ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / arch / x86 / platform / efi / efi.c
blob899e393d8e7326352f29d64cfc27c9b1820e0314
1 /*
2 * Common EFI (Extensible Firmware Interface) support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
5 * Copyright (C) 1999 VA Linux Systems
6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
8 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Stephane Eranian <eranian@hpl.hp.com>
10 * Copyright (C) 2005-2008 Intel Co.
11 * Fenghua Yu <fenghua.yu@intel.com>
12 * Bibo Mao <bibo.mao@intel.com>
13 * Chandramouli Narayanan <mouli@linux.intel.com>
14 * Huang Ying <ying.huang@intel.com>
16 * Copied from efi_32.c to eliminate the duplicated code between EFI
17 * 32/64 support code. --ying 2007-10-26
19 * All EFI Runtime Services are not implemented yet as EFI only
20 * supports physical mode addressing on SoftSDV. This is to be fixed
21 * in a future version. --drummond 1999-07-20
23 * Implemented EFI runtime services and virtual mode calls. --davidm
25 * Goutham Rao: <goutham.rao@intel.com>
26 * Skip non-WB memory and ignore empty memory ranges.
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/efi.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/spinlock.h>
35 #include <linux/uaccess.h>
36 #include <linux/time.h>
37 #include <linux/io.h>
38 #include <linux/reboot.h>
39 #include <linux/bcd.h>
41 #include <asm/setup.h>
42 #include <asm/efi.h>
43 #include <asm/time.h>
44 #include <asm/cacheflush.h>
45 #include <asm/tlbflush.h>
46 #include <asm/x86_init.h>
48 #define EFI_DEBUG 1
49 #define PFX "EFI: "
51 int efi_enabled;
52 EXPORT_SYMBOL(efi_enabled);
54 struct efi efi;
55 EXPORT_SYMBOL(efi);
57 struct efi_memory_map memmap;
59 static struct efi efi_phys __initdata;
60 static efi_system_table_t efi_systab __initdata;
62 static int __init setup_noefi(char *arg)
64 efi_enabled = 0;
65 return 0;
67 early_param("noefi", setup_noefi);
69 int add_efi_memmap;
70 EXPORT_SYMBOL(add_efi_memmap);
72 static int __init setup_add_efi_memmap(char *arg)
74 add_efi_memmap = 1;
75 return 0;
77 early_param("add_efi_memmap", setup_add_efi_memmap);
80 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
82 return efi_call_virt2(get_time, tm, tc);
85 static efi_status_t virt_efi_set_time(efi_time_t *tm)
87 return efi_call_virt1(set_time, tm);
90 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
91 efi_bool_t *pending,
92 efi_time_t *tm)
94 return efi_call_virt3(get_wakeup_time,
95 enabled, pending, tm);
98 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
100 return efi_call_virt2(set_wakeup_time,
101 enabled, tm);
104 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
105 efi_guid_t *vendor,
106 u32 *attr,
107 unsigned long *data_size,
108 void *data)
110 return efi_call_virt5(get_variable,
111 name, vendor, attr,
112 data_size, data);
115 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
116 efi_char16_t *name,
117 efi_guid_t *vendor)
119 return efi_call_virt3(get_next_variable,
120 name_size, name, vendor);
123 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
124 efi_guid_t *vendor,
125 unsigned long attr,
126 unsigned long data_size,
127 void *data)
129 return efi_call_virt5(set_variable,
130 name, vendor, attr,
131 data_size, data);
134 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
136 return efi_call_virt1(get_next_high_mono_count, count);
139 static void virt_efi_reset_system(int reset_type,
140 efi_status_t status,
141 unsigned long data_size,
142 efi_char16_t *data)
144 efi_call_virt4(reset_system, reset_type, status,
145 data_size, data);
148 static efi_status_t __init phys_efi_set_virtual_address_map(
149 unsigned long memory_map_size,
150 unsigned long descriptor_size,
151 u32 descriptor_version,
152 efi_memory_desc_t *virtual_map)
154 efi_status_t status;
156 efi_call_phys_prelog();
157 status = efi_call_phys4(efi_phys.set_virtual_address_map,
158 memory_map_size, descriptor_size,
159 descriptor_version, virtual_map);
160 efi_call_phys_epilog();
161 return status;
164 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
165 efi_time_cap_t *tc)
167 efi_status_t status;
169 efi_call_phys_prelog();
170 status = efi_call_phys2(efi_phys.get_time, tm, tc);
171 efi_call_phys_epilog();
172 return status;
175 int efi_set_rtc_mmss(unsigned long nowtime)
177 int real_seconds, real_minutes;
178 efi_status_t status;
179 efi_time_t eft;
180 efi_time_cap_t cap;
182 status = efi.get_time(&eft, &cap);
183 if (status != EFI_SUCCESS) {
184 printk(KERN_ERR "Oops: efitime: can't read time!\n");
185 return -1;
188 real_seconds = nowtime % 60;
189 real_minutes = nowtime / 60;
190 if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
191 real_minutes += 30;
192 real_minutes %= 60;
193 eft.minute = real_minutes;
194 eft.second = real_seconds;
196 status = efi.set_time(&eft);
197 if (status != EFI_SUCCESS) {
198 printk(KERN_ERR "Oops: efitime: can't write time!\n");
199 return -1;
201 return 0;
204 unsigned long efi_get_time(void)
206 efi_status_t status;
207 efi_time_t eft;
208 efi_time_cap_t cap;
210 status = efi.get_time(&eft, &cap);
211 if (status != EFI_SUCCESS)
212 printk(KERN_ERR "Oops: efitime: can't read time!\n");
214 return mktime(eft.year, eft.month, eft.day, eft.hour,
215 eft.minute, eft.second);
219 * Tell the kernel about the EFI memory map. This might include
220 * more than the max 128 entries that can fit in the e820 legacy
221 * (zeropage) memory map.
224 static void __init do_add_efi_memmap(void)
226 void *p;
228 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
229 efi_memory_desc_t *md = p;
230 unsigned long long start = md->phys_addr;
231 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
232 int e820_type;
234 switch (md->type) {
235 case EFI_LOADER_CODE:
236 case EFI_LOADER_DATA:
237 case EFI_BOOT_SERVICES_CODE:
238 case EFI_BOOT_SERVICES_DATA:
239 case EFI_CONVENTIONAL_MEMORY:
240 if (md->attribute & EFI_MEMORY_WB)
241 e820_type = E820_RAM;
242 else
243 e820_type = E820_RESERVED;
244 break;
245 case EFI_ACPI_RECLAIM_MEMORY:
246 e820_type = E820_ACPI;
247 break;
248 case EFI_ACPI_MEMORY_NVS:
249 e820_type = E820_NVS;
250 break;
251 case EFI_UNUSABLE_MEMORY:
252 e820_type = E820_UNUSABLE;
253 break;
254 default:
256 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
257 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
258 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
260 e820_type = E820_RESERVED;
261 break;
263 e820_add_region(start, size, e820_type);
265 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
268 void __init efi_memblock_x86_reserve_range(void)
270 unsigned long pmap;
272 #ifdef CONFIG_X86_32
273 pmap = boot_params.efi_info.efi_memmap;
274 #else
275 pmap = (boot_params.efi_info.efi_memmap |
276 ((__u64)boot_params.efi_info.efi_memmap_hi<<32));
277 #endif
278 memmap.phys_map = (void *)pmap;
279 memmap.nr_map = boot_params.efi_info.efi_memmap_size /
280 boot_params.efi_info.efi_memdesc_size;
281 memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
282 memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
283 memblock_x86_reserve_range(pmap, pmap + memmap.nr_map * memmap.desc_size,
284 "EFI memmap");
287 #if EFI_DEBUG
288 static void __init print_efi_memmap(void)
290 efi_memory_desc_t *md;
291 void *p;
292 int i;
294 for (p = memmap.map, i = 0;
295 p < memmap.map_end;
296 p += memmap.desc_size, i++) {
297 md = p;
298 printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
299 "range=[0x%016llx-0x%016llx) (%lluMB)\n",
300 i, md->type, md->attribute, md->phys_addr,
301 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
302 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
305 #endif /* EFI_DEBUG */
307 void __init efi_reserve_boot_services(void)
309 void *p;
311 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
312 efi_memory_desc_t *md = p;
313 u64 start = md->phys_addr;
314 u64 size = md->num_pages << EFI_PAGE_SHIFT;
316 if (md->type != EFI_BOOT_SERVICES_CODE &&
317 md->type != EFI_BOOT_SERVICES_DATA)
318 continue;
319 /* Only reserve where possible:
320 * - Not within any already allocated areas
321 * - Not over any memory area (really needed, if above?)
322 * - Not within any part of the kernel
323 * - Not the bios reserved area
325 if ((start+size >= virt_to_phys(_text)
326 && start <= virt_to_phys(_end)) ||
327 !e820_all_mapped(start, start+size, E820_RAM) ||
328 memblock_x86_check_reserved_size(&start, &size,
329 1<<EFI_PAGE_SHIFT)) {
330 /* Could not reserve, skip it */
331 md->num_pages = 0;
332 memblock_dbg(PFX "Could not reserve boot range "
333 "[0x%010llx-0x%010llx]\n",
334 start, start+size-1);
335 } else
336 memblock_x86_reserve_range(start, start+size,
337 "EFI Boot");
341 static void __init efi_free_boot_services(void)
343 void *p;
345 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
346 efi_memory_desc_t *md = p;
347 unsigned long long start = md->phys_addr;
348 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
350 if (md->type != EFI_BOOT_SERVICES_CODE &&
351 md->type != EFI_BOOT_SERVICES_DATA)
352 continue;
354 /* Could not reserve boot area */
355 if (!size)
356 continue;
358 free_bootmem_late(start, size);
362 void __init efi_init(void)
364 efi_config_table_t *config_tables;
365 efi_runtime_services_t *runtime;
366 efi_char16_t *c16;
367 char vendor[100] = "unknown";
368 int i = 0;
369 void *tmp;
371 #ifdef CONFIG_X86_32
372 efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
373 #else
374 efi_phys.systab = (efi_system_table_t *)
375 (boot_params.efi_info.efi_systab |
376 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
377 #endif
379 efi.systab = early_ioremap((unsigned long)efi_phys.systab,
380 sizeof(efi_system_table_t));
381 if (efi.systab == NULL)
382 printk(KERN_ERR "Couldn't map the EFI system table!\n");
383 memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
384 early_iounmap(efi.systab, sizeof(efi_system_table_t));
385 efi.systab = &efi_systab;
388 * Verify the EFI Table
390 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
391 printk(KERN_ERR "EFI system table signature incorrect!\n");
392 if ((efi.systab->hdr.revision >> 16) == 0)
393 printk(KERN_ERR "Warning: EFI system table version "
394 "%d.%02d, expected 1.00 or greater!\n",
395 efi.systab->hdr.revision >> 16,
396 efi.systab->hdr.revision & 0xffff);
399 * Show what we know for posterity
401 c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
402 if (c16) {
403 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
404 vendor[i] = *c16++;
405 vendor[i] = '\0';
406 } else
407 printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
408 early_iounmap(tmp, 2);
410 printk(KERN_INFO "EFI v%u.%.02u by %s\n",
411 efi.systab->hdr.revision >> 16,
412 efi.systab->hdr.revision & 0xffff, vendor);
415 * Let's see what config tables the firmware passed to us.
417 config_tables = early_ioremap(
418 efi.systab->tables,
419 efi.systab->nr_tables * sizeof(efi_config_table_t));
420 if (config_tables == NULL)
421 printk(KERN_ERR "Could not map EFI Configuration Table!\n");
423 printk(KERN_INFO);
424 for (i = 0; i < efi.systab->nr_tables; i++) {
425 if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
426 efi.mps = config_tables[i].table;
427 printk(" MPS=0x%lx ", config_tables[i].table);
428 } else if (!efi_guidcmp(config_tables[i].guid,
429 ACPI_20_TABLE_GUID)) {
430 efi.acpi20 = config_tables[i].table;
431 printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
432 } else if (!efi_guidcmp(config_tables[i].guid,
433 ACPI_TABLE_GUID)) {
434 efi.acpi = config_tables[i].table;
435 printk(" ACPI=0x%lx ", config_tables[i].table);
436 } else if (!efi_guidcmp(config_tables[i].guid,
437 SMBIOS_TABLE_GUID)) {
438 efi.smbios = config_tables[i].table;
439 printk(" SMBIOS=0x%lx ", config_tables[i].table);
440 #ifdef CONFIG_X86_UV
441 } else if (!efi_guidcmp(config_tables[i].guid,
442 UV_SYSTEM_TABLE_GUID)) {
443 efi.uv_systab = config_tables[i].table;
444 printk(" UVsystab=0x%lx ", config_tables[i].table);
445 #endif
446 } else if (!efi_guidcmp(config_tables[i].guid,
447 HCDP_TABLE_GUID)) {
448 efi.hcdp = config_tables[i].table;
449 printk(" HCDP=0x%lx ", config_tables[i].table);
450 } else if (!efi_guidcmp(config_tables[i].guid,
451 UGA_IO_PROTOCOL_GUID)) {
452 efi.uga = config_tables[i].table;
453 printk(" UGA=0x%lx ", config_tables[i].table);
456 printk("\n");
457 early_iounmap(config_tables,
458 efi.systab->nr_tables * sizeof(efi_config_table_t));
461 * Check out the runtime services table. We need to map
462 * the runtime services table so that we can grab the physical
463 * address of several of the EFI runtime functions, needed to
464 * set the firmware into virtual mode.
466 runtime = early_ioremap((unsigned long)efi.systab->runtime,
467 sizeof(efi_runtime_services_t));
468 if (runtime != NULL) {
470 * We will only need *early* access to the following
471 * two EFI runtime services before set_virtual_address_map
472 * is invoked.
474 efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
475 efi_phys.set_virtual_address_map =
476 (efi_set_virtual_address_map_t *)
477 runtime->set_virtual_address_map;
479 * Make efi_get_time can be called before entering
480 * virtual mode.
482 efi.get_time = phys_efi_get_time;
483 } else
484 printk(KERN_ERR "Could not map the EFI runtime service "
485 "table!\n");
486 early_iounmap(runtime, sizeof(efi_runtime_services_t));
488 /* Map the EFI memory map */
489 memmap.map = early_ioremap((unsigned long)memmap.phys_map,
490 memmap.nr_map * memmap.desc_size);
491 if (memmap.map == NULL)
492 printk(KERN_ERR "Could not map the EFI memory map!\n");
493 memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
495 if (memmap.desc_size != sizeof(efi_memory_desc_t))
496 printk(KERN_WARNING
497 "Kernel-defined memdesc doesn't match the one from EFI!\n");
499 if (add_efi_memmap)
500 do_add_efi_memmap();
502 #ifdef CONFIG_X86_32
503 x86_platform.get_wallclock = efi_get_time;
504 x86_platform.set_wallclock = efi_set_rtc_mmss;
505 #endif
507 #if EFI_DEBUG
508 print_efi_memmap();
509 #endif
512 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
514 u64 addr, npages;
516 addr = md->virt_addr;
517 npages = md->num_pages;
519 memrange_efi_to_native(&addr, &npages);
521 if (executable)
522 set_memory_x(addr, npages);
523 else
524 set_memory_nx(addr, npages);
527 static void __init runtime_code_page_mkexec(void)
529 efi_memory_desc_t *md;
530 void *p;
532 /* Make EFI runtime service code area executable */
533 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
534 md = p;
536 if (md->type != EFI_RUNTIME_SERVICES_CODE)
537 continue;
539 efi_set_executable(md, true);
544 * This function will switch the EFI runtime services to virtual mode.
545 * Essentially, look through the EFI memmap and map every region that
546 * has the runtime attribute bit set in its memory descriptor and update
547 * that memory descriptor with the virtual address obtained from ioremap().
548 * This enables the runtime services to be called without having to
549 * thunk back into physical mode for every invocation.
551 void __init efi_enter_virtual_mode(void)
553 efi_memory_desc_t *md, *prev_md = NULL;
554 efi_status_t status;
555 unsigned long size;
556 u64 end, systab, addr, npages, end_pfn;
557 void *p, *va, *new_memmap = NULL;
558 int count = 0;
560 efi.systab = NULL;
562 /* Merge contiguous regions of the same type and attribute */
563 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
564 u64 prev_size;
565 md = p;
567 if (!prev_md) {
568 prev_md = md;
569 continue;
572 if (prev_md->type != md->type ||
573 prev_md->attribute != md->attribute) {
574 prev_md = md;
575 continue;
578 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
580 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
581 prev_md->num_pages += md->num_pages;
582 md->type = EFI_RESERVED_TYPE;
583 md->attribute = 0;
584 continue;
586 prev_md = md;
589 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
590 md = p;
591 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
592 md->type != EFI_BOOT_SERVICES_CODE &&
593 md->type != EFI_BOOT_SERVICES_DATA)
594 continue;
596 size = md->num_pages << EFI_PAGE_SHIFT;
597 end = md->phys_addr + size;
599 end_pfn = PFN_UP(end);
600 if (end_pfn <= max_low_pfn_mapped
601 || (end_pfn > (1UL << (32 - PAGE_SHIFT))
602 && end_pfn <= max_pfn_mapped))
603 va = __va(md->phys_addr);
604 else
605 va = efi_ioremap(md->phys_addr, size, md->type);
607 md->virt_addr = (u64) (unsigned long) va;
609 if (!va) {
610 printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
611 (unsigned long long)md->phys_addr);
612 continue;
615 if (!(md->attribute & EFI_MEMORY_WB)) {
616 addr = md->virt_addr;
617 npages = md->num_pages;
618 memrange_efi_to_native(&addr, &npages);
619 set_memory_uc(addr, npages);
622 systab = (u64) (unsigned long) efi_phys.systab;
623 if (md->phys_addr <= systab && systab < end) {
624 systab += md->virt_addr - md->phys_addr;
625 efi.systab = (efi_system_table_t *) (unsigned long) systab;
627 new_memmap = krealloc(new_memmap,
628 (count + 1) * memmap.desc_size,
629 GFP_KERNEL);
630 memcpy(new_memmap + (count * memmap.desc_size), md,
631 memmap.desc_size);
632 count++;
635 BUG_ON(!efi.systab);
637 status = phys_efi_set_virtual_address_map(
638 memmap.desc_size * count,
639 memmap.desc_size,
640 memmap.desc_version,
641 (efi_memory_desc_t *)__pa(new_memmap));
643 if (status != EFI_SUCCESS) {
644 printk(KERN_ALERT "Unable to switch EFI into virtual mode "
645 "(status=%lx)!\n", status);
646 panic("EFI call to SetVirtualAddressMap() failed!");
650 * Thankfully, it does seem that no runtime services other than
651 * SetVirtualAddressMap() will touch boot services code, so we can
652 * get rid of it all at this point
654 efi_free_boot_services();
657 * Now that EFI is in virtual mode, update the function
658 * pointers in the runtime service table to the new virtual addresses.
660 * Call EFI services through wrapper functions.
662 efi.get_time = virt_efi_get_time;
663 efi.set_time = virt_efi_set_time;
664 efi.get_wakeup_time = virt_efi_get_wakeup_time;
665 efi.set_wakeup_time = virt_efi_set_wakeup_time;
666 efi.get_variable = virt_efi_get_variable;
667 efi.get_next_variable = virt_efi_get_next_variable;
668 efi.set_variable = virt_efi_set_variable;
669 efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
670 efi.reset_system = virt_efi_reset_system;
671 efi.set_virtual_address_map = NULL;
672 if (__supported_pte_mask & _PAGE_NX)
673 runtime_code_page_mkexec();
674 early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
675 memmap.map = NULL;
676 kfree(new_memmap);
680 * Convenience functions to obtain memory types and attributes
682 u32 efi_mem_type(unsigned long phys_addr)
684 efi_memory_desc_t *md;
685 void *p;
687 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
688 md = p;
689 if ((md->phys_addr <= phys_addr) &&
690 (phys_addr < (md->phys_addr +
691 (md->num_pages << EFI_PAGE_SHIFT))))
692 return md->type;
694 return 0;
697 u64 efi_mem_attributes(unsigned long phys_addr)
699 efi_memory_desc_t *md;
700 void *p;
702 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
703 md = p;
704 if ((md->phys_addr <= phys_addr) &&
705 (phys_addr < (md->phys_addr +
706 (md->num_pages << EFI_PAGE_SHIFT))))
707 return md->attribute;
709 return 0;