2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 #include <linux/version.h>
37 #include <linux/pci.h>
39 #include "t4vf_common.h"
40 #include "t4vf_defs.h"
42 #include "../cxgb4/t4_regs.h"
43 #include "../cxgb4/t4fw_api.h"
46 * Wait for the device to become ready (signified by our "who am I" register
47 * returning a value other than all 1's). Return an error if it doesn't
50 int __devinit
t4vf_wait_dev_ready(struct adapter
*adapter
)
52 const u32 whoami
= T4VF_PL_BASE_ADDR
+ PL_VF_WHOAMI
;
53 const u32 notready1
= 0xffffffff;
54 const u32 notready2
= 0xeeeeeeee;
57 val
= t4_read_reg(adapter
, whoami
);
58 if (val
!= notready1
&& val
!= notready2
)
61 val
= t4_read_reg(adapter
, whoami
);
62 if (val
!= notready1
&& val
!= notready2
)
69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
70 * (since the firmware data structures are specified in a big-endian layout).
72 static void get_mbox_rpl(struct adapter
*adapter
, __be64
*rpl
, int size
,
75 for ( ; size
; size
-= 8, mbox_data
+= 8)
76 *rpl
++ = cpu_to_be64(t4_read_reg64(adapter
, mbox_data
));
80 * Dump contents of mailbox with a leading tag.
82 static void dump_mbox(struct adapter
*adapter
, const char *tag
, u32 mbox_data
)
84 dev_err(adapter
->pdev_dev
,
85 "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag
,
86 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 0),
87 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 8),
88 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 16),
89 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 24),
90 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 32),
91 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 40),
92 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 48),
93 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 56));
97 * t4vf_wr_mbox_core - send a command to FW through the mailbox
98 * @adapter: the adapter
99 * @cmd: the command to write
100 * @size: command length in bytes
101 * @rpl: where to optionally store the reply
102 * @sleep_ok: if true we may sleep while awaiting command completion
104 * Sends the given command to FW through the mailbox and waits for the
105 * FW to execute the command. If @rpl is not %NULL it is used to store
106 * the FW's reply to the command. The command and its optional reply
107 * are of the same length. FW can take up to 500 ms to respond.
108 * @sleep_ok determines whether we may sleep while awaiting the response.
109 * If sleeping is allowed we use progressive backoff otherwise we spin.
111 * The return value is 0 on success or a negative errno on failure. A
112 * failure can happen either because we are not able to execute the
113 * command or FW executes it but signals an error. In the latter case
114 * the return value is the error code indicated by FW (negated).
116 int t4vf_wr_mbox_core(struct adapter
*adapter
, const void *cmd
, int size
,
117 void *rpl
, bool sleep_ok
)
119 static const int delay
[] = {
120 1, 1, 3, 5, 10, 10, 20, 50, 100
124 int i
, ms
, delay_idx
;
126 u32 mbox_data
= T4VF_MBDATA_BASE_ADDR
;
127 u32 mbox_ctl
= T4VF_CIM_BASE_ADDR
+ CIM_VF_EXT_MAILBOX_CTRL
;
130 * Commands must be multiples of 16 bytes in length and may not be
131 * larger than the size of the Mailbox Data register array.
133 if ((size
% 16) != 0 ||
134 size
> NUM_CIM_VF_MAILBOX_DATA_INSTANCES
* 4)
138 * Loop trying to get ownership of the mailbox. Return an error
139 * if we can't gain ownership.
141 v
= MBOWNER_GET(t4_read_reg(adapter
, mbox_ctl
));
142 for (i
= 0; v
== MBOX_OWNER_NONE
&& i
< 3; i
++)
143 v
= MBOWNER_GET(t4_read_reg(adapter
, mbox_ctl
));
144 if (v
!= MBOX_OWNER_DRV
)
145 return v
== MBOX_OWNER_FW
? -EBUSY
: -ETIMEDOUT
;
148 * Write the command array into the Mailbox Data register array and
149 * transfer ownership of the mailbox to the firmware.
151 * For the VFs, the Mailbox Data "registers" are actually backed by
152 * T4's "MA" interface rather than PL Registers (as is the case for
153 * the PFs). Because these are in different coherency domains, the
154 * write to the VF's PL-register-backed Mailbox Control can race in
155 * front of the writes to the MA-backed VF Mailbox Data "registers".
156 * So we need to do a read-back on at least one byte of the VF Mailbox
157 * Data registers before doing the write to the VF Mailbox Control
160 for (i
= 0, p
= cmd
; i
< size
; i
+= 8)
161 t4_write_reg64(adapter
, mbox_data
+ i
, be64_to_cpu(*p
++));
162 t4_read_reg(adapter
, mbox_data
); /* flush write */
164 t4_write_reg(adapter
, mbox_ctl
,
165 MBMSGVALID
| MBOWNER(MBOX_OWNER_FW
));
166 t4_read_reg(adapter
, mbox_ctl
); /* flush write */
169 * Spin waiting for firmware to acknowledge processing our command.
174 for (i
= 0; i
< FW_CMD_MAX_TIMEOUT
; i
+= ms
) {
176 ms
= delay
[delay_idx
];
177 if (delay_idx
< ARRAY_SIZE(delay
) - 1)
184 * If we're the owner, see if this is the reply we wanted.
186 v
= t4_read_reg(adapter
, mbox_ctl
);
187 if (MBOWNER_GET(v
) == MBOX_OWNER_DRV
) {
189 * If the Message Valid bit isn't on, revoke ownership
190 * of the mailbox and continue waiting for our reply.
192 if ((v
& MBMSGVALID
) == 0) {
193 t4_write_reg(adapter
, mbox_ctl
,
194 MBOWNER(MBOX_OWNER_NONE
));
199 * We now have our reply. Extract the command return
200 * value, copy the reply back to our caller's buffer
201 * (if specified) and revoke ownership of the mailbox.
202 * We return the (negated) firmware command return
203 * code (this depends on FW_SUCCESS == 0).
206 /* return value in low-order little-endian word */
207 v
= t4_read_reg(adapter
, mbox_data
);
208 if (FW_CMD_RETVAL_GET(v
))
209 dump_mbox(adapter
, "FW Error", mbox_data
);
212 /* request bit in high-order BE word */
213 WARN_ON((be32_to_cpu(*(const u32
*)cmd
)
214 & FW_CMD_REQUEST
) == 0);
215 get_mbox_rpl(adapter
, rpl
, size
, mbox_data
);
216 WARN_ON((be32_to_cpu(*(u32
*)rpl
)
217 & FW_CMD_REQUEST
) != 0);
219 t4_write_reg(adapter
, mbox_ctl
,
220 MBOWNER(MBOX_OWNER_NONE
));
221 return -FW_CMD_RETVAL_GET(v
);
226 * We timed out. Return the error ...
228 dump_mbox(adapter
, "FW Timeout", mbox_data
);
233 * hash_mac_addr - return the hash value of a MAC address
234 * @addr: the 48-bit Ethernet MAC address
236 * Hashes a MAC address according to the hash function used by hardware
237 * inexact (hash) address matching.
239 static int hash_mac_addr(const u8
*addr
)
241 u32 a
= ((u32
)addr
[0] << 16) | ((u32
)addr
[1] << 8) | addr
[2];
242 u32 b
= ((u32
)addr
[3] << 16) | ((u32
)addr
[4] << 8) | addr
[5];
250 * init_link_config - initialize a link's SW state
251 * @lc: structure holding the link state
252 * @caps: link capabilities
254 * Initializes the SW state maintained for each link, including the link's
255 * capabilities and default speed/flow-control/autonegotiation settings.
257 static void __devinit
init_link_config(struct link_config
*lc
,
260 lc
->supported
= caps
;
261 lc
->requested_speed
= 0;
263 lc
->requested_fc
= lc
->fc
= PAUSE_RX
| PAUSE_TX
;
264 if (lc
->supported
& SUPPORTED_Autoneg
) {
265 lc
->advertising
= lc
->supported
;
266 lc
->autoneg
= AUTONEG_ENABLE
;
267 lc
->requested_fc
|= PAUSE_AUTONEG
;
270 lc
->autoneg
= AUTONEG_DISABLE
;
275 * t4vf_port_init - initialize port hardware/software state
276 * @adapter: the adapter
277 * @pidx: the adapter port index
279 int __devinit
t4vf_port_init(struct adapter
*adapter
, int pidx
)
281 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
282 struct fw_vi_cmd vi_cmd
, vi_rpl
;
283 struct fw_port_cmd port_cmd
, port_rpl
;
288 * Execute a VI Read command to get our Virtual Interface information
289 * like MAC address, etc.
291 memset(&vi_cmd
, 0, sizeof(vi_cmd
));
292 vi_cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_VI_CMD
) |
295 vi_cmd
.alloc_to_len16
= cpu_to_be32(FW_LEN16(vi_cmd
));
296 vi_cmd
.type_viid
= cpu_to_be16(FW_VI_CMD_VIID(pi
->viid
));
297 v
= t4vf_wr_mbox(adapter
, &vi_cmd
, sizeof(vi_cmd
), &vi_rpl
);
301 BUG_ON(pi
->port_id
!= FW_VI_CMD_PORTID_GET(vi_rpl
.portid_pkd
));
302 pi
->rss_size
= FW_VI_CMD_RSSSIZE_GET(be16_to_cpu(vi_rpl
.rsssize_pkd
));
303 t4_os_set_hw_addr(adapter
, pidx
, vi_rpl
.mac
);
306 * If we don't have read access to our port information, we're done
307 * now. Otherwise, execute a PORT Read command to get it ...
309 if (!(adapter
->params
.vfres
.r_caps
& FW_CMD_CAP_PORT
))
312 memset(&port_cmd
, 0, sizeof(port_cmd
));
313 port_cmd
.op_to_portid
= cpu_to_be32(FW_CMD_OP(FW_PORT_CMD
) |
316 FW_PORT_CMD_PORTID(pi
->port_id
));
317 port_cmd
.action_to_len16
=
318 cpu_to_be32(FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO
) |
320 v
= t4vf_wr_mbox(adapter
, &port_cmd
, sizeof(port_cmd
), &port_rpl
);
325 word
= be16_to_cpu(port_rpl
.u
.info
.pcap
);
326 if (word
& FW_PORT_CAP_SPEED_100M
)
327 v
|= SUPPORTED_100baseT_Full
;
328 if (word
& FW_PORT_CAP_SPEED_1G
)
329 v
|= SUPPORTED_1000baseT_Full
;
330 if (word
& FW_PORT_CAP_SPEED_10G
)
331 v
|= SUPPORTED_10000baseT_Full
;
332 if (word
& FW_PORT_CAP_ANEG
)
333 v
|= SUPPORTED_Autoneg
;
334 init_link_config(&pi
->link_cfg
, v
);
340 * t4vf_fw_reset - issue a reset to FW
341 * @adapter: the adapter
343 * Issues a reset command to FW. For a Physical Function this would
344 * result in the Firmware reseting all of its state. For a Virtual
345 * Function this just resets the state associated with the VF.
347 int t4vf_fw_reset(struct adapter
*adapter
)
349 struct fw_reset_cmd cmd
;
351 memset(&cmd
, 0, sizeof(cmd
));
352 cmd
.op_to_write
= cpu_to_be32(FW_CMD_OP(FW_RESET_CMD
) |
354 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
355 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
359 * t4vf_query_params - query FW or device parameters
360 * @adapter: the adapter
361 * @nparams: the number of parameters
362 * @params: the parameter names
363 * @vals: the parameter values
365 * Reads the values of firmware or device parameters. Up to 7 parameters
366 * can be queried at once.
368 int t4vf_query_params(struct adapter
*adapter
, unsigned int nparams
,
369 const u32
*params
, u32
*vals
)
372 struct fw_params_cmd cmd
, rpl
;
373 struct fw_params_param
*p
;
379 memset(&cmd
, 0, sizeof(cmd
));
380 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD
) |
383 len16
= DIV_ROUND_UP(offsetof(struct fw_params_cmd
,
384 param
[nparams
].mnem
), 16);
385 cmd
.retval_len16
= cpu_to_be32(FW_CMD_LEN16(len16
));
386 for (i
= 0, p
= &cmd
.param
[0]; i
< nparams
; i
++, p
++)
387 p
->mnem
= htonl(*params
++);
389 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
391 for (i
= 0, p
= &rpl
.param
[0]; i
< nparams
; i
++, p
++)
392 *vals
++ = be32_to_cpu(p
->val
);
397 * t4vf_set_params - sets FW or device parameters
398 * @adapter: the adapter
399 * @nparams: the number of parameters
400 * @params: the parameter names
401 * @vals: the parameter values
403 * Sets the values of firmware or device parameters. Up to 7 parameters
404 * can be specified at once.
406 int t4vf_set_params(struct adapter
*adapter
, unsigned int nparams
,
407 const u32
*params
, const u32
*vals
)
410 struct fw_params_cmd cmd
;
411 struct fw_params_param
*p
;
417 memset(&cmd
, 0, sizeof(cmd
));
418 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD
) |
421 len16
= DIV_ROUND_UP(offsetof(struct fw_params_cmd
,
422 param
[nparams
]), 16);
423 cmd
.retval_len16
= cpu_to_be32(FW_CMD_LEN16(len16
));
424 for (i
= 0, p
= &cmd
.param
[0]; i
< nparams
; i
++, p
++) {
425 p
->mnem
= cpu_to_be32(*params
++);
426 p
->val
= cpu_to_be32(*vals
++);
429 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
433 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
434 * @adapter: the adapter
436 * Retrieves various core SGE parameters in the form of hardware SGE
437 * register values. The caller is responsible for decoding these as
438 * needed. The SGE parameters are stored in @adapter->params.sge.
440 int t4vf_get_sge_params(struct adapter
*adapter
)
442 struct sge_params
*sge_params
= &adapter
->params
.sge
;
443 u32 params
[7], vals
[7];
446 params
[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
447 FW_PARAMS_PARAM_XYZ(SGE_CONTROL
));
448 params
[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
449 FW_PARAMS_PARAM_XYZ(SGE_HOST_PAGE_SIZE
));
450 params
[2] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
451 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE0
));
452 params
[3] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
453 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE1
));
454 params
[4] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
455 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_0_AND_1
));
456 params
[5] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
457 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_2_AND_3
));
458 params
[6] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
459 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_4_AND_5
));
460 v
= t4vf_query_params(adapter
, 7, params
, vals
);
463 sge_params
->sge_control
= vals
[0];
464 sge_params
->sge_host_page_size
= vals
[1];
465 sge_params
->sge_fl_buffer_size
[0] = vals
[2];
466 sge_params
->sge_fl_buffer_size
[1] = vals
[3];
467 sge_params
->sge_timer_value_0_and_1
= vals
[4];
468 sge_params
->sge_timer_value_2_and_3
= vals
[5];
469 sge_params
->sge_timer_value_4_and_5
= vals
[6];
471 params
[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
472 FW_PARAMS_PARAM_XYZ(SGE_INGRESS_RX_THRESHOLD
));
473 v
= t4vf_query_params(adapter
, 1, params
, vals
);
476 sge_params
->sge_ingress_rx_threshold
= vals
[0];
482 * t4vf_get_vpd_params - retrieve device VPD paremeters
483 * @adapter: the adapter
485 * Retrives various device Vital Product Data parameters. The parameters
486 * are stored in @adapter->params.vpd.
488 int t4vf_get_vpd_params(struct adapter
*adapter
)
490 struct vpd_params
*vpd_params
= &adapter
->params
.vpd
;
491 u32 params
[7], vals
[7];
494 params
[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV
) |
495 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK
));
496 v
= t4vf_query_params(adapter
, 1, params
, vals
);
499 vpd_params
->cclk
= vals
[0];
505 * t4vf_get_dev_params - retrieve device paremeters
506 * @adapter: the adapter
508 * Retrives various device parameters. The parameters are stored in
509 * @adapter->params.dev.
511 int t4vf_get_dev_params(struct adapter
*adapter
)
513 struct dev_params
*dev_params
= &adapter
->params
.dev
;
514 u32 params
[7], vals
[7];
517 params
[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV
) |
518 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV
));
519 params
[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV
) |
520 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV
));
521 v
= t4vf_query_params(adapter
, 2, params
, vals
);
524 dev_params
->fwrev
= vals
[0];
525 dev_params
->tprev
= vals
[1];
531 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
532 * @adapter: the adapter
534 * Retrieves global RSS mode and parameters with which we have to live
535 * and stores them in the @adapter's RSS parameters.
537 int t4vf_get_rss_glb_config(struct adapter
*adapter
)
539 struct rss_params
*rss
= &adapter
->params
.rss
;
540 struct fw_rss_glb_config_cmd cmd
, rpl
;
544 * Execute an RSS Global Configuration read command to retrieve
545 * our RSS configuration.
547 memset(&cmd
, 0, sizeof(cmd
));
548 cmd
.op_to_write
= cpu_to_be32(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD
) |
551 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
552 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
557 * Transate the big-endian RSS Global Configuration into our
558 * cpu-endian format based on the RSS mode. We also do first level
559 * filtering at this point to weed out modes which don't support
562 rss
->mode
= FW_RSS_GLB_CONFIG_CMD_MODE_GET(
563 be32_to_cpu(rpl
.u
.manual
.mode_pkd
));
565 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
: {
566 u32 word
= be32_to_cpu(
567 rpl
.u
.basicvirtual
.synmapen_to_hashtoeplitz
);
569 rss
->u
.basicvirtual
.synmapen
=
570 ((word
& FW_RSS_GLB_CONFIG_CMD_SYNMAPEN
) != 0);
571 rss
->u
.basicvirtual
.syn4tupenipv6
=
572 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6
) != 0);
573 rss
->u
.basicvirtual
.syn2tupenipv6
=
574 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6
) != 0);
575 rss
->u
.basicvirtual
.syn4tupenipv4
=
576 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4
) != 0);
577 rss
->u
.basicvirtual
.syn2tupenipv4
=
578 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4
) != 0);
580 rss
->u
.basicvirtual
.ofdmapen
=
581 ((word
& FW_RSS_GLB_CONFIG_CMD_OFDMAPEN
) != 0);
583 rss
->u
.basicvirtual
.tnlmapen
=
584 ((word
& FW_RSS_GLB_CONFIG_CMD_TNLMAPEN
) != 0);
585 rss
->u
.basicvirtual
.tnlalllookup
=
586 ((word
& FW_RSS_GLB_CONFIG_CMD_TNLALLLKP
) != 0);
588 rss
->u
.basicvirtual
.hashtoeplitz
=
589 ((word
& FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ
) != 0);
591 /* we need at least Tunnel Map Enable to be set */
592 if (!rss
->u
.basicvirtual
.tnlmapen
)
598 /* all unknown/unsupported RSS modes result in an error */
606 * t4vf_get_vfres - retrieve VF resource limits
607 * @adapter: the adapter
609 * Retrieves configured resource limits and capabilities for a virtual
610 * function. The results are stored in @adapter->vfres.
612 int t4vf_get_vfres(struct adapter
*adapter
)
614 struct vf_resources
*vfres
= &adapter
->params
.vfres
;
615 struct fw_pfvf_cmd cmd
, rpl
;
620 * Execute PFVF Read command to get VF resource limits; bail out early
621 * with error on command failure.
623 memset(&cmd
, 0, sizeof(cmd
));
624 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_PFVF_CMD
) |
627 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
628 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
633 * Extract VF resource limits and return success.
635 word
= be32_to_cpu(rpl
.niqflint_niq
);
636 vfres
->niqflint
= FW_PFVF_CMD_NIQFLINT_GET(word
);
637 vfres
->niq
= FW_PFVF_CMD_NIQ_GET(word
);
639 word
= be32_to_cpu(rpl
.type_to_neq
);
640 vfres
->neq
= FW_PFVF_CMD_NEQ_GET(word
);
641 vfres
->pmask
= FW_PFVF_CMD_PMASK_GET(word
);
643 word
= be32_to_cpu(rpl
.tc_to_nexactf
);
644 vfres
->tc
= FW_PFVF_CMD_TC_GET(word
);
645 vfres
->nvi
= FW_PFVF_CMD_NVI_GET(word
);
646 vfres
->nexactf
= FW_PFVF_CMD_NEXACTF_GET(word
);
648 word
= be32_to_cpu(rpl
.r_caps_to_nethctrl
);
649 vfres
->r_caps
= FW_PFVF_CMD_R_CAPS_GET(word
);
650 vfres
->wx_caps
= FW_PFVF_CMD_WX_CAPS_GET(word
);
651 vfres
->nethctrl
= FW_PFVF_CMD_NETHCTRL_GET(word
);
657 * t4vf_read_rss_vi_config - read a VI's RSS configuration
658 * @adapter: the adapter
659 * @viid: Virtual Interface ID
660 * @config: pointer to host-native VI RSS Configuration buffer
662 * Reads the Virtual Interface's RSS configuration information and
663 * translates it into CPU-native format.
665 int t4vf_read_rss_vi_config(struct adapter
*adapter
, unsigned int viid
,
666 union rss_vi_config
*config
)
668 struct fw_rss_vi_config_cmd cmd
, rpl
;
671 memset(&cmd
, 0, sizeof(cmd
));
672 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD
) |
675 FW_RSS_VI_CONFIG_CMD_VIID(viid
));
676 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
677 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
681 switch (adapter
->params
.rss
.mode
) {
682 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
: {
683 u32 word
= be32_to_cpu(rpl
.u
.basicvirtual
.defaultq_to_udpen
);
685 config
->basicvirtual
.ip6fourtupen
=
686 ((word
& FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN
) != 0);
687 config
->basicvirtual
.ip6twotupen
=
688 ((word
& FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN
) != 0);
689 config
->basicvirtual
.ip4fourtupen
=
690 ((word
& FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN
) != 0);
691 config
->basicvirtual
.ip4twotupen
=
692 ((word
& FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN
) != 0);
693 config
->basicvirtual
.udpen
=
694 ((word
& FW_RSS_VI_CONFIG_CMD_UDPEN
) != 0);
695 config
->basicvirtual
.defaultq
=
696 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_GET(word
);
708 * t4vf_write_rss_vi_config - write a VI's RSS configuration
709 * @adapter: the adapter
710 * @viid: Virtual Interface ID
711 * @config: pointer to host-native VI RSS Configuration buffer
713 * Write the Virtual Interface's RSS configuration information
714 * (translating it into firmware-native format before writing).
716 int t4vf_write_rss_vi_config(struct adapter
*adapter
, unsigned int viid
,
717 union rss_vi_config
*config
)
719 struct fw_rss_vi_config_cmd cmd
, rpl
;
721 memset(&cmd
, 0, sizeof(cmd
));
722 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD
) |
725 FW_RSS_VI_CONFIG_CMD_VIID(viid
));
726 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
727 switch (adapter
->params
.rss
.mode
) {
728 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
: {
731 if (config
->basicvirtual
.ip6fourtupen
)
732 word
|= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN
;
733 if (config
->basicvirtual
.ip6twotupen
)
734 word
|= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN
;
735 if (config
->basicvirtual
.ip4fourtupen
)
736 word
|= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN
;
737 if (config
->basicvirtual
.ip4twotupen
)
738 word
|= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN
;
739 if (config
->basicvirtual
.udpen
)
740 word
|= FW_RSS_VI_CONFIG_CMD_UDPEN
;
741 word
|= FW_RSS_VI_CONFIG_CMD_DEFAULTQ(
742 config
->basicvirtual
.defaultq
);
743 cmd
.u
.basicvirtual
.defaultq_to_udpen
= cpu_to_be32(word
);
751 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
755 * t4vf_config_rss_range - configure a portion of the RSS mapping table
756 * @adapter: the adapter
757 * @viid: Virtual Interface of RSS Table Slice
758 * @start: starting entry in the table to write
759 * @n: how many table entries to write
760 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table
761 * @nrspq: number of values in @rspq
763 * Programs the selected part of the VI's RSS mapping table with the
764 * provided values. If @nrspq < @n the supplied values are used repeatedly
765 * until the full table range is populated.
767 * The caller must ensure the values in @rspq are in the range 0..1023.
769 int t4vf_config_rss_range(struct adapter
*adapter
, unsigned int viid
,
770 int start
, int n
, const u16
*rspq
, int nrspq
)
772 const u16
*rsp
= rspq
;
773 const u16
*rsp_end
= rspq
+nrspq
;
774 struct fw_rss_ind_tbl_cmd cmd
;
777 * Initialize firmware command template to write the RSS table.
779 memset(&cmd
, 0, sizeof(cmd
));
780 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_RSS_IND_TBL_CMD
) |
783 FW_RSS_IND_TBL_CMD_VIID(viid
));
784 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
787 * Each firmware RSS command can accommodate up to 32 RSS Ingress
788 * Queue Identifiers. These Ingress Queue IDs are packed three to
789 * a 32-bit word as 10-bit values with the upper remaining 2 bits
793 __be32
*qp
= &cmd
.iq0_to_iq2
;
798 * Set up the firmware RSS command header to send the next
799 * "nq" Ingress Queue IDs to the firmware.
801 cmd
.niqid
= cpu_to_be16(nq
);
802 cmd
.startidx
= cpu_to_be16(start
);
805 * "nq" more done for the start of the next loop.
811 * While there are still Ingress Queue IDs to stuff into the
812 * current firmware RSS command, retrieve them from the
813 * Ingress Queue ID array and insert them into the command.
817 * Grab up to the next 3 Ingress Queue IDs (wrapping
818 * around the Ingress Queue ID array if necessary) and
819 * insert them into the firmware RSS command at the
820 * current 3-tuple position within the commad.
824 int nqbuf
= min(3, nq
);
827 qbuf
[0] = qbuf
[1] = qbuf
[2] = 0;
834 *qp
++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0(qbuf
[0]) |
835 FW_RSS_IND_TBL_CMD_IQ1(qbuf
[1]) |
836 FW_RSS_IND_TBL_CMD_IQ2(qbuf
[2]));
840 * Send this portion of the RRS table update to the firmware;
841 * bail out on any errors.
843 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
851 * t4vf_alloc_vi - allocate a virtual interface on a port
852 * @adapter: the adapter
853 * @port_id: physical port associated with the VI
855 * Allocate a new Virtual Interface and bind it to the indicated
856 * physical port. Return the new Virtual Interface Identifier on
857 * success, or a [negative] error number on failure.
859 int t4vf_alloc_vi(struct adapter
*adapter
, int port_id
)
861 struct fw_vi_cmd cmd
, rpl
;
865 * Execute a VI command to allocate Virtual Interface and return its
868 memset(&cmd
, 0, sizeof(cmd
));
869 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_VI_CMD
) |
873 cmd
.alloc_to_len16
= cpu_to_be32(FW_LEN16(cmd
) |
875 cmd
.portid_pkd
= FW_VI_CMD_PORTID(port_id
);
876 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
880 return FW_VI_CMD_VIID_GET(be16_to_cpu(rpl
.type_viid
));
884 * t4vf_free_vi -- free a virtual interface
885 * @adapter: the adapter
886 * @viid: the virtual interface identifier
888 * Free a previously allocated Virtual Interface. Return an error on
891 int t4vf_free_vi(struct adapter
*adapter
, int viid
)
893 struct fw_vi_cmd cmd
;
896 * Execute a VI command to free the Virtual Interface.
898 memset(&cmd
, 0, sizeof(cmd
));
899 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_VI_CMD
) |
902 cmd
.alloc_to_len16
= cpu_to_be32(FW_LEN16(cmd
) |
904 cmd
.type_viid
= cpu_to_be16(FW_VI_CMD_VIID(viid
));
905 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
909 * t4vf_enable_vi - enable/disable a virtual interface
910 * @adapter: the adapter
911 * @viid: the Virtual Interface ID
912 * @rx_en: 1=enable Rx, 0=disable Rx
913 * @tx_en: 1=enable Tx, 0=disable Tx
915 * Enables/disables a virtual interface.
917 int t4vf_enable_vi(struct adapter
*adapter
, unsigned int viid
,
918 bool rx_en
, bool tx_en
)
920 struct fw_vi_enable_cmd cmd
;
922 memset(&cmd
, 0, sizeof(cmd
));
923 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD
) |
926 FW_VI_ENABLE_CMD_VIID(viid
));
927 cmd
.ien_to_len16
= cpu_to_be32(FW_VI_ENABLE_CMD_IEN(rx_en
) |
928 FW_VI_ENABLE_CMD_EEN(tx_en
) |
930 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
934 * t4vf_identify_port - identify a VI's port by blinking its LED
935 * @adapter: the adapter
936 * @viid: the Virtual Interface ID
937 * @nblinks: how many times to blink LED at 2.5 Hz
939 * Identifies a VI's port by blinking its LED.
941 int t4vf_identify_port(struct adapter
*adapter
, unsigned int viid
,
942 unsigned int nblinks
)
944 struct fw_vi_enable_cmd cmd
;
946 memset(&cmd
, 0, sizeof(cmd
));
947 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD
) |
950 FW_VI_ENABLE_CMD_VIID(viid
));
951 cmd
.ien_to_len16
= cpu_to_be32(FW_VI_ENABLE_CMD_LED
|
953 cmd
.blinkdur
= cpu_to_be16(nblinks
);
954 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
958 * t4vf_set_rxmode - set Rx properties of a virtual interface
959 * @adapter: the adapter
961 * @mtu: the new MTU or -1 for no change
962 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
963 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
964 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
965 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
968 * Sets Rx properties of a virtual interface.
970 int t4vf_set_rxmode(struct adapter
*adapter
, unsigned int viid
,
971 int mtu
, int promisc
, int all_multi
, int bcast
, int vlanex
,
974 struct fw_vi_rxmode_cmd cmd
;
976 /* convert to FW values */
978 mtu
= FW_VI_RXMODE_CMD_MTU_MASK
;
980 promisc
= FW_VI_RXMODE_CMD_PROMISCEN_MASK
;
982 all_multi
= FW_VI_RXMODE_CMD_ALLMULTIEN_MASK
;
984 bcast
= FW_VI_RXMODE_CMD_BROADCASTEN_MASK
;
986 vlanex
= FW_VI_RXMODE_CMD_VLANEXEN_MASK
;
988 memset(&cmd
, 0, sizeof(cmd
));
989 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_RXMODE_CMD
) |
992 FW_VI_RXMODE_CMD_VIID(viid
));
993 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
994 cmd
.mtu_to_vlanexen
=
995 cpu_to_be32(FW_VI_RXMODE_CMD_MTU(mtu
) |
996 FW_VI_RXMODE_CMD_PROMISCEN(promisc
) |
997 FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi
) |
998 FW_VI_RXMODE_CMD_BROADCASTEN(bcast
) |
999 FW_VI_RXMODE_CMD_VLANEXEN(vlanex
));
1000 return t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), NULL
, sleep_ok
);
1004 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1005 * @adapter: the adapter
1006 * @viid: the Virtual Interface Identifier
1007 * @free: if true any existing filters for this VI id are first removed
1008 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1009 * @addr: the MAC address(es)
1010 * @idx: where to store the index of each allocated filter
1011 * @hash: pointer to hash address filter bitmap
1012 * @sleep_ok: call is allowed to sleep
1014 * Allocates an exact-match filter for each of the supplied addresses and
1015 * sets it to the corresponding address. If @idx is not %NULL it should
1016 * have at least @naddr entries, each of which will be set to the index of
1017 * the filter allocated for the corresponding MAC address. If a filter
1018 * could not be allocated for an address its index is set to 0xffff.
1019 * If @hash is not %NULL addresses that fail to allocate an exact filter
1020 * are hashed and update the hash filter bitmap pointed at by @hash.
1022 * Returns a negative error number or the number of filters allocated.
1024 int t4vf_alloc_mac_filt(struct adapter
*adapter
, unsigned int viid
, bool free
,
1025 unsigned int naddr
, const u8
**addr
, u16
*idx
,
1026 u64
*hash
, bool sleep_ok
)
1028 int offset
, ret
= 0;
1029 unsigned nfilters
= 0;
1030 unsigned int rem
= naddr
;
1031 struct fw_vi_mac_cmd cmd
, rpl
;
1033 if (naddr
> FW_CLS_TCAM_NUM_ENTRIES
)
1036 for (offset
= 0; offset
< naddr
; /**/) {
1037 unsigned int fw_naddr
= (rem
< ARRAY_SIZE(cmd
.u
.exact
)
1039 : ARRAY_SIZE(cmd
.u
.exact
));
1040 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1041 u
.exact
[fw_naddr
]), 16);
1042 struct fw_vi_mac_exact
*p
;
1045 memset(&cmd
, 0, sizeof(cmd
));
1046 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD
) |
1049 (free
? FW_CMD_EXEC
: 0) |
1050 FW_VI_MAC_CMD_VIID(viid
));
1051 cmd
.freemacs_to_len16
=
1052 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS(free
) |
1053 FW_CMD_LEN16(len16
));
1055 for (i
= 0, p
= cmd
.u
.exact
; i
< fw_naddr
; i
++, p
++) {
1056 p
->valid_to_idx
= cpu_to_be16(
1057 FW_VI_MAC_CMD_VALID
|
1058 FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC
));
1059 memcpy(p
->macaddr
, addr
[offset
+i
], sizeof(p
->macaddr
));
1063 ret
= t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), &rpl
,
1065 if (ret
&& ret
!= -ENOMEM
)
1068 for (i
= 0, p
= rpl
.u
.exact
; i
< fw_naddr
; i
++, p
++) {
1069 u16 index
= FW_VI_MAC_CMD_IDX_GET(
1070 be16_to_cpu(p
->valid_to_idx
));
1074 (index
>= FW_CLS_TCAM_NUM_ENTRIES
1077 if (index
< FW_CLS_TCAM_NUM_ENTRIES
)
1080 *hash
|= (1ULL << hash_mac_addr(addr
[offset
+i
]));
1089 * If there were no errors or we merely ran out of room in our MAC
1090 * address arena, return the number of filters actually written.
1092 if (ret
== 0 || ret
== -ENOMEM
)
1098 * t4vf_change_mac - modifies the exact-match filter for a MAC address
1099 * @adapter: the adapter
1100 * @viid: the Virtual Interface ID
1101 * @idx: index of existing filter for old value of MAC address, or -1
1102 * @addr: the new MAC address value
1103 * @persist: if idx < 0, the new MAC allocation should be persistent
1105 * Modifies an exact-match filter and sets it to the new MAC address.
1106 * Note that in general it is not possible to modify the value of a given
1107 * filter so the generic way to modify an address filter is to free the
1108 * one being used by the old address value and allocate a new filter for
1109 * the new address value. @idx can be -1 if the address is a new
1112 * Returns a negative error number or the index of the filter with the new
1115 int t4vf_change_mac(struct adapter
*adapter
, unsigned int viid
,
1116 int idx
, const u8
*addr
, bool persist
)
1119 struct fw_vi_mac_cmd cmd
, rpl
;
1120 struct fw_vi_mac_exact
*p
= &cmd
.u
.exact
[0];
1121 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1125 * If this is a new allocation, determine whether it should be
1126 * persistent (across a "freemacs" operation) or not.
1129 idx
= persist
? FW_VI_MAC_ADD_PERSIST_MAC
: FW_VI_MAC_ADD_MAC
;
1131 memset(&cmd
, 0, sizeof(cmd
));
1132 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD
) |
1135 FW_VI_MAC_CMD_VIID(viid
));
1136 cmd
.freemacs_to_len16
= cpu_to_be32(FW_CMD_LEN16(len16
));
1137 p
->valid_to_idx
= cpu_to_be16(FW_VI_MAC_CMD_VALID
|
1138 FW_VI_MAC_CMD_IDX(idx
));
1139 memcpy(p
->macaddr
, addr
, sizeof(p
->macaddr
));
1141 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
1143 p
= &rpl
.u
.exact
[0];
1144 ret
= FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p
->valid_to_idx
));
1145 if (ret
>= FW_CLS_TCAM_NUM_ENTRIES
)
1152 * t4vf_set_addr_hash - program the MAC inexact-match hash filter
1153 * @adapter: the adapter
1154 * @viid: the Virtual Interface Identifier
1155 * @ucast: whether the hash filter should also match unicast addresses
1156 * @vec: the value to be written to the hash filter
1157 * @sleep_ok: call is allowed to sleep
1159 * Sets the 64-bit inexact-match hash filter for a virtual interface.
1161 int t4vf_set_addr_hash(struct adapter
*adapter
, unsigned int viid
,
1162 bool ucast
, u64 vec
, bool sleep_ok
)
1164 struct fw_vi_mac_cmd cmd
;
1165 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1168 memset(&cmd
, 0, sizeof(cmd
));
1169 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD
) |
1172 FW_VI_ENABLE_CMD_VIID(viid
));
1173 cmd
.freemacs_to_len16
= cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN
|
1174 FW_VI_MAC_CMD_HASHUNIEN(ucast
) |
1175 FW_CMD_LEN16(len16
));
1176 cmd
.u
.hash
.hashvec
= cpu_to_be64(vec
);
1177 return t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), NULL
, sleep_ok
);
1181 * t4vf_get_port_stats - collect "port" statistics
1182 * @adapter: the adapter
1183 * @pidx: the port index
1184 * @s: the stats structure to fill
1186 * Collect statistics for the "port"'s Virtual Interface.
1188 int t4vf_get_port_stats(struct adapter
*adapter
, int pidx
,
1189 struct t4vf_port_stats
*s
)
1191 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
1192 struct fw_vi_stats_vf fwstats
;
1193 unsigned int rem
= VI_VF_NUM_STATS
;
1194 __be64
*fwsp
= (__be64
*)&fwstats
;
1197 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1198 * commands. We could use a Work Request and get all of them at once
1199 * but that's an asynchronous interface which is awkward to use.
1202 unsigned int ix
= VI_VF_NUM_STATS
- rem
;
1203 unsigned int nstats
= min(6U, rem
);
1204 struct fw_vi_stats_cmd cmd
, rpl
;
1205 size_t len
= (offsetof(struct fw_vi_stats_cmd
, u
) +
1206 sizeof(struct fw_vi_stats_ctl
));
1207 size_t len16
= DIV_ROUND_UP(len
, 16);
1210 memset(&cmd
, 0, sizeof(cmd
));
1211 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_STATS_CMD
) |
1212 FW_VI_STATS_CMD_VIID(pi
->viid
) |
1215 cmd
.retval_len16
= cpu_to_be32(FW_CMD_LEN16(len16
));
1216 cmd
.u
.ctl
.nstats_ix
=
1217 cpu_to_be16(FW_VI_STATS_CMD_IX(ix
) |
1218 FW_VI_STATS_CMD_NSTATS(nstats
));
1219 ret
= t4vf_wr_mbox_ns(adapter
, &cmd
, len
, &rpl
);
1223 memcpy(fwsp
, &rpl
.u
.ctl
.stat0
, sizeof(__be64
) * nstats
);
1230 * Translate firmware statistics into host native statistics.
1232 s
->tx_bcast_bytes
= be64_to_cpu(fwstats
.tx_bcast_bytes
);
1233 s
->tx_bcast_frames
= be64_to_cpu(fwstats
.tx_bcast_frames
);
1234 s
->tx_mcast_bytes
= be64_to_cpu(fwstats
.tx_mcast_bytes
);
1235 s
->tx_mcast_frames
= be64_to_cpu(fwstats
.tx_mcast_frames
);
1236 s
->tx_ucast_bytes
= be64_to_cpu(fwstats
.tx_ucast_bytes
);
1237 s
->tx_ucast_frames
= be64_to_cpu(fwstats
.tx_ucast_frames
);
1238 s
->tx_drop_frames
= be64_to_cpu(fwstats
.tx_drop_frames
);
1239 s
->tx_offload_bytes
= be64_to_cpu(fwstats
.tx_offload_bytes
);
1240 s
->tx_offload_frames
= be64_to_cpu(fwstats
.tx_offload_frames
);
1242 s
->rx_bcast_bytes
= be64_to_cpu(fwstats
.rx_bcast_bytes
);
1243 s
->rx_bcast_frames
= be64_to_cpu(fwstats
.rx_bcast_frames
);
1244 s
->rx_mcast_bytes
= be64_to_cpu(fwstats
.rx_mcast_bytes
);
1245 s
->rx_mcast_frames
= be64_to_cpu(fwstats
.rx_mcast_frames
);
1246 s
->rx_ucast_bytes
= be64_to_cpu(fwstats
.rx_ucast_bytes
);
1247 s
->rx_ucast_frames
= be64_to_cpu(fwstats
.rx_ucast_frames
);
1249 s
->rx_err_frames
= be64_to_cpu(fwstats
.rx_err_frames
);
1255 * t4vf_iq_free - free an ingress queue and its free lists
1256 * @adapter: the adapter
1257 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1258 * @iqid: ingress queue ID
1259 * @fl0id: FL0 queue ID or 0xffff if no attached FL0
1260 * @fl1id: FL1 queue ID or 0xffff if no attached FL1
1262 * Frees an ingress queue and its associated free lists, if any.
1264 int t4vf_iq_free(struct adapter
*adapter
, unsigned int iqtype
,
1265 unsigned int iqid
, unsigned int fl0id
, unsigned int fl1id
)
1267 struct fw_iq_cmd cmd
;
1269 memset(&cmd
, 0, sizeof(cmd
));
1270 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_IQ_CMD
) |
1273 cmd
.alloc_to_len16
= cpu_to_be32(FW_IQ_CMD_FREE
|
1275 cmd
.type_to_iqandstindex
=
1276 cpu_to_be32(FW_IQ_CMD_TYPE(iqtype
));
1278 cmd
.iqid
= cpu_to_be16(iqid
);
1279 cmd
.fl0id
= cpu_to_be16(fl0id
);
1280 cmd
.fl1id
= cpu_to_be16(fl1id
);
1281 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1285 * t4vf_eth_eq_free - free an Ethernet egress queue
1286 * @adapter: the adapter
1287 * @eqid: egress queue ID
1289 * Frees an Ethernet egress queue.
1291 int t4vf_eth_eq_free(struct adapter
*adapter
, unsigned int eqid
)
1293 struct fw_eq_eth_cmd cmd
;
1295 memset(&cmd
, 0, sizeof(cmd
));
1296 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD
) |
1299 cmd
.alloc_to_len16
= cpu_to_be32(FW_EQ_ETH_CMD_FREE
|
1301 cmd
.eqid_pkd
= cpu_to_be32(FW_EQ_ETH_CMD_EQID(eqid
));
1302 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1306 * t4vf_handle_fw_rpl - process a firmware reply message
1307 * @adapter: the adapter
1308 * @rpl: start of the firmware message
1310 * Processes a firmware message, such as link state change messages.
1312 int t4vf_handle_fw_rpl(struct adapter
*adapter
, const __be64
*rpl
)
1314 const struct fw_cmd_hdr
*cmd_hdr
= (const struct fw_cmd_hdr
*)rpl
;
1315 u8 opcode
= FW_CMD_OP_GET(be32_to_cpu(cmd_hdr
->hi
));
1320 * Link/module state change message.
1322 const struct fw_port_cmd
*port_cmd
=
1323 (const struct fw_port_cmd
*)rpl
;
1325 int action
, port_id
, link_ok
, speed
, fc
, pidx
;
1328 * Extract various fields from port status change message.
1330 action
= FW_PORT_CMD_ACTION_GET(
1331 be32_to_cpu(port_cmd
->action_to_len16
));
1332 if (action
!= FW_PORT_ACTION_GET_PORT_INFO
) {
1333 dev_err(adapter
->pdev_dev
,
1334 "Unknown firmware PORT reply action %x\n",
1339 port_id
= FW_PORT_CMD_PORTID_GET(
1340 be32_to_cpu(port_cmd
->op_to_portid
));
1342 word
= be32_to_cpu(port_cmd
->u
.info
.lstatus_to_modtype
);
1343 link_ok
= (word
& FW_PORT_CMD_LSTATUS
) != 0;
1346 if (word
& FW_PORT_CMD_RXPAUSE
)
1348 if (word
& FW_PORT_CMD_TXPAUSE
)
1350 if (word
& FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M
))
1352 else if (word
& FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G
))
1354 else if (word
& FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G
))
1355 speed
= SPEED_10000
;
1358 * Scan all of our "ports" (Virtual Interfaces) looking for
1359 * those bound to the physical port which has changed. If
1360 * our recorded state doesn't match the current state,
1361 * signal that change to the OS code.
1363 for_each_port(adapter
, pidx
) {
1364 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
1365 struct link_config
*lc
;
1367 if (pi
->port_id
!= port_id
)
1371 if (link_ok
!= lc
->link_ok
|| speed
!= lc
->speed
||
1373 /* something changed */
1374 lc
->link_ok
= link_ok
;
1377 t4vf_os_link_changed(adapter
, pidx
, link_ok
);
1384 dev_err(adapter
->pdev_dev
, "Unknown firmware reply %X\n",