2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/log2.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/card.h>
24 #include <linux/amba/bus.h>
25 #include <linux/clk.h>
26 #include <linux/scatterlist.h>
27 #include <linux/gpio.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/amba/mmci.h>
33 #include <asm/div64.h>
35 #include <asm/sizes.h>
39 #define DRIVER_NAME "mmci-pl18x"
41 static unsigned int fmax
= 515633;
44 * struct variant_data - MMCI variant-specific quirks
45 * @clkreg: default value for MCICLOCK register
46 * @clkreg_enable: enable value for MMCICLOCK register
47 * @datalength_bits: number of bits in the MMCIDATALENGTH register
48 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
49 * is asserted (likewise for RX)
50 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
51 * is asserted (likewise for RX)
52 * @sdio: variant supports SDIO
53 * @st_clkdiv: true if using a ST-specific clock divider algorithm
54 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
58 unsigned int clkreg_enable
;
59 unsigned int datalength_bits
;
60 unsigned int fifosize
;
61 unsigned int fifohalfsize
;
64 bool blksz_datactrl16
;
67 static struct variant_data variant_arm
= {
69 .fifohalfsize
= 8 * 4,
70 .datalength_bits
= 16,
73 static struct variant_data variant_arm_extended_fifo
= {
75 .fifohalfsize
= 64 * 4,
76 .datalength_bits
= 16,
79 static struct variant_data variant_u300
= {
81 .fifohalfsize
= 8 * 4,
82 .clkreg_enable
= MCI_ST_U300_HWFCEN
,
83 .datalength_bits
= 16,
87 static struct variant_data variant_ux500
= {
89 .fifohalfsize
= 8 * 4,
90 .clkreg
= MCI_CLK_ENABLE
,
91 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
92 .datalength_bits
= 24,
97 static struct variant_data variant_ux500v2
= {
99 .fifohalfsize
= 8 * 4,
100 .clkreg
= MCI_CLK_ENABLE
,
101 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
102 .datalength_bits
= 24,
105 .blksz_datactrl16
= true,
109 * This must be called with host->lock held
111 static void mmci_set_clkreg(struct mmci_host
*host
, unsigned int desired
)
113 struct variant_data
*variant
= host
->variant
;
114 u32 clk
= variant
->clkreg
;
117 if (desired
>= host
->mclk
) {
118 clk
= MCI_CLK_BYPASS
;
119 if (variant
->st_clkdiv
)
120 clk
|= MCI_ST_UX500_NEG_EDGE
;
121 host
->cclk
= host
->mclk
;
122 } else if (variant
->st_clkdiv
) {
124 * DB8500 TRM says f = mclk / (clkdiv + 2)
125 * => clkdiv = (mclk / f) - 2
126 * Round the divider up so we don't exceed the max
129 clk
= DIV_ROUND_UP(host
->mclk
, desired
) - 2;
132 host
->cclk
= host
->mclk
/ (clk
+ 2);
135 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
136 * => clkdiv = mclk / (2 * f) - 1
138 clk
= host
->mclk
/ (2 * desired
) - 1;
141 host
->cclk
= host
->mclk
/ (2 * (clk
+ 1));
144 clk
|= variant
->clkreg_enable
;
145 clk
|= MCI_CLK_ENABLE
;
146 /* This hasn't proven to be worthwhile */
147 /* clk |= MCI_CLK_PWRSAVE; */
150 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_4
)
152 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_8
)
153 clk
|= MCI_ST_8BIT_BUS
;
155 writel(clk
, host
->base
+ MMCICLOCK
);
159 mmci_request_end(struct mmci_host
*host
, struct mmc_request
*mrq
)
161 writel(0, host
->base
+ MMCICOMMAND
);
169 * Need to drop the host lock here; mmc_request_done may call
170 * back into the driver...
172 spin_unlock(&host
->lock
);
173 mmc_request_done(host
->mmc
, mrq
);
174 spin_lock(&host
->lock
);
177 static void mmci_set_mask1(struct mmci_host
*host
, unsigned int mask
)
179 void __iomem
*base
= host
->base
;
181 if (host
->singleirq
) {
182 unsigned int mask0
= readl(base
+ MMCIMASK0
);
184 mask0
&= ~MCI_IRQ1MASK
;
187 writel(mask0
, base
+ MMCIMASK0
);
190 writel(mask
, base
+ MMCIMASK1
);
193 static void mmci_stop_data(struct mmci_host
*host
)
195 writel(0, host
->base
+ MMCIDATACTRL
);
196 mmci_set_mask1(host
, 0);
200 static void mmci_init_sg(struct mmci_host
*host
, struct mmc_data
*data
)
202 unsigned int flags
= SG_MITER_ATOMIC
;
204 if (data
->flags
& MMC_DATA_READ
)
205 flags
|= SG_MITER_TO_SG
;
207 flags
|= SG_MITER_FROM_SG
;
209 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
, flags
);
213 * All the DMA operation mode stuff goes inside this ifdef.
214 * This assumes that you have a generic DMA device interface,
215 * no custom DMA interfaces are supported.
217 #ifdef CONFIG_DMA_ENGINE
218 static void __devinit
mmci_dma_setup(struct mmci_host
*host
)
220 struct mmci_platform_data
*plat
= host
->plat
;
221 const char *rxname
, *txname
;
224 if (!plat
|| !plat
->dma_filter
) {
225 dev_info(mmc_dev(host
->mmc
), "no DMA platform data\n");
229 /* Try to acquire a generic DMA engine slave channel */
231 dma_cap_set(DMA_SLAVE
, mask
);
234 * If only an RX channel is specified, the driver will
235 * attempt to use it bidirectionally, however if it is
236 * is specified but cannot be located, DMA will be disabled.
238 if (plat
->dma_rx_param
) {
239 host
->dma_rx_channel
= dma_request_channel(mask
,
242 /* E.g if no DMA hardware is present */
243 if (!host
->dma_rx_channel
)
244 dev_err(mmc_dev(host
->mmc
), "no RX DMA channel\n");
247 if (plat
->dma_tx_param
) {
248 host
->dma_tx_channel
= dma_request_channel(mask
,
251 if (!host
->dma_tx_channel
)
252 dev_warn(mmc_dev(host
->mmc
), "no TX DMA channel\n");
254 host
->dma_tx_channel
= host
->dma_rx_channel
;
257 if (host
->dma_rx_channel
)
258 rxname
= dma_chan_name(host
->dma_rx_channel
);
262 if (host
->dma_tx_channel
)
263 txname
= dma_chan_name(host
->dma_tx_channel
);
267 dev_info(mmc_dev(host
->mmc
), "DMA channels RX %s, TX %s\n",
271 * Limit the maximum segment size in any SG entry according to
272 * the parameters of the DMA engine device.
274 if (host
->dma_tx_channel
) {
275 struct device
*dev
= host
->dma_tx_channel
->device
->dev
;
276 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
278 if (max_seg_size
< host
->mmc
->max_seg_size
)
279 host
->mmc
->max_seg_size
= max_seg_size
;
281 if (host
->dma_rx_channel
) {
282 struct device
*dev
= host
->dma_rx_channel
->device
->dev
;
283 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
285 if (max_seg_size
< host
->mmc
->max_seg_size
)
286 host
->mmc
->max_seg_size
= max_seg_size
;
291 * This is used in __devinit or __devexit so inline it
292 * so it can be discarded.
294 static inline void mmci_dma_release(struct mmci_host
*host
)
296 struct mmci_platform_data
*plat
= host
->plat
;
298 if (host
->dma_rx_channel
)
299 dma_release_channel(host
->dma_rx_channel
);
300 if (host
->dma_tx_channel
&& plat
->dma_tx_param
)
301 dma_release_channel(host
->dma_tx_channel
);
302 host
->dma_rx_channel
= host
->dma_tx_channel
= NULL
;
305 static void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
307 struct dma_chan
*chan
= host
->dma_current
;
308 enum dma_data_direction dir
;
312 /* Wait up to 1ms for the DMA to complete */
314 status
= readl(host
->base
+ MMCISTATUS
);
315 if (!(status
& MCI_RXDATAAVLBLMASK
) || i
>= 100)
321 * Check to see whether we still have some data left in the FIFO -
322 * this catches DMA controllers which are unable to monitor the
323 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
324 * contiguous buffers. On TX, we'll get a FIFO underrun error.
326 if (status
& MCI_RXDATAAVLBLMASK
) {
327 dmaengine_terminate_all(chan
);
332 if (data
->flags
& MMC_DATA_WRITE
) {
335 dir
= DMA_FROM_DEVICE
;
338 dma_unmap_sg(chan
->device
->dev
, data
->sg
, data
->sg_len
, dir
);
341 * Use of DMA with scatter-gather is impossible.
342 * Give up with DMA and switch back to PIO mode.
344 if (status
& MCI_RXDATAAVLBLMASK
) {
345 dev_err(mmc_dev(host
->mmc
), "buggy DMA detected. Taking evasive action.\n");
346 mmci_dma_release(host
);
350 static void mmci_dma_data_error(struct mmci_host
*host
)
352 dev_err(mmc_dev(host
->mmc
), "error during DMA transfer!\n");
353 dmaengine_terminate_all(host
->dma_current
);
356 static int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
358 struct variant_data
*variant
= host
->variant
;
359 struct dma_slave_config conf
= {
360 .src_addr
= host
->phybase
+ MMCIFIFO
,
361 .dst_addr
= host
->phybase
+ MMCIFIFO
,
362 .src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
363 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
364 .src_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
365 .dst_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
367 struct mmc_data
*data
= host
->data
;
368 struct dma_chan
*chan
;
369 struct dma_device
*device
;
370 struct dma_async_tx_descriptor
*desc
;
373 host
->dma_current
= NULL
;
375 if (data
->flags
& MMC_DATA_READ
) {
376 conf
.direction
= DMA_FROM_DEVICE
;
377 chan
= host
->dma_rx_channel
;
379 conf
.direction
= DMA_TO_DEVICE
;
380 chan
= host
->dma_tx_channel
;
383 /* If there's no DMA channel, fall back to PIO */
387 /* If less than or equal to the fifo size, don't bother with DMA */
388 if (host
->size
<= variant
->fifosize
)
391 device
= chan
->device
;
392 nr_sg
= dma_map_sg(device
->dev
, data
->sg
, data
->sg_len
, conf
.direction
);
396 dmaengine_slave_config(chan
, &conf
);
397 desc
= device
->device_prep_slave_sg(chan
, data
->sg
, nr_sg
,
398 conf
.direction
, DMA_CTRL_ACK
);
402 /* Okay, go for it. */
403 host
->dma_current
= chan
;
405 dev_vdbg(mmc_dev(host
->mmc
),
406 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
407 data
->sg_len
, data
->blksz
, data
->blocks
, data
->flags
);
408 dmaengine_submit(desc
);
409 dma_async_issue_pending(chan
);
411 datactrl
|= MCI_DPSM_DMAENABLE
;
413 /* Trigger the DMA transfer */
414 writel(datactrl
, host
->base
+ MMCIDATACTRL
);
417 * Let the MMCI say when the data is ended and it's time
418 * to fire next DMA request. When that happens, MMCI will
419 * call mmci_data_end()
421 writel(readl(host
->base
+ MMCIMASK0
) | MCI_DATAENDMASK
,
422 host
->base
+ MMCIMASK0
);
426 dmaengine_terminate_all(chan
);
427 dma_unmap_sg(device
->dev
, data
->sg
, data
->sg_len
, conf
.direction
);
431 /* Blank functions if the DMA engine is not available */
432 static inline void mmci_dma_setup(struct mmci_host
*host
)
436 static inline void mmci_dma_release(struct mmci_host
*host
)
440 static inline void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
444 static inline void mmci_dma_data_error(struct mmci_host
*host
)
448 static inline int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
454 static void mmci_start_data(struct mmci_host
*host
, struct mmc_data
*data
)
456 struct variant_data
*variant
= host
->variant
;
457 unsigned int datactrl
, timeout
, irqmask
;
458 unsigned long long clks
;
462 dev_dbg(mmc_dev(host
->mmc
), "blksz %04x blks %04x flags %08x\n",
463 data
->blksz
, data
->blocks
, data
->flags
);
466 host
->size
= data
->blksz
* data
->blocks
;
467 data
->bytes_xfered
= 0;
469 clks
= (unsigned long long)data
->timeout_ns
* host
->cclk
;
470 do_div(clks
, 1000000000UL);
472 timeout
= data
->timeout_clks
+ (unsigned int)clks
;
475 writel(timeout
, base
+ MMCIDATATIMER
);
476 writel(host
->size
, base
+ MMCIDATALENGTH
);
478 blksz_bits
= ffs(data
->blksz
) - 1;
479 BUG_ON(1 << blksz_bits
!= data
->blksz
);
481 if (variant
->blksz_datactrl16
)
482 datactrl
= MCI_DPSM_ENABLE
| (data
->blksz
<< 16);
484 datactrl
= MCI_DPSM_ENABLE
| blksz_bits
<< 4;
486 if (data
->flags
& MMC_DATA_READ
)
487 datactrl
|= MCI_DPSM_DIRECTION
;
490 * Attempt to use DMA operation mode, if this
491 * should fail, fall back to PIO mode
493 if (!mmci_dma_start_data(host
, datactrl
))
496 /* IRQ mode, map the SG list for CPU reading/writing */
497 mmci_init_sg(host
, data
);
499 if (data
->flags
& MMC_DATA_READ
) {
500 irqmask
= MCI_RXFIFOHALFFULLMASK
;
503 * If we have less than the fifo 'half-full' threshold to
504 * transfer, trigger a PIO interrupt as soon as any data
507 if (host
->size
< variant
->fifohalfsize
)
508 irqmask
|= MCI_RXDATAAVLBLMASK
;
511 * We don't actually need to include "FIFO empty" here
512 * since its implicit in "FIFO half empty".
514 irqmask
= MCI_TXFIFOHALFEMPTYMASK
;
517 /* The ST Micro variants has a special bit to enable SDIO */
518 if (variant
->sdio
&& host
->mmc
->card
)
519 if (mmc_card_sdio(host
->mmc
->card
))
520 datactrl
|= MCI_ST_DPSM_SDIOEN
;
522 writel(datactrl
, base
+ MMCIDATACTRL
);
523 writel(readl(base
+ MMCIMASK0
) & ~MCI_DATAENDMASK
, base
+ MMCIMASK0
);
524 mmci_set_mask1(host
, irqmask
);
528 mmci_start_command(struct mmci_host
*host
, struct mmc_command
*cmd
, u32 c
)
530 void __iomem
*base
= host
->base
;
532 dev_dbg(mmc_dev(host
->mmc
), "op %02x arg %08x flags %08x\n",
533 cmd
->opcode
, cmd
->arg
, cmd
->flags
);
535 if (readl(base
+ MMCICOMMAND
) & MCI_CPSM_ENABLE
) {
536 writel(0, base
+ MMCICOMMAND
);
540 c
|= cmd
->opcode
| MCI_CPSM_ENABLE
;
541 if (cmd
->flags
& MMC_RSP_PRESENT
) {
542 if (cmd
->flags
& MMC_RSP_136
)
543 c
|= MCI_CPSM_LONGRSP
;
544 c
|= MCI_CPSM_RESPONSE
;
547 c
|= MCI_CPSM_INTERRUPT
;
551 writel(cmd
->arg
, base
+ MMCIARGUMENT
);
552 writel(c
, base
+ MMCICOMMAND
);
556 mmci_data_irq(struct mmci_host
*host
, struct mmc_data
*data
,
559 /* First check for errors */
560 if (status
& (MCI_DATACRCFAIL
|MCI_DATATIMEOUT
|MCI_STARTBITERR
|
561 MCI_TXUNDERRUN
|MCI_RXOVERRUN
)) {
564 /* Terminate the DMA transfer */
565 if (dma_inprogress(host
))
566 mmci_dma_data_error(host
);
569 * Calculate how far we are into the transfer. Note that
570 * the data counter gives the number of bytes transferred
571 * on the MMC bus, not on the host side. On reads, this
572 * can be as much as a FIFO-worth of data ahead. This
573 * matters for FIFO overruns only.
575 remain
= readl(host
->base
+ MMCIDATACNT
);
576 success
= data
->blksz
* data
->blocks
- remain
;
578 dev_dbg(mmc_dev(host
->mmc
), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
580 if (status
& MCI_DATACRCFAIL
) {
581 /* Last block was not successful */
583 data
->error
= -EILSEQ
;
584 } else if (status
& MCI_DATATIMEOUT
) {
585 data
->error
= -ETIMEDOUT
;
586 } else if (status
& MCI_STARTBITERR
) {
587 data
->error
= -ECOMM
;
588 } else if (status
& MCI_TXUNDERRUN
) {
590 } else if (status
& MCI_RXOVERRUN
) {
591 if (success
> host
->variant
->fifosize
)
592 success
-= host
->variant
->fifosize
;
597 data
->bytes_xfered
= round_down(success
, data
->blksz
);
600 if (status
& MCI_DATABLOCKEND
)
601 dev_err(mmc_dev(host
->mmc
), "stray MCI_DATABLOCKEND interrupt\n");
603 if (status
& MCI_DATAEND
|| data
->error
) {
604 if (dma_inprogress(host
))
605 mmci_dma_unmap(host
, data
);
606 mmci_stop_data(host
);
609 /* The error clause is handled above, success! */
610 data
->bytes_xfered
= data
->blksz
* data
->blocks
;
613 mmci_request_end(host
, data
->mrq
);
615 mmci_start_command(host
, data
->stop
, 0);
621 mmci_cmd_irq(struct mmci_host
*host
, struct mmc_command
*cmd
,
624 void __iomem
*base
= host
->base
;
628 if (status
& MCI_CMDTIMEOUT
) {
629 cmd
->error
= -ETIMEDOUT
;
630 } else if (status
& MCI_CMDCRCFAIL
&& cmd
->flags
& MMC_RSP_CRC
) {
631 cmd
->error
= -EILSEQ
;
633 cmd
->resp
[0] = readl(base
+ MMCIRESPONSE0
);
634 cmd
->resp
[1] = readl(base
+ MMCIRESPONSE1
);
635 cmd
->resp
[2] = readl(base
+ MMCIRESPONSE2
);
636 cmd
->resp
[3] = readl(base
+ MMCIRESPONSE3
);
639 if (!cmd
->data
|| cmd
->error
) {
641 /* Terminate the DMA transfer */
642 if (dma_inprogress(host
))
643 mmci_dma_data_error(host
);
644 mmci_stop_data(host
);
646 mmci_request_end(host
, cmd
->mrq
);
647 } else if (!(cmd
->data
->flags
& MMC_DATA_READ
)) {
648 mmci_start_data(host
, cmd
->data
);
652 static int mmci_pio_read(struct mmci_host
*host
, char *buffer
, unsigned int remain
)
654 void __iomem
*base
= host
->base
;
657 int host_remain
= host
->size
;
660 int count
= host_remain
- (readl(base
+ MMCIFIFOCNT
) << 2);
668 readsl(base
+ MMCIFIFO
, ptr
, count
>> 2);
672 host_remain
-= count
;
677 status
= readl(base
+ MMCISTATUS
);
678 } while (status
& MCI_RXDATAAVLBL
);
683 static int mmci_pio_write(struct mmci_host
*host
, char *buffer
, unsigned int remain
, u32 status
)
685 struct variant_data
*variant
= host
->variant
;
686 void __iomem
*base
= host
->base
;
690 unsigned int count
, maxcnt
;
692 maxcnt
= status
& MCI_TXFIFOEMPTY
?
693 variant
->fifosize
: variant
->fifohalfsize
;
694 count
= min(remain
, maxcnt
);
697 * The ST Micro variant for SDIO transfer sizes
698 * less then 8 bytes should have clock H/W flow
702 mmc_card_sdio(host
->mmc
->card
)) {
704 writel(readl(host
->base
+ MMCICLOCK
) &
705 ~variant
->clkreg_enable
,
706 host
->base
+ MMCICLOCK
);
708 writel(readl(host
->base
+ MMCICLOCK
) |
709 variant
->clkreg_enable
,
710 host
->base
+ MMCICLOCK
);
714 * SDIO especially may want to send something that is
715 * not divisible by 4 (as opposed to card sectors
716 * etc), and the FIFO only accept full 32-bit writes.
717 * So compensate by adding +3 on the count, a single
718 * byte become a 32bit write, 7 bytes will be two
721 writesl(base
+ MMCIFIFO
, ptr
, (count
+ 3) >> 2);
729 status
= readl(base
+ MMCISTATUS
);
730 } while (status
& MCI_TXFIFOHALFEMPTY
);
736 * PIO data transfer IRQ handler.
738 static irqreturn_t
mmci_pio_irq(int irq
, void *dev_id
)
740 struct mmci_host
*host
= dev_id
;
741 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
742 struct variant_data
*variant
= host
->variant
;
743 void __iomem
*base
= host
->base
;
747 status
= readl(base
+ MMCISTATUS
);
749 dev_dbg(mmc_dev(host
->mmc
), "irq1 (pio) %08x\n", status
);
751 local_irq_save(flags
);
754 unsigned int remain
, len
;
758 * For write, we only need to test the half-empty flag
759 * here - if the FIFO is completely empty, then by
760 * definition it is more than half empty.
762 * For read, check for data available.
764 if (!(status
& (MCI_TXFIFOHALFEMPTY
|MCI_RXDATAAVLBL
)))
767 if (!sg_miter_next(sg_miter
))
770 buffer
= sg_miter
->addr
;
771 remain
= sg_miter
->length
;
774 if (status
& MCI_RXACTIVE
)
775 len
= mmci_pio_read(host
, buffer
, remain
);
776 if (status
& MCI_TXACTIVE
)
777 len
= mmci_pio_write(host
, buffer
, remain
, status
);
779 sg_miter
->consumed
= len
;
787 status
= readl(base
+ MMCISTATUS
);
790 sg_miter_stop(sg_miter
);
792 local_irq_restore(flags
);
795 * If we have less than the fifo 'half-full' threshold to transfer,
796 * trigger a PIO interrupt as soon as any data is available.
798 if (status
& MCI_RXACTIVE
&& host
->size
< variant
->fifohalfsize
)
799 mmci_set_mask1(host
, MCI_RXDATAAVLBLMASK
);
802 * If we run out of data, disable the data IRQs; this
803 * prevents a race where the FIFO becomes empty before
804 * the chip itself has disabled the data path, and
805 * stops us racing with our data end IRQ.
807 if (host
->size
== 0) {
808 mmci_set_mask1(host
, 0);
809 writel(readl(base
+ MMCIMASK0
) | MCI_DATAENDMASK
, base
+ MMCIMASK0
);
816 * Handle completion of command and data transfers.
818 static irqreturn_t
mmci_irq(int irq
, void *dev_id
)
820 struct mmci_host
*host
= dev_id
;
824 spin_lock(&host
->lock
);
827 struct mmc_command
*cmd
;
828 struct mmc_data
*data
;
830 status
= readl(host
->base
+ MMCISTATUS
);
832 if (host
->singleirq
) {
833 if (status
& readl(host
->base
+ MMCIMASK1
))
834 mmci_pio_irq(irq
, dev_id
);
836 status
&= ~MCI_IRQ1MASK
;
839 status
&= readl(host
->base
+ MMCIMASK0
);
840 writel(status
, host
->base
+ MMCICLEAR
);
842 dev_dbg(mmc_dev(host
->mmc
), "irq0 (data+cmd) %08x\n", status
);
845 if (status
& (MCI_DATACRCFAIL
|MCI_DATATIMEOUT
|MCI_STARTBITERR
|
846 MCI_TXUNDERRUN
|MCI_RXOVERRUN
|MCI_DATAEND
|
847 MCI_DATABLOCKEND
) && data
)
848 mmci_data_irq(host
, data
, status
);
851 if (status
& (MCI_CMDCRCFAIL
|MCI_CMDTIMEOUT
|MCI_CMDSENT
|MCI_CMDRESPEND
) && cmd
)
852 mmci_cmd_irq(host
, cmd
, status
);
857 spin_unlock(&host
->lock
);
859 return IRQ_RETVAL(ret
);
862 static void mmci_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
864 struct mmci_host
*host
= mmc_priv(mmc
);
867 WARN_ON(host
->mrq
!= NULL
);
869 if (mrq
->data
&& !is_power_of_2(mrq
->data
->blksz
)) {
870 dev_err(mmc_dev(mmc
), "unsupported block size (%d bytes)\n",
872 mrq
->cmd
->error
= -EINVAL
;
873 mmc_request_done(mmc
, mrq
);
877 spin_lock_irqsave(&host
->lock
, flags
);
881 if (mrq
->data
&& mrq
->data
->flags
& MMC_DATA_READ
)
882 mmci_start_data(host
, mrq
->data
);
884 mmci_start_command(host
, mrq
->cmd
, 0);
886 spin_unlock_irqrestore(&host
->lock
, flags
);
889 static void mmci_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
891 struct mmci_host
*host
= mmc_priv(mmc
);
896 switch (ios
->power_mode
) {
899 ret
= mmc_regulator_set_ocr(mmc
, host
->vcc
, 0);
903 ret
= mmc_regulator_set_ocr(mmc
, host
->vcc
, ios
->vdd
);
905 dev_err(mmc_dev(mmc
), "unable to set OCR\n");
907 * The .set_ios() function in the mmc_host_ops
908 * struct return void, and failing to set the
909 * power should be rare so we print an error
915 if (host
->plat
->vdd_handler
)
916 pwr
|= host
->plat
->vdd_handler(mmc_dev(mmc
), ios
->vdd
,
918 /* The ST version does not have this, fall through to POWER_ON */
919 if (host
->hw_designer
!= AMBA_VENDOR_ST
) {
928 if (ios
->bus_mode
== MMC_BUSMODE_OPENDRAIN
) {
929 if (host
->hw_designer
!= AMBA_VENDOR_ST
)
933 * The ST Micro variant use the ROD bit for something
934 * else and only has OD (Open Drain).
940 spin_lock_irqsave(&host
->lock
, flags
);
942 mmci_set_clkreg(host
, ios
->clock
);
944 if (host
->pwr
!= pwr
) {
946 writel(pwr
, host
->base
+ MMCIPOWER
);
949 spin_unlock_irqrestore(&host
->lock
, flags
);
952 static int mmci_get_ro(struct mmc_host
*mmc
)
954 struct mmci_host
*host
= mmc_priv(mmc
);
956 if (host
->gpio_wp
== -ENOSYS
)
959 return gpio_get_value_cansleep(host
->gpio_wp
);
962 static int mmci_get_cd(struct mmc_host
*mmc
)
964 struct mmci_host
*host
= mmc_priv(mmc
);
965 struct mmci_platform_data
*plat
= host
->plat
;
968 if (host
->gpio_cd
== -ENOSYS
) {
970 return 1; /* Assume always present */
972 status
= plat
->status(mmc_dev(host
->mmc
));
974 status
= !!gpio_get_value_cansleep(host
->gpio_cd
)
978 * Use positive logic throughout - status is zero for no card,
979 * non-zero for card inserted.
984 static irqreturn_t
mmci_cd_irq(int irq
, void *dev_id
)
986 struct mmci_host
*host
= dev_id
;
988 mmc_detect_change(host
->mmc
, msecs_to_jiffies(500));
993 static const struct mmc_host_ops mmci_ops
= {
994 .request
= mmci_request
,
995 .set_ios
= mmci_set_ios
,
996 .get_ro
= mmci_get_ro
,
997 .get_cd
= mmci_get_cd
,
1000 static int __devinit
mmci_probe(struct amba_device
*dev
,
1001 const struct amba_id
*id
)
1003 struct mmci_platform_data
*plat
= dev
->dev
.platform_data
;
1004 struct variant_data
*variant
= id
->data
;
1005 struct mmci_host
*host
;
1006 struct mmc_host
*mmc
;
1009 /* must have platform data */
1015 ret
= amba_request_regions(dev
, DRIVER_NAME
);
1019 mmc
= mmc_alloc_host(sizeof(struct mmci_host
), &dev
->dev
);
1025 host
= mmc_priv(mmc
);
1028 host
->gpio_wp
= -ENOSYS
;
1029 host
->gpio_cd
= -ENOSYS
;
1030 host
->gpio_cd_irq
= -1;
1032 host
->hw_designer
= amba_manf(dev
);
1033 host
->hw_revision
= amba_rev(dev
);
1034 dev_dbg(mmc_dev(mmc
), "designer ID = 0x%02x\n", host
->hw_designer
);
1035 dev_dbg(mmc_dev(mmc
), "revision = 0x%01x\n", host
->hw_revision
);
1037 host
->clk
= clk_get(&dev
->dev
, NULL
);
1038 if (IS_ERR(host
->clk
)) {
1039 ret
= PTR_ERR(host
->clk
);
1044 ret
= clk_enable(host
->clk
);
1049 host
->variant
= variant
;
1050 host
->mclk
= clk_get_rate(host
->clk
);
1052 * According to the spec, mclk is max 100 MHz,
1053 * so we try to adjust the clock down to this,
1056 if (host
->mclk
> 100000000) {
1057 ret
= clk_set_rate(host
->clk
, 100000000);
1060 host
->mclk
= clk_get_rate(host
->clk
);
1061 dev_dbg(mmc_dev(mmc
), "eventual mclk rate: %u Hz\n",
1064 host
->phybase
= dev
->res
.start
;
1065 host
->base
= ioremap(dev
->res
.start
, resource_size(&dev
->res
));
1071 mmc
->ops
= &mmci_ops
;
1072 mmc
->f_min
= (host
->mclk
+ 511) / 512;
1074 * If the platform data supplies a maximum operating
1075 * frequency, this takes precedence. Else, we fall back
1076 * to using the module parameter, which has a (low)
1077 * default value in case it is not specified. Either
1078 * value must not exceed the clock rate into the block,
1082 mmc
->f_max
= min(host
->mclk
, plat
->f_max
);
1084 mmc
->f_max
= min(host
->mclk
, fmax
);
1085 dev_dbg(mmc_dev(mmc
), "clocking block at %u Hz\n", mmc
->f_max
);
1087 #ifdef CONFIG_REGULATOR
1088 /* If we're using the regulator framework, try to fetch a regulator */
1089 host
->vcc
= regulator_get(&dev
->dev
, "vmmc");
1090 if (IS_ERR(host
->vcc
))
1093 int mask
= mmc_regulator_get_ocrmask(host
->vcc
);
1096 dev_err(&dev
->dev
, "error getting OCR mask (%d)\n",
1099 host
->mmc
->ocr_avail
= (u32
) mask
;
1102 "Provided ocr_mask/setpower will not be used "
1103 "(using regulator instead)\n");
1107 /* Fall back to platform data if no regulator is found */
1108 if (host
->vcc
== NULL
)
1109 mmc
->ocr_avail
= plat
->ocr_mask
;
1110 mmc
->caps
= plat
->capabilities
;
1115 mmc
->max_segs
= NR_SG
;
1118 * Since only a certain number of bits are valid in the data length
1119 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1122 mmc
->max_req_size
= (1 << variant
->datalength_bits
) - 1;
1125 * Set the maximum segment size. Since we aren't doing DMA
1126 * (yet) we are only limited by the data length register.
1128 mmc
->max_seg_size
= mmc
->max_req_size
;
1131 * Block size can be up to 2048 bytes, but must be a power of two.
1133 mmc
->max_blk_size
= 2048;
1136 * No limit on the number of blocks transferred.
1138 mmc
->max_blk_count
= mmc
->max_req_size
;
1140 spin_lock_init(&host
->lock
);
1142 writel(0, host
->base
+ MMCIMASK0
);
1143 writel(0, host
->base
+ MMCIMASK1
);
1144 writel(0xfff, host
->base
+ MMCICLEAR
);
1146 if (gpio_is_valid(plat
->gpio_cd
)) {
1147 ret
= gpio_request(plat
->gpio_cd
, DRIVER_NAME
" (cd)");
1149 ret
= gpio_direction_input(plat
->gpio_cd
);
1151 host
->gpio_cd
= plat
->gpio_cd
;
1152 else if (ret
!= -ENOSYS
)
1156 * A gpio pin that will detect cards when inserted and removed
1157 * will most likely want to trigger on the edges if it is
1158 * 0 when ejected and 1 when inserted (or mutatis mutandis
1159 * for the inverted case) so we request triggers on both
1162 ret
= request_any_context_irq(gpio_to_irq(plat
->gpio_cd
),
1164 IRQF_TRIGGER_RISING
| IRQF_TRIGGER_FALLING
,
1165 DRIVER_NAME
" (cd)", host
);
1167 host
->gpio_cd_irq
= gpio_to_irq(plat
->gpio_cd
);
1169 if (gpio_is_valid(plat
->gpio_wp
)) {
1170 ret
= gpio_request(plat
->gpio_wp
, DRIVER_NAME
" (wp)");
1172 ret
= gpio_direction_input(plat
->gpio_wp
);
1174 host
->gpio_wp
= plat
->gpio_wp
;
1175 else if (ret
!= -ENOSYS
)
1179 if ((host
->plat
->status
|| host
->gpio_cd
!= -ENOSYS
)
1180 && host
->gpio_cd_irq
< 0)
1181 mmc
->caps
|= MMC_CAP_NEEDS_POLL
;
1183 ret
= request_irq(dev
->irq
[0], mmci_irq
, IRQF_SHARED
, DRIVER_NAME
" (cmd)", host
);
1187 if (dev
->irq
[1] == NO_IRQ
)
1188 host
->singleirq
= true;
1190 ret
= request_irq(dev
->irq
[1], mmci_pio_irq
, IRQF_SHARED
,
1191 DRIVER_NAME
" (pio)", host
);
1196 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1198 amba_set_drvdata(dev
, mmc
);
1200 dev_info(&dev
->dev
, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1201 mmc_hostname(mmc
), amba_part(dev
), amba_manf(dev
),
1202 amba_rev(dev
), (unsigned long long)dev
->res
.start
,
1203 dev
->irq
[0], dev
->irq
[1]);
1205 mmci_dma_setup(host
);
1212 free_irq(dev
->irq
[0], host
);
1214 if (host
->gpio_wp
!= -ENOSYS
)
1215 gpio_free(host
->gpio_wp
);
1217 if (host
->gpio_cd_irq
>= 0)
1218 free_irq(host
->gpio_cd_irq
, host
);
1219 if (host
->gpio_cd
!= -ENOSYS
)
1220 gpio_free(host
->gpio_cd
);
1222 iounmap(host
->base
);
1224 clk_disable(host
->clk
);
1230 amba_release_regions(dev
);
1235 static int __devexit
mmci_remove(struct amba_device
*dev
)
1237 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
1239 amba_set_drvdata(dev
, NULL
);
1242 struct mmci_host
*host
= mmc_priv(mmc
);
1244 mmc_remove_host(mmc
);
1246 writel(0, host
->base
+ MMCIMASK0
);
1247 writel(0, host
->base
+ MMCIMASK1
);
1249 writel(0, host
->base
+ MMCICOMMAND
);
1250 writel(0, host
->base
+ MMCIDATACTRL
);
1252 mmci_dma_release(host
);
1253 free_irq(dev
->irq
[0], host
);
1254 if (!host
->singleirq
)
1255 free_irq(dev
->irq
[1], host
);
1257 if (host
->gpio_wp
!= -ENOSYS
)
1258 gpio_free(host
->gpio_wp
);
1259 if (host
->gpio_cd_irq
>= 0)
1260 free_irq(host
->gpio_cd_irq
, host
);
1261 if (host
->gpio_cd
!= -ENOSYS
)
1262 gpio_free(host
->gpio_cd
);
1264 iounmap(host
->base
);
1265 clk_disable(host
->clk
);
1269 mmc_regulator_set_ocr(mmc
, host
->vcc
, 0);
1270 regulator_put(host
->vcc
);
1274 amba_release_regions(dev
);
1281 static int mmci_suspend(struct amba_device
*dev
, pm_message_t state
)
1283 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
1287 struct mmci_host
*host
= mmc_priv(mmc
);
1289 ret
= mmc_suspend_host(mmc
);
1291 writel(0, host
->base
+ MMCIMASK0
);
1297 static int mmci_resume(struct amba_device
*dev
)
1299 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
1303 struct mmci_host
*host
= mmc_priv(mmc
);
1305 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1307 ret
= mmc_resume_host(mmc
);
1313 #define mmci_suspend NULL
1314 #define mmci_resume NULL
1317 static struct amba_id mmci_ids
[] = {
1321 .data
= &variant_arm
,
1326 .data
= &variant_arm_extended_fifo
,
1331 .data
= &variant_arm
,
1333 /* ST Micro variants */
1337 .data
= &variant_u300
,
1342 .data
= &variant_u300
,
1347 .data
= &variant_ux500
,
1352 .data
= &variant_ux500v2
,
1357 static struct amba_driver mmci_driver
= {
1359 .name
= DRIVER_NAME
,
1361 .probe
= mmci_probe
,
1362 .remove
= __devexit_p(mmci_remove
),
1363 .suspend
= mmci_suspend
,
1364 .resume
= mmci_resume
,
1365 .id_table
= mmci_ids
,
1368 static int __init
mmci_init(void)
1370 return amba_driver_register(&mmci_driver
);
1373 static void __exit
mmci_exit(void)
1375 amba_driver_unregister(&mmci_driver
);
1378 module_init(mmci_init
);
1379 module_exit(mmci_exit
);
1380 module_param(fmax
, uint
, 0444);
1382 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1383 MODULE_LICENSE("GPL");