ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / drivers / mmc / host / sh_mmcif.c
blob14f8edbaa19551d3d4c72abae3e2cb4f51e24c3f
1 /*
2 * MMCIF eMMC driver.
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
12 * TODO
13 * 1. DMA
14 * 2. Power management
15 * 3. Handle MMC errors better
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/core.h>
26 #include <linux/mmc/host.h>
27 #include <linux/mmc/mmc.h>
28 #include <linux/mmc/sdio.h>
29 #include <linux/mmc/sh_mmcif.h>
30 #include <linux/pagemap.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/spinlock.h>
35 #define DRIVER_NAME "sh_mmcif"
36 #define DRIVER_VERSION "2010-04-28"
38 /* CE_CMD_SET */
39 #define CMD_MASK 0x3f000000
40 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
41 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
42 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
43 #define CMD_SET_RBSY (1 << 21) /* R1b */
44 #define CMD_SET_CCSEN (1 << 20)
45 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
46 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
47 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
48 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
49 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
50 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
51 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
52 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
53 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
54 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
55 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
56 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
57 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
58 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
59 #define CMD_SET_CCSH (1 << 5)
60 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
61 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
62 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
64 /* CE_CMD_CTRL */
65 #define CMD_CTRL_BREAK (1 << 0)
67 /* CE_BLOCK_SET */
68 #define BLOCK_SIZE_MASK 0x0000ffff
70 /* CE_INT */
71 #define INT_CCSDE (1 << 29)
72 #define INT_CMD12DRE (1 << 26)
73 #define INT_CMD12RBE (1 << 25)
74 #define INT_CMD12CRE (1 << 24)
75 #define INT_DTRANE (1 << 23)
76 #define INT_BUFRE (1 << 22)
77 #define INT_BUFWEN (1 << 21)
78 #define INT_BUFREN (1 << 20)
79 #define INT_CCSRCV (1 << 19)
80 #define INT_RBSYE (1 << 17)
81 #define INT_CRSPE (1 << 16)
82 #define INT_CMDVIO (1 << 15)
83 #define INT_BUFVIO (1 << 14)
84 #define INT_WDATERR (1 << 11)
85 #define INT_RDATERR (1 << 10)
86 #define INT_RIDXERR (1 << 9)
87 #define INT_RSPERR (1 << 8)
88 #define INT_CCSTO (1 << 5)
89 #define INT_CRCSTO (1 << 4)
90 #define INT_WDATTO (1 << 3)
91 #define INT_RDATTO (1 << 2)
92 #define INT_RBSYTO (1 << 1)
93 #define INT_RSPTO (1 << 0)
94 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
95 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
96 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
97 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
99 /* CE_INT_MASK */
100 #define MASK_ALL 0x00000000
101 #define MASK_MCCSDE (1 << 29)
102 #define MASK_MCMD12DRE (1 << 26)
103 #define MASK_MCMD12RBE (1 << 25)
104 #define MASK_MCMD12CRE (1 << 24)
105 #define MASK_MDTRANE (1 << 23)
106 #define MASK_MBUFRE (1 << 22)
107 #define MASK_MBUFWEN (1 << 21)
108 #define MASK_MBUFREN (1 << 20)
109 #define MASK_MCCSRCV (1 << 19)
110 #define MASK_MRBSYE (1 << 17)
111 #define MASK_MCRSPE (1 << 16)
112 #define MASK_MCMDVIO (1 << 15)
113 #define MASK_MBUFVIO (1 << 14)
114 #define MASK_MWDATERR (1 << 11)
115 #define MASK_MRDATERR (1 << 10)
116 #define MASK_MRIDXERR (1 << 9)
117 #define MASK_MRSPERR (1 << 8)
118 #define MASK_MCCSTO (1 << 5)
119 #define MASK_MCRCSTO (1 << 4)
120 #define MASK_MWDATTO (1 << 3)
121 #define MASK_MRDATTO (1 << 2)
122 #define MASK_MRBSYTO (1 << 1)
123 #define MASK_MRSPTO (1 << 0)
125 /* CE_HOST_STS1 */
126 #define STS1_CMDSEQ (1 << 31)
128 /* CE_HOST_STS2 */
129 #define STS2_CRCSTE (1 << 31)
130 #define STS2_CRC16E (1 << 30)
131 #define STS2_AC12CRCE (1 << 29)
132 #define STS2_RSPCRC7E (1 << 28)
133 #define STS2_CRCSTEBE (1 << 27)
134 #define STS2_RDATEBE (1 << 26)
135 #define STS2_AC12REBE (1 << 25)
136 #define STS2_RSPEBE (1 << 24)
137 #define STS2_AC12IDXE (1 << 23)
138 #define STS2_RSPIDXE (1 << 22)
139 #define STS2_CCSTO (1 << 15)
140 #define STS2_RDATTO (1 << 14)
141 #define STS2_DATBSYTO (1 << 13)
142 #define STS2_CRCSTTO (1 << 12)
143 #define STS2_AC12BSYTO (1 << 11)
144 #define STS2_RSPBSYTO (1 << 10)
145 #define STS2_AC12RSPTO (1 << 9)
146 #define STS2_RSPTO (1 << 8)
147 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
148 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
149 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
150 STS2_DATBSYTO | STS2_CRCSTTO | \
151 STS2_AC12BSYTO | STS2_RSPBSYTO | \
152 STS2_AC12RSPTO | STS2_RSPTO)
154 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
155 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
156 #define CLKDEV_INIT 400000 /* 400 KHz */
158 enum mmcif_state {
159 STATE_IDLE,
160 STATE_REQUEST,
161 STATE_IOS,
164 struct sh_mmcif_host {
165 struct mmc_host *mmc;
166 struct mmc_data *data;
167 struct platform_device *pd;
168 struct clk *hclk;
169 unsigned int clk;
170 int bus_width;
171 bool sd_error;
172 long timeout;
173 void __iomem *addr;
174 struct completion intr_wait;
175 enum mmcif_state state;
176 spinlock_t lock;
177 bool power;
179 /* DMA support */
180 struct dma_chan *chan_rx;
181 struct dma_chan *chan_tx;
182 struct completion dma_complete;
183 bool dma_active;
186 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
187 unsigned int reg, u32 val)
189 writel(val | readl(host->addr + reg), host->addr + reg);
192 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
193 unsigned int reg, u32 val)
195 writel(~val & readl(host->addr + reg), host->addr + reg);
198 static void mmcif_dma_complete(void *arg)
200 struct sh_mmcif_host *host = arg;
201 dev_dbg(&host->pd->dev, "Command completed\n");
203 if (WARN(!host->data, "%s: NULL data in DMA completion!\n",
204 dev_name(&host->pd->dev)))
205 return;
207 if (host->data->flags & MMC_DATA_READ)
208 dma_unmap_sg(host->chan_rx->device->dev,
209 host->data->sg, host->data->sg_len,
210 DMA_FROM_DEVICE);
211 else
212 dma_unmap_sg(host->chan_tx->device->dev,
213 host->data->sg, host->data->sg_len,
214 DMA_TO_DEVICE);
216 complete(&host->dma_complete);
219 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
221 struct scatterlist *sg = host->data->sg;
222 struct dma_async_tx_descriptor *desc = NULL;
223 struct dma_chan *chan = host->chan_rx;
224 dma_cookie_t cookie = -EINVAL;
225 int ret;
227 ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
228 DMA_FROM_DEVICE);
229 if (ret > 0) {
230 host->dma_active = true;
231 desc = chan->device->device_prep_slave_sg(chan, sg, ret,
232 DMA_FROM_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
235 if (desc) {
236 desc->callback = mmcif_dma_complete;
237 desc->callback_param = host;
238 cookie = dmaengine_submit(desc);
239 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
240 dma_async_issue_pending(chan);
242 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
243 __func__, host->data->sg_len, ret, cookie);
245 if (!desc) {
246 /* DMA failed, fall back to PIO */
247 if (ret >= 0)
248 ret = -EIO;
249 host->chan_rx = NULL;
250 host->dma_active = false;
251 dma_release_channel(chan);
252 /* Free the Tx channel too */
253 chan = host->chan_tx;
254 if (chan) {
255 host->chan_tx = NULL;
256 dma_release_channel(chan);
258 dev_warn(&host->pd->dev,
259 "DMA failed: %d, falling back to PIO\n", ret);
260 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
263 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
264 desc, cookie, host->data->sg_len);
267 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
269 struct scatterlist *sg = host->data->sg;
270 struct dma_async_tx_descriptor *desc = NULL;
271 struct dma_chan *chan = host->chan_tx;
272 dma_cookie_t cookie = -EINVAL;
273 int ret;
275 ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
276 DMA_TO_DEVICE);
277 if (ret > 0) {
278 host->dma_active = true;
279 desc = chan->device->device_prep_slave_sg(chan, sg, ret,
280 DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
283 if (desc) {
284 desc->callback = mmcif_dma_complete;
285 desc->callback_param = host;
286 cookie = dmaengine_submit(desc);
287 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
288 dma_async_issue_pending(chan);
290 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
291 __func__, host->data->sg_len, ret, cookie);
293 if (!desc) {
294 /* DMA failed, fall back to PIO */
295 if (ret >= 0)
296 ret = -EIO;
297 host->chan_tx = NULL;
298 host->dma_active = false;
299 dma_release_channel(chan);
300 /* Free the Rx channel too */
301 chan = host->chan_rx;
302 if (chan) {
303 host->chan_rx = NULL;
304 dma_release_channel(chan);
306 dev_warn(&host->pd->dev,
307 "DMA failed: %d, falling back to PIO\n", ret);
308 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
311 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
312 desc, cookie);
315 static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
317 dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
318 chan->private = arg;
319 return true;
322 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
323 struct sh_mmcif_plat_data *pdata)
325 host->dma_active = false;
327 /* We can only either use DMA for both Tx and Rx or not use it at all */
328 if (pdata->dma) {
329 dma_cap_mask_t mask;
331 dma_cap_zero(mask);
332 dma_cap_set(DMA_SLAVE, mask);
334 host->chan_tx = dma_request_channel(mask, sh_mmcif_filter,
335 &pdata->dma->chan_priv_tx);
336 dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
337 host->chan_tx);
339 if (!host->chan_tx)
340 return;
342 host->chan_rx = dma_request_channel(mask, sh_mmcif_filter,
343 &pdata->dma->chan_priv_rx);
344 dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
345 host->chan_rx);
347 if (!host->chan_rx) {
348 dma_release_channel(host->chan_tx);
349 host->chan_tx = NULL;
350 return;
353 init_completion(&host->dma_complete);
357 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
359 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
360 /* Descriptors are freed automatically */
361 if (host->chan_tx) {
362 struct dma_chan *chan = host->chan_tx;
363 host->chan_tx = NULL;
364 dma_release_channel(chan);
366 if (host->chan_rx) {
367 struct dma_chan *chan = host->chan_rx;
368 host->chan_rx = NULL;
369 dma_release_channel(chan);
372 host->dma_active = false;
375 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
377 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
379 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
380 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
382 if (!clk)
383 return;
384 if (p->sup_pclk && clk == host->clk)
385 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
386 else
387 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
388 (ilog2(__rounddown_pow_of_two(host->clk / clk)) << 16));
390 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
393 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
395 u32 tmp;
397 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
399 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
400 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
401 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
402 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
403 /* byte swap on */
404 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
407 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
409 u32 state1, state2;
410 int ret, timeout = 10000000;
412 host->sd_error = false;
414 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
415 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
416 dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
417 dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
419 if (state1 & STS1_CMDSEQ) {
420 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
421 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
422 while (1) {
423 timeout--;
424 if (timeout < 0) {
425 dev_err(&host->pd->dev,
426 "Forceed end of command sequence timeout err\n");
427 return -EIO;
429 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
430 & STS1_CMDSEQ))
431 break;
432 mdelay(1);
434 sh_mmcif_sync_reset(host);
435 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
436 return -EIO;
439 if (state2 & STS2_CRC_ERR) {
440 dev_dbg(&host->pd->dev, ": Happened CRC error\n");
441 ret = -EIO;
442 } else if (state2 & STS2_TIMEOUT_ERR) {
443 dev_dbg(&host->pd->dev, ": Happened Timeout error\n");
444 ret = -ETIMEDOUT;
445 } else {
446 dev_dbg(&host->pd->dev, ": Happened End/Index error\n");
447 ret = -EIO;
449 return ret;
452 static int sh_mmcif_single_read(struct sh_mmcif_host *host,
453 struct mmc_request *mrq)
455 struct mmc_data *data = mrq->data;
456 long time;
457 u32 blocksize, i, *p = sg_virt(data->sg);
459 /* buf read enable */
460 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
461 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
462 host->timeout);
463 if (time <= 0 || host->sd_error)
464 return sh_mmcif_error_manage(host);
466 blocksize = (BLOCK_SIZE_MASK &
467 sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
468 for (i = 0; i < blocksize / 4; i++)
469 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
471 /* buffer read end */
472 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
473 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
474 host->timeout);
475 if (time <= 0 || host->sd_error)
476 return sh_mmcif_error_manage(host);
478 return 0;
481 static int sh_mmcif_multi_read(struct sh_mmcif_host *host,
482 struct mmc_request *mrq)
484 struct mmc_data *data = mrq->data;
485 long time;
486 u32 blocksize, i, j, sec, *p;
488 blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
489 MMCIF_CE_BLOCK_SET);
490 for (j = 0; j < data->sg_len; j++) {
491 p = sg_virt(data->sg);
492 for (sec = 0; sec < data->sg->length / blocksize; sec++) {
493 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
494 /* buf read enable */
495 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
496 host->timeout);
498 if (time <= 0 || host->sd_error)
499 return sh_mmcif_error_manage(host);
501 for (i = 0; i < blocksize / 4; i++)
502 *p++ = sh_mmcif_readl(host->addr,
503 MMCIF_CE_DATA);
505 if (j < data->sg_len - 1)
506 data->sg++;
508 return 0;
511 static int sh_mmcif_single_write(struct sh_mmcif_host *host,
512 struct mmc_request *mrq)
514 struct mmc_data *data = mrq->data;
515 long time;
516 u32 blocksize, i, *p = sg_virt(data->sg);
518 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
520 /* buf write enable */
521 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
522 host->timeout);
523 if (time <= 0 || host->sd_error)
524 return sh_mmcif_error_manage(host);
526 blocksize = (BLOCK_SIZE_MASK &
527 sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
528 for (i = 0; i < blocksize / 4; i++)
529 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
531 /* buffer write end */
532 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
534 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
535 host->timeout);
536 if (time <= 0 || host->sd_error)
537 return sh_mmcif_error_manage(host);
539 return 0;
542 static int sh_mmcif_multi_write(struct sh_mmcif_host *host,
543 struct mmc_request *mrq)
545 struct mmc_data *data = mrq->data;
546 long time;
547 u32 i, sec, j, blocksize, *p;
549 blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
550 MMCIF_CE_BLOCK_SET);
552 for (j = 0; j < data->sg_len; j++) {
553 p = sg_virt(data->sg);
554 for (sec = 0; sec < data->sg->length / blocksize; sec++) {
555 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
556 /* buf write enable*/
557 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
558 host->timeout);
560 if (time <= 0 || host->sd_error)
561 return sh_mmcif_error_manage(host);
563 for (i = 0; i < blocksize / 4; i++)
564 sh_mmcif_writel(host->addr,
565 MMCIF_CE_DATA, *p++);
567 if (j < data->sg_len - 1)
568 data->sg++;
570 return 0;
573 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
574 struct mmc_command *cmd)
576 if (cmd->flags & MMC_RSP_136) {
577 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
578 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
579 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
580 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
581 } else
582 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
585 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
586 struct mmc_command *cmd)
588 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
591 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
592 struct mmc_request *mrq, struct mmc_command *cmd, u32 opc)
594 u32 tmp = 0;
596 /* Response Type check */
597 switch (mmc_resp_type(cmd)) {
598 case MMC_RSP_NONE:
599 tmp |= CMD_SET_RTYP_NO;
600 break;
601 case MMC_RSP_R1:
602 case MMC_RSP_R1B:
603 case MMC_RSP_R3:
604 tmp |= CMD_SET_RTYP_6B;
605 break;
606 case MMC_RSP_R2:
607 tmp |= CMD_SET_RTYP_17B;
608 break;
609 default:
610 dev_err(&host->pd->dev, "Unsupported response type.\n");
611 break;
613 switch (opc) {
614 /* RBSY */
615 case MMC_SWITCH:
616 case MMC_STOP_TRANSMISSION:
617 case MMC_SET_WRITE_PROT:
618 case MMC_CLR_WRITE_PROT:
619 case MMC_ERASE:
620 case MMC_GEN_CMD:
621 tmp |= CMD_SET_RBSY;
622 break;
624 /* WDAT / DATW */
625 if (host->data) {
626 tmp |= CMD_SET_WDAT;
627 switch (host->bus_width) {
628 case MMC_BUS_WIDTH_1:
629 tmp |= CMD_SET_DATW_1;
630 break;
631 case MMC_BUS_WIDTH_4:
632 tmp |= CMD_SET_DATW_4;
633 break;
634 case MMC_BUS_WIDTH_8:
635 tmp |= CMD_SET_DATW_8;
636 break;
637 default:
638 dev_err(&host->pd->dev, "Unsupported bus width.\n");
639 break;
642 /* DWEN */
643 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
644 tmp |= CMD_SET_DWEN;
645 /* CMLTE/CMD12EN */
646 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
647 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
648 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
649 mrq->data->blocks << 16);
651 /* RIDXC[1:0] check bits */
652 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
653 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
654 tmp |= CMD_SET_RIDXC_BITS;
655 /* RCRC7C[1:0] check bits */
656 if (opc == MMC_SEND_OP_COND)
657 tmp |= CMD_SET_CRC7C_BITS;
658 /* RCRC7C[1:0] internal CRC7 */
659 if (opc == MMC_ALL_SEND_CID ||
660 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
661 tmp |= CMD_SET_CRC7C_INTERNAL;
663 return opc = ((opc << 24) | tmp);
666 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
667 struct mmc_request *mrq, u32 opc)
669 int ret;
671 switch (opc) {
672 case MMC_READ_MULTIPLE_BLOCK:
673 ret = sh_mmcif_multi_read(host, mrq);
674 break;
675 case MMC_WRITE_MULTIPLE_BLOCK:
676 ret = sh_mmcif_multi_write(host, mrq);
677 break;
678 case MMC_WRITE_BLOCK:
679 ret = sh_mmcif_single_write(host, mrq);
680 break;
681 case MMC_READ_SINGLE_BLOCK:
682 case MMC_SEND_EXT_CSD:
683 ret = sh_mmcif_single_read(host, mrq);
684 break;
685 default:
686 dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
687 ret = -EINVAL;
688 break;
690 return ret;
693 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
694 struct mmc_request *mrq, struct mmc_command *cmd)
696 long time;
697 int ret = 0, mask = 0;
698 u32 opc = cmd->opcode;
700 switch (opc) {
701 /* respons busy check */
702 case MMC_SWITCH:
703 case MMC_STOP_TRANSMISSION:
704 case MMC_SET_WRITE_PROT:
705 case MMC_CLR_WRITE_PROT:
706 case MMC_ERASE:
707 case MMC_GEN_CMD:
708 mask = MASK_MRBSYE;
709 break;
710 default:
711 mask = MASK_MCRSPE;
712 break;
714 mask |= MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR |
715 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR |
716 MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO |
717 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO;
719 if (host->data) {
720 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
721 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
722 mrq->data->blksz);
724 opc = sh_mmcif_set_cmd(host, mrq, cmd, opc);
726 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
727 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
728 /* set arg */
729 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
730 /* set cmd */
731 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
733 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
734 host->timeout);
735 if (time <= 0) {
736 cmd->error = sh_mmcif_error_manage(host);
737 return;
739 if (host->sd_error) {
740 switch (cmd->opcode) {
741 case MMC_ALL_SEND_CID:
742 case MMC_SELECT_CARD:
743 case MMC_APP_CMD:
744 cmd->error = -ETIMEDOUT;
745 break;
746 default:
747 dev_dbg(&host->pd->dev, "Cmd(d'%d) err\n",
748 cmd->opcode);
749 cmd->error = sh_mmcif_error_manage(host);
750 break;
752 host->sd_error = false;
753 return;
755 if (!(cmd->flags & MMC_RSP_PRESENT)) {
756 cmd->error = 0;
757 return;
759 sh_mmcif_get_response(host, cmd);
760 if (host->data) {
761 if (!host->dma_active) {
762 ret = sh_mmcif_data_trans(host, mrq, cmd->opcode);
763 } else {
764 long time =
765 wait_for_completion_interruptible_timeout(&host->dma_complete,
766 host->timeout);
767 if (!time)
768 ret = -ETIMEDOUT;
769 else if (time < 0)
770 ret = time;
771 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
772 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
773 host->dma_active = false;
775 if (ret < 0)
776 mrq->data->bytes_xfered = 0;
777 else
778 mrq->data->bytes_xfered =
779 mrq->data->blocks * mrq->data->blksz;
781 cmd->error = ret;
784 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
785 struct mmc_request *mrq, struct mmc_command *cmd)
787 long time;
789 if (mrq->cmd->opcode == MMC_READ_MULTIPLE_BLOCK)
790 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
791 else if (mrq->cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
792 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
793 else {
794 dev_err(&host->pd->dev, "unsupported stop cmd\n");
795 cmd->error = sh_mmcif_error_manage(host);
796 return;
799 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
800 host->timeout);
801 if (time <= 0 || host->sd_error) {
802 cmd->error = sh_mmcif_error_manage(host);
803 return;
805 sh_mmcif_get_cmd12response(host, cmd);
806 cmd->error = 0;
809 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
811 struct sh_mmcif_host *host = mmc_priv(mmc);
812 unsigned long flags;
814 spin_lock_irqsave(&host->lock, flags);
815 if (host->state != STATE_IDLE) {
816 spin_unlock_irqrestore(&host->lock, flags);
817 mrq->cmd->error = -EAGAIN;
818 mmc_request_done(mmc, mrq);
819 return;
822 host->state = STATE_REQUEST;
823 spin_unlock_irqrestore(&host->lock, flags);
825 switch (mrq->cmd->opcode) {
826 /* MMCIF does not support SD/SDIO command */
827 case SD_IO_SEND_OP_COND:
828 case MMC_APP_CMD:
829 host->state = STATE_IDLE;
830 mrq->cmd->error = -ETIMEDOUT;
831 mmc_request_done(mmc, mrq);
832 return;
833 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
834 if (!mrq->data) {
835 /* send_if_cond cmd (not support) */
836 host->state = STATE_IDLE;
837 mrq->cmd->error = -ETIMEDOUT;
838 mmc_request_done(mmc, mrq);
839 return;
841 break;
842 default:
843 break;
845 host->data = mrq->data;
846 if (mrq->data) {
847 if (mrq->data->flags & MMC_DATA_READ) {
848 if (host->chan_rx)
849 sh_mmcif_start_dma_rx(host);
850 } else {
851 if (host->chan_tx)
852 sh_mmcif_start_dma_tx(host);
855 sh_mmcif_start_cmd(host, mrq, mrq->cmd);
856 host->data = NULL;
858 if (!mrq->cmd->error && mrq->stop)
859 sh_mmcif_stop_cmd(host, mrq, mrq->stop);
860 host->state = STATE_IDLE;
861 mmc_request_done(mmc, mrq);
864 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
866 struct sh_mmcif_host *host = mmc_priv(mmc);
867 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
868 unsigned long flags;
870 spin_lock_irqsave(&host->lock, flags);
871 if (host->state != STATE_IDLE) {
872 spin_unlock_irqrestore(&host->lock, flags);
873 return;
876 host->state = STATE_IOS;
877 spin_unlock_irqrestore(&host->lock, flags);
879 if (ios->power_mode == MMC_POWER_UP) {
880 if (p->set_pwr)
881 p->set_pwr(host->pd, ios->power_mode);
882 if (!host->power) {
883 /* See if we also get DMA */
884 sh_mmcif_request_dma(host, host->pd->dev.platform_data);
885 pm_runtime_get_sync(&host->pd->dev);
886 host->power = true;
888 } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
889 /* clock stop */
890 sh_mmcif_clock_control(host, 0);
891 if (ios->power_mode == MMC_POWER_OFF) {
892 if (host->power) {
893 pm_runtime_put(&host->pd->dev);
894 sh_mmcif_release_dma(host);
895 host->power = false;
897 if (p->down_pwr)
898 p->down_pwr(host->pd);
900 host->state = STATE_IDLE;
901 return;
904 if (ios->clock)
905 sh_mmcif_clock_control(host, ios->clock);
907 host->bus_width = ios->bus_width;
908 host->state = STATE_IDLE;
911 static int sh_mmcif_get_cd(struct mmc_host *mmc)
913 struct sh_mmcif_host *host = mmc_priv(mmc);
914 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
916 if (!p->get_cd)
917 return -ENOSYS;
918 else
919 return p->get_cd(host->pd);
922 static struct mmc_host_ops sh_mmcif_ops = {
923 .request = sh_mmcif_request,
924 .set_ios = sh_mmcif_set_ios,
925 .get_cd = sh_mmcif_get_cd,
928 static void sh_mmcif_detect(struct mmc_host *mmc)
930 mmc_detect_change(mmc, 0);
933 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
935 struct sh_mmcif_host *host = dev_id;
936 u32 state;
937 int err = 0;
939 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
941 if (state & INT_RBSYE) {
942 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
943 ~(INT_RBSYE | INT_CRSPE));
944 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
945 } else if (state & INT_CRSPE) {
946 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
947 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
948 } else if (state & INT_BUFREN) {
949 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
950 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
951 } else if (state & INT_BUFWEN) {
952 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
953 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
954 } else if (state & INT_CMD12DRE) {
955 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
956 ~(INT_CMD12DRE | INT_CMD12RBE |
957 INT_CMD12CRE | INT_BUFRE));
958 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
959 } else if (state & INT_BUFRE) {
960 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
961 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
962 } else if (state & INT_DTRANE) {
963 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
964 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
965 } else if (state & INT_CMD12RBE) {
966 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
967 ~(INT_CMD12RBE | INT_CMD12CRE));
968 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
969 } else if (state & INT_ERR_STS) {
970 /* err interrupts */
971 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
972 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
973 err = 1;
974 } else {
975 dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
976 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
977 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
978 err = 1;
980 if (err) {
981 host->sd_error = true;
982 dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
984 if (state & ~(INT_CMD12RBE | INT_CMD12CRE))
985 complete(&host->intr_wait);
986 else
987 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
989 return IRQ_HANDLED;
992 static int __devinit sh_mmcif_probe(struct platform_device *pdev)
994 int ret = 0, irq[2];
995 struct mmc_host *mmc;
996 struct sh_mmcif_host *host;
997 struct sh_mmcif_plat_data *pd;
998 struct resource *res;
999 void __iomem *reg;
1000 char clk_name[8];
1002 irq[0] = platform_get_irq(pdev, 0);
1003 irq[1] = platform_get_irq(pdev, 1);
1004 if (irq[0] < 0 || irq[1] < 0) {
1005 dev_err(&pdev->dev, "Get irq error\n");
1006 return -ENXIO;
1008 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1009 if (!res) {
1010 dev_err(&pdev->dev, "platform_get_resource error.\n");
1011 return -ENXIO;
1013 reg = ioremap(res->start, resource_size(res));
1014 if (!reg) {
1015 dev_err(&pdev->dev, "ioremap error.\n");
1016 return -ENOMEM;
1018 pd = pdev->dev.platform_data;
1019 if (!pd) {
1020 dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
1021 ret = -ENXIO;
1022 goto clean_up;
1024 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1025 if (!mmc) {
1026 ret = -ENOMEM;
1027 goto clean_up;
1029 host = mmc_priv(mmc);
1030 host->mmc = mmc;
1031 host->addr = reg;
1032 host->timeout = 1000;
1034 snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1035 host->hclk = clk_get(&pdev->dev, clk_name);
1036 if (IS_ERR(host->hclk)) {
1037 dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
1038 ret = PTR_ERR(host->hclk);
1039 goto clean_up1;
1041 clk_enable(host->hclk);
1042 host->clk = clk_get_rate(host->hclk);
1043 host->pd = pdev;
1045 init_completion(&host->intr_wait);
1046 spin_lock_init(&host->lock);
1048 mmc->ops = &sh_mmcif_ops;
1049 mmc->f_max = host->clk;
1050 /* close to 400KHz */
1051 if (mmc->f_max < 51200000)
1052 mmc->f_min = mmc->f_max / 128;
1053 else if (mmc->f_max < 102400000)
1054 mmc->f_min = mmc->f_max / 256;
1055 else
1056 mmc->f_min = mmc->f_max / 512;
1057 if (pd->ocr)
1058 mmc->ocr_avail = pd->ocr;
1059 mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1060 if (pd->caps)
1061 mmc->caps |= pd->caps;
1062 mmc->max_segs = 32;
1063 mmc->max_blk_size = 512;
1064 mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1065 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1066 mmc->max_seg_size = mmc->max_req_size;
1068 sh_mmcif_sync_reset(host);
1069 platform_set_drvdata(pdev, host);
1071 pm_runtime_enable(&pdev->dev);
1072 host->power = false;
1074 ret = pm_runtime_resume(&pdev->dev);
1075 if (ret < 0)
1076 goto clean_up2;
1078 mmc_add_host(mmc);
1080 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1082 ret = request_irq(irq[0], sh_mmcif_intr, 0, "sh_mmc:error", host);
1083 if (ret) {
1084 dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1085 goto clean_up3;
1087 ret = request_irq(irq[1], sh_mmcif_intr, 0, "sh_mmc:int", host);
1088 if (ret) {
1089 free_irq(irq[0], host);
1090 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1091 goto clean_up3;
1094 sh_mmcif_detect(host->mmc);
1096 dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1097 dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1098 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1099 return ret;
1101 clean_up3:
1102 mmc_remove_host(mmc);
1103 pm_runtime_suspend(&pdev->dev);
1104 clean_up2:
1105 pm_runtime_disable(&pdev->dev);
1106 clk_disable(host->hclk);
1107 clean_up1:
1108 mmc_free_host(mmc);
1109 clean_up:
1110 if (reg)
1111 iounmap(reg);
1112 return ret;
1115 static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1117 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1118 int irq[2];
1120 pm_runtime_get_sync(&pdev->dev);
1122 mmc_remove_host(host->mmc);
1123 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1125 if (host->addr)
1126 iounmap(host->addr);
1128 irq[0] = platform_get_irq(pdev, 0);
1129 irq[1] = platform_get_irq(pdev, 1);
1131 free_irq(irq[0], host);
1132 free_irq(irq[1], host);
1134 platform_set_drvdata(pdev, NULL);
1136 clk_disable(host->hclk);
1137 mmc_free_host(host->mmc);
1138 pm_runtime_put_sync(&pdev->dev);
1139 pm_runtime_disable(&pdev->dev);
1141 return 0;
1144 #ifdef CONFIG_PM
1145 static int sh_mmcif_suspend(struct device *dev)
1147 struct platform_device *pdev = to_platform_device(dev);
1148 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1149 int ret = mmc_suspend_host(host->mmc);
1151 if (!ret) {
1152 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1153 clk_disable(host->hclk);
1156 return ret;
1159 static int sh_mmcif_resume(struct device *dev)
1161 struct platform_device *pdev = to_platform_device(dev);
1162 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1164 clk_enable(host->hclk);
1166 return mmc_resume_host(host->mmc);
1168 #else
1169 #define sh_mmcif_suspend NULL
1170 #define sh_mmcif_resume NULL
1171 #endif /* CONFIG_PM */
1173 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1174 .suspend = sh_mmcif_suspend,
1175 .resume = sh_mmcif_resume,
1178 static struct platform_driver sh_mmcif_driver = {
1179 .probe = sh_mmcif_probe,
1180 .remove = sh_mmcif_remove,
1181 .driver = {
1182 .name = DRIVER_NAME,
1183 .pm = &sh_mmcif_dev_pm_ops,
1187 static int __init sh_mmcif_init(void)
1189 return platform_driver_register(&sh_mmcif_driver);
1192 static void __exit sh_mmcif_exit(void)
1194 platform_driver_unregister(&sh_mmcif_driver);
1197 module_init(sh_mmcif_init);
1198 module_exit(sh_mmcif_exit);
1201 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1202 MODULE_LICENSE("GPL");
1203 MODULE_ALIAS("platform:" DRIVER_NAME);
1204 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");