ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / drivers / mmc / host / mmci.c
blob9394d0b77ec57ec3d3d036c47fe8268bb57a4d9c
1 /*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/log2.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/card.h>
24 #include <linux/amba/bus.h>
25 #include <linux/clk.h>
26 #include <linux/scatterlist.h>
27 #include <linux/gpio.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/amba/mmci.h>
33 #include <asm/div64.h>
34 #include <asm/io.h>
35 #include <asm/sizes.h>
37 #include "mmci.h"
39 #define DRIVER_NAME "mmci-pl18x"
41 static unsigned int fmax = 515633;
43 /**
44 * struct variant_data - MMCI variant-specific quirks
45 * @clkreg: default value for MCICLOCK register
46 * @clkreg_enable: enable value for MMCICLOCK register
47 * @datalength_bits: number of bits in the MMCIDATALENGTH register
48 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
49 * is asserted (likewise for RX)
50 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
51 * is asserted (likewise for RX)
52 * @sdio: variant supports SDIO
53 * @st_clkdiv: true if using a ST-specific clock divider algorithm
54 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
56 struct variant_data {
57 unsigned int clkreg;
58 unsigned int clkreg_enable;
59 unsigned int datalength_bits;
60 unsigned int fifosize;
61 unsigned int fifohalfsize;
62 bool sdio;
63 bool st_clkdiv;
64 bool blksz_datactrl16;
67 static struct variant_data variant_arm = {
68 .fifosize = 16 * 4,
69 .fifohalfsize = 8 * 4,
70 .datalength_bits = 16,
73 static struct variant_data variant_arm_extended_fifo = {
74 .fifosize = 128 * 4,
75 .fifohalfsize = 64 * 4,
76 .datalength_bits = 16,
79 static struct variant_data variant_u300 = {
80 .fifosize = 16 * 4,
81 .fifohalfsize = 8 * 4,
82 .clkreg_enable = MCI_ST_U300_HWFCEN,
83 .datalength_bits = 16,
84 .sdio = true,
87 static struct variant_data variant_ux500 = {
88 .fifosize = 30 * 4,
89 .fifohalfsize = 8 * 4,
90 .clkreg = MCI_CLK_ENABLE,
91 .clkreg_enable = MCI_ST_UX500_HWFCEN,
92 .datalength_bits = 24,
93 .sdio = true,
94 .st_clkdiv = true,
97 static struct variant_data variant_ux500v2 = {
98 .fifosize = 30 * 4,
99 .fifohalfsize = 8 * 4,
100 .clkreg = MCI_CLK_ENABLE,
101 .clkreg_enable = MCI_ST_UX500_HWFCEN,
102 .datalength_bits = 24,
103 .sdio = true,
104 .st_clkdiv = true,
105 .blksz_datactrl16 = true,
109 * This must be called with host->lock held
111 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
113 struct variant_data *variant = host->variant;
114 u32 clk = variant->clkreg;
116 if (desired) {
117 if (desired >= host->mclk) {
118 clk = MCI_CLK_BYPASS;
119 if (variant->st_clkdiv)
120 clk |= MCI_ST_UX500_NEG_EDGE;
121 host->cclk = host->mclk;
122 } else if (variant->st_clkdiv) {
124 * DB8500 TRM says f = mclk / (clkdiv + 2)
125 * => clkdiv = (mclk / f) - 2
126 * Round the divider up so we don't exceed the max
127 * frequency
129 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
130 if (clk >= 256)
131 clk = 255;
132 host->cclk = host->mclk / (clk + 2);
133 } else {
135 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
136 * => clkdiv = mclk / (2 * f) - 1
138 clk = host->mclk / (2 * desired) - 1;
139 if (clk >= 256)
140 clk = 255;
141 host->cclk = host->mclk / (2 * (clk + 1));
144 clk |= variant->clkreg_enable;
145 clk |= MCI_CLK_ENABLE;
146 /* This hasn't proven to be worthwhile */
147 /* clk |= MCI_CLK_PWRSAVE; */
150 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
151 clk |= MCI_4BIT_BUS;
152 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
153 clk |= MCI_ST_8BIT_BUS;
155 writel(clk, host->base + MMCICLOCK);
158 static void
159 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
161 writel(0, host->base + MMCICOMMAND);
163 BUG_ON(host->data);
165 host->mrq = NULL;
166 host->cmd = NULL;
169 * Need to drop the host lock here; mmc_request_done may call
170 * back into the driver...
172 spin_unlock(&host->lock);
173 mmc_request_done(host->mmc, mrq);
174 spin_lock(&host->lock);
177 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
179 void __iomem *base = host->base;
181 if (host->singleirq) {
182 unsigned int mask0 = readl(base + MMCIMASK0);
184 mask0 &= ~MCI_IRQ1MASK;
185 mask0 |= mask;
187 writel(mask0, base + MMCIMASK0);
190 writel(mask, base + MMCIMASK1);
193 static void mmci_stop_data(struct mmci_host *host)
195 writel(0, host->base + MMCIDATACTRL);
196 mmci_set_mask1(host, 0);
197 host->data = NULL;
200 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
202 unsigned int flags = SG_MITER_ATOMIC;
204 if (data->flags & MMC_DATA_READ)
205 flags |= SG_MITER_TO_SG;
206 else
207 flags |= SG_MITER_FROM_SG;
209 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
213 * All the DMA operation mode stuff goes inside this ifdef.
214 * This assumes that you have a generic DMA device interface,
215 * no custom DMA interfaces are supported.
217 #ifdef CONFIG_DMA_ENGINE
218 static void __devinit mmci_dma_setup(struct mmci_host *host)
220 struct mmci_platform_data *plat = host->plat;
221 const char *rxname, *txname;
222 dma_cap_mask_t mask;
224 if (!plat || !plat->dma_filter) {
225 dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
226 return;
229 /* Try to acquire a generic DMA engine slave channel */
230 dma_cap_zero(mask);
231 dma_cap_set(DMA_SLAVE, mask);
234 * If only an RX channel is specified, the driver will
235 * attempt to use it bidirectionally, however if it is
236 * is specified but cannot be located, DMA will be disabled.
238 if (plat->dma_rx_param) {
239 host->dma_rx_channel = dma_request_channel(mask,
240 plat->dma_filter,
241 plat->dma_rx_param);
242 /* E.g if no DMA hardware is present */
243 if (!host->dma_rx_channel)
244 dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
247 if (plat->dma_tx_param) {
248 host->dma_tx_channel = dma_request_channel(mask,
249 plat->dma_filter,
250 plat->dma_tx_param);
251 if (!host->dma_tx_channel)
252 dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
253 } else {
254 host->dma_tx_channel = host->dma_rx_channel;
257 if (host->dma_rx_channel)
258 rxname = dma_chan_name(host->dma_rx_channel);
259 else
260 rxname = "none";
262 if (host->dma_tx_channel)
263 txname = dma_chan_name(host->dma_tx_channel);
264 else
265 txname = "none";
267 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
268 rxname, txname);
271 * Limit the maximum segment size in any SG entry according to
272 * the parameters of the DMA engine device.
274 if (host->dma_tx_channel) {
275 struct device *dev = host->dma_tx_channel->device->dev;
276 unsigned int max_seg_size = dma_get_max_seg_size(dev);
278 if (max_seg_size < host->mmc->max_seg_size)
279 host->mmc->max_seg_size = max_seg_size;
281 if (host->dma_rx_channel) {
282 struct device *dev = host->dma_rx_channel->device->dev;
283 unsigned int max_seg_size = dma_get_max_seg_size(dev);
285 if (max_seg_size < host->mmc->max_seg_size)
286 host->mmc->max_seg_size = max_seg_size;
291 * This is used in __devinit or __devexit so inline it
292 * so it can be discarded.
294 static inline void mmci_dma_release(struct mmci_host *host)
296 struct mmci_platform_data *plat = host->plat;
298 if (host->dma_rx_channel)
299 dma_release_channel(host->dma_rx_channel);
300 if (host->dma_tx_channel && plat->dma_tx_param)
301 dma_release_channel(host->dma_tx_channel);
302 host->dma_rx_channel = host->dma_tx_channel = NULL;
305 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
307 struct dma_chan *chan = host->dma_current;
308 enum dma_data_direction dir;
309 u32 status;
310 int i;
312 /* Wait up to 1ms for the DMA to complete */
313 for (i = 0; ; i++) {
314 status = readl(host->base + MMCISTATUS);
315 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
316 break;
317 udelay(10);
321 * Check to see whether we still have some data left in the FIFO -
322 * this catches DMA controllers which are unable to monitor the
323 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
324 * contiguous buffers. On TX, we'll get a FIFO underrun error.
326 if (status & MCI_RXDATAAVLBLMASK) {
327 dmaengine_terminate_all(chan);
328 if (!data->error)
329 data->error = -EIO;
332 if (data->flags & MMC_DATA_WRITE) {
333 dir = DMA_TO_DEVICE;
334 } else {
335 dir = DMA_FROM_DEVICE;
338 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
341 * Use of DMA with scatter-gather is impossible.
342 * Give up with DMA and switch back to PIO mode.
344 if (status & MCI_RXDATAAVLBLMASK) {
345 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
346 mmci_dma_release(host);
350 static void mmci_dma_data_error(struct mmci_host *host)
352 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
353 dmaengine_terminate_all(host->dma_current);
356 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
358 struct variant_data *variant = host->variant;
359 struct dma_slave_config conf = {
360 .src_addr = host->phybase + MMCIFIFO,
361 .dst_addr = host->phybase + MMCIFIFO,
362 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
363 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
364 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
365 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
367 struct mmc_data *data = host->data;
368 struct dma_chan *chan;
369 struct dma_device *device;
370 struct dma_async_tx_descriptor *desc;
371 int nr_sg;
373 host->dma_current = NULL;
375 if (data->flags & MMC_DATA_READ) {
376 conf.direction = DMA_FROM_DEVICE;
377 chan = host->dma_rx_channel;
378 } else {
379 conf.direction = DMA_TO_DEVICE;
380 chan = host->dma_tx_channel;
383 /* If there's no DMA channel, fall back to PIO */
384 if (!chan)
385 return -EINVAL;
387 /* If less than or equal to the fifo size, don't bother with DMA */
388 if (host->size <= variant->fifosize)
389 return -EINVAL;
391 device = chan->device;
392 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, conf.direction);
393 if (nr_sg == 0)
394 return -EINVAL;
396 dmaengine_slave_config(chan, &conf);
397 desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
398 conf.direction, DMA_CTRL_ACK);
399 if (!desc)
400 goto unmap_exit;
402 /* Okay, go for it. */
403 host->dma_current = chan;
405 dev_vdbg(mmc_dev(host->mmc),
406 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
407 data->sg_len, data->blksz, data->blocks, data->flags);
408 dmaengine_submit(desc);
409 dma_async_issue_pending(chan);
411 datactrl |= MCI_DPSM_DMAENABLE;
413 /* Trigger the DMA transfer */
414 writel(datactrl, host->base + MMCIDATACTRL);
417 * Let the MMCI say when the data is ended and it's time
418 * to fire next DMA request. When that happens, MMCI will
419 * call mmci_data_end()
421 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
422 host->base + MMCIMASK0);
423 return 0;
425 unmap_exit:
426 dmaengine_terminate_all(chan);
427 dma_unmap_sg(device->dev, data->sg, data->sg_len, conf.direction);
428 return -ENOMEM;
430 #else
431 /* Blank functions if the DMA engine is not available */
432 static inline void mmci_dma_setup(struct mmci_host *host)
436 static inline void mmci_dma_release(struct mmci_host *host)
440 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
444 static inline void mmci_dma_data_error(struct mmci_host *host)
448 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
450 return -ENOSYS;
452 #endif
454 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
456 struct variant_data *variant = host->variant;
457 unsigned int datactrl, timeout, irqmask;
458 unsigned long long clks;
459 void __iomem *base;
460 int blksz_bits;
462 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
463 data->blksz, data->blocks, data->flags);
465 host->data = data;
466 host->size = data->blksz * data->blocks;
467 data->bytes_xfered = 0;
469 clks = (unsigned long long)data->timeout_ns * host->cclk;
470 do_div(clks, 1000000000UL);
472 timeout = data->timeout_clks + (unsigned int)clks;
474 base = host->base;
475 writel(timeout, base + MMCIDATATIMER);
476 writel(host->size, base + MMCIDATALENGTH);
478 blksz_bits = ffs(data->blksz) - 1;
479 BUG_ON(1 << blksz_bits != data->blksz);
481 if (variant->blksz_datactrl16)
482 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
483 else
484 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
486 if (data->flags & MMC_DATA_READ)
487 datactrl |= MCI_DPSM_DIRECTION;
490 * Attempt to use DMA operation mode, if this
491 * should fail, fall back to PIO mode
493 if (!mmci_dma_start_data(host, datactrl))
494 return;
496 /* IRQ mode, map the SG list for CPU reading/writing */
497 mmci_init_sg(host, data);
499 if (data->flags & MMC_DATA_READ) {
500 irqmask = MCI_RXFIFOHALFFULLMASK;
503 * If we have less than the fifo 'half-full' threshold to
504 * transfer, trigger a PIO interrupt as soon as any data
505 * is available.
507 if (host->size < variant->fifohalfsize)
508 irqmask |= MCI_RXDATAAVLBLMASK;
509 } else {
511 * We don't actually need to include "FIFO empty" here
512 * since its implicit in "FIFO half empty".
514 irqmask = MCI_TXFIFOHALFEMPTYMASK;
517 /* The ST Micro variants has a special bit to enable SDIO */
518 if (variant->sdio && host->mmc->card)
519 if (mmc_card_sdio(host->mmc->card))
520 datactrl |= MCI_ST_DPSM_SDIOEN;
522 writel(datactrl, base + MMCIDATACTRL);
523 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
524 mmci_set_mask1(host, irqmask);
527 static void
528 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
530 void __iomem *base = host->base;
532 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
533 cmd->opcode, cmd->arg, cmd->flags);
535 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
536 writel(0, base + MMCICOMMAND);
537 udelay(1);
540 c |= cmd->opcode | MCI_CPSM_ENABLE;
541 if (cmd->flags & MMC_RSP_PRESENT) {
542 if (cmd->flags & MMC_RSP_136)
543 c |= MCI_CPSM_LONGRSP;
544 c |= MCI_CPSM_RESPONSE;
546 if (/*interrupt*/0)
547 c |= MCI_CPSM_INTERRUPT;
549 host->cmd = cmd;
551 writel(cmd->arg, base + MMCIARGUMENT);
552 writel(c, base + MMCICOMMAND);
555 static void
556 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
557 unsigned int status)
559 /* First check for errors */
560 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
561 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
562 u32 remain, success;
564 /* Terminate the DMA transfer */
565 if (dma_inprogress(host))
566 mmci_dma_data_error(host);
569 * Calculate how far we are into the transfer. Note that
570 * the data counter gives the number of bytes transferred
571 * on the MMC bus, not on the host side. On reads, this
572 * can be as much as a FIFO-worth of data ahead. This
573 * matters for FIFO overruns only.
575 remain = readl(host->base + MMCIDATACNT);
576 success = data->blksz * data->blocks - remain;
578 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
579 status, success);
580 if (status & MCI_DATACRCFAIL) {
581 /* Last block was not successful */
582 success -= 1;
583 data->error = -EILSEQ;
584 } else if (status & MCI_DATATIMEOUT) {
585 data->error = -ETIMEDOUT;
586 } else if (status & MCI_STARTBITERR) {
587 data->error = -ECOMM;
588 } else if (status & MCI_TXUNDERRUN) {
589 data->error = -EIO;
590 } else if (status & MCI_RXOVERRUN) {
591 if (success > host->variant->fifosize)
592 success -= host->variant->fifosize;
593 else
594 success = 0;
595 data->error = -EIO;
597 data->bytes_xfered = round_down(success, data->blksz);
600 if (status & MCI_DATABLOCKEND)
601 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
603 if (status & MCI_DATAEND || data->error) {
604 if (dma_inprogress(host))
605 mmci_dma_unmap(host, data);
606 mmci_stop_data(host);
608 if (!data->error)
609 /* The error clause is handled above, success! */
610 data->bytes_xfered = data->blksz * data->blocks;
612 if (!data->stop) {
613 mmci_request_end(host, data->mrq);
614 } else {
615 mmci_start_command(host, data->stop, 0);
620 static void
621 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
622 unsigned int status)
624 void __iomem *base = host->base;
626 host->cmd = NULL;
628 if (status & MCI_CMDTIMEOUT) {
629 cmd->error = -ETIMEDOUT;
630 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
631 cmd->error = -EILSEQ;
632 } else {
633 cmd->resp[0] = readl(base + MMCIRESPONSE0);
634 cmd->resp[1] = readl(base + MMCIRESPONSE1);
635 cmd->resp[2] = readl(base + MMCIRESPONSE2);
636 cmd->resp[3] = readl(base + MMCIRESPONSE3);
639 if (!cmd->data || cmd->error) {
640 if (host->data) {
641 /* Terminate the DMA transfer */
642 if (dma_inprogress(host))
643 mmci_dma_data_error(host);
644 mmci_stop_data(host);
646 mmci_request_end(host, cmd->mrq);
647 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
648 mmci_start_data(host, cmd->data);
652 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
654 void __iomem *base = host->base;
655 char *ptr = buffer;
656 u32 status;
657 int host_remain = host->size;
659 do {
660 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
662 if (count > remain)
663 count = remain;
665 if (count <= 0)
666 break;
668 readsl(base + MMCIFIFO, ptr, count >> 2);
670 ptr += count;
671 remain -= count;
672 host_remain -= count;
674 if (remain == 0)
675 break;
677 status = readl(base + MMCISTATUS);
678 } while (status & MCI_RXDATAAVLBL);
680 return ptr - buffer;
683 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
685 struct variant_data *variant = host->variant;
686 void __iomem *base = host->base;
687 char *ptr = buffer;
689 do {
690 unsigned int count, maxcnt;
692 maxcnt = status & MCI_TXFIFOEMPTY ?
693 variant->fifosize : variant->fifohalfsize;
694 count = min(remain, maxcnt);
697 * The ST Micro variant for SDIO transfer sizes
698 * less then 8 bytes should have clock H/W flow
699 * control disabled.
701 if (variant->sdio &&
702 mmc_card_sdio(host->mmc->card)) {
703 if (count < 8)
704 writel(readl(host->base + MMCICLOCK) &
705 ~variant->clkreg_enable,
706 host->base + MMCICLOCK);
707 else
708 writel(readl(host->base + MMCICLOCK) |
709 variant->clkreg_enable,
710 host->base + MMCICLOCK);
714 * SDIO especially may want to send something that is
715 * not divisible by 4 (as opposed to card sectors
716 * etc), and the FIFO only accept full 32-bit writes.
717 * So compensate by adding +3 on the count, a single
718 * byte become a 32bit write, 7 bytes will be two
719 * 32bit writes etc.
721 writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
723 ptr += count;
724 remain -= count;
726 if (remain == 0)
727 break;
729 status = readl(base + MMCISTATUS);
730 } while (status & MCI_TXFIFOHALFEMPTY);
732 return ptr - buffer;
736 * PIO data transfer IRQ handler.
738 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
740 struct mmci_host *host = dev_id;
741 struct sg_mapping_iter *sg_miter = &host->sg_miter;
742 struct variant_data *variant = host->variant;
743 void __iomem *base = host->base;
744 unsigned long flags;
745 u32 status;
747 status = readl(base + MMCISTATUS);
749 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
751 local_irq_save(flags);
753 do {
754 unsigned int remain, len;
755 char *buffer;
758 * For write, we only need to test the half-empty flag
759 * here - if the FIFO is completely empty, then by
760 * definition it is more than half empty.
762 * For read, check for data available.
764 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
765 break;
767 if (!sg_miter_next(sg_miter))
768 break;
770 buffer = sg_miter->addr;
771 remain = sg_miter->length;
773 len = 0;
774 if (status & MCI_RXACTIVE)
775 len = mmci_pio_read(host, buffer, remain);
776 if (status & MCI_TXACTIVE)
777 len = mmci_pio_write(host, buffer, remain, status);
779 sg_miter->consumed = len;
781 host->size -= len;
782 remain -= len;
784 if (remain)
785 break;
787 status = readl(base + MMCISTATUS);
788 } while (1);
790 sg_miter_stop(sg_miter);
792 local_irq_restore(flags);
795 * If we have less than the fifo 'half-full' threshold to transfer,
796 * trigger a PIO interrupt as soon as any data is available.
798 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
799 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
802 * If we run out of data, disable the data IRQs; this
803 * prevents a race where the FIFO becomes empty before
804 * the chip itself has disabled the data path, and
805 * stops us racing with our data end IRQ.
807 if (host->size == 0) {
808 mmci_set_mask1(host, 0);
809 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
812 return IRQ_HANDLED;
816 * Handle completion of command and data transfers.
818 static irqreturn_t mmci_irq(int irq, void *dev_id)
820 struct mmci_host *host = dev_id;
821 u32 status;
822 int ret = 0;
824 spin_lock(&host->lock);
826 do {
827 struct mmc_command *cmd;
828 struct mmc_data *data;
830 status = readl(host->base + MMCISTATUS);
832 if (host->singleirq) {
833 if (status & readl(host->base + MMCIMASK1))
834 mmci_pio_irq(irq, dev_id);
836 status &= ~MCI_IRQ1MASK;
839 status &= readl(host->base + MMCIMASK0);
840 writel(status, host->base + MMCICLEAR);
842 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
844 data = host->data;
845 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
846 MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
847 MCI_DATABLOCKEND) && data)
848 mmci_data_irq(host, data, status);
850 cmd = host->cmd;
851 if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
852 mmci_cmd_irq(host, cmd, status);
854 ret = 1;
855 } while (status);
857 spin_unlock(&host->lock);
859 return IRQ_RETVAL(ret);
862 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
864 struct mmci_host *host = mmc_priv(mmc);
865 unsigned long flags;
867 WARN_ON(host->mrq != NULL);
869 if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
870 dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
871 mrq->data->blksz);
872 mrq->cmd->error = -EINVAL;
873 mmc_request_done(mmc, mrq);
874 return;
877 spin_lock_irqsave(&host->lock, flags);
879 host->mrq = mrq;
881 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
882 mmci_start_data(host, mrq->data);
884 mmci_start_command(host, mrq->cmd, 0);
886 spin_unlock_irqrestore(&host->lock, flags);
889 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
891 struct mmci_host *host = mmc_priv(mmc);
892 u32 pwr = 0;
893 unsigned long flags;
894 int ret;
896 switch (ios->power_mode) {
897 case MMC_POWER_OFF:
898 if (host->vcc)
899 ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
900 break;
901 case MMC_POWER_UP:
902 if (host->vcc) {
903 ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
904 if (ret) {
905 dev_err(mmc_dev(mmc), "unable to set OCR\n");
907 * The .set_ios() function in the mmc_host_ops
908 * struct return void, and failing to set the
909 * power should be rare so we print an error
910 * and return here.
912 return;
915 if (host->plat->vdd_handler)
916 pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
917 ios->power_mode);
918 /* The ST version does not have this, fall through to POWER_ON */
919 if (host->hw_designer != AMBA_VENDOR_ST) {
920 pwr |= MCI_PWR_UP;
921 break;
923 case MMC_POWER_ON:
924 pwr |= MCI_PWR_ON;
925 break;
928 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
929 if (host->hw_designer != AMBA_VENDOR_ST)
930 pwr |= MCI_ROD;
931 else {
933 * The ST Micro variant use the ROD bit for something
934 * else and only has OD (Open Drain).
936 pwr |= MCI_OD;
940 spin_lock_irqsave(&host->lock, flags);
942 mmci_set_clkreg(host, ios->clock);
944 if (host->pwr != pwr) {
945 host->pwr = pwr;
946 writel(pwr, host->base + MMCIPOWER);
949 spin_unlock_irqrestore(&host->lock, flags);
952 static int mmci_get_ro(struct mmc_host *mmc)
954 struct mmci_host *host = mmc_priv(mmc);
956 if (host->gpio_wp == -ENOSYS)
957 return -ENOSYS;
959 return gpio_get_value_cansleep(host->gpio_wp);
962 static int mmci_get_cd(struct mmc_host *mmc)
964 struct mmci_host *host = mmc_priv(mmc);
965 struct mmci_platform_data *plat = host->plat;
966 unsigned int status;
968 if (host->gpio_cd == -ENOSYS) {
969 if (!plat->status)
970 return 1; /* Assume always present */
972 status = plat->status(mmc_dev(host->mmc));
973 } else
974 status = !!gpio_get_value_cansleep(host->gpio_cd)
975 ^ plat->cd_invert;
978 * Use positive logic throughout - status is zero for no card,
979 * non-zero for card inserted.
981 return status;
984 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
986 struct mmci_host *host = dev_id;
988 mmc_detect_change(host->mmc, msecs_to_jiffies(500));
990 return IRQ_HANDLED;
993 static const struct mmc_host_ops mmci_ops = {
994 .request = mmci_request,
995 .set_ios = mmci_set_ios,
996 .get_ro = mmci_get_ro,
997 .get_cd = mmci_get_cd,
1000 static int __devinit mmci_probe(struct amba_device *dev,
1001 const struct amba_id *id)
1003 struct mmci_platform_data *plat = dev->dev.platform_data;
1004 struct variant_data *variant = id->data;
1005 struct mmci_host *host;
1006 struct mmc_host *mmc;
1007 int ret;
1009 /* must have platform data */
1010 if (!plat) {
1011 ret = -EINVAL;
1012 goto out;
1015 ret = amba_request_regions(dev, DRIVER_NAME);
1016 if (ret)
1017 goto out;
1019 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1020 if (!mmc) {
1021 ret = -ENOMEM;
1022 goto rel_regions;
1025 host = mmc_priv(mmc);
1026 host->mmc = mmc;
1028 host->gpio_wp = -ENOSYS;
1029 host->gpio_cd = -ENOSYS;
1030 host->gpio_cd_irq = -1;
1032 host->hw_designer = amba_manf(dev);
1033 host->hw_revision = amba_rev(dev);
1034 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1035 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1037 host->clk = clk_get(&dev->dev, NULL);
1038 if (IS_ERR(host->clk)) {
1039 ret = PTR_ERR(host->clk);
1040 host->clk = NULL;
1041 goto host_free;
1044 ret = clk_enable(host->clk);
1045 if (ret)
1046 goto clk_free;
1048 host->plat = plat;
1049 host->variant = variant;
1050 host->mclk = clk_get_rate(host->clk);
1052 * According to the spec, mclk is max 100 MHz,
1053 * so we try to adjust the clock down to this,
1054 * (if possible).
1056 if (host->mclk > 100000000) {
1057 ret = clk_set_rate(host->clk, 100000000);
1058 if (ret < 0)
1059 goto clk_disable;
1060 host->mclk = clk_get_rate(host->clk);
1061 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1062 host->mclk);
1064 host->phybase = dev->res.start;
1065 host->base = ioremap(dev->res.start, resource_size(&dev->res));
1066 if (!host->base) {
1067 ret = -ENOMEM;
1068 goto clk_disable;
1071 mmc->ops = &mmci_ops;
1072 mmc->f_min = (host->mclk + 511) / 512;
1074 * If the platform data supplies a maximum operating
1075 * frequency, this takes precedence. Else, we fall back
1076 * to using the module parameter, which has a (low)
1077 * default value in case it is not specified. Either
1078 * value must not exceed the clock rate into the block,
1079 * of course.
1081 if (plat->f_max)
1082 mmc->f_max = min(host->mclk, plat->f_max);
1083 else
1084 mmc->f_max = min(host->mclk, fmax);
1085 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1087 #ifdef CONFIG_REGULATOR
1088 /* If we're using the regulator framework, try to fetch a regulator */
1089 host->vcc = regulator_get(&dev->dev, "vmmc");
1090 if (IS_ERR(host->vcc))
1091 host->vcc = NULL;
1092 else {
1093 int mask = mmc_regulator_get_ocrmask(host->vcc);
1095 if (mask < 0)
1096 dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1097 mask);
1098 else {
1099 host->mmc->ocr_avail = (u32) mask;
1100 if (plat->ocr_mask)
1101 dev_warn(&dev->dev,
1102 "Provided ocr_mask/setpower will not be used "
1103 "(using regulator instead)\n");
1106 #endif
1107 /* Fall back to platform data if no regulator is found */
1108 if (host->vcc == NULL)
1109 mmc->ocr_avail = plat->ocr_mask;
1110 mmc->caps = plat->capabilities;
1113 * We can do SGIO
1115 mmc->max_segs = NR_SG;
1118 * Since only a certain number of bits are valid in the data length
1119 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1120 * single request.
1122 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1125 * Set the maximum segment size. Since we aren't doing DMA
1126 * (yet) we are only limited by the data length register.
1128 mmc->max_seg_size = mmc->max_req_size;
1131 * Block size can be up to 2048 bytes, but must be a power of two.
1133 mmc->max_blk_size = 2048;
1136 * No limit on the number of blocks transferred.
1138 mmc->max_blk_count = mmc->max_req_size;
1140 spin_lock_init(&host->lock);
1142 writel(0, host->base + MMCIMASK0);
1143 writel(0, host->base + MMCIMASK1);
1144 writel(0xfff, host->base + MMCICLEAR);
1146 if (gpio_is_valid(plat->gpio_cd)) {
1147 ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1148 if (ret == 0)
1149 ret = gpio_direction_input(plat->gpio_cd);
1150 if (ret == 0)
1151 host->gpio_cd = plat->gpio_cd;
1152 else if (ret != -ENOSYS)
1153 goto err_gpio_cd;
1156 * A gpio pin that will detect cards when inserted and removed
1157 * will most likely want to trigger on the edges if it is
1158 * 0 when ejected and 1 when inserted (or mutatis mutandis
1159 * for the inverted case) so we request triggers on both
1160 * edges.
1162 ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1163 mmci_cd_irq,
1164 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1165 DRIVER_NAME " (cd)", host);
1166 if (ret >= 0)
1167 host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1169 if (gpio_is_valid(plat->gpio_wp)) {
1170 ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1171 if (ret == 0)
1172 ret = gpio_direction_input(plat->gpio_wp);
1173 if (ret == 0)
1174 host->gpio_wp = plat->gpio_wp;
1175 else if (ret != -ENOSYS)
1176 goto err_gpio_wp;
1179 if ((host->plat->status || host->gpio_cd != -ENOSYS)
1180 && host->gpio_cd_irq < 0)
1181 mmc->caps |= MMC_CAP_NEEDS_POLL;
1183 ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1184 if (ret)
1185 goto unmap;
1187 if (dev->irq[1] == NO_IRQ)
1188 host->singleirq = true;
1189 else {
1190 ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1191 DRIVER_NAME " (pio)", host);
1192 if (ret)
1193 goto irq0_free;
1196 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1198 amba_set_drvdata(dev, mmc);
1200 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1201 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1202 amba_rev(dev), (unsigned long long)dev->res.start,
1203 dev->irq[0], dev->irq[1]);
1205 mmci_dma_setup(host);
1207 mmc_add_host(mmc);
1209 return 0;
1211 irq0_free:
1212 free_irq(dev->irq[0], host);
1213 unmap:
1214 if (host->gpio_wp != -ENOSYS)
1215 gpio_free(host->gpio_wp);
1216 err_gpio_wp:
1217 if (host->gpio_cd_irq >= 0)
1218 free_irq(host->gpio_cd_irq, host);
1219 if (host->gpio_cd != -ENOSYS)
1220 gpio_free(host->gpio_cd);
1221 err_gpio_cd:
1222 iounmap(host->base);
1223 clk_disable:
1224 clk_disable(host->clk);
1225 clk_free:
1226 clk_put(host->clk);
1227 host_free:
1228 mmc_free_host(mmc);
1229 rel_regions:
1230 amba_release_regions(dev);
1231 out:
1232 return ret;
1235 static int __devexit mmci_remove(struct amba_device *dev)
1237 struct mmc_host *mmc = amba_get_drvdata(dev);
1239 amba_set_drvdata(dev, NULL);
1241 if (mmc) {
1242 struct mmci_host *host = mmc_priv(mmc);
1244 mmc_remove_host(mmc);
1246 writel(0, host->base + MMCIMASK0);
1247 writel(0, host->base + MMCIMASK1);
1249 writel(0, host->base + MMCICOMMAND);
1250 writel(0, host->base + MMCIDATACTRL);
1252 mmci_dma_release(host);
1253 free_irq(dev->irq[0], host);
1254 if (!host->singleirq)
1255 free_irq(dev->irq[1], host);
1257 if (host->gpio_wp != -ENOSYS)
1258 gpio_free(host->gpio_wp);
1259 if (host->gpio_cd_irq >= 0)
1260 free_irq(host->gpio_cd_irq, host);
1261 if (host->gpio_cd != -ENOSYS)
1262 gpio_free(host->gpio_cd);
1264 iounmap(host->base);
1265 clk_disable(host->clk);
1266 clk_put(host->clk);
1268 if (host->vcc)
1269 mmc_regulator_set_ocr(mmc, host->vcc, 0);
1270 regulator_put(host->vcc);
1272 mmc_free_host(mmc);
1274 amba_release_regions(dev);
1277 return 0;
1280 #ifdef CONFIG_PM
1281 static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1283 struct mmc_host *mmc = amba_get_drvdata(dev);
1284 int ret = 0;
1286 if (mmc) {
1287 struct mmci_host *host = mmc_priv(mmc);
1289 ret = mmc_suspend_host(mmc);
1290 if (ret == 0)
1291 writel(0, host->base + MMCIMASK0);
1294 return ret;
1297 static int mmci_resume(struct amba_device *dev)
1299 struct mmc_host *mmc = amba_get_drvdata(dev);
1300 int ret = 0;
1302 if (mmc) {
1303 struct mmci_host *host = mmc_priv(mmc);
1305 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1307 ret = mmc_resume_host(mmc);
1310 return ret;
1312 #else
1313 #define mmci_suspend NULL
1314 #define mmci_resume NULL
1315 #endif
1317 static struct amba_id mmci_ids[] = {
1319 .id = 0x00041180,
1320 .mask = 0xff0fffff,
1321 .data = &variant_arm,
1324 .id = 0x01041180,
1325 .mask = 0xff0fffff,
1326 .data = &variant_arm_extended_fifo,
1329 .id = 0x00041181,
1330 .mask = 0x000fffff,
1331 .data = &variant_arm,
1333 /* ST Micro variants */
1335 .id = 0x00180180,
1336 .mask = 0x00ffffff,
1337 .data = &variant_u300,
1340 .id = 0x00280180,
1341 .mask = 0x00ffffff,
1342 .data = &variant_u300,
1345 .id = 0x00480180,
1346 .mask = 0xf0ffffff,
1347 .data = &variant_ux500,
1350 .id = 0x10480180,
1351 .mask = 0xf0ffffff,
1352 .data = &variant_ux500v2,
1354 { 0, 0 },
1357 static struct amba_driver mmci_driver = {
1358 .drv = {
1359 .name = DRIVER_NAME,
1361 .probe = mmci_probe,
1362 .remove = __devexit_p(mmci_remove),
1363 .suspend = mmci_suspend,
1364 .resume = mmci_resume,
1365 .id_table = mmci_ids,
1368 static int __init mmci_init(void)
1370 return amba_driver_register(&mmci_driver);
1373 static void __exit mmci_exit(void)
1375 amba_driver_unregister(&mmci_driver);
1378 module_init(mmci_init);
1379 module_exit(mmci_exit);
1380 module_param(fmax, uint, 0444);
1382 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1383 MODULE_LICENSE("GPL");