ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / drivers / net / e100.c
blobe336c7937f053d2827245817638ce0547c27434a
1 /*******************************************************************************
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
36 * References:
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
42 * Theory of Operation
44 * I. General
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
67 * devices.
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
73 * III. Transmit
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
95 * with 00h.
97 * IV. Receive
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * In order to keep updates to the RFD link field from colliding with
110 * hardware writes to mark packets complete, we use the feature that
111 * hardware will not write to a size 0 descriptor and mark the previous
112 * packet as end-of-list (EL). After updating the link, we remove EL
113 * and only then restore the size such that hardware may use the
114 * previous-to-end RFD.
116 * Under typical operation, the receive unit (RU) is start once,
117 * and the controller happily fills RFDs as frames arrive. If
118 * replacement RFDs cannot be allocated, or the RU goes non-active,
119 * the RU must be restarted. Frame arrival generates an interrupt,
120 * and Rx indication and re-allocation happen in the same context,
121 * therefore no locking is required. A software-generated interrupt
122 * is generated from the watchdog to recover from a failed allocation
123 * scenario where all Rx resources have been indicated and none re-
124 * placed.
126 * V. Miscellaneous
128 * VLAN offloading of tagging, stripping and filtering is not
129 * supported, but driver will accommodate the extra 4-byte VLAN tag
130 * for processing by upper layers. Tx/Rx Checksum offloading is not
131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
132 * not supported (hardware limitation).
134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
136 * Thanks to JC (jchapman@katalix.com) for helping with
137 * testing/troubleshooting the development driver.
139 * TODO:
140 * o several entry points race with dev->close
141 * o check for tx-no-resources/stop Q races with tx clean/wake Q
143 * FIXES:
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145 * - Stratus87247: protect MDI control register manipulations
146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
147 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
150 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
152 #include <linux/module.h>
153 #include <linux/moduleparam.h>
154 #include <linux/kernel.h>
155 #include <linux/types.h>
156 #include <linux/sched.h>
157 #include <linux/slab.h>
158 #include <linux/delay.h>
159 #include <linux/init.h>
160 #include <linux/pci.h>
161 #include <linux/dma-mapping.h>
162 #include <linux/dmapool.h>
163 #include <linux/netdevice.h>
164 #include <linux/etherdevice.h>
165 #include <linux/mii.h>
166 #include <linux/if_vlan.h>
167 #include <linux/skbuff.h>
168 #include <linux/ethtool.h>
169 #include <linux/string.h>
170 #include <linux/firmware.h>
171 #include <linux/rtnetlink.h>
172 #include <asm/unaligned.h>
175 #define DRV_NAME "e100"
176 #define DRV_EXT "-NAPI"
177 #define DRV_VERSION "3.5.24-k2"DRV_EXT
178 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
179 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
181 #define E100_WATCHDOG_PERIOD (2 * HZ)
182 #define E100_NAPI_WEIGHT 16
184 #define FIRMWARE_D101M "e100/d101m_ucode.bin"
185 #define FIRMWARE_D101S "e100/d101s_ucode.bin"
186 #define FIRMWARE_D102E "e100/d102e_ucode.bin"
188 MODULE_DESCRIPTION(DRV_DESCRIPTION);
189 MODULE_AUTHOR(DRV_COPYRIGHT);
190 MODULE_LICENSE("GPL");
191 MODULE_VERSION(DRV_VERSION);
192 MODULE_FIRMWARE(FIRMWARE_D101M);
193 MODULE_FIRMWARE(FIRMWARE_D101S);
194 MODULE_FIRMWARE(FIRMWARE_D102E);
196 static int debug = 3;
197 static int eeprom_bad_csum_allow = 0;
198 static int use_io = 0;
199 module_param(debug, int, 0);
200 module_param(eeprom_bad_csum_allow, int, 0);
201 module_param(use_io, int, 0);
202 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
203 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
204 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
206 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
207 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
208 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
209 static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = {
210 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
211 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
212 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
213 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
214 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
215 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
216 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
217 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
218 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
219 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
220 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
221 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
222 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
223 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
224 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
225 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
226 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
227 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
228 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
229 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
230 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
231 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
232 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
233 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
234 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
235 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
236 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
237 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
238 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
239 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
240 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
241 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
242 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
243 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
244 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
245 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
246 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
247 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
248 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
249 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
250 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
251 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
252 { 0, }
254 MODULE_DEVICE_TABLE(pci, e100_id_table);
256 enum mac {
257 mac_82557_D100_A = 0,
258 mac_82557_D100_B = 1,
259 mac_82557_D100_C = 2,
260 mac_82558_D101_A4 = 4,
261 mac_82558_D101_B0 = 5,
262 mac_82559_D101M = 8,
263 mac_82559_D101S = 9,
264 mac_82550_D102 = 12,
265 mac_82550_D102_C = 13,
266 mac_82551_E = 14,
267 mac_82551_F = 15,
268 mac_82551_10 = 16,
269 mac_unknown = 0xFF,
272 enum phy {
273 phy_100a = 0x000003E0,
274 phy_100c = 0x035002A8,
275 phy_82555_tx = 0x015002A8,
276 phy_nsc_tx = 0x5C002000,
277 phy_82562_et = 0x033002A8,
278 phy_82562_em = 0x032002A8,
279 phy_82562_ek = 0x031002A8,
280 phy_82562_eh = 0x017002A8,
281 phy_82552_v = 0xd061004d,
282 phy_unknown = 0xFFFFFFFF,
285 /* CSR (Control/Status Registers) */
286 struct csr {
287 struct {
288 u8 status;
289 u8 stat_ack;
290 u8 cmd_lo;
291 u8 cmd_hi;
292 u32 gen_ptr;
293 } scb;
294 u32 port;
295 u16 flash_ctrl;
296 u8 eeprom_ctrl_lo;
297 u8 eeprom_ctrl_hi;
298 u32 mdi_ctrl;
299 u32 rx_dma_count;
302 enum scb_status {
303 rus_no_res = 0x08,
304 rus_ready = 0x10,
305 rus_mask = 0x3C,
308 enum ru_state {
309 RU_SUSPENDED = 0,
310 RU_RUNNING = 1,
311 RU_UNINITIALIZED = -1,
314 enum scb_stat_ack {
315 stat_ack_not_ours = 0x00,
316 stat_ack_sw_gen = 0x04,
317 stat_ack_rnr = 0x10,
318 stat_ack_cu_idle = 0x20,
319 stat_ack_frame_rx = 0x40,
320 stat_ack_cu_cmd_done = 0x80,
321 stat_ack_not_present = 0xFF,
322 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
323 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
326 enum scb_cmd_hi {
327 irq_mask_none = 0x00,
328 irq_mask_all = 0x01,
329 irq_sw_gen = 0x02,
332 enum scb_cmd_lo {
333 cuc_nop = 0x00,
334 ruc_start = 0x01,
335 ruc_load_base = 0x06,
336 cuc_start = 0x10,
337 cuc_resume = 0x20,
338 cuc_dump_addr = 0x40,
339 cuc_dump_stats = 0x50,
340 cuc_load_base = 0x60,
341 cuc_dump_reset = 0x70,
344 enum cuc_dump {
345 cuc_dump_complete = 0x0000A005,
346 cuc_dump_reset_complete = 0x0000A007,
349 enum port {
350 software_reset = 0x0000,
351 selftest = 0x0001,
352 selective_reset = 0x0002,
355 enum eeprom_ctrl_lo {
356 eesk = 0x01,
357 eecs = 0x02,
358 eedi = 0x04,
359 eedo = 0x08,
362 enum mdi_ctrl {
363 mdi_write = 0x04000000,
364 mdi_read = 0x08000000,
365 mdi_ready = 0x10000000,
368 enum eeprom_op {
369 op_write = 0x05,
370 op_read = 0x06,
371 op_ewds = 0x10,
372 op_ewen = 0x13,
375 enum eeprom_offsets {
376 eeprom_cnfg_mdix = 0x03,
377 eeprom_phy_iface = 0x06,
378 eeprom_id = 0x0A,
379 eeprom_config_asf = 0x0D,
380 eeprom_smbus_addr = 0x90,
383 enum eeprom_cnfg_mdix {
384 eeprom_mdix_enabled = 0x0080,
387 enum eeprom_phy_iface {
388 NoSuchPhy = 0,
389 I82553AB,
390 I82553C,
391 I82503,
392 DP83840,
393 S80C240,
394 S80C24,
395 I82555,
396 DP83840A = 10,
399 enum eeprom_id {
400 eeprom_id_wol = 0x0020,
403 enum eeprom_config_asf {
404 eeprom_asf = 0x8000,
405 eeprom_gcl = 0x4000,
408 enum cb_status {
409 cb_complete = 0x8000,
410 cb_ok = 0x2000,
413 enum cb_command {
414 cb_nop = 0x0000,
415 cb_iaaddr = 0x0001,
416 cb_config = 0x0002,
417 cb_multi = 0x0003,
418 cb_tx = 0x0004,
419 cb_ucode = 0x0005,
420 cb_dump = 0x0006,
421 cb_tx_sf = 0x0008,
422 cb_cid = 0x1f00,
423 cb_i = 0x2000,
424 cb_s = 0x4000,
425 cb_el = 0x8000,
428 struct rfd {
429 __le16 status;
430 __le16 command;
431 __le32 link;
432 __le32 rbd;
433 __le16 actual_size;
434 __le16 size;
437 struct rx {
438 struct rx *next, *prev;
439 struct sk_buff *skb;
440 dma_addr_t dma_addr;
443 #if defined(__BIG_ENDIAN_BITFIELD)
444 #define X(a,b) b,a
445 #else
446 #define X(a,b) a,b
447 #endif
448 struct config {
449 /*0*/ u8 X(byte_count:6, pad0:2);
450 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
451 /*2*/ u8 adaptive_ifs;
452 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
453 term_write_cache_line:1), pad3:4);
454 /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
455 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
456 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
457 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
458 rx_discard_overruns:1), rx_save_bad_frames:1);
459 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
460 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
461 tx_dynamic_tbd:1);
462 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
463 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
464 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
465 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
466 loopback:2);
467 /*11*/ u8 X(linear_priority:3, pad11:5);
468 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
469 /*13*/ u8 ip_addr_lo;
470 /*14*/ u8 ip_addr_hi;
471 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
472 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
473 pad15_2:1), crs_or_cdt:1);
474 /*16*/ u8 fc_delay_lo;
475 /*17*/ u8 fc_delay_hi;
476 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
477 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
478 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
479 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
480 full_duplex_force:1), full_duplex_pin:1);
481 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
482 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
483 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
484 u8 pad_d102[9];
487 #define E100_MAX_MULTICAST_ADDRS 64
488 struct multi {
489 __le16 count;
490 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
493 /* Important: keep total struct u32-aligned */
494 #define UCODE_SIZE 134
495 struct cb {
496 __le16 status;
497 __le16 command;
498 __le32 link;
499 union {
500 u8 iaaddr[ETH_ALEN];
501 __le32 ucode[UCODE_SIZE];
502 struct config config;
503 struct multi multi;
504 struct {
505 u32 tbd_array;
506 u16 tcb_byte_count;
507 u8 threshold;
508 u8 tbd_count;
509 struct {
510 __le32 buf_addr;
511 __le16 size;
512 u16 eol;
513 } tbd;
514 } tcb;
515 __le32 dump_buffer_addr;
516 } u;
517 struct cb *next, *prev;
518 dma_addr_t dma_addr;
519 struct sk_buff *skb;
522 enum loopback {
523 lb_none = 0, lb_mac = 1, lb_phy = 3,
526 struct stats {
527 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
528 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
529 tx_multiple_collisions, tx_total_collisions;
530 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
531 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
532 rx_short_frame_errors;
533 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
534 __le16 xmt_tco_frames, rcv_tco_frames;
535 __le32 complete;
538 struct mem {
539 struct {
540 u32 signature;
541 u32 result;
542 } selftest;
543 struct stats stats;
544 u8 dump_buf[596];
547 struct param_range {
548 u32 min;
549 u32 max;
550 u32 count;
553 struct params {
554 struct param_range rfds;
555 struct param_range cbs;
558 struct nic {
559 /* Begin: frequently used values: keep adjacent for cache effect */
560 u32 msg_enable ____cacheline_aligned;
561 struct net_device *netdev;
562 struct pci_dev *pdev;
563 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
565 struct rx *rxs ____cacheline_aligned;
566 struct rx *rx_to_use;
567 struct rx *rx_to_clean;
568 struct rfd blank_rfd;
569 enum ru_state ru_running;
571 spinlock_t cb_lock ____cacheline_aligned;
572 spinlock_t cmd_lock;
573 struct csr __iomem *csr;
574 enum scb_cmd_lo cuc_cmd;
575 unsigned int cbs_avail;
576 struct napi_struct napi;
577 struct cb *cbs;
578 struct cb *cb_to_use;
579 struct cb *cb_to_send;
580 struct cb *cb_to_clean;
581 __le16 tx_command;
582 /* End: frequently used values: keep adjacent for cache effect */
584 enum {
585 ich = (1 << 0),
586 promiscuous = (1 << 1),
587 multicast_all = (1 << 2),
588 wol_magic = (1 << 3),
589 ich_10h_workaround = (1 << 4),
590 } flags ____cacheline_aligned;
592 enum mac mac;
593 enum phy phy;
594 struct params params;
595 struct timer_list watchdog;
596 struct mii_if_info mii;
597 struct work_struct tx_timeout_task;
598 enum loopback loopback;
600 struct mem *mem;
601 dma_addr_t dma_addr;
603 struct pci_pool *cbs_pool;
604 dma_addr_t cbs_dma_addr;
605 u8 adaptive_ifs;
606 u8 tx_threshold;
607 u32 tx_frames;
608 u32 tx_collisions;
609 u32 tx_deferred;
610 u32 tx_single_collisions;
611 u32 tx_multiple_collisions;
612 u32 tx_fc_pause;
613 u32 tx_tco_frames;
615 u32 rx_fc_pause;
616 u32 rx_fc_unsupported;
617 u32 rx_tco_frames;
618 u32 rx_over_length_errors;
620 u16 eeprom_wc;
621 __le16 eeprom[256];
622 spinlock_t mdio_lock;
623 const struct firmware *fw;
626 static inline void e100_write_flush(struct nic *nic)
628 /* Flush previous PCI writes through intermediate bridges
629 * by doing a benign read */
630 (void)ioread8(&nic->csr->scb.status);
633 static void e100_enable_irq(struct nic *nic)
635 unsigned long flags;
637 spin_lock_irqsave(&nic->cmd_lock, flags);
638 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
639 e100_write_flush(nic);
640 spin_unlock_irqrestore(&nic->cmd_lock, flags);
643 static void e100_disable_irq(struct nic *nic)
645 unsigned long flags;
647 spin_lock_irqsave(&nic->cmd_lock, flags);
648 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
649 e100_write_flush(nic);
650 spin_unlock_irqrestore(&nic->cmd_lock, flags);
653 static void e100_hw_reset(struct nic *nic)
655 /* Put CU and RU into idle with a selective reset to get
656 * device off of PCI bus */
657 iowrite32(selective_reset, &nic->csr->port);
658 e100_write_flush(nic); udelay(20);
660 /* Now fully reset device */
661 iowrite32(software_reset, &nic->csr->port);
662 e100_write_flush(nic); udelay(20);
664 /* Mask off our interrupt line - it's unmasked after reset */
665 e100_disable_irq(nic);
668 static int e100_self_test(struct nic *nic)
670 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
672 /* Passing the self-test is a pretty good indication
673 * that the device can DMA to/from host memory */
675 nic->mem->selftest.signature = 0;
676 nic->mem->selftest.result = 0xFFFFFFFF;
678 iowrite32(selftest | dma_addr, &nic->csr->port);
679 e100_write_flush(nic);
680 /* Wait 10 msec for self-test to complete */
681 msleep(10);
683 /* Interrupts are enabled after self-test */
684 e100_disable_irq(nic);
686 /* Check results of self-test */
687 if (nic->mem->selftest.result != 0) {
688 netif_err(nic, hw, nic->netdev,
689 "Self-test failed: result=0x%08X\n",
690 nic->mem->selftest.result);
691 return -ETIMEDOUT;
693 if (nic->mem->selftest.signature == 0) {
694 netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
695 return -ETIMEDOUT;
698 return 0;
701 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
703 u32 cmd_addr_data[3];
704 u8 ctrl;
705 int i, j;
707 /* Three cmds: write/erase enable, write data, write/erase disable */
708 cmd_addr_data[0] = op_ewen << (addr_len - 2);
709 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
710 le16_to_cpu(data);
711 cmd_addr_data[2] = op_ewds << (addr_len - 2);
713 /* Bit-bang cmds to write word to eeprom */
714 for (j = 0; j < 3; j++) {
716 /* Chip select */
717 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
718 e100_write_flush(nic); udelay(4);
720 for (i = 31; i >= 0; i--) {
721 ctrl = (cmd_addr_data[j] & (1 << i)) ?
722 eecs | eedi : eecs;
723 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
724 e100_write_flush(nic); udelay(4);
726 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
727 e100_write_flush(nic); udelay(4);
729 /* Wait 10 msec for cmd to complete */
730 msleep(10);
732 /* Chip deselect */
733 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
734 e100_write_flush(nic); udelay(4);
738 /* General technique stolen from the eepro100 driver - very clever */
739 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
741 u32 cmd_addr_data;
742 u16 data = 0;
743 u8 ctrl;
744 int i;
746 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
748 /* Chip select */
749 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
750 e100_write_flush(nic); udelay(4);
752 /* Bit-bang to read word from eeprom */
753 for (i = 31; i >= 0; i--) {
754 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
755 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
756 e100_write_flush(nic); udelay(4);
758 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
759 e100_write_flush(nic); udelay(4);
761 /* Eeprom drives a dummy zero to EEDO after receiving
762 * complete address. Use this to adjust addr_len. */
763 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
764 if (!(ctrl & eedo) && i > 16) {
765 *addr_len -= (i - 16);
766 i = 17;
769 data = (data << 1) | (ctrl & eedo ? 1 : 0);
772 /* Chip deselect */
773 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
774 e100_write_flush(nic); udelay(4);
776 return cpu_to_le16(data);
779 /* Load entire EEPROM image into driver cache and validate checksum */
780 static int e100_eeprom_load(struct nic *nic)
782 u16 addr, addr_len = 8, checksum = 0;
784 /* Try reading with an 8-bit addr len to discover actual addr len */
785 e100_eeprom_read(nic, &addr_len, 0);
786 nic->eeprom_wc = 1 << addr_len;
788 for (addr = 0; addr < nic->eeprom_wc; addr++) {
789 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
790 if (addr < nic->eeprom_wc - 1)
791 checksum += le16_to_cpu(nic->eeprom[addr]);
794 /* The checksum, stored in the last word, is calculated such that
795 * the sum of words should be 0xBABA */
796 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
797 netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
798 if (!eeprom_bad_csum_allow)
799 return -EAGAIN;
802 return 0;
805 /* Save (portion of) driver EEPROM cache to device and update checksum */
806 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
808 u16 addr, addr_len = 8, checksum = 0;
810 /* Try reading with an 8-bit addr len to discover actual addr len */
811 e100_eeprom_read(nic, &addr_len, 0);
812 nic->eeprom_wc = 1 << addr_len;
814 if (start + count >= nic->eeprom_wc)
815 return -EINVAL;
817 for (addr = start; addr < start + count; addr++)
818 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
820 /* The checksum, stored in the last word, is calculated such that
821 * the sum of words should be 0xBABA */
822 for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
823 checksum += le16_to_cpu(nic->eeprom[addr]);
824 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
825 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
826 nic->eeprom[nic->eeprom_wc - 1]);
828 return 0;
831 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
832 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
833 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
835 unsigned long flags;
836 unsigned int i;
837 int err = 0;
839 spin_lock_irqsave(&nic->cmd_lock, flags);
841 /* Previous command is accepted when SCB clears */
842 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
843 if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
844 break;
845 cpu_relax();
846 if (unlikely(i > E100_WAIT_SCB_FAST))
847 udelay(5);
849 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
850 err = -EAGAIN;
851 goto err_unlock;
854 if (unlikely(cmd != cuc_resume))
855 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
856 iowrite8(cmd, &nic->csr->scb.cmd_lo);
858 err_unlock:
859 spin_unlock_irqrestore(&nic->cmd_lock, flags);
861 return err;
864 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
865 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
867 struct cb *cb;
868 unsigned long flags;
869 int err = 0;
871 spin_lock_irqsave(&nic->cb_lock, flags);
873 if (unlikely(!nic->cbs_avail)) {
874 err = -ENOMEM;
875 goto err_unlock;
878 cb = nic->cb_to_use;
879 nic->cb_to_use = cb->next;
880 nic->cbs_avail--;
881 cb->skb = skb;
883 if (unlikely(!nic->cbs_avail))
884 err = -ENOSPC;
886 cb_prepare(nic, cb, skb);
888 /* Order is important otherwise we'll be in a race with h/w:
889 * set S-bit in current first, then clear S-bit in previous. */
890 cb->command |= cpu_to_le16(cb_s);
891 wmb();
892 cb->prev->command &= cpu_to_le16(~cb_s);
894 while (nic->cb_to_send != nic->cb_to_use) {
895 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
896 nic->cb_to_send->dma_addr))) {
897 /* Ok, here's where things get sticky. It's
898 * possible that we can't schedule the command
899 * because the controller is too busy, so
900 * let's just queue the command and try again
901 * when another command is scheduled. */
902 if (err == -ENOSPC) {
903 //request a reset
904 schedule_work(&nic->tx_timeout_task);
906 break;
907 } else {
908 nic->cuc_cmd = cuc_resume;
909 nic->cb_to_send = nic->cb_to_send->next;
913 err_unlock:
914 spin_unlock_irqrestore(&nic->cb_lock, flags);
916 return err;
919 static int mdio_read(struct net_device *netdev, int addr, int reg)
921 struct nic *nic = netdev_priv(netdev);
922 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
925 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
927 struct nic *nic = netdev_priv(netdev);
929 nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
932 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
933 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
935 u32 data_out = 0;
936 unsigned int i;
937 unsigned long flags;
941 * Stratus87247: we shouldn't be writing the MDI control
942 * register until the Ready bit shows True. Also, since
943 * manipulation of the MDI control registers is a multi-step
944 * procedure it should be done under lock.
946 spin_lock_irqsave(&nic->mdio_lock, flags);
947 for (i = 100; i; --i) {
948 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
949 break;
950 udelay(20);
952 if (unlikely(!i)) {
953 netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
954 spin_unlock_irqrestore(&nic->mdio_lock, flags);
955 return 0; /* No way to indicate timeout error */
957 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
959 for (i = 0; i < 100; i++) {
960 udelay(20);
961 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
962 break;
964 spin_unlock_irqrestore(&nic->mdio_lock, flags);
965 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
966 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
967 dir == mdi_read ? "READ" : "WRITE",
968 addr, reg, data, data_out);
969 return (u16)data_out;
972 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
973 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
974 u32 addr,
975 u32 dir,
976 u32 reg,
977 u16 data)
979 if ((reg == MII_BMCR) && (dir == mdi_write)) {
980 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
981 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
982 MII_ADVERTISE);
985 * Workaround Si issue where sometimes the part will not
986 * autoneg to 100Mbps even when advertised.
988 if (advert & ADVERTISE_100FULL)
989 data |= BMCR_SPEED100 | BMCR_FULLDPLX;
990 else if (advert & ADVERTISE_100HALF)
991 data |= BMCR_SPEED100;
994 return mdio_ctrl_hw(nic, addr, dir, reg, data);
997 /* Fully software-emulated mdio_ctrl() function for cards without
998 * MII-compliant PHYs.
999 * For now, this is mainly geared towards 80c24 support; in case of further
1000 * requirements for other types (i82503, ...?) either extend this mechanism
1001 * or split it, whichever is cleaner.
1003 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
1004 u32 addr,
1005 u32 dir,
1006 u32 reg,
1007 u16 data)
1009 /* might need to allocate a netdev_priv'ed register array eventually
1010 * to be able to record state changes, but for now
1011 * some fully hardcoded register handling ought to be ok I guess. */
1013 if (dir == mdi_read) {
1014 switch (reg) {
1015 case MII_BMCR:
1016 /* Auto-negotiation, right? */
1017 return BMCR_ANENABLE |
1018 BMCR_FULLDPLX;
1019 case MII_BMSR:
1020 return BMSR_LSTATUS /* for mii_link_ok() */ |
1021 BMSR_ANEGCAPABLE |
1022 BMSR_10FULL;
1023 case MII_ADVERTISE:
1024 /* 80c24 is a "combo card" PHY, right? */
1025 return ADVERTISE_10HALF |
1026 ADVERTISE_10FULL;
1027 default:
1028 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1029 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1030 dir == mdi_read ? "READ" : "WRITE",
1031 addr, reg, data);
1032 return 0xFFFF;
1034 } else {
1035 switch (reg) {
1036 default:
1037 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1038 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1039 dir == mdi_read ? "READ" : "WRITE",
1040 addr, reg, data);
1041 return 0xFFFF;
1045 static inline int e100_phy_supports_mii(struct nic *nic)
1047 /* for now, just check it by comparing whether we
1048 are using MII software emulation.
1050 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1053 static void e100_get_defaults(struct nic *nic)
1055 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1056 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
1058 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1059 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1060 if (nic->mac == mac_unknown)
1061 nic->mac = mac_82557_D100_A;
1063 nic->params.rfds = rfds;
1064 nic->params.cbs = cbs;
1066 /* Quadwords to DMA into FIFO before starting frame transmit */
1067 nic->tx_threshold = 0xE0;
1069 /* no interrupt for every tx completion, delay = 256us if not 557 */
1070 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1071 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1073 /* Template for a freshly allocated RFD */
1074 nic->blank_rfd.command = 0;
1075 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1076 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
1078 /* MII setup */
1079 nic->mii.phy_id_mask = 0x1F;
1080 nic->mii.reg_num_mask = 0x1F;
1081 nic->mii.dev = nic->netdev;
1082 nic->mii.mdio_read = mdio_read;
1083 nic->mii.mdio_write = mdio_write;
1086 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1088 struct config *config = &cb->u.config;
1089 u8 *c = (u8 *)config;
1091 cb->command = cpu_to_le16(cb_config);
1093 memset(config, 0, sizeof(struct config));
1095 config->byte_count = 0x16; /* bytes in this struct */
1096 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
1097 config->direct_rx_dma = 0x1; /* reserved */
1098 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
1099 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
1100 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
1101 config->tx_underrun_retry = 0x3; /* # of underrun retries */
1102 if (e100_phy_supports_mii(nic))
1103 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */
1104 config->pad10 = 0x6;
1105 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1106 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1107 config->ifs = 0x6; /* x16 = inter frame spacing */
1108 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
1109 config->pad15_1 = 0x1;
1110 config->pad15_2 = 0x1;
1111 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
1112 config->fc_delay_hi = 0x40; /* time delay for fc frame */
1113 config->tx_padding = 0x1; /* 1=pad short frames */
1114 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
1115 config->pad18 = 0x1;
1116 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
1117 config->pad20_1 = 0x1F;
1118 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
1119 config->pad21_1 = 0x5;
1121 config->adaptive_ifs = nic->adaptive_ifs;
1122 config->loopback = nic->loopback;
1124 if (nic->mii.force_media && nic->mii.full_duplex)
1125 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1127 if (nic->flags & promiscuous || nic->loopback) {
1128 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1129 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1130 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1133 if (nic->flags & multicast_all)
1134 config->multicast_all = 0x1; /* 1=accept, 0=no */
1136 /* disable WoL when up */
1137 if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1138 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1140 if (nic->mac >= mac_82558_D101_A4) {
1141 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1142 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1143 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1144 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
1145 if (nic->mac >= mac_82559_D101M) {
1146 config->tno_intr = 0x1; /* TCO stats enable */
1147 /* Enable TCO in extended config */
1148 if (nic->mac >= mac_82551_10) {
1149 config->byte_count = 0x20; /* extended bytes */
1150 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1152 } else {
1153 config->standard_stat_counter = 0x0;
1157 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1158 "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1159 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1160 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1161 "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1162 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1163 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1164 "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1165 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1168 /*************************************************************************
1169 * CPUSaver parameters
1171 * All CPUSaver parameters are 16-bit literals that are part of a
1172 * "move immediate value" instruction. By changing the value of
1173 * the literal in the instruction before the code is loaded, the
1174 * driver can change the algorithm.
1176 * INTDELAY - This loads the dead-man timer with its initial value.
1177 * When this timer expires the interrupt is asserted, and the
1178 * timer is reset each time a new packet is received. (see
1179 * BUNDLEMAX below to set the limit on number of chained packets)
1180 * The current default is 0x600 or 1536. Experiments show that
1181 * the value should probably stay within the 0x200 - 0x1000.
1183 * BUNDLEMAX -
1184 * This sets the maximum number of frames that will be bundled. In
1185 * some situations, such as the TCP windowing algorithm, it may be
1186 * better to limit the growth of the bundle size than let it go as
1187 * high as it can, because that could cause too much added latency.
1188 * The default is six, because this is the number of packets in the
1189 * default TCP window size. A value of 1 would make CPUSaver indicate
1190 * an interrupt for every frame received. If you do not want to put
1191 * a limit on the bundle size, set this value to xFFFF.
1193 * BUNDLESMALL -
1194 * This contains a bit-mask describing the minimum size frame that
1195 * will be bundled. The default masks the lower 7 bits, which means
1196 * that any frame less than 128 bytes in length will not be bundled,
1197 * but will instead immediately generate an interrupt. This does
1198 * not affect the current bundle in any way. Any frame that is 128
1199 * bytes or large will be bundled normally. This feature is meant
1200 * to provide immediate indication of ACK frames in a TCP environment.
1201 * Customers were seeing poor performance when a machine with CPUSaver
1202 * enabled was sending but not receiving. The delay introduced when
1203 * the ACKs were received was enough to reduce total throughput, because
1204 * the sender would sit idle until the ACK was finally seen.
1206 * The current default is 0xFF80, which masks out the lower 7 bits.
1207 * This means that any frame which is x7F (127) bytes or smaller
1208 * will cause an immediate interrupt. Because this value must be a
1209 * bit mask, there are only a few valid values that can be used. To
1210 * turn this feature off, the driver can write the value xFFFF to the
1211 * lower word of this instruction (in the same way that the other
1212 * parameters are used). Likewise, a value of 0xF800 (2047) would
1213 * cause an interrupt to be generated for every frame, because all
1214 * standard Ethernet frames are <= 2047 bytes in length.
1215 *************************************************************************/
1217 /* if you wish to disable the ucode functionality, while maintaining the
1218 * workarounds it provides, set the following defines to:
1219 * BUNDLESMALL 0
1220 * BUNDLEMAX 1
1221 * INTDELAY 1
1223 #define BUNDLESMALL 1
1224 #define BUNDLEMAX (u16)6
1225 #define INTDELAY (u16)1536 /* 0x600 */
1227 /* Initialize firmware */
1228 static const struct firmware *e100_request_firmware(struct nic *nic)
1230 const char *fw_name;
1231 const struct firmware *fw = nic->fw;
1232 u8 timer, bundle, min_size;
1233 int err = 0;
1235 /* do not load u-code for ICH devices */
1236 if (nic->flags & ich)
1237 return NULL;
1239 /* Search for ucode match against h/w revision */
1240 if (nic->mac == mac_82559_D101M)
1241 fw_name = FIRMWARE_D101M;
1242 else if (nic->mac == mac_82559_D101S)
1243 fw_name = FIRMWARE_D101S;
1244 else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10)
1245 fw_name = FIRMWARE_D102E;
1246 else /* No ucode on other devices */
1247 return NULL;
1249 /* If the firmware has not previously been loaded, request a pointer
1250 * to it. If it was previously loaded, we are reinitializing the
1251 * adapter, possibly in a resume from hibernate, in which case
1252 * request_firmware() cannot be used.
1254 if (!fw)
1255 err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1257 if (err) {
1258 netif_err(nic, probe, nic->netdev,
1259 "Failed to load firmware \"%s\": %d\n",
1260 fw_name, err);
1261 return ERR_PTR(err);
1264 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1265 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1266 if (fw->size != UCODE_SIZE * 4 + 3) {
1267 netif_err(nic, probe, nic->netdev,
1268 "Firmware \"%s\" has wrong size %zu\n",
1269 fw_name, fw->size);
1270 release_firmware(fw);
1271 return ERR_PTR(-EINVAL);
1274 /* Read timer, bundle and min_size from end of firmware blob */
1275 timer = fw->data[UCODE_SIZE * 4];
1276 bundle = fw->data[UCODE_SIZE * 4 + 1];
1277 min_size = fw->data[UCODE_SIZE * 4 + 2];
1279 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1280 min_size >= UCODE_SIZE) {
1281 netif_err(nic, probe, nic->netdev,
1282 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1283 fw_name, timer, bundle, min_size);
1284 release_firmware(fw);
1285 return ERR_PTR(-EINVAL);
1288 /* OK, firmware is validated and ready to use. Save a pointer
1289 * to it in the nic */
1290 nic->fw = fw;
1291 return fw;
1294 static void e100_setup_ucode(struct nic *nic, struct cb *cb,
1295 struct sk_buff *skb)
1297 const struct firmware *fw = (void *)skb;
1298 u8 timer, bundle, min_size;
1300 /* It's not a real skb; we just abused the fact that e100_exec_cb
1301 will pass it through to here... */
1302 cb->skb = NULL;
1304 /* firmware is stored as little endian already */
1305 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1307 /* Read timer, bundle and min_size from end of firmware blob */
1308 timer = fw->data[UCODE_SIZE * 4];
1309 bundle = fw->data[UCODE_SIZE * 4 + 1];
1310 min_size = fw->data[UCODE_SIZE * 4 + 2];
1312 /* Insert user-tunable settings in cb->u.ucode */
1313 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1314 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1315 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1316 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1317 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1318 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1320 cb->command = cpu_to_le16(cb_ucode | cb_el);
1323 static inline int e100_load_ucode_wait(struct nic *nic)
1325 const struct firmware *fw;
1326 int err = 0, counter = 50;
1327 struct cb *cb = nic->cb_to_clean;
1329 fw = e100_request_firmware(nic);
1330 /* If it's NULL, then no ucode is required */
1331 if (!fw || IS_ERR(fw))
1332 return PTR_ERR(fw);
1334 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1335 netif_err(nic, probe, nic->netdev,
1336 "ucode cmd failed with error %d\n", err);
1338 /* must restart cuc */
1339 nic->cuc_cmd = cuc_start;
1341 /* wait for completion */
1342 e100_write_flush(nic);
1343 udelay(10);
1345 /* wait for possibly (ouch) 500ms */
1346 while (!(cb->status & cpu_to_le16(cb_complete))) {
1347 msleep(10);
1348 if (!--counter) break;
1351 /* ack any interrupts, something could have been set */
1352 iowrite8(~0, &nic->csr->scb.stat_ack);
1354 /* if the command failed, or is not OK, notify and return */
1355 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1356 netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1357 err = -EPERM;
1360 return err;
1363 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1364 struct sk_buff *skb)
1366 cb->command = cpu_to_le16(cb_iaaddr);
1367 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1370 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1372 cb->command = cpu_to_le16(cb_dump);
1373 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1374 offsetof(struct mem, dump_buf));
1377 static int e100_phy_check_without_mii(struct nic *nic)
1379 u8 phy_type;
1380 int without_mii;
1382 phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1384 switch (phy_type) {
1385 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1386 case I82503: /* Non-MII PHY; UNTESTED! */
1387 case S80C24: /* Non-MII PHY; tested and working */
1388 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1389 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1390 * doesn't have a programming interface of any sort. The
1391 * media is sensed automatically based on how the link partner
1392 * is configured. This is, in essence, manual configuration.
1394 netif_info(nic, probe, nic->netdev,
1395 "found MII-less i82503 or 80c24 or other PHY\n");
1397 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1398 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1400 /* these might be needed for certain MII-less cards...
1401 * nic->flags |= ich;
1402 * nic->flags |= ich_10h_workaround; */
1404 without_mii = 1;
1405 break;
1406 default:
1407 without_mii = 0;
1408 break;
1410 return without_mii;
1413 #define NCONFIG_AUTO_SWITCH 0x0080
1414 #define MII_NSC_CONG MII_RESV1
1415 #define NSC_CONG_ENABLE 0x0100
1416 #define NSC_CONG_TXREADY 0x0400
1417 #define ADVERTISE_FC_SUPPORTED 0x0400
1418 static int e100_phy_init(struct nic *nic)
1420 struct net_device *netdev = nic->netdev;
1421 u32 addr;
1422 u16 bmcr, stat, id_lo, id_hi, cong;
1424 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1425 for (addr = 0; addr < 32; addr++) {
1426 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1427 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1428 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1429 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1430 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1431 break;
1433 if (addr == 32) {
1434 /* uhoh, no PHY detected: check whether we seem to be some
1435 * weird, rare variant which is *known* to not have any MII.
1436 * But do this AFTER MII checking only, since this does
1437 * lookup of EEPROM values which may easily be unreliable. */
1438 if (e100_phy_check_without_mii(nic))
1439 return 0; /* simply return and hope for the best */
1440 else {
1441 /* for unknown cases log a fatal error */
1442 netif_err(nic, hw, nic->netdev,
1443 "Failed to locate any known PHY, aborting\n");
1444 return -EAGAIN;
1446 } else
1447 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1448 "phy_addr = %d\n", nic->mii.phy_id);
1450 /* Get phy ID */
1451 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1452 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1453 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1454 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1455 "phy ID = 0x%08X\n", nic->phy);
1457 /* Select the phy and isolate the rest */
1458 for (addr = 0; addr < 32; addr++) {
1459 if (addr != nic->mii.phy_id) {
1460 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1461 } else if (nic->phy != phy_82552_v) {
1462 bmcr = mdio_read(netdev, addr, MII_BMCR);
1463 mdio_write(netdev, addr, MII_BMCR,
1464 bmcr & ~BMCR_ISOLATE);
1468 * Workaround for 82552:
1469 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1470 * other phy_id's) using bmcr value from addr discovery loop above.
1472 if (nic->phy == phy_82552_v)
1473 mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1474 bmcr & ~BMCR_ISOLATE);
1476 /* Handle National tx phys */
1477 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1478 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1479 /* Disable congestion control */
1480 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1481 cong |= NSC_CONG_TXREADY;
1482 cong &= ~NSC_CONG_ENABLE;
1483 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1486 if (nic->phy == phy_82552_v) {
1487 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1489 /* assign special tweaked mdio_ctrl() function */
1490 nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1492 /* Workaround Si not advertising flow-control during autoneg */
1493 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1494 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1496 /* Reset for the above changes to take effect */
1497 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1498 bmcr |= BMCR_RESET;
1499 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1500 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1501 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1502 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1503 /* enable/disable MDI/MDI-X auto-switching. */
1504 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1505 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1508 return 0;
1511 static int e100_hw_init(struct nic *nic)
1513 int err = 0;
1515 e100_hw_reset(nic);
1517 netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1518 if (!in_interrupt() && (err = e100_self_test(nic)))
1519 return err;
1521 if ((err = e100_phy_init(nic)))
1522 return err;
1523 if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1524 return err;
1525 if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1526 return err;
1527 if ((err = e100_load_ucode_wait(nic)))
1528 return err;
1529 if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1530 return err;
1531 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1532 return err;
1533 if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1534 nic->dma_addr + offsetof(struct mem, stats))))
1535 return err;
1536 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1537 return err;
1539 e100_disable_irq(nic);
1541 return 0;
1544 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1546 struct net_device *netdev = nic->netdev;
1547 struct netdev_hw_addr *ha;
1548 u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1550 cb->command = cpu_to_le16(cb_multi);
1551 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1552 i = 0;
1553 netdev_for_each_mc_addr(ha, netdev) {
1554 if (i == count)
1555 break;
1556 memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1557 ETH_ALEN);
1561 static void e100_set_multicast_list(struct net_device *netdev)
1563 struct nic *nic = netdev_priv(netdev);
1565 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1566 "mc_count=%d, flags=0x%04X\n",
1567 netdev_mc_count(netdev), netdev->flags);
1569 if (netdev->flags & IFF_PROMISC)
1570 nic->flags |= promiscuous;
1571 else
1572 nic->flags &= ~promiscuous;
1574 if (netdev->flags & IFF_ALLMULTI ||
1575 netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1576 nic->flags |= multicast_all;
1577 else
1578 nic->flags &= ~multicast_all;
1580 e100_exec_cb(nic, NULL, e100_configure);
1581 e100_exec_cb(nic, NULL, e100_multi);
1584 static void e100_update_stats(struct nic *nic)
1586 struct net_device *dev = nic->netdev;
1587 struct net_device_stats *ns = &dev->stats;
1588 struct stats *s = &nic->mem->stats;
1589 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1590 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1591 &s->complete;
1593 /* Device's stats reporting may take several microseconds to
1594 * complete, so we're always waiting for results of the
1595 * previous command. */
1597 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1598 *complete = 0;
1599 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1600 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1601 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1602 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1603 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1604 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1605 ns->collisions += nic->tx_collisions;
1606 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1607 le32_to_cpu(s->tx_lost_crs);
1608 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1609 nic->rx_over_length_errors;
1610 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1611 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1612 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1613 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1614 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1615 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1616 le32_to_cpu(s->rx_alignment_errors) +
1617 le32_to_cpu(s->rx_short_frame_errors) +
1618 le32_to_cpu(s->rx_cdt_errors);
1619 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1620 nic->tx_single_collisions +=
1621 le32_to_cpu(s->tx_single_collisions);
1622 nic->tx_multiple_collisions +=
1623 le32_to_cpu(s->tx_multiple_collisions);
1624 if (nic->mac >= mac_82558_D101_A4) {
1625 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1626 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1627 nic->rx_fc_unsupported +=
1628 le32_to_cpu(s->fc_rcv_unsupported);
1629 if (nic->mac >= mac_82559_D101M) {
1630 nic->tx_tco_frames +=
1631 le16_to_cpu(s->xmt_tco_frames);
1632 nic->rx_tco_frames +=
1633 le16_to_cpu(s->rcv_tco_frames);
1639 if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1640 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1641 "exec cuc_dump_reset failed\n");
1644 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1646 /* Adjust inter-frame-spacing (IFS) between two transmits if
1647 * we're getting collisions on a half-duplex connection. */
1649 if (duplex == DUPLEX_HALF) {
1650 u32 prev = nic->adaptive_ifs;
1651 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1653 if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1654 (nic->tx_frames > min_frames)) {
1655 if (nic->adaptive_ifs < 60)
1656 nic->adaptive_ifs += 5;
1657 } else if (nic->tx_frames < min_frames) {
1658 if (nic->adaptive_ifs >= 5)
1659 nic->adaptive_ifs -= 5;
1661 if (nic->adaptive_ifs != prev)
1662 e100_exec_cb(nic, NULL, e100_configure);
1666 static void e100_watchdog(unsigned long data)
1668 struct nic *nic = (struct nic *)data;
1669 struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1670 u32 speed;
1672 netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1673 "right now = %ld\n", jiffies);
1675 /* mii library handles link maintenance tasks */
1677 mii_ethtool_gset(&nic->mii, &cmd);
1678 speed = ethtool_cmd_speed(&cmd);
1680 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1681 netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1682 speed == SPEED_100 ? 100 : 10,
1683 cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1684 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1685 netdev_info(nic->netdev, "NIC Link is Down\n");
1688 mii_check_link(&nic->mii);
1690 /* Software generated interrupt to recover from (rare) Rx
1691 * allocation failure.
1692 * Unfortunately have to use a spinlock to not re-enable interrupts
1693 * accidentally, due to hardware that shares a register between the
1694 * interrupt mask bit and the SW Interrupt generation bit */
1695 spin_lock_irq(&nic->cmd_lock);
1696 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1697 e100_write_flush(nic);
1698 spin_unlock_irq(&nic->cmd_lock);
1700 e100_update_stats(nic);
1701 e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1703 if (nic->mac <= mac_82557_D100_C)
1704 /* Issue a multicast command to workaround a 557 lock up */
1705 e100_set_multicast_list(nic->netdev);
1707 if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1708 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1709 nic->flags |= ich_10h_workaround;
1710 else
1711 nic->flags &= ~ich_10h_workaround;
1713 mod_timer(&nic->watchdog,
1714 round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1717 static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1718 struct sk_buff *skb)
1720 cb->command = nic->tx_command;
1721 /* interrupt every 16 packets regardless of delay */
1722 if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1723 cb->command |= cpu_to_le16(cb_i);
1724 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1725 cb->u.tcb.tcb_byte_count = 0;
1726 cb->u.tcb.threshold = nic->tx_threshold;
1727 cb->u.tcb.tbd_count = 1;
1728 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1729 skb->data, skb->len, PCI_DMA_TODEVICE));
1730 /* check for mapping failure? */
1731 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1734 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1735 struct net_device *netdev)
1737 struct nic *nic = netdev_priv(netdev);
1738 int err;
1740 if (nic->flags & ich_10h_workaround) {
1741 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1742 Issue a NOP command followed by a 1us delay before
1743 issuing the Tx command. */
1744 if (e100_exec_cmd(nic, cuc_nop, 0))
1745 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1746 "exec cuc_nop failed\n");
1747 udelay(1);
1750 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1752 switch (err) {
1753 case -ENOSPC:
1754 /* We queued the skb, but now we're out of space. */
1755 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1756 "No space for CB\n");
1757 netif_stop_queue(netdev);
1758 break;
1759 case -ENOMEM:
1760 /* This is a hard error - log it. */
1761 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1762 "Out of Tx resources, returning skb\n");
1763 netif_stop_queue(netdev);
1764 return NETDEV_TX_BUSY;
1767 return NETDEV_TX_OK;
1770 static int e100_tx_clean(struct nic *nic)
1772 struct net_device *dev = nic->netdev;
1773 struct cb *cb;
1774 int tx_cleaned = 0;
1776 spin_lock(&nic->cb_lock);
1778 /* Clean CBs marked complete */
1779 for (cb = nic->cb_to_clean;
1780 cb->status & cpu_to_le16(cb_complete);
1781 cb = nic->cb_to_clean = cb->next) {
1782 rmb(); /* read skb after status */
1783 netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1784 "cb[%d]->status = 0x%04X\n",
1785 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1786 cb->status);
1788 if (likely(cb->skb != NULL)) {
1789 dev->stats.tx_packets++;
1790 dev->stats.tx_bytes += cb->skb->len;
1792 pci_unmap_single(nic->pdev,
1793 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1794 le16_to_cpu(cb->u.tcb.tbd.size),
1795 PCI_DMA_TODEVICE);
1796 dev_kfree_skb_any(cb->skb);
1797 cb->skb = NULL;
1798 tx_cleaned = 1;
1800 cb->status = 0;
1801 nic->cbs_avail++;
1804 spin_unlock(&nic->cb_lock);
1806 /* Recover from running out of Tx resources in xmit_frame */
1807 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1808 netif_wake_queue(nic->netdev);
1810 return tx_cleaned;
1813 static void e100_clean_cbs(struct nic *nic)
1815 if (nic->cbs) {
1816 while (nic->cbs_avail != nic->params.cbs.count) {
1817 struct cb *cb = nic->cb_to_clean;
1818 if (cb->skb) {
1819 pci_unmap_single(nic->pdev,
1820 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1821 le16_to_cpu(cb->u.tcb.tbd.size),
1822 PCI_DMA_TODEVICE);
1823 dev_kfree_skb(cb->skb);
1825 nic->cb_to_clean = nic->cb_to_clean->next;
1826 nic->cbs_avail++;
1828 pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1829 nic->cbs = NULL;
1830 nic->cbs_avail = 0;
1832 nic->cuc_cmd = cuc_start;
1833 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1834 nic->cbs;
1837 static int e100_alloc_cbs(struct nic *nic)
1839 struct cb *cb;
1840 unsigned int i, count = nic->params.cbs.count;
1842 nic->cuc_cmd = cuc_start;
1843 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1844 nic->cbs_avail = 0;
1846 nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL,
1847 &nic->cbs_dma_addr);
1848 if (!nic->cbs)
1849 return -ENOMEM;
1850 memset(nic->cbs, 0, count * sizeof(struct cb));
1852 for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1853 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1854 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1856 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1857 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1858 ((i+1) % count) * sizeof(struct cb));
1861 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1862 nic->cbs_avail = count;
1864 return 0;
1867 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1869 if (!nic->rxs) return;
1870 if (RU_SUSPENDED != nic->ru_running) return;
1872 /* handle init time starts */
1873 if (!rx) rx = nic->rxs;
1875 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1876 if (rx->skb) {
1877 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1878 nic->ru_running = RU_RUNNING;
1882 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1883 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1885 if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1886 return -ENOMEM;
1888 /* Init, and map the RFD. */
1889 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1890 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1891 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1893 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1894 dev_kfree_skb_any(rx->skb);
1895 rx->skb = NULL;
1896 rx->dma_addr = 0;
1897 return -ENOMEM;
1900 /* Link the RFD to end of RFA by linking previous RFD to
1901 * this one. We are safe to touch the previous RFD because
1902 * it is protected by the before last buffer's el bit being set */
1903 if (rx->prev->skb) {
1904 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1905 put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1906 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1907 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1910 return 0;
1913 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1914 unsigned int *work_done, unsigned int work_to_do)
1916 struct net_device *dev = nic->netdev;
1917 struct sk_buff *skb = rx->skb;
1918 struct rfd *rfd = (struct rfd *)skb->data;
1919 u16 rfd_status, actual_size;
1921 if (unlikely(work_done && *work_done >= work_to_do))
1922 return -EAGAIN;
1924 /* Need to sync before taking a peek at cb_complete bit */
1925 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1926 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1927 rfd_status = le16_to_cpu(rfd->status);
1929 netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1930 "status=0x%04X\n", rfd_status);
1931 rmb(); /* read size after status bit */
1933 /* If data isn't ready, nothing to indicate */
1934 if (unlikely(!(rfd_status & cb_complete))) {
1935 /* If the next buffer has the el bit, but we think the receiver
1936 * is still running, check to see if it really stopped while
1937 * we had interrupts off.
1938 * This allows for a fast restart without re-enabling
1939 * interrupts */
1940 if ((le16_to_cpu(rfd->command) & cb_el) &&
1941 (RU_RUNNING == nic->ru_running))
1943 if (ioread8(&nic->csr->scb.status) & rus_no_res)
1944 nic->ru_running = RU_SUSPENDED;
1945 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
1946 sizeof(struct rfd),
1947 PCI_DMA_FROMDEVICE);
1948 return -ENODATA;
1951 /* Get actual data size */
1952 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1953 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1954 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1956 /* Get data */
1957 pci_unmap_single(nic->pdev, rx->dma_addr,
1958 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1960 /* If this buffer has the el bit, but we think the receiver
1961 * is still running, check to see if it really stopped while
1962 * we had interrupts off.
1963 * This allows for a fast restart without re-enabling interrupts.
1964 * This can happen when the RU sees the size change but also sees
1965 * the el bit set. */
1966 if ((le16_to_cpu(rfd->command) & cb_el) &&
1967 (RU_RUNNING == nic->ru_running)) {
1969 if (ioread8(&nic->csr->scb.status) & rus_no_res)
1970 nic->ru_running = RU_SUSPENDED;
1973 /* Pull off the RFD and put the actual data (minus eth hdr) */
1974 skb_reserve(skb, sizeof(struct rfd));
1975 skb_put(skb, actual_size);
1976 skb->protocol = eth_type_trans(skb, nic->netdev);
1978 if (unlikely(!(rfd_status & cb_ok))) {
1979 /* Don't indicate if hardware indicates errors */
1980 dev_kfree_skb_any(skb);
1981 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1982 /* Don't indicate oversized frames */
1983 nic->rx_over_length_errors++;
1984 dev_kfree_skb_any(skb);
1985 } else {
1986 dev->stats.rx_packets++;
1987 dev->stats.rx_bytes += actual_size;
1988 netif_receive_skb(skb);
1989 if (work_done)
1990 (*work_done)++;
1993 rx->skb = NULL;
1995 return 0;
1998 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1999 unsigned int work_to_do)
2001 struct rx *rx;
2002 int restart_required = 0, err = 0;
2003 struct rx *old_before_last_rx, *new_before_last_rx;
2004 struct rfd *old_before_last_rfd, *new_before_last_rfd;
2006 /* Indicate newly arrived packets */
2007 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2008 err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2009 /* Hit quota or no more to clean */
2010 if (-EAGAIN == err || -ENODATA == err)
2011 break;
2015 /* On EAGAIN, hit quota so have more work to do, restart once
2016 * cleanup is complete.
2017 * Else, are we already rnr? then pay attention!!! this ensures that
2018 * the state machine progression never allows a start with a
2019 * partially cleaned list, avoiding a race between hardware
2020 * and rx_to_clean when in NAPI mode */
2021 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2022 restart_required = 1;
2024 old_before_last_rx = nic->rx_to_use->prev->prev;
2025 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2027 /* Alloc new skbs to refill list */
2028 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2029 if (unlikely(e100_rx_alloc_skb(nic, rx)))
2030 break; /* Better luck next time (see watchdog) */
2033 new_before_last_rx = nic->rx_to_use->prev->prev;
2034 if (new_before_last_rx != old_before_last_rx) {
2035 /* Set the el-bit on the buffer that is before the last buffer.
2036 * This lets us update the next pointer on the last buffer
2037 * without worrying about hardware touching it.
2038 * We set the size to 0 to prevent hardware from touching this
2039 * buffer.
2040 * When the hardware hits the before last buffer with el-bit
2041 * and size of 0, it will RNR interrupt, the RUS will go into
2042 * the No Resources state. It will not complete nor write to
2043 * this buffer. */
2044 new_before_last_rfd =
2045 (struct rfd *)new_before_last_rx->skb->data;
2046 new_before_last_rfd->size = 0;
2047 new_before_last_rfd->command |= cpu_to_le16(cb_el);
2048 pci_dma_sync_single_for_device(nic->pdev,
2049 new_before_last_rx->dma_addr, sizeof(struct rfd),
2050 PCI_DMA_BIDIRECTIONAL);
2052 /* Now that we have a new stopping point, we can clear the old
2053 * stopping point. We must sync twice to get the proper
2054 * ordering on the hardware side of things. */
2055 old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2056 pci_dma_sync_single_for_device(nic->pdev,
2057 old_before_last_rx->dma_addr, sizeof(struct rfd),
2058 PCI_DMA_BIDIRECTIONAL);
2059 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
2060 pci_dma_sync_single_for_device(nic->pdev,
2061 old_before_last_rx->dma_addr, sizeof(struct rfd),
2062 PCI_DMA_BIDIRECTIONAL);
2065 if (restart_required) {
2066 // ack the rnr?
2067 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2068 e100_start_receiver(nic, nic->rx_to_clean);
2069 if (work_done)
2070 (*work_done)++;
2074 static void e100_rx_clean_list(struct nic *nic)
2076 struct rx *rx;
2077 unsigned int i, count = nic->params.rfds.count;
2079 nic->ru_running = RU_UNINITIALIZED;
2081 if (nic->rxs) {
2082 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2083 if (rx->skb) {
2084 pci_unmap_single(nic->pdev, rx->dma_addr,
2085 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2086 dev_kfree_skb(rx->skb);
2089 kfree(nic->rxs);
2090 nic->rxs = NULL;
2093 nic->rx_to_use = nic->rx_to_clean = NULL;
2096 static int e100_rx_alloc_list(struct nic *nic)
2098 struct rx *rx;
2099 unsigned int i, count = nic->params.rfds.count;
2100 struct rfd *before_last;
2102 nic->rx_to_use = nic->rx_to_clean = NULL;
2103 nic->ru_running = RU_UNINITIALIZED;
2105 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2106 return -ENOMEM;
2108 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2109 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2110 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2111 if (e100_rx_alloc_skb(nic, rx)) {
2112 e100_rx_clean_list(nic);
2113 return -ENOMEM;
2116 /* Set the el-bit on the buffer that is before the last buffer.
2117 * This lets us update the next pointer on the last buffer without
2118 * worrying about hardware touching it.
2119 * We set the size to 0 to prevent hardware from touching this buffer.
2120 * When the hardware hits the before last buffer with el-bit and size
2121 * of 0, it will RNR interrupt, the RU will go into the No Resources
2122 * state. It will not complete nor write to this buffer. */
2123 rx = nic->rxs->prev->prev;
2124 before_last = (struct rfd *)rx->skb->data;
2125 before_last->command |= cpu_to_le16(cb_el);
2126 before_last->size = 0;
2127 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2128 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2130 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2131 nic->ru_running = RU_SUSPENDED;
2133 return 0;
2136 static irqreturn_t e100_intr(int irq, void *dev_id)
2138 struct net_device *netdev = dev_id;
2139 struct nic *nic = netdev_priv(netdev);
2140 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2142 netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2143 "stat_ack = 0x%02X\n", stat_ack);
2145 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */
2146 stat_ack == stat_ack_not_present) /* Hardware is ejected */
2147 return IRQ_NONE;
2149 /* Ack interrupt(s) */
2150 iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2152 /* We hit Receive No Resource (RNR); restart RU after cleaning */
2153 if (stat_ack & stat_ack_rnr)
2154 nic->ru_running = RU_SUSPENDED;
2156 if (likely(napi_schedule_prep(&nic->napi))) {
2157 e100_disable_irq(nic);
2158 __napi_schedule(&nic->napi);
2161 return IRQ_HANDLED;
2164 static int e100_poll(struct napi_struct *napi, int budget)
2166 struct nic *nic = container_of(napi, struct nic, napi);
2167 unsigned int work_done = 0;
2169 e100_rx_clean(nic, &work_done, budget);
2170 e100_tx_clean(nic);
2172 /* If budget not fully consumed, exit the polling mode */
2173 if (work_done < budget) {
2174 napi_complete(napi);
2175 e100_enable_irq(nic);
2178 return work_done;
2181 #ifdef CONFIG_NET_POLL_CONTROLLER
2182 static void e100_netpoll(struct net_device *netdev)
2184 struct nic *nic = netdev_priv(netdev);
2186 e100_disable_irq(nic);
2187 e100_intr(nic->pdev->irq, netdev);
2188 e100_tx_clean(nic);
2189 e100_enable_irq(nic);
2191 #endif
2193 static int e100_set_mac_address(struct net_device *netdev, void *p)
2195 struct nic *nic = netdev_priv(netdev);
2196 struct sockaddr *addr = p;
2198 if (!is_valid_ether_addr(addr->sa_data))
2199 return -EADDRNOTAVAIL;
2201 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2202 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2204 return 0;
2207 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2209 if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2210 return -EINVAL;
2211 netdev->mtu = new_mtu;
2212 return 0;
2215 static int e100_asf(struct nic *nic)
2217 /* ASF can be enabled from eeprom */
2218 return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2219 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2220 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2221 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
2224 static int e100_up(struct nic *nic)
2226 int err;
2228 if ((err = e100_rx_alloc_list(nic)))
2229 return err;
2230 if ((err = e100_alloc_cbs(nic)))
2231 goto err_rx_clean_list;
2232 if ((err = e100_hw_init(nic)))
2233 goto err_clean_cbs;
2234 e100_set_multicast_list(nic->netdev);
2235 e100_start_receiver(nic, NULL);
2236 mod_timer(&nic->watchdog, jiffies);
2237 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2238 nic->netdev->name, nic->netdev)))
2239 goto err_no_irq;
2240 netif_wake_queue(nic->netdev);
2241 napi_enable(&nic->napi);
2242 /* enable ints _after_ enabling poll, preventing a race between
2243 * disable ints+schedule */
2244 e100_enable_irq(nic);
2245 return 0;
2247 err_no_irq:
2248 del_timer_sync(&nic->watchdog);
2249 err_clean_cbs:
2250 e100_clean_cbs(nic);
2251 err_rx_clean_list:
2252 e100_rx_clean_list(nic);
2253 return err;
2256 static void e100_down(struct nic *nic)
2258 /* wait here for poll to complete */
2259 napi_disable(&nic->napi);
2260 netif_stop_queue(nic->netdev);
2261 e100_hw_reset(nic);
2262 free_irq(nic->pdev->irq, nic->netdev);
2263 del_timer_sync(&nic->watchdog);
2264 netif_carrier_off(nic->netdev);
2265 e100_clean_cbs(nic);
2266 e100_rx_clean_list(nic);
2269 static void e100_tx_timeout(struct net_device *netdev)
2271 struct nic *nic = netdev_priv(netdev);
2273 /* Reset outside of interrupt context, to avoid request_irq
2274 * in interrupt context */
2275 schedule_work(&nic->tx_timeout_task);
2278 static void e100_tx_timeout_task(struct work_struct *work)
2280 struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2281 struct net_device *netdev = nic->netdev;
2283 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2284 "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2286 rtnl_lock();
2287 if (netif_running(netdev)) {
2288 e100_down(netdev_priv(netdev));
2289 e100_up(netdev_priv(netdev));
2291 rtnl_unlock();
2294 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2296 int err;
2297 struct sk_buff *skb;
2299 /* Use driver resources to perform internal MAC or PHY
2300 * loopback test. A single packet is prepared and transmitted
2301 * in loopback mode, and the test passes if the received
2302 * packet compares byte-for-byte to the transmitted packet. */
2304 if ((err = e100_rx_alloc_list(nic)))
2305 return err;
2306 if ((err = e100_alloc_cbs(nic)))
2307 goto err_clean_rx;
2309 /* ICH PHY loopback is broken so do MAC loopback instead */
2310 if (nic->flags & ich && loopback_mode == lb_phy)
2311 loopback_mode = lb_mac;
2313 nic->loopback = loopback_mode;
2314 if ((err = e100_hw_init(nic)))
2315 goto err_loopback_none;
2317 if (loopback_mode == lb_phy)
2318 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2319 BMCR_LOOPBACK);
2321 e100_start_receiver(nic, NULL);
2323 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2324 err = -ENOMEM;
2325 goto err_loopback_none;
2327 skb_put(skb, ETH_DATA_LEN);
2328 memset(skb->data, 0xFF, ETH_DATA_LEN);
2329 e100_xmit_frame(skb, nic->netdev);
2331 msleep(10);
2333 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2334 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2336 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2337 skb->data, ETH_DATA_LEN))
2338 err = -EAGAIN;
2340 err_loopback_none:
2341 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2342 nic->loopback = lb_none;
2343 e100_clean_cbs(nic);
2344 e100_hw_reset(nic);
2345 err_clean_rx:
2346 e100_rx_clean_list(nic);
2347 return err;
2350 #define MII_LED_CONTROL 0x1B
2351 #define E100_82552_LED_OVERRIDE 0x19
2352 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
2353 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
2355 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2357 struct nic *nic = netdev_priv(netdev);
2358 return mii_ethtool_gset(&nic->mii, cmd);
2361 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2363 struct nic *nic = netdev_priv(netdev);
2364 int err;
2366 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2367 err = mii_ethtool_sset(&nic->mii, cmd);
2368 e100_exec_cb(nic, NULL, e100_configure);
2370 return err;
2373 static void e100_get_drvinfo(struct net_device *netdev,
2374 struct ethtool_drvinfo *info)
2376 struct nic *nic = netdev_priv(netdev);
2377 strcpy(info->driver, DRV_NAME);
2378 strcpy(info->version, DRV_VERSION);
2379 strcpy(info->fw_version, "N/A");
2380 strcpy(info->bus_info, pci_name(nic->pdev));
2383 #define E100_PHY_REGS 0x1C
2384 static int e100_get_regs_len(struct net_device *netdev)
2386 struct nic *nic = netdev_priv(netdev);
2387 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2390 static void e100_get_regs(struct net_device *netdev,
2391 struct ethtool_regs *regs, void *p)
2393 struct nic *nic = netdev_priv(netdev);
2394 u32 *buff = p;
2395 int i;
2397 regs->version = (1 << 24) | nic->pdev->revision;
2398 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2399 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2400 ioread16(&nic->csr->scb.status);
2401 for (i = E100_PHY_REGS; i >= 0; i--)
2402 buff[1 + E100_PHY_REGS - i] =
2403 mdio_read(netdev, nic->mii.phy_id, i);
2404 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2405 e100_exec_cb(nic, NULL, e100_dump);
2406 msleep(10);
2407 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2408 sizeof(nic->mem->dump_buf));
2411 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2413 struct nic *nic = netdev_priv(netdev);
2414 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2415 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2418 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2420 struct nic *nic = netdev_priv(netdev);
2422 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2423 !device_can_wakeup(&nic->pdev->dev))
2424 return -EOPNOTSUPP;
2426 if (wol->wolopts)
2427 nic->flags |= wol_magic;
2428 else
2429 nic->flags &= ~wol_magic;
2431 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2433 e100_exec_cb(nic, NULL, e100_configure);
2435 return 0;
2438 static u32 e100_get_msglevel(struct net_device *netdev)
2440 struct nic *nic = netdev_priv(netdev);
2441 return nic->msg_enable;
2444 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2446 struct nic *nic = netdev_priv(netdev);
2447 nic->msg_enable = value;
2450 static int e100_nway_reset(struct net_device *netdev)
2452 struct nic *nic = netdev_priv(netdev);
2453 return mii_nway_restart(&nic->mii);
2456 static u32 e100_get_link(struct net_device *netdev)
2458 struct nic *nic = netdev_priv(netdev);
2459 return mii_link_ok(&nic->mii);
2462 static int e100_get_eeprom_len(struct net_device *netdev)
2464 struct nic *nic = netdev_priv(netdev);
2465 return nic->eeprom_wc << 1;
2468 #define E100_EEPROM_MAGIC 0x1234
2469 static int e100_get_eeprom(struct net_device *netdev,
2470 struct ethtool_eeprom *eeprom, u8 *bytes)
2472 struct nic *nic = netdev_priv(netdev);
2474 eeprom->magic = E100_EEPROM_MAGIC;
2475 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2477 return 0;
2480 static int e100_set_eeprom(struct net_device *netdev,
2481 struct ethtool_eeprom *eeprom, u8 *bytes)
2483 struct nic *nic = netdev_priv(netdev);
2485 if (eeprom->magic != E100_EEPROM_MAGIC)
2486 return -EINVAL;
2488 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2490 return e100_eeprom_save(nic, eeprom->offset >> 1,
2491 (eeprom->len >> 1) + 1);
2494 static void e100_get_ringparam(struct net_device *netdev,
2495 struct ethtool_ringparam *ring)
2497 struct nic *nic = netdev_priv(netdev);
2498 struct param_range *rfds = &nic->params.rfds;
2499 struct param_range *cbs = &nic->params.cbs;
2501 ring->rx_max_pending = rfds->max;
2502 ring->tx_max_pending = cbs->max;
2503 ring->rx_mini_max_pending = 0;
2504 ring->rx_jumbo_max_pending = 0;
2505 ring->rx_pending = rfds->count;
2506 ring->tx_pending = cbs->count;
2507 ring->rx_mini_pending = 0;
2508 ring->rx_jumbo_pending = 0;
2511 static int e100_set_ringparam(struct net_device *netdev,
2512 struct ethtool_ringparam *ring)
2514 struct nic *nic = netdev_priv(netdev);
2515 struct param_range *rfds = &nic->params.rfds;
2516 struct param_range *cbs = &nic->params.cbs;
2518 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2519 return -EINVAL;
2521 if (netif_running(netdev))
2522 e100_down(nic);
2523 rfds->count = max(ring->rx_pending, rfds->min);
2524 rfds->count = min(rfds->count, rfds->max);
2525 cbs->count = max(ring->tx_pending, cbs->min);
2526 cbs->count = min(cbs->count, cbs->max);
2527 netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2528 rfds->count, cbs->count);
2529 if (netif_running(netdev))
2530 e100_up(nic);
2532 return 0;
2535 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2536 "Link test (on/offline)",
2537 "Eeprom test (on/offline)",
2538 "Self test (offline)",
2539 "Mac loopback (offline)",
2540 "Phy loopback (offline)",
2542 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2544 static void e100_diag_test(struct net_device *netdev,
2545 struct ethtool_test *test, u64 *data)
2547 struct ethtool_cmd cmd;
2548 struct nic *nic = netdev_priv(netdev);
2549 int i, err;
2551 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2552 data[0] = !mii_link_ok(&nic->mii);
2553 data[1] = e100_eeprom_load(nic);
2554 if (test->flags & ETH_TEST_FL_OFFLINE) {
2556 /* save speed, duplex & autoneg settings */
2557 err = mii_ethtool_gset(&nic->mii, &cmd);
2559 if (netif_running(netdev))
2560 e100_down(nic);
2561 data[2] = e100_self_test(nic);
2562 data[3] = e100_loopback_test(nic, lb_mac);
2563 data[4] = e100_loopback_test(nic, lb_phy);
2565 /* restore speed, duplex & autoneg settings */
2566 err = mii_ethtool_sset(&nic->mii, &cmd);
2568 if (netif_running(netdev))
2569 e100_up(nic);
2571 for (i = 0; i < E100_TEST_LEN; i++)
2572 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2574 msleep_interruptible(4 * 1000);
2577 static int e100_set_phys_id(struct net_device *netdev,
2578 enum ethtool_phys_id_state state)
2580 struct nic *nic = netdev_priv(netdev);
2581 enum led_state {
2582 led_on = 0x01,
2583 led_off = 0x04,
2584 led_on_559 = 0x05,
2585 led_on_557 = 0x07,
2587 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2588 MII_LED_CONTROL;
2589 u16 leds = 0;
2591 switch (state) {
2592 case ETHTOOL_ID_ACTIVE:
2593 return 2;
2595 case ETHTOOL_ID_ON:
2596 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2597 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2598 break;
2600 case ETHTOOL_ID_OFF:
2601 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2602 break;
2604 case ETHTOOL_ID_INACTIVE:
2605 break;
2608 mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2609 return 0;
2612 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2613 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2614 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2615 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2616 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2617 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2618 "tx_heartbeat_errors", "tx_window_errors",
2619 /* device-specific stats */
2620 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2621 "tx_flow_control_pause", "rx_flow_control_pause",
2622 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2624 #define E100_NET_STATS_LEN 21
2625 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2627 static int e100_get_sset_count(struct net_device *netdev, int sset)
2629 switch (sset) {
2630 case ETH_SS_TEST:
2631 return E100_TEST_LEN;
2632 case ETH_SS_STATS:
2633 return E100_STATS_LEN;
2634 default:
2635 return -EOPNOTSUPP;
2639 static void e100_get_ethtool_stats(struct net_device *netdev,
2640 struct ethtool_stats *stats, u64 *data)
2642 struct nic *nic = netdev_priv(netdev);
2643 int i;
2645 for (i = 0; i < E100_NET_STATS_LEN; i++)
2646 data[i] = ((unsigned long *)&netdev->stats)[i];
2648 data[i++] = nic->tx_deferred;
2649 data[i++] = nic->tx_single_collisions;
2650 data[i++] = nic->tx_multiple_collisions;
2651 data[i++] = nic->tx_fc_pause;
2652 data[i++] = nic->rx_fc_pause;
2653 data[i++] = nic->rx_fc_unsupported;
2654 data[i++] = nic->tx_tco_frames;
2655 data[i++] = nic->rx_tco_frames;
2658 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2660 switch (stringset) {
2661 case ETH_SS_TEST:
2662 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2663 break;
2664 case ETH_SS_STATS:
2665 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2666 break;
2670 static const struct ethtool_ops e100_ethtool_ops = {
2671 .get_settings = e100_get_settings,
2672 .set_settings = e100_set_settings,
2673 .get_drvinfo = e100_get_drvinfo,
2674 .get_regs_len = e100_get_regs_len,
2675 .get_regs = e100_get_regs,
2676 .get_wol = e100_get_wol,
2677 .set_wol = e100_set_wol,
2678 .get_msglevel = e100_get_msglevel,
2679 .set_msglevel = e100_set_msglevel,
2680 .nway_reset = e100_nway_reset,
2681 .get_link = e100_get_link,
2682 .get_eeprom_len = e100_get_eeprom_len,
2683 .get_eeprom = e100_get_eeprom,
2684 .set_eeprom = e100_set_eeprom,
2685 .get_ringparam = e100_get_ringparam,
2686 .set_ringparam = e100_set_ringparam,
2687 .self_test = e100_diag_test,
2688 .get_strings = e100_get_strings,
2689 .set_phys_id = e100_set_phys_id,
2690 .get_ethtool_stats = e100_get_ethtool_stats,
2691 .get_sset_count = e100_get_sset_count,
2694 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2696 struct nic *nic = netdev_priv(netdev);
2698 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2701 static int e100_alloc(struct nic *nic)
2703 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2704 &nic->dma_addr);
2705 return nic->mem ? 0 : -ENOMEM;
2708 static void e100_free(struct nic *nic)
2710 if (nic->mem) {
2711 pci_free_consistent(nic->pdev, sizeof(struct mem),
2712 nic->mem, nic->dma_addr);
2713 nic->mem = NULL;
2717 static int e100_open(struct net_device *netdev)
2719 struct nic *nic = netdev_priv(netdev);
2720 int err = 0;
2722 netif_carrier_off(netdev);
2723 if ((err = e100_up(nic)))
2724 netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2725 return err;
2728 static int e100_close(struct net_device *netdev)
2730 e100_down(netdev_priv(netdev));
2731 return 0;
2734 static const struct net_device_ops e100_netdev_ops = {
2735 .ndo_open = e100_open,
2736 .ndo_stop = e100_close,
2737 .ndo_start_xmit = e100_xmit_frame,
2738 .ndo_validate_addr = eth_validate_addr,
2739 .ndo_set_multicast_list = e100_set_multicast_list,
2740 .ndo_set_mac_address = e100_set_mac_address,
2741 .ndo_change_mtu = e100_change_mtu,
2742 .ndo_do_ioctl = e100_do_ioctl,
2743 .ndo_tx_timeout = e100_tx_timeout,
2744 #ifdef CONFIG_NET_POLL_CONTROLLER
2745 .ndo_poll_controller = e100_netpoll,
2746 #endif
2749 static int __devinit e100_probe(struct pci_dev *pdev,
2750 const struct pci_device_id *ent)
2752 struct net_device *netdev;
2753 struct nic *nic;
2754 int err;
2756 if (!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2757 if (((1 << debug) - 1) & NETIF_MSG_PROBE)
2758 pr_err("Etherdev alloc failed, aborting\n");
2759 return -ENOMEM;
2762 netdev->netdev_ops = &e100_netdev_ops;
2763 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2764 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2765 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2767 nic = netdev_priv(netdev);
2768 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2769 nic->netdev = netdev;
2770 nic->pdev = pdev;
2771 nic->msg_enable = (1 << debug) - 1;
2772 nic->mdio_ctrl = mdio_ctrl_hw;
2773 pci_set_drvdata(pdev, netdev);
2775 if ((err = pci_enable_device(pdev))) {
2776 netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2777 goto err_out_free_dev;
2780 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2781 netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2782 err = -ENODEV;
2783 goto err_out_disable_pdev;
2786 if ((err = pci_request_regions(pdev, DRV_NAME))) {
2787 netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2788 goto err_out_disable_pdev;
2791 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2792 netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2793 goto err_out_free_res;
2796 SET_NETDEV_DEV(netdev, &pdev->dev);
2798 if (use_io)
2799 netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2801 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2802 if (!nic->csr) {
2803 netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2804 err = -ENOMEM;
2805 goto err_out_free_res;
2808 if (ent->driver_data)
2809 nic->flags |= ich;
2810 else
2811 nic->flags &= ~ich;
2813 e100_get_defaults(nic);
2815 /* locks must be initialized before calling hw_reset */
2816 spin_lock_init(&nic->cb_lock);
2817 spin_lock_init(&nic->cmd_lock);
2818 spin_lock_init(&nic->mdio_lock);
2820 /* Reset the device before pci_set_master() in case device is in some
2821 * funky state and has an interrupt pending - hint: we don't have the
2822 * interrupt handler registered yet. */
2823 e100_hw_reset(nic);
2825 pci_set_master(pdev);
2827 init_timer(&nic->watchdog);
2828 nic->watchdog.function = e100_watchdog;
2829 nic->watchdog.data = (unsigned long)nic;
2831 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2833 if ((err = e100_alloc(nic))) {
2834 netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2835 goto err_out_iounmap;
2838 if ((err = e100_eeprom_load(nic)))
2839 goto err_out_free;
2841 e100_phy_init(nic);
2843 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2844 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
2845 if (!is_valid_ether_addr(netdev->perm_addr)) {
2846 if (!eeprom_bad_csum_allow) {
2847 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2848 err = -EAGAIN;
2849 goto err_out_free;
2850 } else {
2851 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2855 /* Wol magic packet can be enabled from eeprom */
2856 if ((nic->mac >= mac_82558_D101_A4) &&
2857 (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2858 nic->flags |= wol_magic;
2859 device_set_wakeup_enable(&pdev->dev, true);
2862 /* ack any pending wake events, disable PME */
2863 pci_pme_active(pdev, false);
2865 strcpy(netdev->name, "eth%d");
2866 if ((err = register_netdev(netdev))) {
2867 netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2868 goto err_out_free;
2870 nic->cbs_pool = pci_pool_create(netdev->name,
2871 nic->pdev,
2872 nic->params.cbs.max * sizeof(struct cb),
2873 sizeof(u32),
2875 netif_info(nic, probe, nic->netdev,
2876 "addr 0x%llx, irq %d, MAC addr %pM\n",
2877 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2878 pdev->irq, netdev->dev_addr);
2880 return 0;
2882 err_out_free:
2883 e100_free(nic);
2884 err_out_iounmap:
2885 pci_iounmap(pdev, nic->csr);
2886 err_out_free_res:
2887 pci_release_regions(pdev);
2888 err_out_disable_pdev:
2889 pci_disable_device(pdev);
2890 err_out_free_dev:
2891 pci_set_drvdata(pdev, NULL);
2892 free_netdev(netdev);
2893 return err;
2896 static void __devexit e100_remove(struct pci_dev *pdev)
2898 struct net_device *netdev = pci_get_drvdata(pdev);
2900 if (netdev) {
2901 struct nic *nic = netdev_priv(netdev);
2902 unregister_netdev(netdev);
2903 e100_free(nic);
2904 pci_iounmap(pdev, nic->csr);
2905 pci_pool_destroy(nic->cbs_pool);
2906 free_netdev(netdev);
2907 pci_release_regions(pdev);
2908 pci_disable_device(pdev);
2909 pci_set_drvdata(pdev, NULL);
2913 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
2914 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
2915 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
2916 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
2918 struct net_device *netdev = pci_get_drvdata(pdev);
2919 struct nic *nic = netdev_priv(netdev);
2921 if (netif_running(netdev))
2922 e100_down(nic);
2923 netif_device_detach(netdev);
2925 pci_save_state(pdev);
2927 if ((nic->flags & wol_magic) | e100_asf(nic)) {
2928 /* enable reverse auto-negotiation */
2929 if (nic->phy == phy_82552_v) {
2930 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2931 E100_82552_SMARTSPEED);
2933 mdio_write(netdev, nic->mii.phy_id,
2934 E100_82552_SMARTSPEED, smartspeed |
2935 E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
2937 *enable_wake = true;
2938 } else {
2939 *enable_wake = false;
2942 pci_disable_device(pdev);
2945 static int __e100_power_off(struct pci_dev *pdev, bool wake)
2947 if (wake)
2948 return pci_prepare_to_sleep(pdev);
2950 pci_wake_from_d3(pdev, false);
2951 pci_set_power_state(pdev, PCI_D3hot);
2953 return 0;
2956 #ifdef CONFIG_PM
2957 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2959 bool wake;
2960 __e100_shutdown(pdev, &wake);
2961 return __e100_power_off(pdev, wake);
2964 static int e100_resume(struct pci_dev *pdev)
2966 struct net_device *netdev = pci_get_drvdata(pdev);
2967 struct nic *nic = netdev_priv(netdev);
2969 pci_set_power_state(pdev, PCI_D0);
2970 pci_restore_state(pdev);
2971 /* ack any pending wake events, disable PME */
2972 pci_enable_wake(pdev, 0, 0);
2974 /* disable reverse auto-negotiation */
2975 if (nic->phy == phy_82552_v) {
2976 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2977 E100_82552_SMARTSPEED);
2979 mdio_write(netdev, nic->mii.phy_id,
2980 E100_82552_SMARTSPEED,
2981 smartspeed & ~(E100_82552_REV_ANEG));
2984 netif_device_attach(netdev);
2985 if (netif_running(netdev))
2986 e100_up(nic);
2988 return 0;
2990 #endif /* CONFIG_PM */
2992 static void e100_shutdown(struct pci_dev *pdev)
2994 bool wake;
2995 __e100_shutdown(pdev, &wake);
2996 if (system_state == SYSTEM_POWER_OFF)
2997 __e100_power_off(pdev, wake);
3000 /* ------------------ PCI Error Recovery infrastructure -------------- */
3002 * e100_io_error_detected - called when PCI error is detected.
3003 * @pdev: Pointer to PCI device
3004 * @state: The current pci connection state
3006 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3008 struct net_device *netdev = pci_get_drvdata(pdev);
3009 struct nic *nic = netdev_priv(netdev);
3011 netif_device_detach(netdev);
3013 if (state == pci_channel_io_perm_failure)
3014 return PCI_ERS_RESULT_DISCONNECT;
3016 if (netif_running(netdev))
3017 e100_down(nic);
3018 pci_disable_device(pdev);
3020 /* Request a slot reset. */
3021 return PCI_ERS_RESULT_NEED_RESET;
3025 * e100_io_slot_reset - called after the pci bus has been reset.
3026 * @pdev: Pointer to PCI device
3028 * Restart the card from scratch.
3030 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3032 struct net_device *netdev = pci_get_drvdata(pdev);
3033 struct nic *nic = netdev_priv(netdev);
3035 if (pci_enable_device(pdev)) {
3036 pr_err("Cannot re-enable PCI device after reset\n");
3037 return PCI_ERS_RESULT_DISCONNECT;
3039 pci_set_master(pdev);
3041 /* Only one device per card can do a reset */
3042 if (0 != PCI_FUNC(pdev->devfn))
3043 return PCI_ERS_RESULT_RECOVERED;
3044 e100_hw_reset(nic);
3045 e100_phy_init(nic);
3047 return PCI_ERS_RESULT_RECOVERED;
3051 * e100_io_resume - resume normal operations
3052 * @pdev: Pointer to PCI device
3054 * Resume normal operations after an error recovery
3055 * sequence has been completed.
3057 static void e100_io_resume(struct pci_dev *pdev)
3059 struct net_device *netdev = pci_get_drvdata(pdev);
3060 struct nic *nic = netdev_priv(netdev);
3062 /* ack any pending wake events, disable PME */
3063 pci_enable_wake(pdev, 0, 0);
3065 netif_device_attach(netdev);
3066 if (netif_running(netdev)) {
3067 e100_open(netdev);
3068 mod_timer(&nic->watchdog, jiffies);
3072 static struct pci_error_handlers e100_err_handler = {
3073 .error_detected = e100_io_error_detected,
3074 .slot_reset = e100_io_slot_reset,
3075 .resume = e100_io_resume,
3078 static struct pci_driver e100_driver = {
3079 .name = DRV_NAME,
3080 .id_table = e100_id_table,
3081 .probe = e100_probe,
3082 .remove = __devexit_p(e100_remove),
3083 #ifdef CONFIG_PM
3084 /* Power Management hooks */
3085 .suspend = e100_suspend,
3086 .resume = e100_resume,
3087 #endif
3088 .shutdown = e100_shutdown,
3089 .err_handler = &e100_err_handler,
3092 static int __init e100_init_module(void)
3094 if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3095 pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3096 pr_info("%s\n", DRV_COPYRIGHT);
3098 return pci_register_driver(&e100_driver);
3101 static void __exit e100_cleanup_module(void)
3103 pci_unregister_driver(&e100_driver);
3106 module_init(e100_init_module);
3107 module_exit(e100_cleanup_module);