_page_memcg() to take the memcg's move_lock
4969 * while we're moving its pages to another memcg. Then wait
4970 * for already started RCU-only updates to finish.
4972 atomic_inc(&mc
.from
->moving_account
);
4975 if (unlikely(!down_read_trylock(&mc
.mm
->mmap_sem
))) {
4977 * Someone who are holding the mmap_sem might be waiting in
4978 * waitq. So we cancel all extra charges, wake up all waiters,
4979 * and retry. Because we cancel precharges, we might not be able
4980 * to move enough charges, but moving charge is a best-effort
4981 * feature anyway, so it wouldn't be a big problem.
4983 __mem_cgroup_clear_mc();
4988 * When we have consumed all precharges and failed in doing
4989 * additional charge, the page walk just aborts.
4991 walk_page_range(0, mc
.mm
->highest_vm_end
, &mem_cgroup_move_charge_walk
);
4993 up_read(&mc
.mm
->mmap_sem
);
4994 atomic_dec(&mc
.from
->moving_account
);
4997 static void mem_cgroup_move_task(void)
5000 mem_cgroup_move_charge();
5001 mem_cgroup_clear_mc();
5004 #else /* !CONFIG_MMU */
5005 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5009 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5012 static void mem_cgroup_move_task(void)
5018 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5019 * to verify whether we're attached to the default hierarchy on each mount
5022 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
5025 * use_hierarchy is forced on the default hierarchy. cgroup core
5026 * guarantees that @root doesn't have any children, so turning it
5027 * on for the root memcg is enough.
5029 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5030 root_mem_cgroup
->use_hierarchy
= true;
5032 root_mem_cgroup
->use_hierarchy
= false;
5035 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
5038 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5040 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
5043 static int memory_low_show(struct seq_file
*m
, void *v
)
5045 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5046 unsigned long low
= READ_ONCE(memcg
->low
);
5048 if (low
== PAGE_COUNTER_MAX
)
5049 seq_puts(m
, "max\n");
5051 seq_printf(m
, "%llu\n", (u64
)low
* PAGE_SIZE
);
5056 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
5057 char *buf
, size_t nbytes
, loff_t off
)
5059 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5063 buf
= strstrip(buf
);
5064 err
= page_counter_memparse(buf
, "max", &low
);
5073 static int memory_high_show(struct seq_file
*m
, void *v
)
5075 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5076 unsigned long high
= READ_ONCE(memcg
->high
);
5078 if (high
== PAGE_COUNTER_MAX
)
5079 seq_puts(m
, "max\n");
5081 seq_printf(m
, "%llu\n", (u64
)high
* PAGE_SIZE
);
5086 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
5087 char *buf
, size_t nbytes
, loff_t off
)
5089 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5090 unsigned long nr_pages
;
5094 buf
= strstrip(buf
);
5095 err
= page_counter_memparse(buf
, "max", &high
);
5101 nr_pages
= page_counter_read(&memcg
->memory
);
5102 if (nr_pages
> high
)
5103 try_to_free_mem_cgroup_pages(memcg
, nr_pages
- high
,
5106 memcg_wb_domain_size_changed(memcg
);
5110 static int memory_max_show(struct seq_file
*m
, void *v
)
5112 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5113 unsigned long max
= READ_ONCE(memcg
->memory
.limit
);
5115 if (max
== PAGE_COUNTER_MAX
)
5116 seq_puts(m
, "max\n");
5118 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5123 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5124 char *buf
, size_t nbytes
, loff_t off
)
5126 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5127 unsigned int nr_reclaims
= MEM_CGROUP_RECLAIM_RETRIES
;
5128 bool drained
= false;
5132 buf
= strstrip(buf
);
5133 err
= page_counter_memparse(buf
, "max", &max
);
5137 xchg(&memcg
->memory
.limit
, max
);
5140 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
5142 if (nr_pages
<= max
)
5145 if (signal_pending(current
)) {
5151 drain_all_stock(memcg
);
5157 if (!try_to_free_mem_cgroup_pages(memcg
, nr_pages
- max
,
5163 mem_cgroup_events(memcg
, MEMCG_OOM
, 1);
5164 if (!mem_cgroup_out_of_memory(memcg
, GFP_KERNEL
, 0))
5168 memcg_wb_domain_size_changed(memcg
);
5172 static int memory_events_show(struct seq_file
*m
, void *v
)
5174 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5176 seq_printf(m
, "low %lu\n", mem_cgroup_read_events(memcg
, MEMCG_LOW
));
5177 seq_printf(m
, "high %lu\n", mem_cgroup_read_events(memcg
, MEMCG_HIGH
));
5178 seq_printf(m
, "max %lu\n", mem_cgroup_read_events(memcg
, MEMCG_MAX
));
5179 seq_printf(m
, "oom %lu\n", mem_cgroup_read_events(memcg
, MEMCG_OOM
));
5184 static int memory_stat_show(struct seq_file
*m
, void *v
)
5186 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5187 unsigned long stat
[MEMCG_NR_STAT
];
5188 unsigned long events
[MEMCG_NR_EVENTS
];
5192 * Provide statistics on the state of the memory subsystem as
5193 * well as cumulative event counters that show past behavior.
5195 * This list is ordered following a combination of these gradients:
5196 * 1) generic big picture -> specifics and details
5197 * 2) reflecting userspace activity -> reflecting kernel heuristics
5199 * Current memory state:
5202 tree_stat(memcg
, stat
);
5203 tree_events(memcg
, events
);
5205 seq_printf(m
, "anon %llu\n",
5206 (u64
)stat
[MEM_CGROUP_STAT_RSS
] * PAGE_SIZE
);
5207 seq_printf(m
, "file %llu\n",
5208 (u64
)stat
[MEM_CGROUP_STAT_CACHE
] * PAGE_SIZE
);
5209 seq_printf(m
, "kernel_stack %llu\n",
5210 (u64
)stat
[MEMCG_KERNEL_STACK_KB
] * 1024);
5211 seq_printf(m
, "slab %llu\n",
5212 (u64
)(stat
[MEMCG_SLAB_RECLAIMABLE
] +
5213 stat
[MEMCG_SLAB_UNRECLAIMABLE
]) * PAGE_SIZE
);
5214 seq_printf(m
, "sock %llu\n",
5215 (u64
)stat
[MEMCG_SOCK
] * PAGE_SIZE
);
5217 seq_printf(m
, "file_mapped %llu\n",
5218 (u64
)stat
[MEM_CGROUP_STAT_FILE_MAPPED
] * PAGE_SIZE
);
5219 seq_printf(m
, "file_dirty %llu\n",
5220 (u64
)stat
[MEM_CGROUP_STAT_DIRTY
] * PAGE_SIZE
);
5221 seq_printf(m
, "file_writeback %llu\n",
5222 (u64
)stat
[MEM_CGROUP_STAT_WRITEBACK
] * PAGE_SIZE
);
5224 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5225 struct mem_cgroup
*mi
;
5226 unsigned long val
= 0;
5228 for_each_mem_cgroup_tree(mi
, memcg
)
5229 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
));
5230 seq_printf(m
, "%s %llu\n",
5231 mem_cgroup_lru_names
[i
], (u64
)val
* PAGE_SIZE
);
5234 seq_printf(m
, "slab_reclaimable %llu\n",
5235 (u64
)stat
[MEMCG_SLAB_RECLAIMABLE
] * PAGE_SIZE
);
5236 seq_printf(m
, "slab_unreclaimable %llu\n",
5237 (u64
)stat
[MEMCG_SLAB_UNRECLAIMABLE
] * PAGE_SIZE
);
5239 /* Accumulated memory events */
5241 seq_printf(m
, "pgfault %lu\n",
5242 events
[MEM_CGROUP_EVENTS_PGFAULT
]);
5243 seq_printf(m
, "pgmajfault %lu\n",
5244 events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
5249 static struct cftype memory_files
[] = {
5252 .flags
= CFTYPE_NOT_ON_ROOT
,
5253 .read_u64
= memory_current_read
,
5257 .flags
= CFTYPE_NOT_ON_ROOT
,
5258 .seq_show
= memory_low_show
,
5259 .write
= memory_low_write
,
5263 .flags
= CFTYPE_NOT_ON_ROOT
,
5264 .seq_show
= memory_high_show
,
5265 .write
= memory_high_write
,
5269 .flags
= CFTYPE_NOT_ON_ROOT
,
5270 .seq_show
= memory_max_show
,
5271 .write
= memory_max_write
,
5275 .flags
= CFTYPE_NOT_ON_ROOT
,
5276 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
5277 .seq_show
= memory_events_show
,
5281 .flags
= CFTYPE_NOT_ON_ROOT
,
5282 .seq_show
= memory_stat_show
,
5287 struct cgroup_subsys memory_cgrp_subsys
= {
5288 .css_alloc
= mem_cgroup_css_alloc
,
5289 .css_online
= mem_cgroup_css_online
,
5290 .css_offline
= mem_cgroup_css_offline
,
5291 .css_released
= mem_cgroup_css_released
,
5292 .css_free
= mem_cgroup_css_free
,
5293 .css_reset
= mem_cgroup_css_reset
,
5294 .can_attach
= mem_cgroup_can_attach
,
5295 .cancel_attach
= mem_cgroup_cancel_attach
,
5296 .post_attach
= mem_cgroup_move_task
,
5297 .bind
= mem_cgroup_bind
,
5298 .dfl_cftypes
= memory_files
,
5299 .legacy_cftypes
= mem_cgroup_legacy_files
,
5304 * mem_cgroup_low - check if memory consumption is below the normal range
5305 * @root: the highest ancestor to consider
5306 * @memcg: the memory cgroup to check
5308 * Returns %true if memory consumption of @memcg, and that of all
5309 * configurable ancestors up to @root, is below the normal range.
5311 bool mem_cgroup_low(struct mem_cgroup
*root
, struct mem_cgroup
*memcg
)
5313 if (mem_cgroup_disabled())
5317 * The toplevel group doesn't have a configurable range, so
5318 * it's never low when looked at directly, and it is not
5319 * considered an ancestor when assessing the hierarchy.
5322 if (memcg
== root_mem_cgroup
)
5325 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5328 while (memcg
!= root
) {
5329 memcg
= parent_mem_cgroup(memcg
);
5331 if (memcg
== root_mem_cgroup
)
5334 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5341 * mem_cgroup_try_charge - try charging a page
5342 * @page: page to charge
5343 * @mm: mm context of the victim
5344 * @gfp_mask: reclaim mode
5345 * @memcgp: charged memcg return
5346 * @compound: charge the page as compound or small page
5348 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5349 * pages according to @gfp_mask if necessary.
5351 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5352 * Otherwise, an error code is returned.
5354 * After page->mapping has been set up, the caller must finalize the
5355 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5356 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5358 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
5359 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
5362 struct mem_cgroup
*memcg
= NULL
;
5363 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5366 if (mem_cgroup_disabled())
5369 if (PageSwapCache(page
)) {
5371 * Every swap fault against a single page tries to charge the
5372 * page, bail as early as possible. shmem_unuse() encounters
5373 * already charged pages, too. The USED bit is protected by
5374 * the page lock, which serializes swap cache removal, which
5375 * in turn serializes uncharging.
5377 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5378 if (page
->mem_cgroup
)
5381 if (do_swap_account
) {
5382 swp_entry_t ent
= { .val
= page_private(page
), };
5383 unsigned short id
= lookup_swap_cgroup_id(ent
);
5386 memcg
= mem_cgroup_from_id(id
);
5387 if (memcg
&& !css_tryget_online(&memcg
->css
))
5394 memcg
= get_mem_cgroup_from_mm(mm
);
5396 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
5398 css_put(&memcg
->css
);
5405 * mem_cgroup_commit_charge - commit a page charge
5406 * @page: page to charge
5407 * @memcg: memcg to charge the page to
5408 * @lrucare: page might be on LRU already
5409 * @compound: charge the page as compound or small page
5411 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5412 * after page->mapping has been set up. This must happen atomically
5413 * as part of the page instantiation, i.e. under the page table lock
5414 * for anonymous pages, under the page lock for page and swap cache.
5416 * In addition, the page must not be on the LRU during the commit, to
5417 * prevent racing with task migration. If it might be, use @lrucare.
5419 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5421 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5422 bool lrucare
, bool compound
)
5424 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5426 VM_BUG_ON_PAGE(!page
->mapping
, page
);
5427 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
5429 if (mem_cgroup_disabled())
5432 * Swap faults will attempt to charge the same page multiple
5433 * times. But reuse_swap_page() might have removed the page
5434 * from swapcache already, so we can't check PageSwapCache().
5439 commit_charge(page
, memcg
, lrucare
);
5441 local_irq_disable();
5442 mem_cgroup_charge_statistics(memcg
, page
, compound
, nr_pages
);
5443 memcg_check_events(memcg
, page
);
5446 if (do_memsw_account() && PageSwapCache(page
)) {
5447 swp_entry_t entry
= { .val
= page_private(page
) };
5449 * The swap entry might not get freed for a long time,
5450 * let's not wait for it. The page already received a
5451 * memory+swap charge, drop the swap entry duplicate.
5453 mem_cgroup_uncharge_swap(entry
);
5458 * mem_cgroup_cancel_charge - cancel a page charge
5459 * @page: page to charge
5460 * @memcg: memcg to charge the page to
5461 * @compound: charge the page as compound or small page
5463 * Cancel a charge transaction started by mem_cgroup_try_charge().
5465 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5468 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5470 if (mem_cgroup_disabled())
5473 * Swap faults will attempt to charge the same page multiple
5474 * times. But reuse_swap_page() might have removed the page
5475 * from swapcache already, so we can't check PageSwapCache().
5480 cancel_charge(memcg
, nr_pages
);
5483 static void uncharge_batch(struct mem_cgroup
*memcg
, unsigned long pgpgout
,
5484 unsigned long nr_anon
, unsigned long nr_file
,
5485 unsigned long nr_huge
, unsigned long nr_kmem
,
5486 struct page
*dummy_page
)
5488 unsigned long nr_pages
= nr_anon
+ nr_file
+ nr_kmem
;
5489 unsigned long flags
;
5491 if (!mem_cgroup_is_root(memcg
)) {
5492 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5493 if (do_memsw_account())
5494 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
5495 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && nr_kmem
)
5496 page_counter_uncharge(&memcg
->kmem
, nr_kmem
);
5497 memcg_oom_recover(memcg
);
5500 local_irq_save(flags
);
5501 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_anon
);
5502 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_file
);
5503 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
], nr_huge
);
5504 __this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
], pgpgout
);
5505 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
5506 memcg_check_events(memcg
, dummy_page
);
5507 local_irq_restore(flags
);
5509 if (!mem_cgroup_is_root(memcg
))
5510 css_put_many(&memcg
->css
, nr_pages
);
5513 static void uncharge_list(struct list_head
*page_list
)
5515 struct mem_cgroup
*memcg
= NULL
;
5516 unsigned long nr_anon
= 0;
5517 unsigned long nr_file
= 0;
5518 unsigned long nr_huge
= 0;
5519 unsigned long nr_kmem
= 0;
5520 unsigned long pgpgout
= 0;
5521 struct list_head
*next
;
5525 * Note that the list can be a single page->lru; hence the
5526 * do-while loop instead of a simple list_for_each_entry().
5528 next
= page_list
->next
;
5530 page
= list_entry(next
, struct page
, lru
);
5531 next
= page
->lru
.next
;
5533 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5534 VM_BUG_ON_PAGE(page_count(page
), page
);
5536 if (!page
->mem_cgroup
)
5540 * Nobody should be changing or seriously looking at
5541 * page->mem_cgroup at this point, we have fully
5542 * exclusive access to the page.
5545 if (memcg
!= page
->mem_cgroup
) {
5547 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5548 nr_huge
, nr_kmem
, page
);
5549 pgpgout
= nr_anon
= nr_file
=
5550 nr_huge
= nr_kmem
= 0;
5552 memcg
= page
->mem_cgroup
;
5555 if (!PageKmemcg(page
)) {
5556 unsigned int nr_pages
= 1;
5558 if (PageTransHuge(page
)) {
5559 nr_pages
<<= compound_order(page
);
5560 nr_huge
+= nr_pages
;
5563 nr_anon
+= nr_pages
;
5565 nr_file
+= nr_pages
;
5568 nr_kmem
+= 1 << compound_order(page
);
5569 __ClearPageKmemcg(page
);
5572 page
->mem_cgroup
= NULL
;
5573 } while (next
!= page_list
);
5576 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5577 nr_huge
, nr_kmem
, page
);
5581 * mem_cgroup_uncharge - uncharge a page
5582 * @page: page to uncharge
5584 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5585 * mem_cgroup_commit_charge().
5587 void mem_cgroup_uncharge(struct page
*page
)
5589 if (mem_cgroup_disabled())
5592 /* Don't touch page->lru of any random page, pre-check: */
5593 if (!page
->mem_cgroup
)
5596 INIT_LIST_HEAD(&page
->lru
);
5597 uncharge_list(&page
->lru
);
5601 * mem_cgroup_uncharge_list - uncharge a list of page
5602 * @page_list: list of pages to uncharge
5604 * Uncharge a list of pages previously charged with
5605 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5607 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
5609 if (mem_cgroup_disabled())
5612 if (!list_empty(page_list
))
5613 uncharge_list(page_list
);
5617 * mem_cgroup_migrate - charge a page's replacement
5618 * @oldpage: currently circulating page
5619 * @newpage: replacement page
5621 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5622 * be uncharged upon free.
5624 * Both pages must be locked, @newpage->mapping must be set up.
5626 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
)
5628 struct mem_cgroup
*memcg
;
5629 unsigned int nr_pages
;
5631 unsigned long flags
;
5633 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
5634 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
5635 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
5636 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
5639 if (mem_cgroup_disabled())
5642 /* Page cache replacement: new page already charged? */
5643 if (newpage
->mem_cgroup
)
5646 /* Swapcache readahead pages can get replaced before being charged */
5647 memcg
= oldpage
->mem_cgroup
;
5651 /* Force-charge the new page. The old one will be freed soon */
5652 compound
= PageTransHuge(newpage
);
5653 nr_pages
= compound
? hpage_nr_pages(newpage
) : 1;
5655 page_counter_charge(&memcg
->memory
, nr_pages
);
5656 if (do_memsw_account())
5657 page_counter_charge(&memcg
->memsw
, nr_pages
);
5658 css_get_many(&memcg
->css
, nr_pages
);
5660 commit_charge(newpage
, memcg
, false);
5662 local_irq_save(flags
);
5663 mem_cgroup_charge_statistics(memcg
, newpage
, compound
, nr_pages
);
5664 memcg_check_events(memcg
, newpage
);
5665 local_irq_restore(flags
);
5668 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key
);
5669 EXPORT_SYMBOL(memcg_sockets_enabled_key
);
5671 void mem_cgroup_sk_alloc(struct sock
*sk
)
5673 struct mem_cgroup
*memcg
;
5675 if (!mem_cgroup_sockets_enabled
)
5679 * Socket cloning can throw us here with sk_memcg already
5680 * filled. It won't however, necessarily happen from
5681 * process context. So the test for root memcg given
5682 * the current task's memcg won't help us in this case.
5684 * Respecting the original socket's memcg is a better
5685 * decision in this case.
5688 BUG_ON(mem_cgroup_is_root(sk
->sk_memcg
));
5689 css_get(&sk
->sk_memcg
->css
);
5694 memcg
= mem_cgroup_from_task(current
);
5695 if (memcg
== root_mem_cgroup
)
5697 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !memcg
->tcpmem_active
)
5699 if (css_tryget_online(&memcg
->css
))
5700 sk
->sk_memcg
= memcg
;
5705 void mem_cgroup_sk_free(struct sock
*sk
)
5708 css_put(&sk
->sk_memcg
->css
);
5712 * mem_cgroup_charge_skmem - charge socket memory
5713 * @memcg: memcg to charge
5714 * @nr_pages: number of pages to charge
5716 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5717 * @memcg's configured limit, %false if the charge had to be forced.
5719 bool mem_cgroup_charge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5721 gfp_t gfp_mask
= GFP_KERNEL
;
5723 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5724 struct page_counter
*fail
;
5726 if (page_counter_try_charge(&memcg
->tcpmem
, nr_pages
, &fail
)) {
5727 memcg
->tcpmem_pressure
= 0;
5730 page_counter_charge(&memcg
->tcpmem
, nr_pages
);
5731 memcg
->tcpmem_pressure
= 1;
5735 /* Don't block in the packet receive path */
5737 gfp_mask
= GFP_NOWAIT
;
5739 this_cpu_add(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5741 if (try_charge(memcg
, gfp_mask
, nr_pages
) == 0)
5744 try_charge(memcg
, gfp_mask
|__GFP_NOFAIL
, nr_pages
);
5749 * mem_cgroup_uncharge_skmem - uncharge socket memory
5750 * @memcg - memcg to uncharge
5751 * @nr_pages - number of pages to uncharge
5753 void mem_cgroup_uncharge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5755 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5756 page_counter_uncharge(&memcg
->tcpmem
, nr_pages
);
5760 this_cpu_sub(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5762 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5763 css_put_many(&memcg
->css
, nr_pages
);
5766 static int __init
cgroup_memory(char *s
)
5770 while ((token
= strsep(&s
, ",")) != NULL
) {
5773 if (!strcmp(token
, "nosocket"))
5774 cgroup_memory_nosocket
= true;
5775 if (!strcmp(token
, "nokmem"))
5776 cgroup_memory_nokmem
= true;
5780 __setup("cgroup.memory=", cgroup_memory
);
5783 * subsys_initcall() for memory controller.
5785 * Some parts like hotcpu_notifier() have to be initialized from this context
5786 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5787 * everything that doesn't depend on a specific mem_cgroup structure should
5788 * be initialized from here.
5790 static int __init
mem_cgroup_init(void)
5796 * Kmem cache creation is mostly done with the slab_mutex held,
5797 * so use a special workqueue to avoid stalling all worker
5798 * threads in case lots of cgroups are created simultaneously.
5800 memcg_kmem_cache_create_wq
=
5801 alloc_ordered_workqueue("memcg_kmem_cache_create", 0);
5802 BUG_ON(!memcg_kmem_cache_create_wq
);
5805 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
5807 for_each_possible_cpu(cpu
)
5808 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
5811 for_each_node(node
) {
5812 struct mem_cgroup_tree_per_node
*rtpn
;
5814 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
5815 node_online(node
) ? node
: NUMA_NO_NODE
);
5817 rtpn
->rb_root
= RB_ROOT
;
5818 spin_lock_init(&rtpn
->lock
);
5819 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
5824 subsys_initcall(mem_cgroup_init
);
5826 #ifdef CONFIG_MEMCG_SWAP
5827 static struct mem_cgroup
*mem_cgroup_id_get_online(struct mem_cgroup
*memcg
)
5829 while (!atomic_inc_not_zero(&memcg
->id
.ref
)) {
5831 * The root cgroup cannot be destroyed, so it's refcount must
5834 if (WARN_ON_ONCE(memcg
== root_mem_cgroup
)) {
5838 memcg
= parent_mem_cgroup(memcg
);
5840 memcg
= root_mem_cgroup
;
5846 * mem_cgroup_swapout - transfer a memsw charge to swap
5847 * @page: page whose memsw charge to transfer
5848 * @entry: swap entry to move the charge to
5850 * Transfer the memsw charge of @page to @entry.
5852 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
5854 struct mem_cgroup
*memcg
, *swap_memcg
;
5855 unsigned short oldid
;
5857 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5858 VM_BUG_ON_PAGE(page_count(page
), page
);
5860 if (!do_memsw_account())
5863 memcg
= page
->mem_cgroup
;
5865 /* Readahead page, never charged */
5870 * In case the memcg owning these pages has been offlined and doesn't
5871 * have an ID allocated to it anymore, charge the closest online
5872 * ancestor for the swap instead and transfer the memory+swap charge.
5874 swap_memcg
= mem_cgroup_id_get_online(memcg
);
5875 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(swap_memcg
));
5876 VM_BUG_ON_PAGE(oldid
, page
);
5877 mem_cgroup_swap_statistics(swap_memcg
, true);
5879 page
->mem_cgroup
= NULL
;
5881 if (!mem_cgroup_is_root(memcg
))
5882 page_counter_uncharge(&memcg
->memory
, 1);
5884 if (memcg
!= swap_memcg
) {
5885 if (!mem_cgroup_is_root(swap_memcg
))
5886 page_counter_charge(&swap_memcg
->memsw
, 1);
5887 page_counter_uncharge(&memcg
->memsw
, 1);
5891 * Interrupts should be disabled here because the caller holds the
5892 * mapping->tree_lock lock which is taken with interrupts-off. It is
5893 * important here to have the interrupts disabled because it is the
5894 * only synchronisation we have for udpating the per-CPU variables.
5896 VM_BUG_ON(!irqs_disabled());
5897 mem_cgroup_charge_statistics(memcg
, page
, false, -1);
5898 memcg_check_events(memcg
, page
);
5900 if (!mem_cgroup_is_root(memcg
))
5901 css_put(&memcg
->css
);
5905 * mem_cgroup_try_charge_swap - try charging a swap entry
5906 * @page: page being added to swap
5907 * @entry: swap entry to charge
5909 * Try to charge @entry to the memcg that @page belongs to.
5911 * Returns 0 on success, -ENOMEM on failure.
5913 int mem_cgroup_try_charge_swap(struct page
*page
, swp_entry_t entry
)
5915 struct mem_cgroup
*memcg
;
5916 struct page_counter
*counter
;
5917 unsigned short oldid
;
5919 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) || !do_swap_account
)
5922 memcg
= page
->mem_cgroup
;
5924 /* Readahead page, never charged */
5928 memcg
= mem_cgroup_id_get_online(memcg
);
5930 if (!mem_cgroup_is_root(memcg
) &&
5931 !page_counter_try_charge(&memcg
->swap
, 1, &counter
)) {
5932 mem_cgroup_id_put(memcg
);
5936 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
));
5937 VM_BUG_ON_PAGE(oldid
, page
);
5938 mem_cgroup_swap_statistics(memcg
, true);
5944 * mem_cgroup_uncharge_swap - uncharge a swap entry
5945 * @entry: swap entry to uncharge
5947 * Drop the swap charge associated with @entry.
5949 void mem_cgroup_uncharge_swap(swp_entry_t entry
)
5951 struct mem_cgroup
*memcg
;
5954 if (!do_swap_account
)
5957 id
= swap_cgroup_record(entry
, 0);
5959 memcg
= mem_cgroup_from_id(id
);
5961 if (!mem_cgroup_is_root(memcg
)) {
5962 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5963 page_counter_uncharge(&memcg
->swap
, 1);
5965 page_counter_uncharge(&memcg
->memsw
, 1);
5967 mem_cgroup_swap_statistics(memcg
, false);
5968 mem_cgroup_id_put(memcg
);
5973 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup
*memcg
)
5975 long nr_swap_pages
= get_nr_swap_pages();
5977 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5978 return nr_swap_pages
;
5979 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
5980 nr_swap_pages
= min_t(long, nr_swap_pages
,
5981 READ_ONCE(memcg
->swap
.limit
) -
5982 page_counter_read(&memcg
->swap
));
5983 return nr_swap_pages
;
5986 bool mem_cgroup_swap_full(struct page
*page
)
5988 struct mem_cgroup
*memcg
;
5990 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5994 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5997 memcg
= page
->mem_cgroup
;
6001 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6002 if (page_counter_read(&memcg
->swap
) * 2 >= memcg
->swap
.limit
)
6008 /* for remember boot option*/
6009 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6010 static int really_do_swap_account __initdata
= 1;
6012 static int really_do_swap_account __initdata
;
6015 static int __init
enable_swap_account(char *s
)
6017 if (!strcmp(s
, "1"))
6018 really_do_swap_account
= 1;
6019 else if (!strcmp(s
, "0"))
6020 really_do_swap_account
= 0;
6023 __setup("swapaccount=", enable_swap_account
);
6025 static u64
swap_current_read(struct cgroup_subsys_state
*css
,
6028 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6030 return (u64
)page_counter_read(&memcg
->swap
) * PAGE_SIZE
;
6033 static int swap_max_show(struct seq_file
*m
, void *v
)
6035 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
6036 unsigned long max
= READ_ONCE(memcg
->swap
.limit
);
6038 if (max
== PAGE_COUNTER_MAX
)
6039 seq_puts(m
, "max\n");
6041 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
6046 static ssize_t
swap_max_write(struct kernfs_open_file
*of
,
6047 char *buf
, size_t nbytes
, loff_t off
)
6049 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
6053 buf
= strstrip(buf
);
6054 err
= page_counter_memparse(buf
, "max", &max
);
6058 mutex_lock(&memcg_limit_mutex
);
6059 err
= page_counter_limit(&memcg
->swap
, max
);
6060 mutex_unlock(&memcg_limit_mutex
);
6067 static struct cftype swap_files
[] = {
6069 .name
= "swap.current",
6070 .flags
= CFTYPE_NOT_ON_ROOT
,
6071 .read_u64
= swap_current_read
,
6075 .flags
= CFTYPE_NOT_ON_ROOT
,
6076 .seq_show
= swap_max_show
,
6077 .write
= swap_max_write
,
6082 static struct cftype memsw_cgroup_files
[] = {
6084 .name
= "memsw.usage_in_bytes",
6085 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
6086 .read_u64
= mem_cgroup_read_u64
,
6089 .name
= "memsw.max_usage_in_bytes",
6090 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
6091 .write
= mem_cgroup_reset
,
6092 .read_u64
= mem_cgroup_read_u64
,
6095 .name
= "memsw.limit_in_bytes",
6096 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
6097 .write
= mem_cgroup_write
,
6098 .read_u64
= mem_cgroup_read_u64
,
6101 .name
= "memsw.failcnt",
6102 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
6103 .write
= mem_cgroup_reset
,
6104 .read_u64
= mem_cgroup_read_u64
,
6106 { }, /* terminate */
6109 static int __init
mem_cgroup_swap_init(void)
6111 if (!mem_cgroup_disabled() && really_do_swap_account
) {
6112 do_swap_account
= 1;
6113 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys
,
6115 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
6116 memsw_cgroup_files
));
6120 subsys_initcall(mem_cgroup_swap_init
);
6122 #endif /* CONFIG_MEMCG_SWAP */