ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / block / cfq-iosched.c
blob23500ac7f0f33b4a016b1743f32d01e47f53c8e5
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "cfq.h"
20 * tunables
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static int cfq_group_idle = HZ / 125;
34 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35 static const int cfq_hist_divisor = 4;
38 * offset from end of service tree
40 #define CFQ_IDLE_DELAY (HZ / 5)
43 * below this threshold, we consider thinktime immediate
45 #define CFQ_MIN_TT (2)
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
49 #define CFQ_SERVICE_SHIFT 12
51 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56 #define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
61 static struct kmem_cache *cfq_pool;
62 static struct kmem_cache *cfq_ioc_pool;
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65 static struct completion *ioc_gone;
66 static DEFINE_SPINLOCK(ioc_gone_lock);
68 static DEFINE_SPINLOCK(cic_index_lock);
69 static DEFINE_IDA(cic_index_ida);
71 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
75 #define sample_valid(samples) ((samples) > 80)
76 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 unsigned total_weight;
89 u64 min_vdisktime;
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
95 * Per process-grouping structure
97 struct cfq_queue {
98 /* reference count */
99 int ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
141 pid_t pid;
143 u32 seek_history;
144 sector_t last_request_pos;
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors;
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
157 enum wl_prio_t {
158 BE_WORKLOAD = 0,
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
161 CFQ_PRIO_NR,
165 * Second index in the service_trees.
167 enum wl_type_t {
168 ASYNC_WORKLOAD = 0,
169 SYNC_NOIDLE_WORKLOAD = 1,
170 SYNC_WORKLOAD = 2
173 /* This is per cgroup per device grouping structure */
174 struct cfq_group {
175 /* group service_tree member */
176 struct rb_node rb_node;
178 /* group service_tree key */
179 u64 vdisktime;
180 unsigned int weight;
181 unsigned int new_weight;
182 bool needs_update;
184 /* number of cfqq currently on this group */
185 int nr_cfqq;
188 * Per group busy queues average. Useful for workload slice calc. We
189 * create the array for each prio class but at run time it is used
190 * only for RT and BE class and slot for IDLE class remains unused.
191 * This is primarily done to avoid confusion and a gcc warning.
193 unsigned int busy_queues_avg[CFQ_PRIO_NR];
195 * rr lists of queues with requests. We maintain service trees for
196 * RT and BE classes. These trees are subdivided in subclasses
197 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
198 * class there is no subclassification and all the cfq queues go on
199 * a single tree service_tree_idle.
200 * Counts are embedded in the cfq_rb_root
202 struct cfq_rb_root service_trees[2][3];
203 struct cfq_rb_root service_tree_idle;
205 unsigned long saved_workload_slice;
206 enum wl_type_t saved_workload;
207 enum wl_prio_t saved_serving_prio;
208 struct blkio_group blkg;
209 #ifdef CONFIG_CFQ_GROUP_IOSCHED
210 struct hlist_node cfqd_node;
211 int ref;
212 #endif
213 /* number of requests that are on the dispatch list or inside driver */
214 int dispatched;
218 * Per block device queue structure
220 struct cfq_data {
221 struct request_queue *queue;
222 /* Root service tree for cfq_groups */
223 struct cfq_rb_root grp_service_tree;
224 struct cfq_group root_group;
227 * The priority currently being served
229 enum wl_prio_t serving_prio;
230 enum wl_type_t serving_type;
231 unsigned long workload_expires;
232 struct cfq_group *serving_group;
235 * Each priority tree is sorted by next_request position. These
236 * trees are used when determining if two or more queues are
237 * interleaving requests (see cfq_close_cooperator).
239 struct rb_root prio_trees[CFQ_PRIO_LISTS];
241 unsigned int busy_queues;
242 unsigned int busy_sync_queues;
244 int rq_in_driver;
245 int rq_in_flight[2];
248 * queue-depth detection
250 int rq_queued;
251 int hw_tag;
253 * hw_tag can be
254 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256 * 0 => no NCQ
258 int hw_tag_est_depth;
259 unsigned int hw_tag_samples;
262 * idle window management
264 struct timer_list idle_slice_timer;
265 struct work_struct unplug_work;
267 struct cfq_queue *active_queue;
268 struct cfq_io_context *active_cic;
271 * async queue for each priority case
273 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274 struct cfq_queue *async_idle_cfqq;
276 sector_t last_position;
279 * tunables, see top of file
281 unsigned int cfq_quantum;
282 unsigned int cfq_fifo_expire[2];
283 unsigned int cfq_back_penalty;
284 unsigned int cfq_back_max;
285 unsigned int cfq_slice[2];
286 unsigned int cfq_slice_async_rq;
287 unsigned int cfq_slice_idle;
288 unsigned int cfq_group_idle;
289 unsigned int cfq_latency;
291 unsigned int cic_index;
292 struct list_head cic_list;
295 * Fallback dummy cfqq for extreme OOM conditions
297 struct cfq_queue oom_cfqq;
299 unsigned long last_delayed_sync;
301 /* List of cfq groups being managed on this device*/
302 struct hlist_head cfqg_list;
304 /* Number of groups which are on blkcg->blkg_list */
305 unsigned int nr_blkcg_linked_grps;
308 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
310 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
311 enum wl_prio_t prio,
312 enum wl_type_t type)
314 if (!cfqg)
315 return NULL;
317 if (prio == IDLE_WORKLOAD)
318 return &cfqg->service_tree_idle;
320 return &cfqg->service_trees[prio][type];
323 enum cfqq_state_flags {
324 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
325 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
326 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
327 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
328 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
329 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
330 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
331 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
332 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
333 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
334 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
335 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
336 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
339 #define CFQ_CFQQ_FNS(name) \
340 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
342 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
344 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
346 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
348 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
350 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
353 CFQ_CFQQ_FNS(on_rr);
354 CFQ_CFQQ_FNS(wait_request);
355 CFQ_CFQQ_FNS(must_dispatch);
356 CFQ_CFQQ_FNS(must_alloc_slice);
357 CFQ_CFQQ_FNS(fifo_expire);
358 CFQ_CFQQ_FNS(idle_window);
359 CFQ_CFQQ_FNS(prio_changed);
360 CFQ_CFQQ_FNS(slice_new);
361 CFQ_CFQQ_FNS(sync);
362 CFQ_CFQQ_FNS(coop);
363 CFQ_CFQQ_FNS(split_coop);
364 CFQ_CFQQ_FNS(deep);
365 CFQ_CFQQ_FNS(wait_busy);
366 #undef CFQ_CFQQ_FNS
368 #ifdef CONFIG_CFQ_GROUP_IOSCHED
369 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
371 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
372 blkg_path(&(cfqq)->cfqg->blkg), ##args)
374 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
375 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
376 blkg_path(&(cfqg)->blkg), ##args) \
378 #else
379 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
380 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
381 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
382 #endif
383 #define cfq_log(cfqd, fmt, args...) \
384 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
386 /* Traverses through cfq group service trees */
387 #define for_each_cfqg_st(cfqg, i, j, st) \
388 for (i = 0; i <= IDLE_WORKLOAD; i++) \
389 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
390 : &cfqg->service_tree_idle; \
391 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
392 (i == IDLE_WORKLOAD && j == 0); \
393 j++, st = i < IDLE_WORKLOAD ? \
394 &cfqg->service_trees[i][j]: NULL) \
397 static inline bool iops_mode(struct cfq_data *cfqd)
400 * If we are not idling on queues and it is a NCQ drive, parallel
401 * execution of requests is on and measuring time is not possible
402 * in most of the cases until and unless we drive shallower queue
403 * depths and that becomes a performance bottleneck. In such cases
404 * switch to start providing fairness in terms of number of IOs.
406 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
407 return true;
408 else
409 return false;
412 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
414 if (cfq_class_idle(cfqq))
415 return IDLE_WORKLOAD;
416 if (cfq_class_rt(cfqq))
417 return RT_WORKLOAD;
418 return BE_WORKLOAD;
422 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
424 if (!cfq_cfqq_sync(cfqq))
425 return ASYNC_WORKLOAD;
426 if (!cfq_cfqq_idle_window(cfqq))
427 return SYNC_NOIDLE_WORKLOAD;
428 return SYNC_WORKLOAD;
431 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
432 struct cfq_data *cfqd,
433 struct cfq_group *cfqg)
435 if (wl == IDLE_WORKLOAD)
436 return cfqg->service_tree_idle.count;
438 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
439 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
440 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
443 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
444 struct cfq_group *cfqg)
446 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
447 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
450 static void cfq_dispatch_insert(struct request_queue *, struct request *);
451 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
452 struct io_context *, gfp_t);
453 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
454 struct io_context *);
456 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
457 bool is_sync)
459 return cic->cfqq[is_sync];
462 static inline void cic_set_cfqq(struct cfq_io_context *cic,
463 struct cfq_queue *cfqq, bool is_sync)
465 cic->cfqq[is_sync] = cfqq;
468 #define CIC_DEAD_KEY 1ul
469 #define CIC_DEAD_INDEX_SHIFT 1
471 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
473 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
476 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
478 struct cfq_data *cfqd = cic->key;
480 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
481 return NULL;
483 return cfqd;
487 * We regard a request as SYNC, if it's either a read or has the SYNC bit
488 * set (in which case it could also be direct WRITE).
490 static inline bool cfq_bio_sync(struct bio *bio)
492 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
496 * scheduler run of queue, if there are requests pending and no one in the
497 * driver that will restart queueing
499 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
501 if (cfqd->busy_queues) {
502 cfq_log(cfqd, "schedule dispatch");
503 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
508 * Scale schedule slice based on io priority. Use the sync time slice only
509 * if a queue is marked sync and has sync io queued. A sync queue with async
510 * io only, should not get full sync slice length.
512 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
513 unsigned short prio)
515 const int base_slice = cfqd->cfq_slice[sync];
517 WARN_ON(prio >= IOPRIO_BE_NR);
519 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
522 static inline int
523 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
525 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
528 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
530 u64 d = delta << CFQ_SERVICE_SHIFT;
532 d = d * BLKIO_WEIGHT_DEFAULT;
533 do_div(d, cfqg->weight);
534 return d;
537 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
539 s64 delta = (s64)(vdisktime - min_vdisktime);
540 if (delta > 0)
541 min_vdisktime = vdisktime;
543 return min_vdisktime;
546 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
548 s64 delta = (s64)(vdisktime - min_vdisktime);
549 if (delta < 0)
550 min_vdisktime = vdisktime;
552 return min_vdisktime;
555 static void update_min_vdisktime(struct cfq_rb_root *st)
557 struct cfq_group *cfqg;
559 if (st->left) {
560 cfqg = rb_entry_cfqg(st->left);
561 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
562 cfqg->vdisktime);
567 * get averaged number of queues of RT/BE priority.
568 * average is updated, with a formula that gives more weight to higher numbers,
569 * to quickly follows sudden increases and decrease slowly
572 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
573 struct cfq_group *cfqg, bool rt)
575 unsigned min_q, max_q;
576 unsigned mult = cfq_hist_divisor - 1;
577 unsigned round = cfq_hist_divisor / 2;
578 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
580 min_q = min(cfqg->busy_queues_avg[rt], busy);
581 max_q = max(cfqg->busy_queues_avg[rt], busy);
582 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
583 cfq_hist_divisor;
584 return cfqg->busy_queues_avg[rt];
587 static inline unsigned
588 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
590 struct cfq_rb_root *st = &cfqd->grp_service_tree;
592 return cfq_target_latency * cfqg->weight / st->total_weight;
595 static inline unsigned
596 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
598 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
599 if (cfqd->cfq_latency) {
601 * interested queues (we consider only the ones with the same
602 * priority class in the cfq group)
604 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
605 cfq_class_rt(cfqq));
606 unsigned sync_slice = cfqd->cfq_slice[1];
607 unsigned expect_latency = sync_slice * iq;
608 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
610 if (expect_latency > group_slice) {
611 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
612 /* scale low_slice according to IO priority
613 * and sync vs async */
614 unsigned low_slice =
615 min(slice, base_low_slice * slice / sync_slice);
616 /* the adapted slice value is scaled to fit all iqs
617 * into the target latency */
618 slice = max(slice * group_slice / expect_latency,
619 low_slice);
622 return slice;
625 static inline void
626 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
628 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
630 cfqq->slice_start = jiffies;
631 cfqq->slice_end = jiffies + slice;
632 cfqq->allocated_slice = slice;
633 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
637 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
638 * isn't valid until the first request from the dispatch is activated
639 * and the slice time set.
641 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
643 if (cfq_cfqq_slice_new(cfqq))
644 return false;
645 if (time_before(jiffies, cfqq->slice_end))
646 return false;
648 return true;
652 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
653 * We choose the request that is closest to the head right now. Distance
654 * behind the head is penalized and only allowed to a certain extent.
656 static struct request *
657 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
659 sector_t s1, s2, d1 = 0, d2 = 0;
660 unsigned long back_max;
661 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
662 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
663 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
665 if (rq1 == NULL || rq1 == rq2)
666 return rq2;
667 if (rq2 == NULL)
668 return rq1;
670 if (rq_is_sync(rq1) != rq_is_sync(rq2))
671 return rq_is_sync(rq1) ? rq1 : rq2;
673 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_META)
674 return rq1->cmd_flags & REQ_META ? rq1 : rq2;
676 s1 = blk_rq_pos(rq1);
677 s2 = blk_rq_pos(rq2);
680 * by definition, 1KiB is 2 sectors
682 back_max = cfqd->cfq_back_max * 2;
685 * Strict one way elevator _except_ in the case where we allow
686 * short backward seeks which are biased as twice the cost of a
687 * similar forward seek.
689 if (s1 >= last)
690 d1 = s1 - last;
691 else if (s1 + back_max >= last)
692 d1 = (last - s1) * cfqd->cfq_back_penalty;
693 else
694 wrap |= CFQ_RQ1_WRAP;
696 if (s2 >= last)
697 d2 = s2 - last;
698 else if (s2 + back_max >= last)
699 d2 = (last - s2) * cfqd->cfq_back_penalty;
700 else
701 wrap |= CFQ_RQ2_WRAP;
703 /* Found required data */
706 * By doing switch() on the bit mask "wrap" we avoid having to
707 * check two variables for all permutations: --> faster!
709 switch (wrap) {
710 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
711 if (d1 < d2)
712 return rq1;
713 else if (d2 < d1)
714 return rq2;
715 else {
716 if (s1 >= s2)
717 return rq1;
718 else
719 return rq2;
722 case CFQ_RQ2_WRAP:
723 return rq1;
724 case CFQ_RQ1_WRAP:
725 return rq2;
726 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
727 default:
729 * Since both rqs are wrapped,
730 * start with the one that's further behind head
731 * (--> only *one* back seek required),
732 * since back seek takes more time than forward.
734 if (s1 <= s2)
735 return rq1;
736 else
737 return rq2;
742 * The below is leftmost cache rbtree addon
744 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
746 /* Service tree is empty */
747 if (!root->count)
748 return NULL;
750 if (!root->left)
751 root->left = rb_first(&root->rb);
753 if (root->left)
754 return rb_entry(root->left, struct cfq_queue, rb_node);
756 return NULL;
759 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
761 if (!root->left)
762 root->left = rb_first(&root->rb);
764 if (root->left)
765 return rb_entry_cfqg(root->left);
767 return NULL;
770 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
772 rb_erase(n, root);
773 RB_CLEAR_NODE(n);
776 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
778 if (root->left == n)
779 root->left = NULL;
780 rb_erase_init(n, &root->rb);
781 --root->count;
785 * would be nice to take fifo expire time into account as well
787 static struct request *
788 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
789 struct request *last)
791 struct rb_node *rbnext = rb_next(&last->rb_node);
792 struct rb_node *rbprev = rb_prev(&last->rb_node);
793 struct request *next = NULL, *prev = NULL;
795 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
797 if (rbprev)
798 prev = rb_entry_rq(rbprev);
800 if (rbnext)
801 next = rb_entry_rq(rbnext);
802 else {
803 rbnext = rb_first(&cfqq->sort_list);
804 if (rbnext && rbnext != &last->rb_node)
805 next = rb_entry_rq(rbnext);
808 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
811 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
812 struct cfq_queue *cfqq)
815 * just an approximation, should be ok.
817 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
818 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
821 static inline s64
822 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
824 return cfqg->vdisktime - st->min_vdisktime;
827 static void
828 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
830 struct rb_node **node = &st->rb.rb_node;
831 struct rb_node *parent = NULL;
832 struct cfq_group *__cfqg;
833 s64 key = cfqg_key(st, cfqg);
834 int left = 1;
836 while (*node != NULL) {
837 parent = *node;
838 __cfqg = rb_entry_cfqg(parent);
840 if (key < cfqg_key(st, __cfqg))
841 node = &parent->rb_left;
842 else {
843 node = &parent->rb_right;
844 left = 0;
848 if (left)
849 st->left = &cfqg->rb_node;
851 rb_link_node(&cfqg->rb_node, parent, node);
852 rb_insert_color(&cfqg->rb_node, &st->rb);
855 static void
856 cfq_update_group_weight(struct cfq_group *cfqg)
858 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
859 if (cfqg->needs_update) {
860 cfqg->weight = cfqg->new_weight;
861 cfqg->needs_update = false;
865 static void
866 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
868 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
870 cfq_update_group_weight(cfqg);
871 __cfq_group_service_tree_add(st, cfqg);
872 st->total_weight += cfqg->weight;
875 static void
876 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
878 struct cfq_rb_root *st = &cfqd->grp_service_tree;
879 struct cfq_group *__cfqg;
880 struct rb_node *n;
882 cfqg->nr_cfqq++;
883 if (!RB_EMPTY_NODE(&cfqg->rb_node))
884 return;
887 * Currently put the group at the end. Later implement something
888 * so that groups get lesser vtime based on their weights, so that
889 * if group does not loose all if it was not continuously backlogged.
891 n = rb_last(&st->rb);
892 if (n) {
893 __cfqg = rb_entry_cfqg(n);
894 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
895 } else
896 cfqg->vdisktime = st->min_vdisktime;
897 cfq_group_service_tree_add(st, cfqg);
900 static void
901 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
903 st->total_weight -= cfqg->weight;
904 if (!RB_EMPTY_NODE(&cfqg->rb_node))
905 cfq_rb_erase(&cfqg->rb_node, st);
908 static void
909 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
911 struct cfq_rb_root *st = &cfqd->grp_service_tree;
913 BUG_ON(cfqg->nr_cfqq < 1);
914 cfqg->nr_cfqq--;
916 /* If there are other cfq queues under this group, don't delete it */
917 if (cfqg->nr_cfqq)
918 return;
920 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
921 cfq_group_service_tree_del(st, cfqg);
922 cfqg->saved_workload_slice = 0;
923 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
926 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
927 unsigned int *unaccounted_time)
929 unsigned int slice_used;
932 * Queue got expired before even a single request completed or
933 * got expired immediately after first request completion.
935 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
937 * Also charge the seek time incurred to the group, otherwise
938 * if there are mutiple queues in the group, each can dispatch
939 * a single request on seeky media and cause lots of seek time
940 * and group will never know it.
942 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
944 } else {
945 slice_used = jiffies - cfqq->slice_start;
946 if (slice_used > cfqq->allocated_slice) {
947 *unaccounted_time = slice_used - cfqq->allocated_slice;
948 slice_used = cfqq->allocated_slice;
950 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
951 *unaccounted_time += cfqq->slice_start -
952 cfqq->dispatch_start;
955 return slice_used;
958 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
959 struct cfq_queue *cfqq)
961 struct cfq_rb_root *st = &cfqd->grp_service_tree;
962 unsigned int used_sl, charge, unaccounted_sl = 0;
963 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
964 - cfqg->service_tree_idle.count;
966 BUG_ON(nr_sync < 0);
967 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
969 if (iops_mode(cfqd))
970 charge = cfqq->slice_dispatch;
971 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
972 charge = cfqq->allocated_slice;
974 /* Can't update vdisktime while group is on service tree */
975 cfq_group_service_tree_del(st, cfqg);
976 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
977 /* If a new weight was requested, update now, off tree */
978 cfq_group_service_tree_add(st, cfqg);
980 /* This group is being expired. Save the context */
981 if (time_after(cfqd->workload_expires, jiffies)) {
982 cfqg->saved_workload_slice = cfqd->workload_expires
983 - jiffies;
984 cfqg->saved_workload = cfqd->serving_type;
985 cfqg->saved_serving_prio = cfqd->serving_prio;
986 } else
987 cfqg->saved_workload_slice = 0;
989 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
990 st->min_vdisktime);
991 cfq_log_cfqq(cfqq->cfqd, cfqq,
992 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
993 used_sl, cfqq->slice_dispatch, charge,
994 iops_mode(cfqd), cfqq->nr_sectors);
995 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
996 unaccounted_sl);
997 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1000 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1001 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1003 if (blkg)
1004 return container_of(blkg, struct cfq_group, blkg);
1005 return NULL;
1008 void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1009 unsigned int weight)
1011 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1012 cfqg->new_weight = weight;
1013 cfqg->needs_update = true;
1016 static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1017 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1019 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1020 unsigned int major, minor;
1023 * Add group onto cgroup list. It might happen that bdi->dev is
1024 * not initialized yet. Initialize this new group without major
1025 * and minor info and this info will be filled in once a new thread
1026 * comes for IO.
1028 if (bdi->dev) {
1029 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1030 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1031 (void *)cfqd, MKDEV(major, minor));
1032 } else
1033 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1034 (void *)cfqd, 0);
1036 cfqd->nr_blkcg_linked_grps++;
1037 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1039 /* Add group on cfqd list */
1040 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1044 * Should be called from sleepable context. No request queue lock as per
1045 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1046 * from sleepable context.
1048 static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1050 struct cfq_group *cfqg = NULL;
1051 int i, j, ret;
1052 struct cfq_rb_root *st;
1054 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1055 if (!cfqg)
1056 return NULL;
1058 for_each_cfqg_st(cfqg, i, j, st)
1059 *st = CFQ_RB_ROOT;
1060 RB_CLEAR_NODE(&cfqg->rb_node);
1063 * Take the initial reference that will be released on destroy
1064 * This can be thought of a joint reference by cgroup and
1065 * elevator which will be dropped by either elevator exit
1066 * or cgroup deletion path depending on who is exiting first.
1068 cfqg->ref = 1;
1070 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1071 if (ret) {
1072 kfree(cfqg);
1073 return NULL;
1076 return cfqg;
1079 static struct cfq_group *
1080 cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1082 struct cfq_group *cfqg = NULL;
1083 void *key = cfqd;
1084 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1085 unsigned int major, minor;
1088 * This is the common case when there are no blkio cgroups.
1089 * Avoid lookup in this case
1091 if (blkcg == &blkio_root_cgroup)
1092 cfqg = &cfqd->root_group;
1093 else
1094 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1096 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1097 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1098 cfqg->blkg.dev = MKDEV(major, minor);
1101 return cfqg;
1105 * Search for the cfq group current task belongs to. request_queue lock must
1106 * be held.
1108 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1110 struct blkio_cgroup *blkcg;
1111 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1112 struct request_queue *q = cfqd->queue;
1114 rcu_read_lock();
1115 blkcg = task_blkio_cgroup(current);
1116 cfqg = cfq_find_cfqg(cfqd, blkcg);
1117 if (cfqg) {
1118 rcu_read_unlock();
1119 return cfqg;
1123 * Need to allocate a group. Allocation of group also needs allocation
1124 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1125 * we need to drop rcu lock and queue_lock before we call alloc.
1127 * Not taking any queue reference here and assuming that queue is
1128 * around by the time we return. CFQ queue allocation code does
1129 * the same. It might be racy though.
1132 rcu_read_unlock();
1133 spin_unlock_irq(q->queue_lock);
1135 cfqg = cfq_alloc_cfqg(cfqd);
1137 spin_lock_irq(q->queue_lock);
1139 rcu_read_lock();
1140 blkcg = task_blkio_cgroup(current);
1143 * If some other thread already allocated the group while we were
1144 * not holding queue lock, free up the group
1146 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1148 if (__cfqg) {
1149 kfree(cfqg);
1150 rcu_read_unlock();
1151 return __cfqg;
1154 if (!cfqg)
1155 cfqg = &cfqd->root_group;
1157 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1158 rcu_read_unlock();
1159 return cfqg;
1162 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1164 cfqg->ref++;
1165 return cfqg;
1168 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1170 /* Currently, all async queues are mapped to root group */
1171 if (!cfq_cfqq_sync(cfqq))
1172 cfqg = &cfqq->cfqd->root_group;
1174 cfqq->cfqg = cfqg;
1175 /* cfqq reference on cfqg */
1176 cfqq->cfqg->ref++;
1179 static void cfq_put_cfqg(struct cfq_group *cfqg)
1181 struct cfq_rb_root *st;
1182 int i, j;
1184 BUG_ON(cfqg->ref <= 0);
1185 cfqg->ref--;
1186 if (cfqg->ref)
1187 return;
1188 for_each_cfqg_st(cfqg, i, j, st)
1189 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1190 free_percpu(cfqg->blkg.stats_cpu);
1191 kfree(cfqg);
1194 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1196 /* Something wrong if we are trying to remove same group twice */
1197 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1199 hlist_del_init(&cfqg->cfqd_node);
1202 * Put the reference taken at the time of creation so that when all
1203 * queues are gone, group can be destroyed.
1205 cfq_put_cfqg(cfqg);
1208 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1210 struct hlist_node *pos, *n;
1211 struct cfq_group *cfqg;
1213 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1215 * If cgroup removal path got to blk_group first and removed
1216 * it from cgroup list, then it will take care of destroying
1217 * cfqg also.
1219 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1220 cfq_destroy_cfqg(cfqd, cfqg);
1225 * Blk cgroup controller notification saying that blkio_group object is being
1226 * delinked as associated cgroup object is going away. That also means that
1227 * no new IO will come in this group. So get rid of this group as soon as
1228 * any pending IO in the group is finished.
1230 * This function is called under rcu_read_lock(). key is the rcu protected
1231 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1232 * read lock.
1234 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1235 * it should not be NULL as even if elevator was exiting, cgroup deltion
1236 * path got to it first.
1238 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1240 unsigned long flags;
1241 struct cfq_data *cfqd = key;
1243 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1244 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1245 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1248 #else /* GROUP_IOSCHED */
1249 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1251 return &cfqd->root_group;
1254 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1256 return cfqg;
1259 static inline void
1260 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1261 cfqq->cfqg = cfqg;
1264 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1265 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1267 #endif /* GROUP_IOSCHED */
1270 * The cfqd->service_trees holds all pending cfq_queue's that have
1271 * requests waiting to be processed. It is sorted in the order that
1272 * we will service the queues.
1274 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1275 bool add_front)
1277 struct rb_node **p, *parent;
1278 struct cfq_queue *__cfqq;
1279 unsigned long rb_key;
1280 struct cfq_rb_root *service_tree;
1281 int left;
1282 int new_cfqq = 1;
1284 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1285 cfqq_type(cfqq));
1286 if (cfq_class_idle(cfqq)) {
1287 rb_key = CFQ_IDLE_DELAY;
1288 parent = rb_last(&service_tree->rb);
1289 if (parent && parent != &cfqq->rb_node) {
1290 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1291 rb_key += __cfqq->rb_key;
1292 } else
1293 rb_key += jiffies;
1294 } else if (!add_front) {
1296 * Get our rb key offset. Subtract any residual slice
1297 * value carried from last service. A negative resid
1298 * count indicates slice overrun, and this should position
1299 * the next service time further away in the tree.
1301 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1302 rb_key -= cfqq->slice_resid;
1303 cfqq->slice_resid = 0;
1304 } else {
1305 rb_key = -HZ;
1306 __cfqq = cfq_rb_first(service_tree);
1307 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1310 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1311 new_cfqq = 0;
1313 * same position, nothing more to do
1315 if (rb_key == cfqq->rb_key &&
1316 cfqq->service_tree == service_tree)
1317 return;
1319 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1320 cfqq->service_tree = NULL;
1323 left = 1;
1324 parent = NULL;
1325 cfqq->service_tree = service_tree;
1326 p = &service_tree->rb.rb_node;
1327 while (*p) {
1328 struct rb_node **n;
1330 parent = *p;
1331 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1334 * sort by key, that represents service time.
1336 if (time_before(rb_key, __cfqq->rb_key))
1337 n = &(*p)->rb_left;
1338 else {
1339 n = &(*p)->rb_right;
1340 left = 0;
1343 p = n;
1346 if (left)
1347 service_tree->left = &cfqq->rb_node;
1349 cfqq->rb_key = rb_key;
1350 rb_link_node(&cfqq->rb_node, parent, p);
1351 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1352 service_tree->count++;
1353 if (add_front || !new_cfqq)
1354 return;
1355 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1358 static struct cfq_queue *
1359 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1360 sector_t sector, struct rb_node **ret_parent,
1361 struct rb_node ***rb_link)
1363 struct rb_node **p, *parent;
1364 struct cfq_queue *cfqq = NULL;
1366 parent = NULL;
1367 p = &root->rb_node;
1368 while (*p) {
1369 struct rb_node **n;
1371 parent = *p;
1372 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1375 * Sort strictly based on sector. Smallest to the left,
1376 * largest to the right.
1378 if (sector > blk_rq_pos(cfqq->next_rq))
1379 n = &(*p)->rb_right;
1380 else if (sector < blk_rq_pos(cfqq->next_rq))
1381 n = &(*p)->rb_left;
1382 else
1383 break;
1384 p = n;
1385 cfqq = NULL;
1388 *ret_parent = parent;
1389 if (rb_link)
1390 *rb_link = p;
1391 return cfqq;
1394 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1396 struct rb_node **p, *parent;
1397 struct cfq_queue *__cfqq;
1399 if (cfqq->p_root) {
1400 rb_erase(&cfqq->p_node, cfqq->p_root);
1401 cfqq->p_root = NULL;
1404 if (cfq_class_idle(cfqq))
1405 return;
1406 if (!cfqq->next_rq)
1407 return;
1409 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1410 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1411 blk_rq_pos(cfqq->next_rq), &parent, &p);
1412 if (!__cfqq) {
1413 rb_link_node(&cfqq->p_node, parent, p);
1414 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1415 } else
1416 cfqq->p_root = NULL;
1420 * Update cfqq's position in the service tree.
1422 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1425 * Resorting requires the cfqq to be on the RR list already.
1427 if (cfq_cfqq_on_rr(cfqq)) {
1428 cfq_service_tree_add(cfqd, cfqq, 0);
1429 cfq_prio_tree_add(cfqd, cfqq);
1434 * add to busy list of queues for service, trying to be fair in ordering
1435 * the pending list according to last request service
1437 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1439 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1440 BUG_ON(cfq_cfqq_on_rr(cfqq));
1441 cfq_mark_cfqq_on_rr(cfqq);
1442 cfqd->busy_queues++;
1443 if (cfq_cfqq_sync(cfqq))
1444 cfqd->busy_sync_queues++;
1446 cfq_resort_rr_list(cfqd, cfqq);
1450 * Called when the cfqq no longer has requests pending, remove it from
1451 * the service tree.
1453 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1455 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1456 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1457 cfq_clear_cfqq_on_rr(cfqq);
1459 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1460 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1461 cfqq->service_tree = NULL;
1463 if (cfqq->p_root) {
1464 rb_erase(&cfqq->p_node, cfqq->p_root);
1465 cfqq->p_root = NULL;
1468 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1469 BUG_ON(!cfqd->busy_queues);
1470 cfqd->busy_queues--;
1471 if (cfq_cfqq_sync(cfqq))
1472 cfqd->busy_sync_queues--;
1476 * rb tree support functions
1478 static void cfq_del_rq_rb(struct request *rq)
1480 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1481 const int sync = rq_is_sync(rq);
1483 BUG_ON(!cfqq->queued[sync]);
1484 cfqq->queued[sync]--;
1486 elv_rb_del(&cfqq->sort_list, rq);
1488 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1490 * Queue will be deleted from service tree when we actually
1491 * expire it later. Right now just remove it from prio tree
1492 * as it is empty.
1494 if (cfqq->p_root) {
1495 rb_erase(&cfqq->p_node, cfqq->p_root);
1496 cfqq->p_root = NULL;
1501 static void cfq_add_rq_rb(struct request *rq)
1503 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1504 struct cfq_data *cfqd = cfqq->cfqd;
1505 struct request *__alias, *prev;
1507 cfqq->queued[rq_is_sync(rq)]++;
1510 * looks a little odd, but the first insert might return an alias.
1511 * if that happens, put the alias on the dispatch list
1513 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1514 cfq_dispatch_insert(cfqd->queue, __alias);
1516 if (!cfq_cfqq_on_rr(cfqq))
1517 cfq_add_cfqq_rr(cfqd, cfqq);
1520 * check if this request is a better next-serve candidate
1522 prev = cfqq->next_rq;
1523 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1526 * adjust priority tree position, if ->next_rq changes
1528 if (prev != cfqq->next_rq)
1529 cfq_prio_tree_add(cfqd, cfqq);
1531 BUG_ON(!cfqq->next_rq);
1534 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1536 elv_rb_del(&cfqq->sort_list, rq);
1537 cfqq->queued[rq_is_sync(rq)]--;
1538 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1539 rq_data_dir(rq), rq_is_sync(rq));
1540 cfq_add_rq_rb(rq);
1541 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1542 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1543 rq_is_sync(rq));
1546 static struct request *
1547 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1549 struct task_struct *tsk = current;
1550 struct cfq_io_context *cic;
1551 struct cfq_queue *cfqq;
1553 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1554 if (!cic)
1555 return NULL;
1557 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1558 if (cfqq) {
1559 sector_t sector = bio->bi_sector + bio_sectors(bio);
1561 return elv_rb_find(&cfqq->sort_list, sector);
1564 return NULL;
1567 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1569 struct cfq_data *cfqd = q->elevator->elevator_data;
1571 cfqd->rq_in_driver++;
1572 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1573 cfqd->rq_in_driver);
1575 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1578 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1580 struct cfq_data *cfqd = q->elevator->elevator_data;
1582 WARN_ON(!cfqd->rq_in_driver);
1583 cfqd->rq_in_driver--;
1584 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1585 cfqd->rq_in_driver);
1588 static void cfq_remove_request(struct request *rq)
1590 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1592 if (cfqq->next_rq == rq)
1593 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1595 list_del_init(&rq->queuelist);
1596 cfq_del_rq_rb(rq);
1598 cfqq->cfqd->rq_queued--;
1599 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1600 rq_data_dir(rq), rq_is_sync(rq));
1601 if (rq->cmd_flags & REQ_META) {
1602 WARN_ON(!cfqq->meta_pending);
1603 cfqq->meta_pending--;
1607 static int cfq_merge(struct request_queue *q, struct request **req,
1608 struct bio *bio)
1610 struct cfq_data *cfqd = q->elevator->elevator_data;
1611 struct request *__rq;
1613 __rq = cfq_find_rq_fmerge(cfqd, bio);
1614 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1615 *req = __rq;
1616 return ELEVATOR_FRONT_MERGE;
1619 return ELEVATOR_NO_MERGE;
1622 static void cfq_merged_request(struct request_queue *q, struct request *req,
1623 int type)
1625 if (type == ELEVATOR_FRONT_MERGE) {
1626 struct cfq_queue *cfqq = RQ_CFQQ(req);
1628 cfq_reposition_rq_rb(cfqq, req);
1632 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1633 struct bio *bio)
1635 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1636 bio_data_dir(bio), cfq_bio_sync(bio));
1639 static void
1640 cfq_merged_requests(struct request_queue *q, struct request *rq,
1641 struct request *next)
1643 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1645 * reposition in fifo if next is older than rq
1647 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1648 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1649 list_move(&rq->queuelist, &next->queuelist);
1650 rq_set_fifo_time(rq, rq_fifo_time(next));
1653 if (cfqq->next_rq == next)
1654 cfqq->next_rq = rq;
1655 cfq_remove_request(next);
1656 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1657 rq_data_dir(next), rq_is_sync(next));
1660 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1661 struct bio *bio)
1663 struct cfq_data *cfqd = q->elevator->elevator_data;
1664 struct cfq_io_context *cic;
1665 struct cfq_queue *cfqq;
1668 * Disallow merge of a sync bio into an async request.
1670 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1671 return false;
1674 * Lookup the cfqq that this bio will be queued with. Allow
1675 * merge only if rq is queued there.
1677 cic = cfq_cic_lookup(cfqd, current->io_context);
1678 if (!cic)
1679 return false;
1681 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1682 return cfqq == RQ_CFQQ(rq);
1685 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1687 del_timer(&cfqd->idle_slice_timer);
1688 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1691 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1692 struct cfq_queue *cfqq)
1694 if (cfqq) {
1695 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1696 cfqd->serving_prio, cfqd->serving_type);
1697 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1698 cfqq->slice_start = 0;
1699 cfqq->dispatch_start = jiffies;
1700 cfqq->allocated_slice = 0;
1701 cfqq->slice_end = 0;
1702 cfqq->slice_dispatch = 0;
1703 cfqq->nr_sectors = 0;
1705 cfq_clear_cfqq_wait_request(cfqq);
1706 cfq_clear_cfqq_must_dispatch(cfqq);
1707 cfq_clear_cfqq_must_alloc_slice(cfqq);
1708 cfq_clear_cfqq_fifo_expire(cfqq);
1709 cfq_mark_cfqq_slice_new(cfqq);
1711 cfq_del_timer(cfqd, cfqq);
1714 cfqd->active_queue = cfqq;
1718 * current cfqq expired its slice (or was too idle), select new one
1720 static void
1721 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1722 bool timed_out)
1724 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1726 if (cfq_cfqq_wait_request(cfqq))
1727 cfq_del_timer(cfqd, cfqq);
1729 cfq_clear_cfqq_wait_request(cfqq);
1730 cfq_clear_cfqq_wait_busy(cfqq);
1733 * If this cfqq is shared between multiple processes, check to
1734 * make sure that those processes are still issuing I/Os within
1735 * the mean seek distance. If not, it may be time to break the
1736 * queues apart again.
1738 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1739 cfq_mark_cfqq_split_coop(cfqq);
1742 * store what was left of this slice, if the queue idled/timed out
1744 if (timed_out) {
1745 if (cfq_cfqq_slice_new(cfqq))
1746 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1747 else
1748 cfqq->slice_resid = cfqq->slice_end - jiffies;
1749 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1752 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1754 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1755 cfq_del_cfqq_rr(cfqd, cfqq);
1757 cfq_resort_rr_list(cfqd, cfqq);
1759 if (cfqq == cfqd->active_queue)
1760 cfqd->active_queue = NULL;
1762 if (cfqd->active_cic) {
1763 put_io_context(cfqd->active_cic->ioc);
1764 cfqd->active_cic = NULL;
1768 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1770 struct cfq_queue *cfqq = cfqd->active_queue;
1772 if (cfqq)
1773 __cfq_slice_expired(cfqd, cfqq, timed_out);
1777 * Get next queue for service. Unless we have a queue preemption,
1778 * we'll simply select the first cfqq in the service tree.
1780 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1782 struct cfq_rb_root *service_tree =
1783 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1784 cfqd->serving_type);
1786 if (!cfqd->rq_queued)
1787 return NULL;
1789 /* There is nothing to dispatch */
1790 if (!service_tree)
1791 return NULL;
1792 if (RB_EMPTY_ROOT(&service_tree->rb))
1793 return NULL;
1794 return cfq_rb_first(service_tree);
1797 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1799 struct cfq_group *cfqg;
1800 struct cfq_queue *cfqq;
1801 int i, j;
1802 struct cfq_rb_root *st;
1804 if (!cfqd->rq_queued)
1805 return NULL;
1807 cfqg = cfq_get_next_cfqg(cfqd);
1808 if (!cfqg)
1809 return NULL;
1811 for_each_cfqg_st(cfqg, i, j, st)
1812 if ((cfqq = cfq_rb_first(st)) != NULL)
1813 return cfqq;
1814 return NULL;
1818 * Get and set a new active queue for service.
1820 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1821 struct cfq_queue *cfqq)
1823 if (!cfqq)
1824 cfqq = cfq_get_next_queue(cfqd);
1826 __cfq_set_active_queue(cfqd, cfqq);
1827 return cfqq;
1830 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1831 struct request *rq)
1833 if (blk_rq_pos(rq) >= cfqd->last_position)
1834 return blk_rq_pos(rq) - cfqd->last_position;
1835 else
1836 return cfqd->last_position - blk_rq_pos(rq);
1839 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1840 struct request *rq)
1842 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1845 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1846 struct cfq_queue *cur_cfqq)
1848 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1849 struct rb_node *parent, *node;
1850 struct cfq_queue *__cfqq;
1851 sector_t sector = cfqd->last_position;
1853 if (RB_EMPTY_ROOT(root))
1854 return NULL;
1857 * First, if we find a request starting at the end of the last
1858 * request, choose it.
1860 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1861 if (__cfqq)
1862 return __cfqq;
1865 * If the exact sector wasn't found, the parent of the NULL leaf
1866 * will contain the closest sector.
1868 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1869 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1870 return __cfqq;
1872 if (blk_rq_pos(__cfqq->next_rq) < sector)
1873 node = rb_next(&__cfqq->p_node);
1874 else
1875 node = rb_prev(&__cfqq->p_node);
1876 if (!node)
1877 return NULL;
1879 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1880 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1881 return __cfqq;
1883 return NULL;
1887 * cfqd - obvious
1888 * cur_cfqq - passed in so that we don't decide that the current queue is
1889 * closely cooperating with itself.
1891 * So, basically we're assuming that that cur_cfqq has dispatched at least
1892 * one request, and that cfqd->last_position reflects a position on the disk
1893 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1894 * assumption.
1896 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1897 struct cfq_queue *cur_cfqq)
1899 struct cfq_queue *cfqq;
1901 if (cfq_class_idle(cur_cfqq))
1902 return NULL;
1903 if (!cfq_cfqq_sync(cur_cfqq))
1904 return NULL;
1905 if (CFQQ_SEEKY(cur_cfqq))
1906 return NULL;
1909 * Don't search priority tree if it's the only queue in the group.
1911 if (cur_cfqq->cfqg->nr_cfqq == 1)
1912 return NULL;
1915 * We should notice if some of the queues are cooperating, eg
1916 * working closely on the same area of the disk. In that case,
1917 * we can group them together and don't waste time idling.
1919 cfqq = cfqq_close(cfqd, cur_cfqq);
1920 if (!cfqq)
1921 return NULL;
1923 /* If new queue belongs to different cfq_group, don't choose it */
1924 if (cur_cfqq->cfqg != cfqq->cfqg)
1925 return NULL;
1928 * It only makes sense to merge sync queues.
1930 if (!cfq_cfqq_sync(cfqq))
1931 return NULL;
1932 if (CFQQ_SEEKY(cfqq))
1933 return NULL;
1936 * Do not merge queues of different priority classes
1938 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1939 return NULL;
1941 return cfqq;
1945 * Determine whether we should enforce idle window for this queue.
1948 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1950 enum wl_prio_t prio = cfqq_prio(cfqq);
1951 struct cfq_rb_root *service_tree = cfqq->service_tree;
1953 BUG_ON(!service_tree);
1954 BUG_ON(!service_tree->count);
1956 if (!cfqd->cfq_slice_idle)
1957 return false;
1959 /* We never do for idle class queues. */
1960 if (prio == IDLE_WORKLOAD)
1961 return false;
1963 /* We do for queues that were marked with idle window flag. */
1964 if (cfq_cfqq_idle_window(cfqq) &&
1965 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1966 return true;
1969 * Otherwise, we do only if they are the last ones
1970 * in their service tree.
1972 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1973 return true;
1974 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1975 service_tree->count);
1976 return false;
1979 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1981 struct cfq_queue *cfqq = cfqd->active_queue;
1982 struct cfq_io_context *cic;
1983 unsigned long sl, group_idle = 0;
1986 * SSD device without seek penalty, disable idling. But only do so
1987 * for devices that support queuing, otherwise we still have a problem
1988 * with sync vs async workloads.
1990 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1991 return;
1993 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1994 WARN_ON(cfq_cfqq_slice_new(cfqq));
1997 * idle is disabled, either manually or by past process history
1999 if (!cfq_should_idle(cfqd, cfqq)) {
2000 /* no queue idling. Check for group idling */
2001 if (cfqd->cfq_group_idle)
2002 group_idle = cfqd->cfq_group_idle;
2003 else
2004 return;
2008 * still active requests from this queue, don't idle
2010 if (cfqq->dispatched)
2011 return;
2014 * task has exited, don't wait
2016 cic = cfqd->active_cic;
2017 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2018 return;
2021 * If our average think time is larger than the remaining time
2022 * slice, then don't idle. This avoids overrunning the allotted
2023 * time slice.
2025 if (sample_valid(cic->ttime_samples) &&
2026 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
2027 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2028 cic->ttime_mean);
2029 return;
2032 /* There are other queues in the group, don't do group idle */
2033 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2034 return;
2036 cfq_mark_cfqq_wait_request(cfqq);
2038 if (group_idle)
2039 sl = cfqd->cfq_group_idle;
2040 else
2041 sl = cfqd->cfq_slice_idle;
2043 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2044 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2045 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2046 group_idle ? 1 : 0);
2050 * Move request from internal lists to the request queue dispatch list.
2052 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2054 struct cfq_data *cfqd = q->elevator->elevator_data;
2055 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2057 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2059 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2060 cfq_remove_request(rq);
2061 cfqq->dispatched++;
2062 (RQ_CFQG(rq))->dispatched++;
2063 elv_dispatch_sort(q, rq);
2065 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2066 cfqq->nr_sectors += blk_rq_sectors(rq);
2067 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2068 rq_data_dir(rq), rq_is_sync(rq));
2072 * return expired entry, or NULL to just start from scratch in rbtree
2074 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2076 struct request *rq = NULL;
2078 if (cfq_cfqq_fifo_expire(cfqq))
2079 return NULL;
2081 cfq_mark_cfqq_fifo_expire(cfqq);
2083 if (list_empty(&cfqq->fifo))
2084 return NULL;
2086 rq = rq_entry_fifo(cfqq->fifo.next);
2087 if (time_before(jiffies, rq_fifo_time(rq)))
2088 rq = NULL;
2090 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2091 return rq;
2094 static inline int
2095 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2097 const int base_rq = cfqd->cfq_slice_async_rq;
2099 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2101 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2105 * Must be called with the queue_lock held.
2107 static int cfqq_process_refs(struct cfq_queue *cfqq)
2109 int process_refs, io_refs;
2111 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2112 process_refs = cfqq->ref - io_refs;
2113 BUG_ON(process_refs < 0);
2114 return process_refs;
2117 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2119 int process_refs, new_process_refs;
2120 struct cfq_queue *__cfqq;
2123 * If there are no process references on the new_cfqq, then it is
2124 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2125 * chain may have dropped their last reference (not just their
2126 * last process reference).
2128 if (!cfqq_process_refs(new_cfqq))
2129 return;
2131 /* Avoid a circular list and skip interim queue merges */
2132 while ((__cfqq = new_cfqq->new_cfqq)) {
2133 if (__cfqq == cfqq)
2134 return;
2135 new_cfqq = __cfqq;
2138 process_refs = cfqq_process_refs(cfqq);
2139 new_process_refs = cfqq_process_refs(new_cfqq);
2141 * If the process for the cfqq has gone away, there is no
2142 * sense in merging the queues.
2144 if (process_refs == 0 || new_process_refs == 0)
2145 return;
2148 * Merge in the direction of the lesser amount of work.
2150 if (new_process_refs >= process_refs) {
2151 cfqq->new_cfqq = new_cfqq;
2152 new_cfqq->ref += process_refs;
2153 } else {
2154 new_cfqq->new_cfqq = cfqq;
2155 cfqq->ref += new_process_refs;
2159 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2160 struct cfq_group *cfqg, enum wl_prio_t prio)
2162 struct cfq_queue *queue;
2163 int i;
2164 bool key_valid = false;
2165 unsigned long lowest_key = 0;
2166 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2168 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2169 /* select the one with lowest rb_key */
2170 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2171 if (queue &&
2172 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2173 lowest_key = queue->rb_key;
2174 cur_best = i;
2175 key_valid = true;
2179 return cur_best;
2182 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2184 unsigned slice;
2185 unsigned count;
2186 struct cfq_rb_root *st;
2187 unsigned group_slice;
2188 enum wl_prio_t original_prio = cfqd->serving_prio;
2190 /* Choose next priority. RT > BE > IDLE */
2191 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2192 cfqd->serving_prio = RT_WORKLOAD;
2193 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2194 cfqd->serving_prio = BE_WORKLOAD;
2195 else {
2196 cfqd->serving_prio = IDLE_WORKLOAD;
2197 cfqd->workload_expires = jiffies + 1;
2198 return;
2201 if (original_prio != cfqd->serving_prio)
2202 goto new_workload;
2205 * For RT and BE, we have to choose also the type
2206 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2207 * expiration time
2209 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2210 count = st->count;
2213 * check workload expiration, and that we still have other queues ready
2215 if (count && !time_after(jiffies, cfqd->workload_expires))
2216 return;
2218 new_workload:
2219 /* otherwise select new workload type */
2220 cfqd->serving_type =
2221 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2222 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2223 count = st->count;
2226 * the workload slice is computed as a fraction of target latency
2227 * proportional to the number of queues in that workload, over
2228 * all the queues in the same priority class
2230 group_slice = cfq_group_slice(cfqd, cfqg);
2232 slice = group_slice * count /
2233 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2234 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2236 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2237 unsigned int tmp;
2240 * Async queues are currently system wide. Just taking
2241 * proportion of queues with-in same group will lead to higher
2242 * async ratio system wide as generally root group is going
2243 * to have higher weight. A more accurate thing would be to
2244 * calculate system wide asnc/sync ratio.
2246 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2247 tmp = tmp/cfqd->busy_queues;
2248 slice = min_t(unsigned, slice, tmp);
2250 /* async workload slice is scaled down according to
2251 * the sync/async slice ratio. */
2252 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2253 } else
2254 /* sync workload slice is at least 2 * cfq_slice_idle */
2255 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2257 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2258 cfq_log(cfqd, "workload slice:%d", slice);
2259 cfqd->workload_expires = jiffies + slice;
2262 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2264 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2265 struct cfq_group *cfqg;
2267 if (RB_EMPTY_ROOT(&st->rb))
2268 return NULL;
2269 cfqg = cfq_rb_first_group(st);
2270 update_min_vdisktime(st);
2271 return cfqg;
2274 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2276 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2278 cfqd->serving_group = cfqg;
2280 /* Restore the workload type data */
2281 if (cfqg->saved_workload_slice) {
2282 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2283 cfqd->serving_type = cfqg->saved_workload;
2284 cfqd->serving_prio = cfqg->saved_serving_prio;
2285 } else
2286 cfqd->workload_expires = jiffies - 1;
2288 choose_service_tree(cfqd, cfqg);
2292 * Select a queue for service. If we have a current active queue,
2293 * check whether to continue servicing it, or retrieve and set a new one.
2295 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2297 struct cfq_queue *cfqq, *new_cfqq = NULL;
2299 cfqq = cfqd->active_queue;
2300 if (!cfqq)
2301 goto new_queue;
2303 if (!cfqd->rq_queued)
2304 return NULL;
2307 * We were waiting for group to get backlogged. Expire the queue
2309 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2310 goto expire;
2313 * The active queue has run out of time, expire it and select new.
2315 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2317 * If slice had not expired at the completion of last request
2318 * we might not have turned on wait_busy flag. Don't expire
2319 * the queue yet. Allow the group to get backlogged.
2321 * The very fact that we have used the slice, that means we
2322 * have been idling all along on this queue and it should be
2323 * ok to wait for this request to complete.
2325 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2326 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2327 cfqq = NULL;
2328 goto keep_queue;
2329 } else
2330 goto check_group_idle;
2334 * The active queue has requests and isn't expired, allow it to
2335 * dispatch.
2337 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2338 goto keep_queue;
2341 * If another queue has a request waiting within our mean seek
2342 * distance, let it run. The expire code will check for close
2343 * cooperators and put the close queue at the front of the service
2344 * tree. If possible, merge the expiring queue with the new cfqq.
2346 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2347 if (new_cfqq) {
2348 if (!cfqq->new_cfqq)
2349 cfq_setup_merge(cfqq, new_cfqq);
2350 goto expire;
2354 * No requests pending. If the active queue still has requests in
2355 * flight or is idling for a new request, allow either of these
2356 * conditions to happen (or time out) before selecting a new queue.
2358 if (timer_pending(&cfqd->idle_slice_timer)) {
2359 cfqq = NULL;
2360 goto keep_queue;
2364 * This is a deep seek queue, but the device is much faster than
2365 * the queue can deliver, don't idle
2367 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2368 (cfq_cfqq_slice_new(cfqq) ||
2369 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2370 cfq_clear_cfqq_deep(cfqq);
2371 cfq_clear_cfqq_idle_window(cfqq);
2374 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2375 cfqq = NULL;
2376 goto keep_queue;
2380 * If group idle is enabled and there are requests dispatched from
2381 * this group, wait for requests to complete.
2383 check_group_idle:
2384 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2385 && cfqq->cfqg->dispatched) {
2386 cfqq = NULL;
2387 goto keep_queue;
2390 expire:
2391 cfq_slice_expired(cfqd, 0);
2392 new_queue:
2394 * Current queue expired. Check if we have to switch to a new
2395 * service tree
2397 if (!new_cfqq)
2398 cfq_choose_cfqg(cfqd);
2400 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2401 keep_queue:
2402 return cfqq;
2405 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2407 int dispatched = 0;
2409 while (cfqq->next_rq) {
2410 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2411 dispatched++;
2414 BUG_ON(!list_empty(&cfqq->fifo));
2416 /* By default cfqq is not expired if it is empty. Do it explicitly */
2417 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2418 return dispatched;
2422 * Drain our current requests. Used for barriers and when switching
2423 * io schedulers on-the-fly.
2425 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2427 struct cfq_queue *cfqq;
2428 int dispatched = 0;
2430 /* Expire the timeslice of the current active queue first */
2431 cfq_slice_expired(cfqd, 0);
2432 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2433 __cfq_set_active_queue(cfqd, cfqq);
2434 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2437 BUG_ON(cfqd->busy_queues);
2439 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2440 return dispatched;
2443 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2444 struct cfq_queue *cfqq)
2446 /* the queue hasn't finished any request, can't estimate */
2447 if (cfq_cfqq_slice_new(cfqq))
2448 return true;
2449 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2450 cfqq->slice_end))
2451 return true;
2453 return false;
2456 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2458 unsigned int max_dispatch;
2461 * Drain async requests before we start sync IO
2463 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2464 return false;
2467 * If this is an async queue and we have sync IO in flight, let it wait
2469 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2470 return false;
2472 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2473 if (cfq_class_idle(cfqq))
2474 max_dispatch = 1;
2477 * Does this cfqq already have too much IO in flight?
2479 if (cfqq->dispatched >= max_dispatch) {
2480 bool promote_sync = false;
2482 * idle queue must always only have a single IO in flight
2484 if (cfq_class_idle(cfqq))
2485 return false;
2488 * If there is only one sync queue
2489 * we can ignore async queue here and give the sync
2490 * queue no dispatch limit. The reason is a sync queue can
2491 * preempt async queue, limiting the sync queue doesn't make
2492 * sense. This is useful for aiostress test.
2494 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2495 promote_sync = true;
2498 * We have other queues, don't allow more IO from this one
2500 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2501 !promote_sync)
2502 return false;
2505 * Sole queue user, no limit
2507 if (cfqd->busy_queues == 1 || promote_sync)
2508 max_dispatch = -1;
2509 else
2511 * Normally we start throttling cfqq when cfq_quantum/2
2512 * requests have been dispatched. But we can drive
2513 * deeper queue depths at the beginning of slice
2514 * subjected to upper limit of cfq_quantum.
2515 * */
2516 max_dispatch = cfqd->cfq_quantum;
2520 * Async queues must wait a bit before being allowed dispatch.
2521 * We also ramp up the dispatch depth gradually for async IO,
2522 * based on the last sync IO we serviced
2524 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2525 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2526 unsigned int depth;
2528 depth = last_sync / cfqd->cfq_slice[1];
2529 if (!depth && !cfqq->dispatched)
2530 depth = 1;
2531 if (depth < max_dispatch)
2532 max_dispatch = depth;
2536 * If we're below the current max, allow a dispatch
2538 return cfqq->dispatched < max_dispatch;
2542 * Dispatch a request from cfqq, moving them to the request queue
2543 * dispatch list.
2545 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2547 struct request *rq;
2549 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2551 if (!cfq_may_dispatch(cfqd, cfqq))
2552 return false;
2555 * follow expired path, else get first next available
2557 rq = cfq_check_fifo(cfqq);
2558 if (!rq)
2559 rq = cfqq->next_rq;
2562 * insert request into driver dispatch list
2564 cfq_dispatch_insert(cfqd->queue, rq);
2566 if (!cfqd->active_cic) {
2567 struct cfq_io_context *cic = RQ_CIC(rq);
2569 atomic_long_inc(&cic->ioc->refcount);
2570 cfqd->active_cic = cic;
2573 return true;
2577 * Find the cfqq that we need to service and move a request from that to the
2578 * dispatch list
2580 static int cfq_dispatch_requests(struct request_queue *q, int force)
2582 struct cfq_data *cfqd = q->elevator->elevator_data;
2583 struct cfq_queue *cfqq;
2585 if (!cfqd->busy_queues)
2586 return 0;
2588 if (unlikely(force))
2589 return cfq_forced_dispatch(cfqd);
2591 cfqq = cfq_select_queue(cfqd);
2592 if (!cfqq)
2593 return 0;
2596 * Dispatch a request from this cfqq, if it is allowed
2598 if (!cfq_dispatch_request(cfqd, cfqq))
2599 return 0;
2601 cfqq->slice_dispatch++;
2602 cfq_clear_cfqq_must_dispatch(cfqq);
2605 * expire an async queue immediately if it has used up its slice. idle
2606 * queue always expire after 1 dispatch round.
2608 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2609 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2610 cfq_class_idle(cfqq))) {
2611 cfqq->slice_end = jiffies + 1;
2612 cfq_slice_expired(cfqd, 0);
2615 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2616 return 1;
2620 * task holds one reference to the queue, dropped when task exits. each rq
2621 * in-flight on this queue also holds a reference, dropped when rq is freed.
2623 * Each cfq queue took a reference on the parent group. Drop it now.
2624 * queue lock must be held here.
2626 static void cfq_put_queue(struct cfq_queue *cfqq)
2628 struct cfq_data *cfqd = cfqq->cfqd;
2629 struct cfq_group *cfqg;
2631 BUG_ON(cfqq->ref <= 0);
2633 cfqq->ref--;
2634 if (cfqq->ref)
2635 return;
2637 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2638 BUG_ON(rb_first(&cfqq->sort_list));
2639 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2640 cfqg = cfqq->cfqg;
2642 if (unlikely(cfqd->active_queue == cfqq)) {
2643 __cfq_slice_expired(cfqd, cfqq, 0);
2644 cfq_schedule_dispatch(cfqd);
2647 BUG_ON(cfq_cfqq_on_rr(cfqq));
2648 kmem_cache_free(cfq_pool, cfqq);
2649 cfq_put_cfqg(cfqg);
2653 * Call func for each cic attached to this ioc.
2655 static void
2656 call_for_each_cic(struct io_context *ioc,
2657 void (*func)(struct io_context *, struct cfq_io_context *))
2659 struct cfq_io_context *cic;
2660 struct hlist_node *n;
2662 rcu_read_lock();
2664 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2665 func(ioc, cic);
2667 rcu_read_unlock();
2670 static void cfq_cic_free_rcu(struct rcu_head *head)
2672 struct cfq_io_context *cic;
2674 cic = container_of(head, struct cfq_io_context, rcu_head);
2676 kmem_cache_free(cfq_ioc_pool, cic);
2677 elv_ioc_count_dec(cfq_ioc_count);
2679 if (ioc_gone) {
2681 * CFQ scheduler is exiting, grab exit lock and check
2682 * the pending io context count. If it hits zero,
2683 * complete ioc_gone and set it back to NULL
2685 spin_lock(&ioc_gone_lock);
2686 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2687 complete(ioc_gone);
2688 ioc_gone = NULL;
2690 spin_unlock(&ioc_gone_lock);
2694 static void cfq_cic_free(struct cfq_io_context *cic)
2696 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2699 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2701 unsigned long flags;
2702 unsigned long dead_key = (unsigned long) cic->key;
2704 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2706 spin_lock_irqsave(&ioc->lock, flags);
2707 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2708 hlist_del_rcu(&cic->cic_list);
2709 spin_unlock_irqrestore(&ioc->lock, flags);
2711 cfq_cic_free(cic);
2715 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2716 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2717 * and ->trim() which is called with the task lock held
2719 static void cfq_free_io_context(struct io_context *ioc)
2722 * ioc->refcount is zero here, or we are called from elv_unregister(),
2723 * so no more cic's are allowed to be linked into this ioc. So it
2724 * should be ok to iterate over the known list, we will see all cic's
2725 * since no new ones are added.
2727 call_for_each_cic(ioc, cic_free_func);
2730 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2732 struct cfq_queue *__cfqq, *next;
2735 * If this queue was scheduled to merge with another queue, be
2736 * sure to drop the reference taken on that queue (and others in
2737 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2739 __cfqq = cfqq->new_cfqq;
2740 while (__cfqq) {
2741 if (__cfqq == cfqq) {
2742 WARN(1, "cfqq->new_cfqq loop detected\n");
2743 break;
2745 next = __cfqq->new_cfqq;
2746 cfq_put_queue(__cfqq);
2747 __cfqq = next;
2751 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2753 if (unlikely(cfqq == cfqd->active_queue)) {
2754 __cfq_slice_expired(cfqd, cfqq, 0);
2755 cfq_schedule_dispatch(cfqd);
2758 cfq_put_cooperator(cfqq);
2760 cfq_put_queue(cfqq);
2763 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2764 struct cfq_io_context *cic)
2766 struct io_context *ioc = cic->ioc;
2768 list_del_init(&cic->queue_list);
2771 * Make sure dead mark is seen for dead queues
2773 smp_wmb();
2774 cic->key = cfqd_dead_key(cfqd);
2776 rcu_read_lock();
2777 if (rcu_dereference(ioc->ioc_data) == cic) {
2778 rcu_read_unlock();
2779 spin_lock(&ioc->lock);
2780 rcu_assign_pointer(ioc->ioc_data, NULL);
2781 spin_unlock(&ioc->lock);
2782 } else
2783 rcu_read_unlock();
2785 if (cic->cfqq[BLK_RW_ASYNC]) {
2786 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2787 cic->cfqq[BLK_RW_ASYNC] = NULL;
2790 if (cic->cfqq[BLK_RW_SYNC]) {
2791 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2792 cic->cfqq[BLK_RW_SYNC] = NULL;
2796 static void cfq_exit_single_io_context(struct io_context *ioc,
2797 struct cfq_io_context *cic)
2799 struct cfq_data *cfqd = cic_to_cfqd(cic);
2801 if (cfqd) {
2802 struct request_queue *q = cfqd->queue;
2803 unsigned long flags;
2805 spin_lock_irqsave(q->queue_lock, flags);
2808 * Ensure we get a fresh copy of the ->key to prevent
2809 * race between exiting task and queue
2811 smp_read_barrier_depends();
2812 if (cic->key == cfqd)
2813 __cfq_exit_single_io_context(cfqd, cic);
2815 spin_unlock_irqrestore(q->queue_lock, flags);
2820 * The process that ioc belongs to has exited, we need to clean up
2821 * and put the internal structures we have that belongs to that process.
2823 static void cfq_exit_io_context(struct io_context *ioc)
2825 call_for_each_cic(ioc, cfq_exit_single_io_context);
2828 static struct cfq_io_context *
2829 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2831 struct cfq_io_context *cic;
2833 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2834 cfqd->queue->node);
2835 if (cic) {
2836 cic->last_end_request = jiffies;
2837 INIT_LIST_HEAD(&cic->queue_list);
2838 INIT_HLIST_NODE(&cic->cic_list);
2839 cic->dtor = cfq_free_io_context;
2840 cic->exit = cfq_exit_io_context;
2841 elv_ioc_count_inc(cfq_ioc_count);
2844 return cic;
2847 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2849 struct task_struct *tsk = current;
2850 int ioprio_class;
2852 if (!cfq_cfqq_prio_changed(cfqq))
2853 return;
2855 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2856 switch (ioprio_class) {
2857 default:
2858 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2859 case IOPRIO_CLASS_NONE:
2861 * no prio set, inherit CPU scheduling settings
2863 cfqq->ioprio = task_nice_ioprio(tsk);
2864 cfqq->ioprio_class = task_nice_ioclass(tsk);
2865 break;
2866 case IOPRIO_CLASS_RT:
2867 cfqq->ioprio = task_ioprio(ioc);
2868 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2869 break;
2870 case IOPRIO_CLASS_BE:
2871 cfqq->ioprio = task_ioprio(ioc);
2872 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2873 break;
2874 case IOPRIO_CLASS_IDLE:
2875 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2876 cfqq->ioprio = 7;
2877 cfq_clear_cfqq_idle_window(cfqq);
2878 break;
2882 * keep track of original prio settings in case we have to temporarily
2883 * elevate the priority of this queue
2885 cfqq->org_ioprio = cfqq->ioprio;
2886 cfqq->org_ioprio_class = cfqq->ioprio_class;
2887 cfq_clear_cfqq_prio_changed(cfqq);
2890 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2892 struct cfq_data *cfqd = cic_to_cfqd(cic);
2893 struct cfq_queue *cfqq;
2894 unsigned long flags;
2896 if (unlikely(!cfqd))
2897 return;
2899 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2901 cfqq = cic->cfqq[BLK_RW_ASYNC];
2902 if (cfqq) {
2903 struct cfq_queue *new_cfqq;
2904 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2905 GFP_ATOMIC);
2906 if (new_cfqq) {
2907 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2908 cfq_put_queue(cfqq);
2912 cfqq = cic->cfqq[BLK_RW_SYNC];
2913 if (cfqq)
2914 cfq_mark_cfqq_prio_changed(cfqq);
2916 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2919 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2921 call_for_each_cic(ioc, changed_ioprio);
2922 ioc->ioprio_changed = 0;
2925 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2926 pid_t pid, bool is_sync)
2928 RB_CLEAR_NODE(&cfqq->rb_node);
2929 RB_CLEAR_NODE(&cfqq->p_node);
2930 INIT_LIST_HEAD(&cfqq->fifo);
2932 cfqq->ref = 0;
2933 cfqq->cfqd = cfqd;
2935 cfq_mark_cfqq_prio_changed(cfqq);
2937 if (is_sync) {
2938 if (!cfq_class_idle(cfqq))
2939 cfq_mark_cfqq_idle_window(cfqq);
2940 cfq_mark_cfqq_sync(cfqq);
2942 cfqq->pid = pid;
2945 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2946 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2948 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2949 struct cfq_data *cfqd = cic_to_cfqd(cic);
2950 unsigned long flags;
2951 struct request_queue *q;
2953 if (unlikely(!cfqd))
2954 return;
2956 q = cfqd->queue;
2958 spin_lock_irqsave(q->queue_lock, flags);
2960 if (sync_cfqq) {
2962 * Drop reference to sync queue. A new sync queue will be
2963 * assigned in new group upon arrival of a fresh request.
2965 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2966 cic_set_cfqq(cic, NULL, 1);
2967 cfq_put_queue(sync_cfqq);
2970 spin_unlock_irqrestore(q->queue_lock, flags);
2973 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2975 call_for_each_cic(ioc, changed_cgroup);
2976 ioc->cgroup_changed = 0;
2978 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2980 static struct cfq_queue *
2981 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2982 struct io_context *ioc, gfp_t gfp_mask)
2984 struct cfq_queue *cfqq, *new_cfqq = NULL;
2985 struct cfq_io_context *cic;
2986 struct cfq_group *cfqg;
2988 retry:
2989 cfqg = cfq_get_cfqg(cfqd);
2990 cic = cfq_cic_lookup(cfqd, ioc);
2991 /* cic always exists here */
2992 cfqq = cic_to_cfqq(cic, is_sync);
2995 * Always try a new alloc if we fell back to the OOM cfqq
2996 * originally, since it should just be a temporary situation.
2998 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2999 cfqq = NULL;
3000 if (new_cfqq) {
3001 cfqq = new_cfqq;
3002 new_cfqq = NULL;
3003 } else if (gfp_mask & __GFP_WAIT) {
3004 spin_unlock_irq(cfqd->queue->queue_lock);
3005 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3006 gfp_mask | __GFP_ZERO,
3007 cfqd->queue->node);
3008 spin_lock_irq(cfqd->queue->queue_lock);
3009 if (new_cfqq)
3010 goto retry;
3011 } else {
3012 cfqq = kmem_cache_alloc_node(cfq_pool,
3013 gfp_mask | __GFP_ZERO,
3014 cfqd->queue->node);
3017 if (cfqq) {
3018 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3019 cfq_init_prio_data(cfqq, ioc);
3020 cfq_link_cfqq_cfqg(cfqq, cfqg);
3021 cfq_log_cfqq(cfqd, cfqq, "alloced");
3022 } else
3023 cfqq = &cfqd->oom_cfqq;
3026 if (new_cfqq)
3027 kmem_cache_free(cfq_pool, new_cfqq);
3029 return cfqq;
3032 static struct cfq_queue **
3033 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3035 switch (ioprio_class) {
3036 case IOPRIO_CLASS_RT:
3037 return &cfqd->async_cfqq[0][ioprio];
3038 case IOPRIO_CLASS_BE:
3039 return &cfqd->async_cfqq[1][ioprio];
3040 case IOPRIO_CLASS_IDLE:
3041 return &cfqd->async_idle_cfqq;
3042 default:
3043 BUG();
3047 static struct cfq_queue *
3048 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
3049 gfp_t gfp_mask)
3051 const int ioprio = task_ioprio(ioc);
3052 const int ioprio_class = task_ioprio_class(ioc);
3053 struct cfq_queue **async_cfqq = NULL;
3054 struct cfq_queue *cfqq = NULL;
3056 if (!is_sync) {
3057 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3058 cfqq = *async_cfqq;
3061 if (!cfqq)
3062 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
3065 * pin the queue now that it's allocated, scheduler exit will prune it
3067 if (!is_sync && !(*async_cfqq)) {
3068 cfqq->ref++;
3069 *async_cfqq = cfqq;
3072 cfqq->ref++;
3073 return cfqq;
3077 * We drop cfq io contexts lazily, so we may find a dead one.
3079 static void
3080 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3081 struct cfq_io_context *cic)
3083 unsigned long flags;
3085 WARN_ON(!list_empty(&cic->queue_list));
3086 BUG_ON(cic->key != cfqd_dead_key(cfqd));
3088 spin_lock_irqsave(&ioc->lock, flags);
3090 BUG_ON(rcu_dereference_check(ioc->ioc_data,
3091 lockdep_is_held(&ioc->lock)) == cic);
3093 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3094 hlist_del_rcu(&cic->cic_list);
3095 spin_unlock_irqrestore(&ioc->lock, flags);
3097 cfq_cic_free(cic);
3100 static struct cfq_io_context *
3101 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3103 struct cfq_io_context *cic;
3104 unsigned long flags;
3106 if (unlikely(!ioc))
3107 return NULL;
3109 rcu_read_lock();
3112 * we maintain a last-hit cache, to avoid browsing over the tree
3114 cic = rcu_dereference(ioc->ioc_data);
3115 if (cic && cic->key == cfqd) {
3116 rcu_read_unlock();
3117 return cic;
3120 do {
3121 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3122 rcu_read_unlock();
3123 if (!cic)
3124 break;
3125 if (unlikely(cic->key != cfqd)) {
3126 cfq_drop_dead_cic(cfqd, ioc, cic);
3127 rcu_read_lock();
3128 continue;
3131 spin_lock_irqsave(&ioc->lock, flags);
3132 rcu_assign_pointer(ioc->ioc_data, cic);
3133 spin_unlock_irqrestore(&ioc->lock, flags);
3134 break;
3135 } while (1);
3137 return cic;
3141 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3142 * the process specific cfq io context when entered from the block layer.
3143 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3145 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3146 struct cfq_io_context *cic, gfp_t gfp_mask)
3148 unsigned long flags;
3149 int ret;
3151 ret = radix_tree_preload(gfp_mask);
3152 if (!ret) {
3153 cic->ioc = ioc;
3154 cic->key = cfqd;
3156 spin_lock_irqsave(&ioc->lock, flags);
3157 ret = radix_tree_insert(&ioc->radix_root,
3158 cfqd->cic_index, cic);
3159 if (!ret)
3160 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3161 spin_unlock_irqrestore(&ioc->lock, flags);
3163 radix_tree_preload_end();
3165 if (!ret) {
3166 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3167 list_add(&cic->queue_list, &cfqd->cic_list);
3168 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3172 if (ret && ret != -EEXIST)
3173 printk(KERN_ERR "cfq: cic link failed!\n");
3175 return ret;
3179 * Setup general io context and cfq io context. There can be several cfq
3180 * io contexts per general io context, if this process is doing io to more
3181 * than one device managed by cfq.
3183 static struct cfq_io_context *
3184 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3186 struct io_context *ioc = NULL;
3187 struct cfq_io_context *cic;
3188 int ret;
3190 might_sleep_if(gfp_mask & __GFP_WAIT);
3192 ioc = get_io_context(gfp_mask, cfqd->queue->node);
3193 if (!ioc)
3194 return NULL;
3196 retry:
3197 cic = cfq_cic_lookup(cfqd, ioc);
3198 if (cic)
3199 goto out;
3201 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3202 if (cic == NULL)
3203 goto err;
3205 ret = cfq_cic_link(cfqd, ioc, cic, gfp_mask);
3206 if (ret == -EEXIST) {
3207 /* someone has linked cic to ioc already */
3208 cfq_cic_free(cic);
3209 goto retry;
3210 } else if (ret)
3211 goto err_free;
3213 out:
3214 smp_read_barrier_depends();
3215 if (unlikely(ioc->ioprio_changed))
3216 cfq_ioc_set_ioprio(ioc);
3218 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3219 if (unlikely(ioc->cgroup_changed))
3220 cfq_ioc_set_cgroup(ioc);
3221 #endif
3222 return cic;
3223 err_free:
3224 cfq_cic_free(cic);
3225 err:
3226 put_io_context(ioc);
3227 return NULL;
3230 static void
3231 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3233 unsigned long elapsed = jiffies - cic->last_end_request;
3234 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3236 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3237 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3238 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3241 static void
3242 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3243 struct request *rq)
3245 sector_t sdist = 0;
3246 sector_t n_sec = blk_rq_sectors(rq);
3247 if (cfqq->last_request_pos) {
3248 if (cfqq->last_request_pos < blk_rq_pos(rq))
3249 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3250 else
3251 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3254 cfqq->seek_history <<= 1;
3255 if (blk_queue_nonrot(cfqd->queue))
3256 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3257 else
3258 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3262 * Disable idle window if the process thinks too long or seeks so much that
3263 * it doesn't matter
3265 static void
3266 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3267 struct cfq_io_context *cic)
3269 int old_idle, enable_idle;
3272 * Don't idle for async or idle io prio class
3274 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3275 return;
3277 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3279 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3280 cfq_mark_cfqq_deep(cfqq);
3282 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3283 enable_idle = 0;
3284 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3285 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3286 enable_idle = 0;
3287 else if (sample_valid(cic->ttime_samples)) {
3288 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3289 enable_idle = 0;
3290 else
3291 enable_idle = 1;
3294 if (old_idle != enable_idle) {
3295 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3296 if (enable_idle)
3297 cfq_mark_cfqq_idle_window(cfqq);
3298 else
3299 cfq_clear_cfqq_idle_window(cfqq);
3304 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3305 * no or if we aren't sure, a 1 will cause a preempt.
3307 static bool
3308 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3309 struct request *rq)
3311 struct cfq_queue *cfqq;
3313 cfqq = cfqd->active_queue;
3314 if (!cfqq)
3315 return false;
3317 if (cfq_class_idle(new_cfqq))
3318 return false;
3320 if (cfq_class_idle(cfqq))
3321 return true;
3324 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3326 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3327 return false;
3330 * if the new request is sync, but the currently running queue is
3331 * not, let the sync request have priority.
3333 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3334 return true;
3336 if (new_cfqq->cfqg != cfqq->cfqg)
3337 return false;
3339 if (cfq_slice_used(cfqq))
3340 return true;
3342 /* Allow preemption only if we are idling on sync-noidle tree */
3343 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3344 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3345 new_cfqq->service_tree->count == 2 &&
3346 RB_EMPTY_ROOT(&cfqq->sort_list))
3347 return true;
3350 * So both queues are sync. Let the new request get disk time if
3351 * it's a metadata request and the current queue is doing regular IO.
3353 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3354 return true;
3357 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3359 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3360 return true;
3362 /* An idle queue should not be idle now for some reason */
3363 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3364 return true;
3366 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3367 return false;
3370 * if this request is as-good as one we would expect from the
3371 * current cfqq, let it preempt
3373 if (cfq_rq_close(cfqd, cfqq, rq))
3374 return true;
3376 return false;
3380 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3381 * let it have half of its nominal slice.
3383 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3385 struct cfq_queue *old_cfqq = cfqd->active_queue;
3387 cfq_log_cfqq(cfqd, cfqq, "preempt");
3388 cfq_slice_expired(cfqd, 1);
3391 * workload type is changed, don't save slice, otherwise preempt
3392 * doesn't happen
3394 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3395 cfqq->cfqg->saved_workload_slice = 0;
3398 * Put the new queue at the front of the of the current list,
3399 * so we know that it will be selected next.
3401 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3403 cfq_service_tree_add(cfqd, cfqq, 1);
3405 cfqq->slice_end = 0;
3406 cfq_mark_cfqq_slice_new(cfqq);
3410 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3411 * something we should do about it
3413 static void
3414 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3415 struct request *rq)
3417 struct cfq_io_context *cic = RQ_CIC(rq);
3419 cfqd->rq_queued++;
3420 if (rq->cmd_flags & REQ_META)
3421 cfqq->meta_pending++;
3423 cfq_update_io_thinktime(cfqd, cic);
3424 cfq_update_io_seektime(cfqd, cfqq, rq);
3425 cfq_update_idle_window(cfqd, cfqq, cic);
3427 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3429 if (cfqq == cfqd->active_queue) {
3431 * Remember that we saw a request from this process, but
3432 * don't start queuing just yet. Otherwise we risk seeing lots
3433 * of tiny requests, because we disrupt the normal plugging
3434 * and merging. If the request is already larger than a single
3435 * page, let it rip immediately. For that case we assume that
3436 * merging is already done. Ditto for a busy system that
3437 * has other work pending, don't risk delaying until the
3438 * idle timer unplug to continue working.
3440 if (cfq_cfqq_wait_request(cfqq)) {
3441 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3442 cfqd->busy_queues > 1) {
3443 cfq_del_timer(cfqd, cfqq);
3444 cfq_clear_cfqq_wait_request(cfqq);
3445 __blk_run_queue(cfqd->queue);
3446 } else {
3447 cfq_blkiocg_update_idle_time_stats(
3448 &cfqq->cfqg->blkg);
3449 cfq_mark_cfqq_must_dispatch(cfqq);
3452 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3454 * not the active queue - expire current slice if it is
3455 * idle and has expired it's mean thinktime or this new queue
3456 * has some old slice time left and is of higher priority or
3457 * this new queue is RT and the current one is BE
3459 cfq_preempt_queue(cfqd, cfqq);
3460 __blk_run_queue(cfqd->queue);
3464 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3466 struct cfq_data *cfqd = q->elevator->elevator_data;
3467 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3469 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3470 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3472 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3473 list_add_tail(&rq->queuelist, &cfqq->fifo);
3474 cfq_add_rq_rb(rq);
3475 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3476 &cfqd->serving_group->blkg, rq_data_dir(rq),
3477 rq_is_sync(rq));
3478 cfq_rq_enqueued(cfqd, cfqq, rq);
3482 * Update hw_tag based on peak queue depth over 50 samples under
3483 * sufficient load.
3485 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3487 struct cfq_queue *cfqq = cfqd->active_queue;
3489 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3490 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3492 if (cfqd->hw_tag == 1)
3493 return;
3495 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3496 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3497 return;
3500 * If active queue hasn't enough requests and can idle, cfq might not
3501 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3502 * case
3504 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3505 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3506 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3507 return;
3509 if (cfqd->hw_tag_samples++ < 50)
3510 return;
3512 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3513 cfqd->hw_tag = 1;
3514 else
3515 cfqd->hw_tag = 0;
3518 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3520 struct cfq_io_context *cic = cfqd->active_cic;
3522 /* If the queue already has requests, don't wait */
3523 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3524 return false;
3526 /* If there are other queues in the group, don't wait */
3527 if (cfqq->cfqg->nr_cfqq > 1)
3528 return false;
3530 if (cfq_slice_used(cfqq))
3531 return true;
3533 /* if slice left is less than think time, wait busy */
3534 if (cic && sample_valid(cic->ttime_samples)
3535 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3536 return true;
3539 * If think times is less than a jiffy than ttime_mean=0 and above
3540 * will not be true. It might happen that slice has not expired yet
3541 * but will expire soon (4-5 ns) during select_queue(). To cover the
3542 * case where think time is less than a jiffy, mark the queue wait
3543 * busy if only 1 jiffy is left in the slice.
3545 if (cfqq->slice_end - jiffies == 1)
3546 return true;
3548 return false;
3551 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3553 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3554 struct cfq_data *cfqd = cfqq->cfqd;
3555 const int sync = rq_is_sync(rq);
3556 unsigned long now;
3558 now = jiffies;
3559 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3560 !!(rq->cmd_flags & REQ_NOIDLE));
3562 cfq_update_hw_tag(cfqd);
3564 WARN_ON(!cfqd->rq_in_driver);
3565 WARN_ON(!cfqq->dispatched);
3566 cfqd->rq_in_driver--;
3567 cfqq->dispatched--;
3568 (RQ_CFQG(rq))->dispatched--;
3569 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3570 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3571 rq_data_dir(rq), rq_is_sync(rq));
3573 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3575 if (sync) {
3576 RQ_CIC(rq)->last_end_request = now;
3577 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3578 cfqd->last_delayed_sync = now;
3582 * If this is the active queue, check if it needs to be expired,
3583 * or if we want to idle in case it has no pending requests.
3585 if (cfqd->active_queue == cfqq) {
3586 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3588 if (cfq_cfqq_slice_new(cfqq)) {
3589 cfq_set_prio_slice(cfqd, cfqq);
3590 cfq_clear_cfqq_slice_new(cfqq);
3594 * Should we wait for next request to come in before we expire
3595 * the queue.
3597 if (cfq_should_wait_busy(cfqd, cfqq)) {
3598 unsigned long extend_sl = cfqd->cfq_slice_idle;
3599 if (!cfqd->cfq_slice_idle)
3600 extend_sl = cfqd->cfq_group_idle;
3601 cfqq->slice_end = jiffies + extend_sl;
3602 cfq_mark_cfqq_wait_busy(cfqq);
3603 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3607 * Idling is not enabled on:
3608 * - expired queues
3609 * - idle-priority queues
3610 * - async queues
3611 * - queues with still some requests queued
3612 * - when there is a close cooperator
3614 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3615 cfq_slice_expired(cfqd, 1);
3616 else if (sync && cfqq_empty &&
3617 !cfq_close_cooperator(cfqd, cfqq)) {
3618 cfq_arm_slice_timer(cfqd);
3622 if (!cfqd->rq_in_driver)
3623 cfq_schedule_dispatch(cfqd);
3627 * we temporarily boost lower priority queues if they are holding fs exclusive
3628 * resources. they are boosted to normal prio (CLASS_BE/4)
3630 static void cfq_prio_boost(struct cfq_queue *cfqq)
3632 if (has_fs_excl()) {
3634 * boost idle prio on transactions that would lock out other
3635 * users of the filesystem
3637 if (cfq_class_idle(cfqq))
3638 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3639 if (cfqq->ioprio > IOPRIO_NORM)
3640 cfqq->ioprio = IOPRIO_NORM;
3641 } else {
3643 * unboost the queue (if needed)
3645 cfqq->ioprio_class = cfqq->org_ioprio_class;
3646 cfqq->ioprio = cfqq->org_ioprio;
3650 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3652 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3653 cfq_mark_cfqq_must_alloc_slice(cfqq);
3654 return ELV_MQUEUE_MUST;
3657 return ELV_MQUEUE_MAY;
3660 static int cfq_may_queue(struct request_queue *q, int rw)
3662 struct cfq_data *cfqd = q->elevator->elevator_data;
3663 struct task_struct *tsk = current;
3664 struct cfq_io_context *cic;
3665 struct cfq_queue *cfqq;
3668 * don't force setup of a queue from here, as a call to may_queue
3669 * does not necessarily imply that a request actually will be queued.
3670 * so just lookup a possibly existing queue, or return 'may queue'
3671 * if that fails
3673 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3674 if (!cic)
3675 return ELV_MQUEUE_MAY;
3677 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3678 if (cfqq) {
3679 cfq_init_prio_data(cfqq, cic->ioc);
3680 cfq_prio_boost(cfqq);
3682 return __cfq_may_queue(cfqq);
3685 return ELV_MQUEUE_MAY;
3689 * queue lock held here
3691 static void cfq_put_request(struct request *rq)
3693 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3695 if (cfqq) {
3696 const int rw = rq_data_dir(rq);
3698 BUG_ON(!cfqq->allocated[rw]);
3699 cfqq->allocated[rw]--;
3701 put_io_context(RQ_CIC(rq)->ioc);
3703 rq->elevator_private[0] = NULL;
3704 rq->elevator_private[1] = NULL;
3706 /* Put down rq reference on cfqg */
3707 cfq_put_cfqg(RQ_CFQG(rq));
3708 rq->elevator_private[2] = NULL;
3710 cfq_put_queue(cfqq);
3714 static struct cfq_queue *
3715 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3716 struct cfq_queue *cfqq)
3718 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3719 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3720 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3721 cfq_put_queue(cfqq);
3722 return cic_to_cfqq(cic, 1);
3726 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3727 * was the last process referring to said cfqq.
3729 static struct cfq_queue *
3730 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3732 if (cfqq_process_refs(cfqq) == 1) {
3733 cfqq->pid = current->pid;
3734 cfq_clear_cfqq_coop(cfqq);
3735 cfq_clear_cfqq_split_coop(cfqq);
3736 return cfqq;
3739 cic_set_cfqq(cic, NULL, 1);
3741 cfq_put_cooperator(cfqq);
3743 cfq_put_queue(cfqq);
3744 return NULL;
3747 * Allocate cfq data structures associated with this request.
3749 static int
3750 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3752 struct cfq_data *cfqd = q->elevator->elevator_data;
3753 struct cfq_io_context *cic;
3754 const int rw = rq_data_dir(rq);
3755 const bool is_sync = rq_is_sync(rq);
3756 struct cfq_queue *cfqq;
3757 unsigned long flags;
3759 might_sleep_if(gfp_mask & __GFP_WAIT);
3761 cic = cfq_get_io_context(cfqd, gfp_mask);
3763 spin_lock_irqsave(q->queue_lock, flags);
3765 if (!cic)
3766 goto queue_fail;
3768 new_queue:
3769 cfqq = cic_to_cfqq(cic, is_sync);
3770 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3771 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3772 cic_set_cfqq(cic, cfqq, is_sync);
3773 } else {
3775 * If the queue was seeky for too long, break it apart.
3777 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3778 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3779 cfqq = split_cfqq(cic, cfqq);
3780 if (!cfqq)
3781 goto new_queue;
3785 * Check to see if this queue is scheduled to merge with
3786 * another, closely cooperating queue. The merging of
3787 * queues happens here as it must be done in process context.
3788 * The reference on new_cfqq was taken in merge_cfqqs.
3790 if (cfqq->new_cfqq)
3791 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3794 cfqq->allocated[rw]++;
3796 cfqq->ref++;
3797 rq->elevator_private[0] = cic;
3798 rq->elevator_private[1] = cfqq;
3799 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3800 spin_unlock_irqrestore(q->queue_lock, flags);
3801 return 0;
3803 queue_fail:
3804 cfq_schedule_dispatch(cfqd);
3805 spin_unlock_irqrestore(q->queue_lock, flags);
3806 cfq_log(cfqd, "set_request fail");
3807 return 1;
3810 static void cfq_kick_queue(struct work_struct *work)
3812 struct cfq_data *cfqd =
3813 container_of(work, struct cfq_data, unplug_work);
3814 struct request_queue *q = cfqd->queue;
3816 spin_lock_irq(q->queue_lock);
3817 __blk_run_queue(cfqd->queue);
3818 spin_unlock_irq(q->queue_lock);
3822 * Timer running if the active_queue is currently idling inside its time slice
3824 static void cfq_idle_slice_timer(unsigned long data)
3826 struct cfq_data *cfqd = (struct cfq_data *) data;
3827 struct cfq_queue *cfqq;
3828 unsigned long flags;
3829 int timed_out = 1;
3831 cfq_log(cfqd, "idle timer fired");
3833 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3835 cfqq = cfqd->active_queue;
3836 if (cfqq) {
3837 timed_out = 0;
3840 * We saw a request before the queue expired, let it through
3842 if (cfq_cfqq_must_dispatch(cfqq))
3843 goto out_kick;
3846 * expired
3848 if (cfq_slice_used(cfqq))
3849 goto expire;
3852 * only expire and reinvoke request handler, if there are
3853 * other queues with pending requests
3855 if (!cfqd->busy_queues)
3856 goto out_cont;
3859 * not expired and it has a request pending, let it dispatch
3861 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3862 goto out_kick;
3865 * Queue depth flag is reset only when the idle didn't succeed
3867 cfq_clear_cfqq_deep(cfqq);
3869 expire:
3870 cfq_slice_expired(cfqd, timed_out);
3871 out_kick:
3872 cfq_schedule_dispatch(cfqd);
3873 out_cont:
3874 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3877 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3879 del_timer_sync(&cfqd->idle_slice_timer);
3880 cancel_work_sync(&cfqd->unplug_work);
3883 static void cfq_put_async_queues(struct cfq_data *cfqd)
3885 int i;
3887 for (i = 0; i < IOPRIO_BE_NR; i++) {
3888 if (cfqd->async_cfqq[0][i])
3889 cfq_put_queue(cfqd->async_cfqq[0][i]);
3890 if (cfqd->async_cfqq[1][i])
3891 cfq_put_queue(cfqd->async_cfqq[1][i]);
3894 if (cfqd->async_idle_cfqq)
3895 cfq_put_queue(cfqd->async_idle_cfqq);
3898 static void cfq_exit_queue(struct elevator_queue *e)
3900 struct cfq_data *cfqd = e->elevator_data;
3901 struct request_queue *q = cfqd->queue;
3902 bool wait = false;
3904 cfq_shutdown_timer_wq(cfqd);
3906 spin_lock_irq(q->queue_lock);
3908 if (cfqd->active_queue)
3909 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3911 while (!list_empty(&cfqd->cic_list)) {
3912 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3913 struct cfq_io_context,
3914 queue_list);
3916 __cfq_exit_single_io_context(cfqd, cic);
3919 cfq_put_async_queues(cfqd);
3920 cfq_release_cfq_groups(cfqd);
3923 * If there are groups which we could not unlink from blkcg list,
3924 * wait for a rcu period for them to be freed.
3926 if (cfqd->nr_blkcg_linked_grps)
3927 wait = true;
3929 spin_unlock_irq(q->queue_lock);
3931 cfq_shutdown_timer_wq(cfqd);
3933 spin_lock(&cic_index_lock);
3934 ida_remove(&cic_index_ida, cfqd->cic_index);
3935 spin_unlock(&cic_index_lock);
3938 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3939 * Do this wait only if there are other unlinked groups out
3940 * there. This can happen if cgroup deletion path claimed the
3941 * responsibility of cleaning up a group before queue cleanup code
3942 * get to the group.
3944 * Do not call synchronize_rcu() unconditionally as there are drivers
3945 * which create/delete request queue hundreds of times during scan/boot
3946 * and synchronize_rcu() can take significant time and slow down boot.
3948 if (wait)
3949 synchronize_rcu();
3951 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3952 /* Free up per cpu stats for root group */
3953 free_percpu(cfqd->root_group.blkg.stats_cpu);
3954 #endif
3955 kfree(cfqd);
3958 static int cfq_alloc_cic_index(void)
3960 int index, error;
3962 do {
3963 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3964 return -ENOMEM;
3966 spin_lock(&cic_index_lock);
3967 error = ida_get_new(&cic_index_ida, &index);
3968 spin_unlock(&cic_index_lock);
3969 if (error && error != -EAGAIN)
3970 return error;
3971 } while (error);
3973 return index;
3976 static void *cfq_init_queue(struct request_queue *q)
3978 struct cfq_data *cfqd;
3979 int i, j;
3980 struct cfq_group *cfqg;
3981 struct cfq_rb_root *st;
3983 i = cfq_alloc_cic_index();
3984 if (i < 0)
3985 return NULL;
3987 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3988 if (!cfqd) {
3989 spin_lock(&cic_index_lock);
3990 ida_remove(&cic_index_ida, i);
3991 spin_unlock(&cic_index_lock);
3992 return NULL;
3996 * Don't need take queue_lock in the routine, since we are
3997 * initializing the ioscheduler, and nobody is using cfqd
3999 cfqd->cic_index = i;
4001 /* Init root service tree */
4002 cfqd->grp_service_tree = CFQ_RB_ROOT;
4004 /* Init root group */
4005 cfqg = &cfqd->root_group;
4006 for_each_cfqg_st(cfqg, i, j, st)
4007 *st = CFQ_RB_ROOT;
4008 RB_CLEAR_NODE(&cfqg->rb_node);
4010 /* Give preference to root group over other groups */
4011 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
4013 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4015 * Set root group reference to 2. One reference will be dropped when
4016 * all groups on cfqd->cfqg_list are being deleted during queue exit.
4017 * Other reference will remain there as we don't want to delete this
4018 * group as it is statically allocated and gets destroyed when
4019 * throtl_data goes away.
4021 cfqg->ref = 2;
4023 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
4024 kfree(cfqg);
4026 spin_lock(&cic_index_lock);
4027 ida_remove(&cic_index_ida, cfqd->cic_index);
4028 spin_unlock(&cic_index_lock);
4030 kfree(cfqd);
4031 return NULL;
4034 rcu_read_lock();
4036 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4037 (void *)cfqd, 0);
4038 rcu_read_unlock();
4039 cfqd->nr_blkcg_linked_grps++;
4041 /* Add group on cfqd->cfqg_list */
4042 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
4043 #endif
4045 * Not strictly needed (since RB_ROOT just clears the node and we
4046 * zeroed cfqd on alloc), but better be safe in case someone decides
4047 * to add magic to the rb code
4049 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4050 cfqd->prio_trees[i] = RB_ROOT;
4053 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4054 * Grab a permanent reference to it, so that the normal code flow
4055 * will not attempt to free it.
4057 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4058 cfqd->oom_cfqq.ref++;
4059 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
4061 INIT_LIST_HEAD(&cfqd->cic_list);
4063 cfqd->queue = q;
4065 init_timer(&cfqd->idle_slice_timer);
4066 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4067 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4069 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4071 cfqd->cfq_quantum = cfq_quantum;
4072 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4073 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4074 cfqd->cfq_back_max = cfq_back_max;
4075 cfqd->cfq_back_penalty = cfq_back_penalty;
4076 cfqd->cfq_slice[0] = cfq_slice_async;
4077 cfqd->cfq_slice[1] = cfq_slice_sync;
4078 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4079 cfqd->cfq_slice_idle = cfq_slice_idle;
4080 cfqd->cfq_group_idle = cfq_group_idle;
4081 cfqd->cfq_latency = 1;
4082 cfqd->hw_tag = -1;
4084 * we optimistically start assuming sync ops weren't delayed in last
4085 * second, in order to have larger depth for async operations.
4087 cfqd->last_delayed_sync = jiffies - HZ;
4088 return cfqd;
4091 static void cfq_slab_kill(void)
4094 * Caller already ensured that pending RCU callbacks are completed,
4095 * so we should have no busy allocations at this point.
4097 if (cfq_pool)
4098 kmem_cache_destroy(cfq_pool);
4099 if (cfq_ioc_pool)
4100 kmem_cache_destroy(cfq_ioc_pool);
4103 static int __init cfq_slab_setup(void)
4105 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4106 if (!cfq_pool)
4107 goto fail;
4109 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
4110 if (!cfq_ioc_pool)
4111 goto fail;
4113 return 0;
4114 fail:
4115 cfq_slab_kill();
4116 return -ENOMEM;
4120 * sysfs parts below -->
4122 static ssize_t
4123 cfq_var_show(unsigned int var, char *page)
4125 return sprintf(page, "%d\n", var);
4128 static ssize_t
4129 cfq_var_store(unsigned int *var, const char *page, size_t count)
4131 char *p = (char *) page;
4133 *var = simple_strtoul(p, &p, 10);
4134 return count;
4137 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4138 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4140 struct cfq_data *cfqd = e->elevator_data; \
4141 unsigned int __data = __VAR; \
4142 if (__CONV) \
4143 __data = jiffies_to_msecs(__data); \
4144 return cfq_var_show(__data, (page)); \
4146 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4147 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4148 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4149 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4150 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4151 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4152 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4153 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4154 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4155 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4156 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4157 #undef SHOW_FUNCTION
4159 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4160 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4162 struct cfq_data *cfqd = e->elevator_data; \
4163 unsigned int __data; \
4164 int ret = cfq_var_store(&__data, (page), count); \
4165 if (__data < (MIN)) \
4166 __data = (MIN); \
4167 else if (__data > (MAX)) \
4168 __data = (MAX); \
4169 if (__CONV) \
4170 *(__PTR) = msecs_to_jiffies(__data); \
4171 else \
4172 *(__PTR) = __data; \
4173 return ret; \
4175 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4176 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4177 UINT_MAX, 1);
4178 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4179 UINT_MAX, 1);
4180 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4181 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4182 UINT_MAX, 0);
4183 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4184 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4185 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4186 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4187 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4188 UINT_MAX, 0);
4189 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4190 #undef STORE_FUNCTION
4192 #define CFQ_ATTR(name) \
4193 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4195 static struct elv_fs_entry cfq_attrs[] = {
4196 CFQ_ATTR(quantum),
4197 CFQ_ATTR(fifo_expire_sync),
4198 CFQ_ATTR(fifo_expire_async),
4199 CFQ_ATTR(back_seek_max),
4200 CFQ_ATTR(back_seek_penalty),
4201 CFQ_ATTR(slice_sync),
4202 CFQ_ATTR(slice_async),
4203 CFQ_ATTR(slice_async_rq),
4204 CFQ_ATTR(slice_idle),
4205 CFQ_ATTR(group_idle),
4206 CFQ_ATTR(low_latency),
4207 __ATTR_NULL
4210 static struct elevator_type iosched_cfq = {
4211 .ops = {
4212 .elevator_merge_fn = cfq_merge,
4213 .elevator_merged_fn = cfq_merged_request,
4214 .elevator_merge_req_fn = cfq_merged_requests,
4215 .elevator_allow_merge_fn = cfq_allow_merge,
4216 .elevator_bio_merged_fn = cfq_bio_merged,
4217 .elevator_dispatch_fn = cfq_dispatch_requests,
4218 .elevator_add_req_fn = cfq_insert_request,
4219 .elevator_activate_req_fn = cfq_activate_request,
4220 .elevator_deactivate_req_fn = cfq_deactivate_request,
4221 .elevator_completed_req_fn = cfq_completed_request,
4222 .elevator_former_req_fn = elv_rb_former_request,
4223 .elevator_latter_req_fn = elv_rb_latter_request,
4224 .elevator_set_req_fn = cfq_set_request,
4225 .elevator_put_req_fn = cfq_put_request,
4226 .elevator_may_queue_fn = cfq_may_queue,
4227 .elevator_init_fn = cfq_init_queue,
4228 .elevator_exit_fn = cfq_exit_queue,
4229 .trim = cfq_free_io_context,
4231 .elevator_attrs = cfq_attrs,
4232 .elevator_name = "cfq",
4233 .elevator_owner = THIS_MODULE,
4236 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4237 static struct blkio_policy_type blkio_policy_cfq = {
4238 .ops = {
4239 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4240 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4242 .plid = BLKIO_POLICY_PROP,
4244 #else
4245 static struct blkio_policy_type blkio_policy_cfq;
4246 #endif
4248 static int __init cfq_init(void)
4251 * could be 0 on HZ < 1000 setups
4253 if (!cfq_slice_async)
4254 cfq_slice_async = 1;
4255 if (!cfq_slice_idle)
4256 cfq_slice_idle = 1;
4258 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4259 if (!cfq_group_idle)
4260 cfq_group_idle = 1;
4261 #else
4262 cfq_group_idle = 0;
4263 #endif
4264 if (cfq_slab_setup())
4265 return -ENOMEM;
4267 elv_register(&iosched_cfq);
4268 blkio_policy_register(&blkio_policy_cfq);
4270 return 0;
4273 static void __exit cfq_exit(void)
4275 DECLARE_COMPLETION_ONSTACK(all_gone);
4276 blkio_policy_unregister(&blkio_policy_cfq);
4277 elv_unregister(&iosched_cfq);
4278 ioc_gone = &all_gone;
4279 /* ioc_gone's update must be visible before reading ioc_count */
4280 smp_wmb();
4283 * this also protects us from entering cfq_slab_kill() with
4284 * pending RCU callbacks
4286 if (elv_ioc_count_read(cfq_ioc_count))
4287 wait_for_completion(&all_gone);
4288 ida_destroy(&cic_index_ida);
4289 cfq_slab_kill();
4292 module_init(cfq_init);
4293 module_exit(cfq_exit);
4295 MODULE_AUTHOR("Jens Axboe");
4296 MODULE_LICENSE("GPL");
4297 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");