ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / drivers / mtd / nand / fsmc_nand.c
blobe9b275ac381ce89fd53f6d5fbb1895d205ce2462
1 /*
2 * drivers/mtd/nand/fsmc_nand.c
4 * ST Microelectronics
5 * Flexible Static Memory Controller (FSMC)
6 * Driver for NAND portions
8 * Copyright © 2010 ST Microelectronics
9 * Vipin Kumar <vipin.kumar@st.com>
10 * Ashish Priyadarshi
12 * Based on drivers/mtd/nand/nomadik_nand.c
14 * This file is licensed under the terms of the GNU General Public
15 * License version 2. This program is licensed "as is" without any
16 * warranty of any kind, whether express or implied.
19 #include <linux/clk.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/resource.h>
24 #include <linux/sched.h>
25 #include <linux/types.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/nand.h>
28 #include <linux/mtd/nand_ecc.h>
29 #include <linux/platform_device.h>
30 #include <linux/mtd/partitions.h>
31 #include <linux/io.h>
32 #include <linux/slab.h>
33 #include <linux/mtd/fsmc.h>
34 #include <linux/amba/bus.h>
35 #include <mtd/mtd-abi.h>
37 static struct nand_ecclayout fsmc_ecc1_layout = {
38 .eccbytes = 24,
39 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
40 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
41 .oobfree = {
42 {.offset = 8, .length = 8},
43 {.offset = 24, .length = 8},
44 {.offset = 40, .length = 8},
45 {.offset = 56, .length = 8},
46 {.offset = 72, .length = 8},
47 {.offset = 88, .length = 8},
48 {.offset = 104, .length = 8},
49 {.offset = 120, .length = 8}
53 static struct nand_ecclayout fsmc_ecc4_lp_layout = {
54 .eccbytes = 104,
55 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
56 9, 10, 11, 12, 13, 14,
57 18, 19, 20, 21, 22, 23, 24,
58 25, 26, 27, 28, 29, 30,
59 34, 35, 36, 37, 38, 39, 40,
60 41, 42, 43, 44, 45, 46,
61 50, 51, 52, 53, 54, 55, 56,
62 57, 58, 59, 60, 61, 62,
63 66, 67, 68, 69, 70, 71, 72,
64 73, 74, 75, 76, 77, 78,
65 82, 83, 84, 85, 86, 87, 88,
66 89, 90, 91, 92, 93, 94,
67 98, 99, 100, 101, 102, 103, 104,
68 105, 106, 107, 108, 109, 110,
69 114, 115, 116, 117, 118, 119, 120,
70 121, 122, 123, 124, 125, 126
72 .oobfree = {
73 {.offset = 15, .length = 3},
74 {.offset = 31, .length = 3},
75 {.offset = 47, .length = 3},
76 {.offset = 63, .length = 3},
77 {.offset = 79, .length = 3},
78 {.offset = 95, .length = 3},
79 {.offset = 111, .length = 3},
80 {.offset = 127, .length = 1}
85 * ECC placement definitions in oobfree type format.
86 * There are 13 bytes of ecc for every 512 byte block and it has to be read
87 * consecutively and immediately after the 512 byte data block for hardware to
88 * generate the error bit offsets in 512 byte data.
89 * Managing the ecc bytes in the following way makes it easier for software to
90 * read ecc bytes consecutive to data bytes. This way is similar to
91 * oobfree structure maintained already in generic nand driver
93 static struct fsmc_eccplace fsmc_ecc4_lp_place = {
94 .eccplace = {
95 {.offset = 2, .length = 13},
96 {.offset = 18, .length = 13},
97 {.offset = 34, .length = 13},
98 {.offset = 50, .length = 13},
99 {.offset = 66, .length = 13},
100 {.offset = 82, .length = 13},
101 {.offset = 98, .length = 13},
102 {.offset = 114, .length = 13}
106 static struct nand_ecclayout fsmc_ecc4_sp_layout = {
107 .eccbytes = 13,
108 .eccpos = { 0, 1, 2, 3, 6, 7, 8,
109 9, 10, 11, 12, 13, 14
111 .oobfree = {
112 {.offset = 15, .length = 1},
116 static struct fsmc_eccplace fsmc_ecc4_sp_place = {
117 .eccplace = {
118 {.offset = 0, .length = 4},
119 {.offset = 6, .length = 9}
124 * Default partition tables to be used if the partition information not
125 * provided through platform data.
127 * Default partition layout for small page(= 512 bytes) devices
128 * Size for "Root file system" is updated in driver based on actual device size
130 static struct mtd_partition partition_info_16KB_blk[] = {
132 .name = "X-loader",
133 .offset = 0,
134 .size = 4*0x4000,
137 .name = "U-Boot",
138 .offset = 0x10000,
139 .size = 20*0x4000,
142 .name = "Kernel",
143 .offset = 0x60000,
144 .size = 256*0x4000,
147 .name = "Root File System",
148 .offset = 0x460000,
149 .size = 0,
154 * Default partition layout for large page(> 512 bytes) devices
155 * Size for "Root file system" is updated in driver based on actual device size
157 static struct mtd_partition partition_info_128KB_blk[] = {
159 .name = "X-loader",
160 .offset = 0,
161 .size = 4*0x20000,
164 .name = "U-Boot",
165 .offset = 0x80000,
166 .size = 12*0x20000,
169 .name = "Kernel",
170 .offset = 0x200000,
171 .size = 48*0x20000,
174 .name = "Root File System",
175 .offset = 0x800000,
176 .size = 0,
180 #ifdef CONFIG_MTD_CMDLINE_PARTS
181 const char *part_probes[] = { "cmdlinepart", NULL };
182 #endif
185 * struct fsmc_nand_data - structure for FSMC NAND device state
187 * @pid: Part ID on the AMBA PrimeCell format
188 * @mtd: MTD info for a NAND flash.
189 * @nand: Chip related info for a NAND flash.
190 * @partitions: Partition info for a NAND Flash.
191 * @nr_partitions: Total number of partition of a NAND flash.
193 * @ecc_place: ECC placing locations in oobfree type format.
194 * @bank: Bank number for probed device.
195 * @clk: Clock structure for FSMC.
197 * @data_va: NAND port for Data.
198 * @cmd_va: NAND port for Command.
199 * @addr_va: NAND port for Address.
200 * @regs_va: FSMC regs base address.
202 struct fsmc_nand_data {
203 u32 pid;
204 struct mtd_info mtd;
205 struct nand_chip nand;
206 struct mtd_partition *partitions;
207 unsigned int nr_partitions;
209 struct fsmc_eccplace *ecc_place;
210 unsigned int bank;
211 struct clk *clk;
213 struct resource *resregs;
214 struct resource *rescmd;
215 struct resource *resaddr;
216 struct resource *resdata;
218 void __iomem *data_va;
219 void __iomem *cmd_va;
220 void __iomem *addr_va;
221 void __iomem *regs_va;
223 void (*select_chip)(uint32_t bank, uint32_t busw);
226 /* Assert CS signal based on chipnr */
227 static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
229 struct nand_chip *chip = mtd->priv;
230 struct fsmc_nand_data *host;
232 host = container_of(mtd, struct fsmc_nand_data, mtd);
234 switch (chipnr) {
235 case -1:
236 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
237 break;
238 case 0:
239 case 1:
240 case 2:
241 case 3:
242 if (host->select_chip)
243 host->select_chip(chipnr,
244 chip->options & NAND_BUSWIDTH_16);
245 break;
247 default:
248 BUG();
253 * fsmc_cmd_ctrl - For facilitaing Hardware access
254 * This routine allows hardware specific access to control-lines(ALE,CLE)
256 static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
258 struct nand_chip *this = mtd->priv;
259 struct fsmc_nand_data *host = container_of(mtd,
260 struct fsmc_nand_data, mtd);
261 struct fsmc_regs *regs = host->regs_va;
262 unsigned int bank = host->bank;
264 if (ctrl & NAND_CTRL_CHANGE) {
265 if (ctrl & NAND_CLE) {
266 this->IO_ADDR_R = (void __iomem *)host->cmd_va;
267 this->IO_ADDR_W = (void __iomem *)host->cmd_va;
268 } else if (ctrl & NAND_ALE) {
269 this->IO_ADDR_R = (void __iomem *)host->addr_va;
270 this->IO_ADDR_W = (void __iomem *)host->addr_va;
271 } else {
272 this->IO_ADDR_R = (void __iomem *)host->data_va;
273 this->IO_ADDR_W = (void __iomem *)host->data_va;
276 if (ctrl & NAND_NCE) {
277 writel(readl(&regs->bank_regs[bank].pc) | FSMC_ENABLE,
278 &regs->bank_regs[bank].pc);
279 } else {
280 writel(readl(&regs->bank_regs[bank].pc) & ~FSMC_ENABLE,
281 &regs->bank_regs[bank].pc);
285 mb();
287 if (cmd != NAND_CMD_NONE)
288 writeb(cmd, this->IO_ADDR_W);
292 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
294 * This routine initializes timing parameters related to NAND memory access in
295 * FSMC registers
297 static void __init fsmc_nand_setup(struct fsmc_regs *regs, uint32_t bank,
298 uint32_t busw)
300 uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
302 if (busw)
303 writel(value | FSMC_DEVWID_16, &regs->bank_regs[bank].pc);
304 else
305 writel(value | FSMC_DEVWID_8, &regs->bank_regs[bank].pc);
307 writel(readl(&regs->bank_regs[bank].pc) | FSMC_TCLR_1 | FSMC_TAR_1,
308 &regs->bank_regs[bank].pc);
309 writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
310 &regs->bank_regs[bank].comm);
311 writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
312 &regs->bank_regs[bank].attrib);
316 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
318 static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
320 struct fsmc_nand_data *host = container_of(mtd,
321 struct fsmc_nand_data, mtd);
322 struct fsmc_regs *regs = host->regs_va;
323 uint32_t bank = host->bank;
325 writel(readl(&regs->bank_regs[bank].pc) & ~FSMC_ECCPLEN_256,
326 &regs->bank_regs[bank].pc);
327 writel(readl(&regs->bank_regs[bank].pc) & ~FSMC_ECCEN,
328 &regs->bank_regs[bank].pc);
329 writel(readl(&regs->bank_regs[bank].pc) | FSMC_ECCEN,
330 &regs->bank_regs[bank].pc);
334 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
335 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
336 * max of 8-bits)
338 static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
339 uint8_t *ecc)
341 struct fsmc_nand_data *host = container_of(mtd,
342 struct fsmc_nand_data, mtd);
343 struct fsmc_regs *regs = host->regs_va;
344 uint32_t bank = host->bank;
345 uint32_t ecc_tmp;
346 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
348 do {
349 if (readl(&regs->bank_regs[bank].sts) & FSMC_CODE_RDY)
350 break;
351 else
352 cond_resched();
353 } while (!time_after_eq(jiffies, deadline));
355 ecc_tmp = readl(&regs->bank_regs[bank].ecc1);
356 ecc[0] = (uint8_t) (ecc_tmp >> 0);
357 ecc[1] = (uint8_t) (ecc_tmp >> 8);
358 ecc[2] = (uint8_t) (ecc_tmp >> 16);
359 ecc[3] = (uint8_t) (ecc_tmp >> 24);
361 ecc_tmp = readl(&regs->bank_regs[bank].ecc2);
362 ecc[4] = (uint8_t) (ecc_tmp >> 0);
363 ecc[5] = (uint8_t) (ecc_tmp >> 8);
364 ecc[6] = (uint8_t) (ecc_tmp >> 16);
365 ecc[7] = (uint8_t) (ecc_tmp >> 24);
367 ecc_tmp = readl(&regs->bank_regs[bank].ecc3);
368 ecc[8] = (uint8_t) (ecc_tmp >> 0);
369 ecc[9] = (uint8_t) (ecc_tmp >> 8);
370 ecc[10] = (uint8_t) (ecc_tmp >> 16);
371 ecc[11] = (uint8_t) (ecc_tmp >> 24);
373 ecc_tmp = readl(&regs->bank_regs[bank].sts);
374 ecc[12] = (uint8_t) (ecc_tmp >> 16);
376 return 0;
380 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
381 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
382 * max of 1-bit)
384 static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
385 uint8_t *ecc)
387 struct fsmc_nand_data *host = container_of(mtd,
388 struct fsmc_nand_data, mtd);
389 struct fsmc_regs *regs = host->regs_va;
390 uint32_t bank = host->bank;
391 uint32_t ecc_tmp;
393 ecc_tmp = readl(&regs->bank_regs[bank].ecc1);
394 ecc[0] = (uint8_t) (ecc_tmp >> 0);
395 ecc[1] = (uint8_t) (ecc_tmp >> 8);
396 ecc[2] = (uint8_t) (ecc_tmp >> 16);
398 return 0;
402 * fsmc_read_page_hwecc
403 * @mtd: mtd info structure
404 * @chip: nand chip info structure
405 * @buf: buffer to store read data
406 * @page: page number to read
408 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
409 * performed in a strict sequence as follows:
410 * data(512 byte) -> ecc(13 byte)
411 * After this read, fsmc hardware generates and reports error data bits(up to a
412 * max of 8 bits)
414 static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
415 uint8_t *buf, int page)
417 struct fsmc_nand_data *host = container_of(mtd,
418 struct fsmc_nand_data, mtd);
419 struct fsmc_eccplace *ecc_place = host->ecc_place;
420 int i, j, s, stat, eccsize = chip->ecc.size;
421 int eccbytes = chip->ecc.bytes;
422 int eccsteps = chip->ecc.steps;
423 uint8_t *p = buf;
424 uint8_t *ecc_calc = chip->buffers->ecccalc;
425 uint8_t *ecc_code = chip->buffers->ecccode;
426 int off, len, group = 0;
428 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
429 * end up reading 14 bytes (7 words) from oob. The local array is
430 * to maintain word alignment
432 uint16_t ecc_oob[7];
433 uint8_t *oob = (uint8_t *)&ecc_oob[0];
435 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
437 chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
438 chip->ecc.hwctl(mtd, NAND_ECC_READ);
439 chip->read_buf(mtd, p, eccsize);
441 for (j = 0; j < eccbytes;) {
442 off = ecc_place->eccplace[group].offset;
443 len = ecc_place->eccplace[group].length;
444 group++;
447 * length is intentionally kept a higher multiple of 2
448 * to read at least 13 bytes even in case of 16 bit NAND
449 * devices
451 len = roundup(len, 2);
452 chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
453 chip->read_buf(mtd, oob + j, len);
454 j += len;
457 memcpy(&ecc_code[i], oob, 13);
458 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
460 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
461 if (stat < 0)
462 mtd->ecc_stats.failed++;
463 else
464 mtd->ecc_stats.corrected += stat;
467 return 0;
471 * fsmc_correct_data
472 * @mtd: mtd info structure
473 * @dat: buffer of read data
474 * @read_ecc: ecc read from device spare area
475 * @calc_ecc: ecc calculated from read data
477 * calc_ecc is a 104 bit information containing maximum of 8 error
478 * offset informations of 13 bits each in 512 bytes of read data.
480 static int fsmc_correct_data(struct mtd_info *mtd, uint8_t *dat,
481 uint8_t *read_ecc, uint8_t *calc_ecc)
483 struct fsmc_nand_data *host = container_of(mtd,
484 struct fsmc_nand_data, mtd);
485 struct fsmc_regs *regs = host->regs_va;
486 unsigned int bank = host->bank;
487 uint16_t err_idx[8];
488 uint64_t ecc_data[2];
489 uint32_t num_err, i;
491 /* The calculated ecc is actually the correction index in data */
492 memcpy(ecc_data, calc_ecc, 13);
495 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
496 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
498 * calc_ecc is a 104 bit information containing maximum of 8 error
499 * offset informations of 13 bits each. calc_ecc is copied into a
500 * uint64_t array and error offset indexes are populated in err_idx
501 * array
503 for (i = 0; i < 8; i++) {
504 if (i == 4) {
505 err_idx[4] = ((ecc_data[1] & 0x1) << 12) | ecc_data[0];
506 ecc_data[1] >>= 1;
507 continue;
509 err_idx[i] = (ecc_data[i/4] & 0x1FFF);
510 ecc_data[i/4] >>= 13;
513 num_err = (readl(&regs->bank_regs[bank].sts) >> 10) & 0xF;
515 if (num_err == 0xF)
516 return -EBADMSG;
518 i = 0;
519 while (num_err--) {
520 change_bit(0, (unsigned long *)&err_idx[i]);
521 change_bit(1, (unsigned long *)&err_idx[i]);
523 if (err_idx[i] <= 512 * 8) {
524 change_bit(err_idx[i], (unsigned long *)dat);
525 i++;
528 return i;
532 * fsmc_nand_probe - Probe function
533 * @pdev: platform device structure
535 static int __init fsmc_nand_probe(struct platform_device *pdev)
537 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
538 struct fsmc_nand_data *host;
539 struct mtd_info *mtd;
540 struct nand_chip *nand;
541 struct fsmc_regs *regs;
542 struct resource *res;
543 int ret = 0;
544 u32 pid;
545 int i;
547 if (!pdata) {
548 dev_err(&pdev->dev, "platform data is NULL\n");
549 return -EINVAL;
552 /* Allocate memory for the device structure (and zero it) */
553 host = kzalloc(sizeof(*host), GFP_KERNEL);
554 if (!host) {
555 dev_err(&pdev->dev, "failed to allocate device structure\n");
556 return -ENOMEM;
559 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
560 if (!res) {
561 ret = -EIO;
562 goto err_probe1;
565 host->resdata = request_mem_region(res->start, resource_size(res),
566 pdev->name);
567 if (!host->resdata) {
568 ret = -EIO;
569 goto err_probe1;
572 host->data_va = ioremap(res->start, resource_size(res));
573 if (!host->data_va) {
574 ret = -EIO;
575 goto err_probe1;
578 host->resaddr = request_mem_region(res->start + PLAT_NAND_ALE,
579 resource_size(res), pdev->name);
580 if (!host->resaddr) {
581 ret = -EIO;
582 goto err_probe1;
585 host->addr_va = ioremap(res->start + PLAT_NAND_ALE, resource_size(res));
586 if (!host->addr_va) {
587 ret = -EIO;
588 goto err_probe1;
591 host->rescmd = request_mem_region(res->start + PLAT_NAND_CLE,
592 resource_size(res), pdev->name);
593 if (!host->rescmd) {
594 ret = -EIO;
595 goto err_probe1;
598 host->cmd_va = ioremap(res->start + PLAT_NAND_CLE, resource_size(res));
599 if (!host->cmd_va) {
600 ret = -EIO;
601 goto err_probe1;
604 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
605 if (!res) {
606 ret = -EIO;
607 goto err_probe1;
610 host->resregs = request_mem_region(res->start, resource_size(res),
611 pdev->name);
612 if (!host->resregs) {
613 ret = -EIO;
614 goto err_probe1;
617 host->regs_va = ioremap(res->start, resource_size(res));
618 if (!host->regs_va) {
619 ret = -EIO;
620 goto err_probe1;
623 host->clk = clk_get(&pdev->dev, NULL);
624 if (IS_ERR(host->clk)) {
625 dev_err(&pdev->dev, "failed to fetch block clock\n");
626 ret = PTR_ERR(host->clk);
627 host->clk = NULL;
628 goto err_probe1;
631 ret = clk_enable(host->clk);
632 if (ret)
633 goto err_probe1;
636 * This device ID is actually a common AMBA ID as used on the
637 * AMBA PrimeCell bus. However it is not a PrimeCell.
639 for (pid = 0, i = 0; i < 4; i++)
640 pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
641 host->pid = pid;
642 dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
643 "revision %02x, config %02x\n",
644 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
645 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
647 host->bank = pdata->bank;
648 host->select_chip = pdata->select_bank;
649 regs = host->regs_va;
651 /* Link all private pointers */
652 mtd = &host->mtd;
653 nand = &host->nand;
654 mtd->priv = nand;
655 nand->priv = host;
657 host->mtd.owner = THIS_MODULE;
658 nand->IO_ADDR_R = host->data_va;
659 nand->IO_ADDR_W = host->data_va;
660 nand->cmd_ctrl = fsmc_cmd_ctrl;
661 nand->chip_delay = 30;
663 nand->ecc.mode = NAND_ECC_HW;
664 nand->ecc.hwctl = fsmc_enable_hwecc;
665 nand->ecc.size = 512;
666 nand->options = pdata->options;
667 nand->select_chip = fsmc_select_chip;
669 if (pdata->width == FSMC_NAND_BW16)
670 nand->options |= NAND_BUSWIDTH_16;
672 fsmc_nand_setup(regs, host->bank, nand->options & NAND_BUSWIDTH_16);
674 if (AMBA_REV_BITS(host->pid) >= 8) {
675 nand->ecc.read_page = fsmc_read_page_hwecc;
676 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
677 nand->ecc.correct = fsmc_correct_data;
678 nand->ecc.bytes = 13;
679 } else {
680 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
681 nand->ecc.correct = nand_correct_data;
682 nand->ecc.bytes = 3;
686 * Scan to find existence of the device
688 if (nand_scan_ident(&host->mtd, 1, NULL)) {
689 ret = -ENXIO;
690 dev_err(&pdev->dev, "No NAND Device found!\n");
691 goto err_probe;
694 if (AMBA_REV_BITS(host->pid) >= 8) {
695 if (host->mtd.writesize == 512) {
696 nand->ecc.layout = &fsmc_ecc4_sp_layout;
697 host->ecc_place = &fsmc_ecc4_sp_place;
698 } else {
699 nand->ecc.layout = &fsmc_ecc4_lp_layout;
700 host->ecc_place = &fsmc_ecc4_lp_place;
702 } else {
703 nand->ecc.layout = &fsmc_ecc1_layout;
706 /* Second stage of scan to fill MTD data-structures */
707 if (nand_scan_tail(&host->mtd)) {
708 ret = -ENXIO;
709 goto err_probe;
713 * The partition information can is accessed by (in the same precedence)
715 * command line through Bootloader,
716 * platform data,
717 * default partition information present in driver.
719 #ifdef CONFIG_MTD_CMDLINE_PARTS
721 * Check if partition info passed via command line
723 host->mtd.name = "nand";
724 host->nr_partitions = parse_mtd_partitions(&host->mtd, part_probes,
725 &host->partitions, 0);
726 if (host->nr_partitions <= 0) {
727 #endif
729 * Check if partition info passed via command line
731 if (pdata->partitions) {
732 host->partitions = pdata->partitions;
733 host->nr_partitions = pdata->nr_partitions;
734 } else {
735 struct mtd_partition *partition;
736 int i;
738 /* Select the default partitions info */
739 switch (host->mtd.size) {
740 case 0x01000000:
741 case 0x02000000:
742 case 0x04000000:
743 host->partitions = partition_info_16KB_blk;
744 host->nr_partitions =
745 sizeof(partition_info_16KB_blk) /
746 sizeof(struct mtd_partition);
747 break;
748 case 0x08000000:
749 case 0x10000000:
750 case 0x20000000:
751 case 0x40000000:
752 host->partitions = partition_info_128KB_blk;
753 host->nr_partitions =
754 sizeof(partition_info_128KB_blk) /
755 sizeof(struct mtd_partition);
756 break;
757 default:
758 ret = -ENXIO;
759 pr_err("Unsupported NAND size\n");
760 goto err_probe;
763 partition = host->partitions;
764 for (i = 0; i < host->nr_partitions; i++, partition++) {
765 if (partition->size == 0) {
766 partition->size = host->mtd.size -
767 partition->offset;
768 break;
772 #ifdef CONFIG_MTD_CMDLINE_PARTS
774 #endif
776 ret = mtd_device_register(&host->mtd, host->partitions,
777 host->nr_partitions);
778 if (ret)
779 goto err_probe;
781 platform_set_drvdata(pdev, host);
782 dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
783 return 0;
785 err_probe:
786 clk_disable(host->clk);
787 err_probe1:
788 if (host->clk)
789 clk_put(host->clk);
790 if (host->regs_va)
791 iounmap(host->regs_va);
792 if (host->resregs)
793 release_mem_region(host->resregs->start,
794 resource_size(host->resregs));
795 if (host->cmd_va)
796 iounmap(host->cmd_va);
797 if (host->rescmd)
798 release_mem_region(host->rescmd->start,
799 resource_size(host->rescmd));
800 if (host->addr_va)
801 iounmap(host->addr_va);
802 if (host->resaddr)
803 release_mem_region(host->resaddr->start,
804 resource_size(host->resaddr));
805 if (host->data_va)
806 iounmap(host->data_va);
807 if (host->resdata)
808 release_mem_region(host->resdata->start,
809 resource_size(host->resdata));
811 kfree(host);
812 return ret;
816 * Clean up routine
818 static int fsmc_nand_remove(struct platform_device *pdev)
820 struct fsmc_nand_data *host = platform_get_drvdata(pdev);
822 platform_set_drvdata(pdev, NULL);
824 if (host) {
825 mtd_device_unregister(&host->mtd);
826 clk_disable(host->clk);
827 clk_put(host->clk);
829 iounmap(host->regs_va);
830 release_mem_region(host->resregs->start,
831 resource_size(host->resregs));
832 iounmap(host->cmd_va);
833 release_mem_region(host->rescmd->start,
834 resource_size(host->rescmd));
835 iounmap(host->addr_va);
836 release_mem_region(host->resaddr->start,
837 resource_size(host->resaddr));
838 iounmap(host->data_va);
839 release_mem_region(host->resdata->start,
840 resource_size(host->resdata));
842 kfree(host);
844 return 0;
847 #ifdef CONFIG_PM
848 static int fsmc_nand_suspend(struct device *dev)
850 struct fsmc_nand_data *host = dev_get_drvdata(dev);
851 if (host)
852 clk_disable(host->clk);
853 return 0;
856 static int fsmc_nand_resume(struct device *dev)
858 struct fsmc_nand_data *host = dev_get_drvdata(dev);
859 if (host)
860 clk_enable(host->clk);
861 return 0;
864 static const struct dev_pm_ops fsmc_nand_pm_ops = {
865 .suspend = fsmc_nand_suspend,
866 .resume = fsmc_nand_resume,
868 #endif
870 static struct platform_driver fsmc_nand_driver = {
871 .remove = fsmc_nand_remove,
872 .driver = {
873 .owner = THIS_MODULE,
874 .name = "fsmc-nand",
875 #ifdef CONFIG_PM
876 .pm = &fsmc_nand_pm_ops,
877 #endif
881 static int __init fsmc_nand_init(void)
883 return platform_driver_probe(&fsmc_nand_driver,
884 fsmc_nand_probe);
886 module_init(fsmc_nand_init);
888 static void __exit fsmc_nand_exit(void)
890 platform_driver_unregister(&fsmc_nand_driver);
892 module_exit(fsmc_nand_exit);
894 MODULE_LICENSE("GPL");
895 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
896 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");