ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / arch / x86 / platform / uv / uv_time.c
blob9f29a01ee1b3fec6e8d13dce479d352d8a2eae0c
1 /*
2 * SGI RTC clock/timer routines.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Copyright (c) 2009 Silicon Graphics, Inc. All Rights Reserved.
19 * Copyright (c) Dimitri Sivanich
21 #include <linux/clockchips.h>
22 #include <linux/slab.h>
24 #include <asm/uv/uv_mmrs.h>
25 #include <asm/uv/uv_hub.h>
26 #include <asm/uv/bios.h>
27 #include <asm/uv/uv.h>
28 #include <asm/apic.h>
29 #include <asm/cpu.h>
31 #define RTC_NAME "sgi_rtc"
33 static cycle_t uv_read_rtc(struct clocksource *cs);
34 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
35 static void uv_rtc_timer_setup(enum clock_event_mode,
36 struct clock_event_device *);
38 static struct clocksource clocksource_uv = {
39 .name = RTC_NAME,
40 .rating = 400,
41 .read = uv_read_rtc,
42 .mask = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
43 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
46 static struct clock_event_device clock_event_device_uv = {
47 .name = RTC_NAME,
48 .features = CLOCK_EVT_FEAT_ONESHOT,
49 .shift = 20,
50 .rating = 400,
51 .irq = -1,
52 .set_next_event = uv_rtc_next_event,
53 .set_mode = uv_rtc_timer_setup,
54 .event_handler = NULL,
57 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
59 /* There is one of these allocated per node */
60 struct uv_rtc_timer_head {
61 spinlock_t lock;
62 /* next cpu waiting for timer, local node relative: */
63 int next_cpu;
64 /* number of cpus on this node: */
65 int ncpus;
66 struct {
67 int lcpu; /* systemwide logical cpu number */
68 u64 expires; /* next timer expiration for this cpu */
69 } cpu[1];
73 * Access to uv_rtc_timer_head via blade id.
75 static struct uv_rtc_timer_head **blade_info __read_mostly;
77 static int uv_rtc_evt_enable;
80 * Hardware interface routines
83 /* Send IPIs to another node */
84 static void uv_rtc_send_IPI(int cpu)
86 unsigned long apicid, val;
87 int pnode;
89 apicid = cpu_physical_id(cpu);
90 pnode = uv_apicid_to_pnode(apicid);
91 apicid |= uv_apicid_hibits;
92 val = (1UL << UVH_IPI_INT_SEND_SHFT) |
93 (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
94 (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
96 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
99 /* Check for an RTC interrupt pending */
100 static int uv_intr_pending(int pnode)
102 if (is_uv1_hub())
103 return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
104 UV1H_EVENT_OCCURRED0_RTC1_MASK;
105 else
106 return uv_read_global_mmr64(pnode, UV2H_EVENT_OCCURRED2) &
107 UV2H_EVENT_OCCURRED2_RTC_1_MASK;
110 /* Setup interrupt and return non-zero if early expiration occurred. */
111 static int uv_setup_intr(int cpu, u64 expires)
113 u64 val;
114 unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
115 int pnode = uv_cpu_to_pnode(cpu);
117 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
118 UVH_RTC1_INT_CONFIG_M_MASK);
119 uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
121 if (is_uv1_hub())
122 uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
123 UV1H_EVENT_OCCURRED0_RTC1_MASK);
124 else
125 uv_write_global_mmr64(pnode, UV2H_EVENT_OCCURRED2_ALIAS,
126 UV2H_EVENT_OCCURRED2_RTC_1_MASK);
128 val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
129 ((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
131 /* Set configuration */
132 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
133 /* Initialize comparator value */
134 uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
136 if (uv_read_rtc(NULL) <= expires)
137 return 0;
139 return !uv_intr_pending(pnode);
143 * Per-cpu timer tracking routines
146 static __init void uv_rtc_deallocate_timers(void)
148 int bid;
150 for_each_possible_blade(bid) {
151 kfree(blade_info[bid]);
153 kfree(blade_info);
156 /* Allocate per-node list of cpu timer expiration times. */
157 static __init int uv_rtc_allocate_timers(void)
159 int cpu;
161 blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
162 if (!blade_info)
163 return -ENOMEM;
164 memset(blade_info, 0, uv_possible_blades * sizeof(void *));
166 for_each_present_cpu(cpu) {
167 int nid = cpu_to_node(cpu);
168 int bid = uv_cpu_to_blade_id(cpu);
169 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
170 struct uv_rtc_timer_head *head = blade_info[bid];
172 if (!head) {
173 head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
174 (uv_blade_nr_possible_cpus(bid) *
175 2 * sizeof(u64)),
176 GFP_KERNEL, nid);
177 if (!head) {
178 uv_rtc_deallocate_timers();
179 return -ENOMEM;
181 spin_lock_init(&head->lock);
182 head->ncpus = uv_blade_nr_possible_cpus(bid);
183 head->next_cpu = -1;
184 blade_info[bid] = head;
187 head->cpu[bcpu].lcpu = cpu;
188 head->cpu[bcpu].expires = ULLONG_MAX;
191 return 0;
194 /* Find and set the next expiring timer. */
195 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
197 u64 lowest = ULLONG_MAX;
198 int c, bcpu = -1;
200 head->next_cpu = -1;
201 for (c = 0; c < head->ncpus; c++) {
202 u64 exp = head->cpu[c].expires;
203 if (exp < lowest) {
204 bcpu = c;
205 lowest = exp;
208 if (bcpu >= 0) {
209 head->next_cpu = bcpu;
210 c = head->cpu[bcpu].lcpu;
211 if (uv_setup_intr(c, lowest))
212 /* If we didn't set it up in time, trigger */
213 uv_rtc_send_IPI(c);
214 } else {
215 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
216 UVH_RTC1_INT_CONFIG_M_MASK);
221 * Set expiration time for current cpu.
223 * Returns 1 if we missed the expiration time.
225 static int uv_rtc_set_timer(int cpu, u64 expires)
227 int pnode = uv_cpu_to_pnode(cpu);
228 int bid = uv_cpu_to_blade_id(cpu);
229 struct uv_rtc_timer_head *head = blade_info[bid];
230 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
231 u64 *t = &head->cpu[bcpu].expires;
232 unsigned long flags;
233 int next_cpu;
235 spin_lock_irqsave(&head->lock, flags);
237 next_cpu = head->next_cpu;
238 *t = expires;
240 /* Will this one be next to go off? */
241 if (next_cpu < 0 || bcpu == next_cpu ||
242 expires < head->cpu[next_cpu].expires) {
243 head->next_cpu = bcpu;
244 if (uv_setup_intr(cpu, expires)) {
245 *t = ULLONG_MAX;
246 uv_rtc_find_next_timer(head, pnode);
247 spin_unlock_irqrestore(&head->lock, flags);
248 return -ETIME;
252 spin_unlock_irqrestore(&head->lock, flags);
253 return 0;
257 * Unset expiration time for current cpu.
259 * Returns 1 if this timer was pending.
261 static int uv_rtc_unset_timer(int cpu, int force)
263 int pnode = uv_cpu_to_pnode(cpu);
264 int bid = uv_cpu_to_blade_id(cpu);
265 struct uv_rtc_timer_head *head = blade_info[bid];
266 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
267 u64 *t = &head->cpu[bcpu].expires;
268 unsigned long flags;
269 int rc = 0;
271 spin_lock_irqsave(&head->lock, flags);
273 if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
274 rc = 1;
276 if (rc) {
277 *t = ULLONG_MAX;
278 /* Was the hardware setup for this timer? */
279 if (head->next_cpu == bcpu)
280 uv_rtc_find_next_timer(head, pnode);
283 spin_unlock_irqrestore(&head->lock, flags);
285 return rc;
290 * Kernel interface routines.
294 * Read the RTC.
296 * Starting with HUB rev 2.0, the UV RTC register is replicated across all
297 * cachelines of it's own page. This allows faster simultaneous reads
298 * from a given socket.
300 static cycle_t uv_read_rtc(struct clocksource *cs)
302 unsigned long offset;
304 if (uv_get_min_hub_revision_id() == 1)
305 offset = 0;
306 else
307 offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
309 return (cycle_t)uv_read_local_mmr(UVH_RTC | offset);
313 * Program the next event, relative to now
315 static int uv_rtc_next_event(unsigned long delta,
316 struct clock_event_device *ced)
318 int ced_cpu = cpumask_first(ced->cpumask);
320 return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
324 * Setup the RTC timer in oneshot mode
326 static void uv_rtc_timer_setup(enum clock_event_mode mode,
327 struct clock_event_device *evt)
329 int ced_cpu = cpumask_first(evt->cpumask);
331 switch (mode) {
332 case CLOCK_EVT_MODE_PERIODIC:
333 case CLOCK_EVT_MODE_ONESHOT:
334 case CLOCK_EVT_MODE_RESUME:
335 /* Nothing to do here yet */
336 break;
337 case CLOCK_EVT_MODE_UNUSED:
338 case CLOCK_EVT_MODE_SHUTDOWN:
339 uv_rtc_unset_timer(ced_cpu, 1);
340 break;
344 static void uv_rtc_interrupt(void)
346 int cpu = smp_processor_id();
347 struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
349 if (!ced || !ced->event_handler)
350 return;
352 if (uv_rtc_unset_timer(cpu, 0) != 1)
353 return;
355 ced->event_handler(ced);
358 static int __init uv_enable_evt_rtc(char *str)
360 uv_rtc_evt_enable = 1;
362 return 1;
364 __setup("uvrtcevt", uv_enable_evt_rtc);
366 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
368 struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
370 *ced = clock_event_device_uv;
371 ced->cpumask = cpumask_of(smp_processor_id());
372 clockevents_register_device(ced);
375 static __init int uv_rtc_setup_clock(void)
377 int rc;
379 if (!is_uv_system())
380 return -ENODEV;
382 /* If single blade, prefer tsc */
383 if (uv_num_possible_blades() == 1)
384 clocksource_uv.rating = 250;
386 rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
387 if (rc)
388 printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
389 else
390 printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
391 sn_rtc_cycles_per_second/(unsigned long)1E6);
393 if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
394 return rc;
396 /* Setup and register clockevents */
397 rc = uv_rtc_allocate_timers();
398 if (rc)
399 goto error;
401 x86_platform_ipi_callback = uv_rtc_interrupt;
403 clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
404 NSEC_PER_SEC, clock_event_device_uv.shift);
406 clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
407 sn_rtc_cycles_per_second;
409 clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
410 (NSEC_PER_SEC / sn_rtc_cycles_per_second);
412 rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
413 if (rc) {
414 x86_platform_ipi_callback = NULL;
415 uv_rtc_deallocate_timers();
416 goto error;
419 printk(KERN_INFO "UV RTC clockevents registered\n");
421 return 0;
423 error:
424 clocksource_unregister(&clocksource_uv);
425 printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
427 return rc;
429 arch_initcall(uv_rtc_setup_clock);