2 * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
4 * 2005-2010 (c) Aeroflex Gaisler AB
6 * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
7 * available in the GRLIB VHDL IP core library.
9 * Full documentation of both cores can be found here:
10 * http://www.gaisler.com/products/grlib/grip.pdf
12 * The Gigabit version supports scatter/gather DMA, any alignment of
13 * buffers and checksum offloading.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Contributors: Kristoffer Glembo
25 #include <linux/module.h>
26 #include <linux/uaccess.h>
27 #include <linux/init.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/skbuff.h>
33 #include <linux/crc32.h>
34 #include <linux/mii.h>
35 #include <linux/of_device.h>
36 #include <linux/of_platform.h>
37 #include <linux/slab.h>
38 #include <asm/cacheflush.h>
39 #include <asm/byteorder.h>
42 #include <asm/idprom.h>
47 #define GRETH_DEF_MSG_ENABLE \
56 static int greth_debug
= -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
57 module_param(greth_debug
, int, 0);
58 MODULE_PARM_DESC(greth_debug
, "GRETH bitmapped debugging message enable value");
60 /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
61 static int macaddr
[6];
62 module_param_array(macaddr
, int, NULL
, 0);
63 MODULE_PARM_DESC(macaddr
, "GRETH Ethernet MAC address");
65 static int greth_edcl
= 1;
66 module_param(greth_edcl
, int, 0);
67 MODULE_PARM_DESC(greth_edcl
, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
69 static int greth_open(struct net_device
*dev
);
70 static netdev_tx_t
greth_start_xmit(struct sk_buff
*skb
,
71 struct net_device
*dev
);
72 static netdev_tx_t
greth_start_xmit_gbit(struct sk_buff
*skb
,
73 struct net_device
*dev
);
74 static int greth_rx(struct net_device
*dev
, int limit
);
75 static int greth_rx_gbit(struct net_device
*dev
, int limit
);
76 static void greth_clean_tx(struct net_device
*dev
);
77 static void greth_clean_tx_gbit(struct net_device
*dev
);
78 static irqreturn_t
greth_interrupt(int irq
, void *dev_id
);
79 static int greth_close(struct net_device
*dev
);
80 static int greth_set_mac_add(struct net_device
*dev
, void *p
);
81 static void greth_set_multicast_list(struct net_device
*dev
);
83 #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
84 #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
85 #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
86 #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
88 #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
89 #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
90 #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
92 static void greth_print_rx_packet(void *addr
, int len
)
94 print_hex_dump(KERN_DEBUG
, "RX: ", DUMP_PREFIX_OFFSET
, 16, 1,
98 static void greth_print_tx_packet(struct sk_buff
*skb
)
103 if (skb_shinfo(skb
)->nr_frags
== 0)
106 length
= skb_headlen(skb
);
108 print_hex_dump(KERN_DEBUG
, "TX: ", DUMP_PREFIX_OFFSET
, 16, 1,
109 skb
->data
, length
, true);
111 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
113 print_hex_dump(KERN_DEBUG
, "TX: ", DUMP_PREFIX_OFFSET
, 16, 1,
114 phys_to_virt(page_to_phys(skb_shinfo(skb
)->frags
[i
].page
)) +
115 skb_shinfo(skb
)->frags
[i
].page_offset
,
120 static inline void greth_enable_tx(struct greth_private
*greth
)
123 GRETH_REGORIN(greth
->regs
->control
, GRETH_TXEN
);
126 static inline void greth_disable_tx(struct greth_private
*greth
)
128 GRETH_REGANDIN(greth
->regs
->control
, ~GRETH_TXEN
);
131 static inline void greth_enable_rx(struct greth_private
*greth
)
134 GRETH_REGORIN(greth
->regs
->control
, GRETH_RXEN
);
137 static inline void greth_disable_rx(struct greth_private
*greth
)
139 GRETH_REGANDIN(greth
->regs
->control
, ~GRETH_RXEN
);
142 static inline void greth_enable_irqs(struct greth_private
*greth
)
144 GRETH_REGORIN(greth
->regs
->control
, GRETH_RXI
| GRETH_TXI
);
147 static inline void greth_disable_irqs(struct greth_private
*greth
)
149 GRETH_REGANDIN(greth
->regs
->control
, ~(GRETH_RXI
|GRETH_TXI
));
152 static inline void greth_write_bd(u32
*bd
, u32 val
)
154 __raw_writel(cpu_to_be32(val
), bd
);
157 static inline u32
greth_read_bd(u32
*bd
)
159 return be32_to_cpu(__raw_readl(bd
));
162 static void greth_clean_rings(struct greth_private
*greth
)
165 struct greth_bd
*rx_bdp
= greth
->rx_bd_base
;
166 struct greth_bd
*tx_bdp
= greth
->tx_bd_base
;
168 if (greth
->gbit_mac
) {
170 /* Free and unmap RX buffers */
171 for (i
= 0; i
< GRETH_RXBD_NUM
; i
++, rx_bdp
++) {
172 if (greth
->rx_skbuff
[i
] != NULL
) {
173 dev_kfree_skb(greth
->rx_skbuff
[i
]);
174 dma_unmap_single(greth
->dev
,
175 greth_read_bd(&rx_bdp
->addr
),
176 MAX_FRAME_SIZE
+NET_IP_ALIGN
,
182 while (greth
->tx_free
< GRETH_TXBD_NUM
) {
184 struct sk_buff
*skb
= greth
->tx_skbuff
[greth
->tx_last
];
185 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
186 tx_bdp
= greth
->tx_bd_base
+ greth
->tx_last
;
187 greth
->tx_last
= NEXT_TX(greth
->tx_last
);
189 dma_unmap_single(greth
->dev
,
190 greth_read_bd(&tx_bdp
->addr
),
194 for (i
= 0; i
< nr_frags
; i
++) {
195 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
196 tx_bdp
= greth
->tx_bd_base
+ greth
->tx_last
;
198 dma_unmap_page(greth
->dev
,
199 greth_read_bd(&tx_bdp
->addr
),
203 greth
->tx_last
= NEXT_TX(greth
->tx_last
);
205 greth
->tx_free
+= nr_frags
+1;
210 } else { /* 10/100 Mbps MAC */
212 for (i
= 0; i
< GRETH_RXBD_NUM
; i
++, rx_bdp
++) {
213 kfree(greth
->rx_bufs
[i
]);
214 dma_unmap_single(greth
->dev
,
215 greth_read_bd(&rx_bdp
->addr
),
219 for (i
= 0; i
< GRETH_TXBD_NUM
; i
++, tx_bdp
++) {
220 kfree(greth
->tx_bufs
[i
]);
221 dma_unmap_single(greth
->dev
,
222 greth_read_bd(&tx_bdp
->addr
),
229 static int greth_init_rings(struct greth_private
*greth
)
232 struct greth_bd
*rx_bd
, *tx_bd
;
236 rx_bd
= greth
->rx_bd_base
;
237 tx_bd
= greth
->tx_bd_base
;
239 /* Initialize descriptor rings and buffers */
240 if (greth
->gbit_mac
) {
242 for (i
= 0; i
< GRETH_RXBD_NUM
; i
++) {
243 skb
= netdev_alloc_skb(greth
->netdev
, MAX_FRAME_SIZE
+NET_IP_ALIGN
);
245 if (netif_msg_ifup(greth
))
246 dev_err(greth
->dev
, "Error allocating DMA ring.\n");
249 skb_reserve(skb
, NET_IP_ALIGN
);
250 dma_addr
= dma_map_single(greth
->dev
,
252 MAX_FRAME_SIZE
+NET_IP_ALIGN
,
255 if (dma_mapping_error(greth
->dev
, dma_addr
)) {
256 if (netif_msg_ifup(greth
))
257 dev_err(greth
->dev
, "Could not create initial DMA mapping\n");
260 greth
->rx_skbuff
[i
] = skb
;
261 greth_write_bd(&rx_bd
[i
].addr
, dma_addr
);
262 greth_write_bd(&rx_bd
[i
].stat
, GRETH_BD_EN
| GRETH_BD_IE
);
267 /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
268 for (i
= 0; i
< GRETH_RXBD_NUM
; i
++) {
270 greth
->rx_bufs
[i
] = kmalloc(MAX_FRAME_SIZE
, GFP_KERNEL
);
272 if (greth
->rx_bufs
[i
] == NULL
) {
273 if (netif_msg_ifup(greth
))
274 dev_err(greth
->dev
, "Error allocating DMA ring.\n");
278 dma_addr
= dma_map_single(greth
->dev
,
283 if (dma_mapping_error(greth
->dev
, dma_addr
)) {
284 if (netif_msg_ifup(greth
))
285 dev_err(greth
->dev
, "Could not create initial DMA mapping\n");
288 greth_write_bd(&rx_bd
[i
].addr
, dma_addr
);
289 greth_write_bd(&rx_bd
[i
].stat
, GRETH_BD_EN
| GRETH_BD_IE
);
291 for (i
= 0; i
< GRETH_TXBD_NUM
; i
++) {
293 greth
->tx_bufs
[i
] = kmalloc(MAX_FRAME_SIZE
, GFP_KERNEL
);
295 if (greth
->tx_bufs
[i
] == NULL
) {
296 if (netif_msg_ifup(greth
))
297 dev_err(greth
->dev
, "Error allocating DMA ring.\n");
301 dma_addr
= dma_map_single(greth
->dev
,
306 if (dma_mapping_error(greth
->dev
, dma_addr
)) {
307 if (netif_msg_ifup(greth
))
308 dev_err(greth
->dev
, "Could not create initial DMA mapping\n");
311 greth_write_bd(&tx_bd
[i
].addr
, dma_addr
);
312 greth_write_bd(&tx_bd
[i
].stat
, 0);
315 greth_write_bd(&rx_bd
[GRETH_RXBD_NUM
- 1].stat
,
316 greth_read_bd(&rx_bd
[GRETH_RXBD_NUM
- 1].stat
) | GRETH_BD_WR
);
318 /* Initialize pointers. */
322 greth
->tx_free
= GRETH_TXBD_NUM
;
324 /* Initialize descriptor base address */
325 GRETH_REGSAVE(greth
->regs
->tx_desc_p
, greth
->tx_bd_base_phys
);
326 GRETH_REGSAVE(greth
->regs
->rx_desc_p
, greth
->rx_bd_base_phys
);
331 greth_clean_rings(greth
);
335 static int greth_open(struct net_device
*dev
)
337 struct greth_private
*greth
= netdev_priv(dev
);
340 err
= greth_init_rings(greth
);
342 if (netif_msg_ifup(greth
))
343 dev_err(&dev
->dev
, "Could not allocate memory for DMA rings\n");
347 err
= request_irq(greth
->irq
, greth_interrupt
, 0, "eth", (void *) dev
);
349 if (netif_msg_ifup(greth
))
350 dev_err(&dev
->dev
, "Could not allocate interrupt %d\n", dev
->irq
);
351 greth_clean_rings(greth
);
355 if (netif_msg_ifup(greth
))
356 dev_dbg(&dev
->dev
, " starting queue\n");
357 netif_start_queue(dev
);
359 GRETH_REGSAVE(greth
->regs
->status
, 0xFF);
361 napi_enable(&greth
->napi
);
363 greth_enable_irqs(greth
);
364 greth_enable_tx(greth
);
365 greth_enable_rx(greth
);
370 static int greth_close(struct net_device
*dev
)
372 struct greth_private
*greth
= netdev_priv(dev
);
374 napi_disable(&greth
->napi
);
376 greth_disable_irqs(greth
);
377 greth_disable_tx(greth
);
378 greth_disable_rx(greth
);
380 netif_stop_queue(dev
);
382 free_irq(greth
->irq
, (void *) dev
);
384 greth_clean_rings(greth
);
390 greth_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
392 struct greth_private
*greth
= netdev_priv(dev
);
393 struct greth_bd
*bdp
;
394 int err
= NETDEV_TX_OK
;
395 u32 status
, dma_addr
, ctrl
;
399 greth_clean_tx(greth
->netdev
);
401 if (unlikely(greth
->tx_free
<= 0)) {
402 spin_lock_irqsave(&greth
->devlock
, flags
);/*save from poll/irq*/
403 ctrl
= GRETH_REGLOAD(greth
->regs
->control
);
404 /* Enable TX IRQ only if not already in poll() routine */
405 if (ctrl
& GRETH_RXI
)
406 GRETH_REGSAVE(greth
->regs
->control
, ctrl
| GRETH_TXI
);
407 netif_stop_queue(dev
);
408 spin_unlock_irqrestore(&greth
->devlock
, flags
);
409 return NETDEV_TX_BUSY
;
412 if (netif_msg_pktdata(greth
))
413 greth_print_tx_packet(skb
);
416 if (unlikely(skb
->len
> MAX_FRAME_SIZE
)) {
417 dev
->stats
.tx_errors
++;
421 bdp
= greth
->tx_bd_base
+ greth
->tx_next
;
422 dma_addr
= greth_read_bd(&bdp
->addr
);
424 memcpy((unsigned char *) phys_to_virt(dma_addr
), skb
->data
, skb
->len
);
426 dma_sync_single_for_device(greth
->dev
, dma_addr
, skb
->len
, DMA_TO_DEVICE
);
428 status
= GRETH_BD_EN
| GRETH_BD_IE
| (skb
->len
& GRETH_BD_LEN
);
430 /* Wrap around descriptor ring */
431 if (greth
->tx_next
== GRETH_TXBD_NUM_MASK
) {
432 status
|= GRETH_BD_WR
;
435 greth
->tx_next
= NEXT_TX(greth
->tx_next
);
438 /* Write descriptor control word and enable transmission */
439 greth_write_bd(&bdp
->stat
, status
);
440 spin_lock_irqsave(&greth
->devlock
, flags
); /*save from poll/irq*/
441 greth_enable_tx(greth
);
442 spin_unlock_irqrestore(&greth
->devlock
, flags
);
451 greth_start_xmit_gbit(struct sk_buff
*skb
, struct net_device
*dev
)
453 struct greth_private
*greth
= netdev_priv(dev
);
454 struct greth_bd
*bdp
;
455 u32 status
= 0, dma_addr
, ctrl
;
456 int curr_tx
, nr_frags
, i
, err
= NETDEV_TX_OK
;
459 nr_frags
= skb_shinfo(skb
)->nr_frags
;
462 greth_clean_tx_gbit(dev
);
464 if (greth
->tx_free
< nr_frags
+ 1) {
465 spin_lock_irqsave(&greth
->devlock
, flags
);/*save from poll/irq*/
466 ctrl
= GRETH_REGLOAD(greth
->regs
->control
);
467 /* Enable TX IRQ only if not already in poll() routine */
468 if (ctrl
& GRETH_RXI
)
469 GRETH_REGSAVE(greth
->regs
->control
, ctrl
| GRETH_TXI
);
470 netif_stop_queue(dev
);
471 spin_unlock_irqrestore(&greth
->devlock
, flags
);
472 err
= NETDEV_TX_BUSY
;
476 if (netif_msg_pktdata(greth
))
477 greth_print_tx_packet(skb
);
479 if (unlikely(skb
->len
> MAX_FRAME_SIZE
)) {
480 dev
->stats
.tx_errors
++;
484 /* Save skb pointer. */
485 greth
->tx_skbuff
[greth
->tx_next
] = skb
;
489 status
= GRETH_TXBD_MORE
;
491 status
|= GRETH_TXBD_CSALL
;
492 status
|= skb_headlen(skb
) & GRETH_BD_LEN
;
493 if (greth
->tx_next
== GRETH_TXBD_NUM_MASK
)
494 status
|= GRETH_BD_WR
;
497 bdp
= greth
->tx_bd_base
+ greth
->tx_next
;
498 greth_write_bd(&bdp
->stat
, status
);
499 dma_addr
= dma_map_single(greth
->dev
, skb
->data
, skb_headlen(skb
), DMA_TO_DEVICE
);
501 if (unlikely(dma_mapping_error(greth
->dev
, dma_addr
)))
504 greth_write_bd(&bdp
->addr
, dma_addr
);
506 curr_tx
= NEXT_TX(greth
->tx_next
);
509 for (i
= 0; i
< nr_frags
; i
++) {
510 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
511 greth
->tx_skbuff
[curr_tx
] = NULL
;
512 bdp
= greth
->tx_bd_base
+ curr_tx
;
514 status
= GRETH_TXBD_CSALL
| GRETH_BD_EN
;
515 status
|= frag
->size
& GRETH_BD_LEN
;
517 /* Wrap around descriptor ring */
518 if (curr_tx
== GRETH_TXBD_NUM_MASK
)
519 status
|= GRETH_BD_WR
;
521 /* More fragments left */
522 if (i
< nr_frags
- 1)
523 status
|= GRETH_TXBD_MORE
;
525 status
|= GRETH_BD_IE
; /* enable IRQ on last fragment */
527 greth_write_bd(&bdp
->stat
, status
);
529 dma_addr
= dma_map_page(greth
->dev
,
535 if (unlikely(dma_mapping_error(greth
->dev
, dma_addr
)))
538 greth_write_bd(&bdp
->addr
, dma_addr
);
540 curr_tx
= NEXT_TX(curr_tx
);
545 /* Enable the descriptor chain by enabling the first descriptor */
546 bdp
= greth
->tx_bd_base
+ greth
->tx_next
;
547 greth_write_bd(&bdp
->stat
, greth_read_bd(&bdp
->stat
) | GRETH_BD_EN
);
548 greth
->tx_next
= curr_tx
;
549 greth
->tx_free
-= nr_frags
+ 1;
553 spin_lock_irqsave(&greth
->devlock
, flags
); /*save from poll/irq*/
554 greth_enable_tx(greth
);
555 spin_unlock_irqrestore(&greth
->devlock
, flags
);
560 /* Unmap SKB mappings that succeeded and disable descriptor */
561 for (i
= 0; greth
->tx_next
+ i
!= curr_tx
; i
++) {
562 bdp
= greth
->tx_bd_base
+ greth
->tx_next
+ i
;
563 dma_unmap_single(greth
->dev
,
564 greth_read_bd(&bdp
->addr
),
565 greth_read_bd(&bdp
->stat
) & GRETH_BD_LEN
,
567 greth_write_bd(&bdp
->stat
, 0);
571 dev_warn(greth
->dev
, "Could not create TX DMA mapping\n");
577 static irqreturn_t
greth_interrupt(int irq
, void *dev_id
)
579 struct net_device
*dev
= dev_id
;
580 struct greth_private
*greth
;
582 irqreturn_t retval
= IRQ_NONE
;
584 greth
= netdev_priv(dev
);
586 spin_lock(&greth
->devlock
);
588 /* Get the interrupt events that caused us to be here. */
589 status
= GRETH_REGLOAD(greth
->regs
->status
);
591 /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be
592 * set regardless of whether IRQ is enabled or not. Especially
593 * important when shared IRQ.
595 ctrl
= GRETH_REGLOAD(greth
->regs
->control
);
597 /* Handle rx and tx interrupts through poll */
598 if (((status
& (GRETH_INT_RE
| GRETH_INT_RX
)) && (ctrl
& GRETH_RXI
)) ||
599 ((status
& (GRETH_INT_TE
| GRETH_INT_TX
)) && (ctrl
& GRETH_TXI
))) {
600 retval
= IRQ_HANDLED
;
602 /* Disable interrupts and schedule poll() */
603 greth_disable_irqs(greth
);
604 napi_schedule(&greth
->napi
);
608 spin_unlock(&greth
->devlock
);
613 static void greth_clean_tx(struct net_device
*dev
)
615 struct greth_private
*greth
;
616 struct greth_bd
*bdp
;
619 greth
= netdev_priv(dev
);
622 bdp
= greth
->tx_bd_base
+ greth
->tx_last
;
623 GRETH_REGSAVE(greth
->regs
->status
, GRETH_INT_TE
| GRETH_INT_TX
);
625 stat
= greth_read_bd(&bdp
->stat
);
627 if (unlikely(stat
& GRETH_BD_EN
))
630 if (greth
->tx_free
== GRETH_TXBD_NUM
)
633 /* Check status for errors */
634 if (unlikely(stat
& GRETH_TXBD_STATUS
)) {
635 dev
->stats
.tx_errors
++;
636 if (stat
& GRETH_TXBD_ERR_AL
)
637 dev
->stats
.tx_aborted_errors
++;
638 if (stat
& GRETH_TXBD_ERR_UE
)
639 dev
->stats
.tx_fifo_errors
++;
641 dev
->stats
.tx_packets
++;
642 greth
->tx_last
= NEXT_TX(greth
->tx_last
);
646 if (greth
->tx_free
> 0) {
647 netif_wake_queue(dev
);
652 static inline void greth_update_tx_stats(struct net_device
*dev
, u32 stat
)
654 /* Check status for errors */
655 if (unlikely(stat
& GRETH_TXBD_STATUS
)) {
656 dev
->stats
.tx_errors
++;
657 if (stat
& GRETH_TXBD_ERR_AL
)
658 dev
->stats
.tx_aborted_errors
++;
659 if (stat
& GRETH_TXBD_ERR_UE
)
660 dev
->stats
.tx_fifo_errors
++;
661 if (stat
& GRETH_TXBD_ERR_LC
)
662 dev
->stats
.tx_aborted_errors
++;
664 dev
->stats
.tx_packets
++;
667 static void greth_clean_tx_gbit(struct net_device
*dev
)
669 struct greth_private
*greth
;
670 struct greth_bd
*bdp
, *bdp_last_frag
;
675 greth
= netdev_priv(dev
);
677 while (greth
->tx_free
< GRETH_TXBD_NUM
) {
679 skb
= greth
->tx_skbuff
[greth
->tx_last
];
681 nr_frags
= skb_shinfo(skb
)->nr_frags
;
683 /* We only clean fully completed SKBs */
684 bdp_last_frag
= greth
->tx_bd_base
+ SKIP_TX(greth
->tx_last
, nr_frags
);
686 GRETH_REGSAVE(greth
->regs
->status
, GRETH_INT_TE
| GRETH_INT_TX
);
688 stat
= greth_read_bd(&bdp_last_frag
->stat
);
690 if (stat
& GRETH_BD_EN
)
693 greth
->tx_skbuff
[greth
->tx_last
] = NULL
;
695 greth_update_tx_stats(dev
, stat
);
697 bdp
= greth
->tx_bd_base
+ greth
->tx_last
;
699 greth
->tx_last
= NEXT_TX(greth
->tx_last
);
701 dma_unmap_single(greth
->dev
,
702 greth_read_bd(&bdp
->addr
),
706 for (i
= 0; i
< nr_frags
; i
++) {
707 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
708 bdp
= greth
->tx_bd_base
+ greth
->tx_last
;
710 dma_unmap_page(greth
->dev
,
711 greth_read_bd(&bdp
->addr
),
715 greth
->tx_last
= NEXT_TX(greth
->tx_last
);
717 greth
->tx_free
+= nr_frags
+1;
721 if (netif_queue_stopped(dev
) && (greth
->tx_free
> (MAX_SKB_FRAGS
+1)))
722 netif_wake_queue(dev
);
725 static int greth_rx(struct net_device
*dev
, int limit
)
727 struct greth_private
*greth
;
728 struct greth_bd
*bdp
;
732 u32 status
, dma_addr
;
735 greth
= netdev_priv(dev
);
737 for (count
= 0; count
< limit
; ++count
) {
739 bdp
= greth
->rx_bd_base
+ greth
->rx_cur
;
740 GRETH_REGSAVE(greth
->regs
->status
, GRETH_INT_RE
| GRETH_INT_RX
);
742 status
= greth_read_bd(&bdp
->stat
);
744 if (unlikely(status
& GRETH_BD_EN
)) {
748 dma_addr
= greth_read_bd(&bdp
->addr
);
751 /* Check status for errors. */
752 if (unlikely(status
& GRETH_RXBD_STATUS
)) {
753 if (status
& GRETH_RXBD_ERR_FT
) {
754 dev
->stats
.rx_length_errors
++;
757 if (status
& (GRETH_RXBD_ERR_AE
| GRETH_RXBD_ERR_OE
)) {
758 dev
->stats
.rx_frame_errors
++;
761 if (status
& GRETH_RXBD_ERR_CRC
) {
762 dev
->stats
.rx_crc_errors
++;
767 dev
->stats
.rx_errors
++;
771 pkt_len
= status
& GRETH_BD_LEN
;
773 skb
= netdev_alloc_skb(dev
, pkt_len
+ NET_IP_ALIGN
);
775 if (unlikely(skb
== NULL
)) {
778 dev_warn(&dev
->dev
, "low on memory - " "packet dropped\n");
780 dev
->stats
.rx_dropped
++;
783 skb_reserve(skb
, NET_IP_ALIGN
);
786 dma_sync_single_for_cpu(greth
->dev
,
791 if (netif_msg_pktdata(greth
))
792 greth_print_rx_packet(phys_to_virt(dma_addr
), pkt_len
);
794 memcpy(skb_put(skb
, pkt_len
), phys_to_virt(dma_addr
), pkt_len
);
796 skb
->protocol
= eth_type_trans(skb
, dev
);
797 dev
->stats
.rx_packets
++;
798 netif_receive_skb(skb
);
802 status
= GRETH_BD_EN
| GRETH_BD_IE
;
803 if (greth
->rx_cur
== GRETH_RXBD_NUM_MASK
) {
804 status
|= GRETH_BD_WR
;
808 greth_write_bd(&bdp
->stat
, status
);
810 dma_sync_single_for_device(greth
->dev
, dma_addr
, MAX_FRAME_SIZE
, DMA_FROM_DEVICE
);
812 spin_lock_irqsave(&greth
->devlock
, flags
); /* save from XMIT */
813 greth_enable_rx(greth
);
814 spin_unlock_irqrestore(&greth
->devlock
, flags
);
816 greth
->rx_cur
= NEXT_RX(greth
->rx_cur
);
822 static inline int hw_checksummed(u32 status
)
825 if (status
& GRETH_RXBD_IP_FRAG
)
828 if (status
& GRETH_RXBD_IP
&& status
& GRETH_RXBD_IP_CSERR
)
831 if (status
& GRETH_RXBD_UDP
&& status
& GRETH_RXBD_UDP_CSERR
)
834 if (status
& GRETH_RXBD_TCP
&& status
& GRETH_RXBD_TCP_CSERR
)
840 static int greth_rx_gbit(struct net_device
*dev
, int limit
)
842 struct greth_private
*greth
;
843 struct greth_bd
*bdp
;
844 struct sk_buff
*skb
, *newskb
;
847 u32 status
, dma_addr
;
850 greth
= netdev_priv(dev
);
852 for (count
= 0; count
< limit
; ++count
) {
854 bdp
= greth
->rx_bd_base
+ greth
->rx_cur
;
855 skb
= greth
->rx_skbuff
[greth
->rx_cur
];
856 GRETH_REGSAVE(greth
->regs
->status
, GRETH_INT_RE
| GRETH_INT_RX
);
858 status
= greth_read_bd(&bdp
->stat
);
861 if (status
& GRETH_BD_EN
)
864 /* Check status for errors. */
865 if (unlikely(status
& GRETH_RXBD_STATUS
)) {
867 if (status
& GRETH_RXBD_ERR_FT
) {
868 dev
->stats
.rx_length_errors
++;
871 (GRETH_RXBD_ERR_AE
| GRETH_RXBD_ERR_OE
| GRETH_RXBD_ERR_LE
)) {
872 dev
->stats
.rx_frame_errors
++;
874 } else if (status
& GRETH_RXBD_ERR_CRC
) {
875 dev
->stats
.rx_crc_errors
++;
880 /* Allocate new skb to replace current, not needed if the
881 * current skb can be reused */
882 if (!bad
&& (newskb
=netdev_alloc_skb(dev
, MAX_FRAME_SIZE
+ NET_IP_ALIGN
))) {
883 skb_reserve(newskb
, NET_IP_ALIGN
);
885 dma_addr
= dma_map_single(greth
->dev
,
887 MAX_FRAME_SIZE
+ NET_IP_ALIGN
,
890 if (!dma_mapping_error(greth
->dev
, dma_addr
)) {
891 /* Process the incoming frame. */
892 pkt_len
= status
& GRETH_BD_LEN
;
894 dma_unmap_single(greth
->dev
,
895 greth_read_bd(&bdp
->addr
),
896 MAX_FRAME_SIZE
+ NET_IP_ALIGN
,
899 if (netif_msg_pktdata(greth
))
900 greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp
->addr
)), pkt_len
);
902 skb_put(skb
, pkt_len
);
904 if (dev
->features
& NETIF_F_RXCSUM
&& hw_checksummed(status
))
905 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
907 skb_checksum_none_assert(skb
);
909 skb
->protocol
= eth_type_trans(skb
, dev
);
910 dev
->stats
.rx_packets
++;
911 netif_receive_skb(skb
);
913 greth
->rx_skbuff
[greth
->rx_cur
] = newskb
;
914 greth_write_bd(&bdp
->addr
, dma_addr
);
917 dev_warn(greth
->dev
, "Could not create DMA mapping, dropping packet\n");
918 dev_kfree_skb(newskb
);
919 /* reusing current skb, so it is a drop */
920 dev
->stats
.rx_dropped
++;
923 /* Bad Frame transfer, the skb is reused */
924 dev
->stats
.rx_dropped
++;
926 /* Failed Allocating a new skb. This is rather stupid
927 * but the current "filled" skb is reused, as if
928 * transfer failure. One could argue that RX descriptor
929 * table handling should be divided into cleaning and
930 * filling as the TX part of the driver
933 dev_warn(greth
->dev
, "Could not allocate SKB, dropping packet\n");
934 /* reusing current skb, so it is a drop */
935 dev
->stats
.rx_dropped
++;
938 status
= GRETH_BD_EN
| GRETH_BD_IE
;
939 if (greth
->rx_cur
== GRETH_RXBD_NUM_MASK
) {
940 status
|= GRETH_BD_WR
;
944 greth_write_bd(&bdp
->stat
, status
);
945 spin_lock_irqsave(&greth
->devlock
, flags
);
946 greth_enable_rx(greth
);
947 spin_unlock_irqrestore(&greth
->devlock
, flags
);
948 greth
->rx_cur
= NEXT_RX(greth
->rx_cur
);
955 static int greth_poll(struct napi_struct
*napi
, int budget
)
957 struct greth_private
*greth
;
961 greth
= container_of(napi
, struct greth_private
, napi
);
964 if (netif_queue_stopped(greth
->netdev
)) {
966 greth_clean_tx_gbit(greth
->netdev
);
968 greth_clean_tx(greth
->netdev
);
971 if (greth
->gbit_mac
) {
972 work_done
+= greth_rx_gbit(greth
->netdev
, budget
- work_done
);
974 work_done
+= greth_rx(greth
->netdev
, budget
- work_done
);
977 if (work_done
< budget
) {
979 spin_lock_irqsave(&greth
->devlock
, flags
);
981 ctrl
= GRETH_REGLOAD(greth
->regs
->control
);
982 if (netif_queue_stopped(greth
->netdev
)) {
983 GRETH_REGSAVE(greth
->regs
->control
,
984 ctrl
| GRETH_TXI
| GRETH_RXI
);
985 mask
= GRETH_INT_RX
| GRETH_INT_RE
|
986 GRETH_INT_TX
| GRETH_INT_TE
;
988 GRETH_REGSAVE(greth
->regs
->control
, ctrl
| GRETH_RXI
);
989 mask
= GRETH_INT_RX
| GRETH_INT_RE
;
992 if (GRETH_REGLOAD(greth
->regs
->status
) & mask
) {
993 GRETH_REGSAVE(greth
->regs
->control
, ctrl
);
994 spin_unlock_irqrestore(&greth
->devlock
, flags
);
995 goto restart_txrx_poll
;
997 __napi_complete(napi
);
998 spin_unlock_irqrestore(&greth
->devlock
, flags
);
1005 static int greth_set_mac_add(struct net_device
*dev
, void *p
)
1007 struct sockaddr
*addr
= p
;
1008 struct greth_private
*greth
;
1009 struct greth_regs
*regs
;
1011 greth
= netdev_priv(dev
);
1012 regs
= (struct greth_regs
*) greth
->regs
;
1014 if (!is_valid_ether_addr(addr
->sa_data
))
1017 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
1018 GRETH_REGSAVE(regs
->esa_msb
, dev
->dev_addr
[0] << 8 | dev
->dev_addr
[1]);
1019 GRETH_REGSAVE(regs
->esa_lsb
, dev
->dev_addr
[2] << 24 | dev
->dev_addr
[3] << 16 |
1020 dev
->dev_addr
[4] << 8 | dev
->dev_addr
[5]);
1025 static u32
greth_hash_get_index(__u8
*addr
)
1027 return (ether_crc(6, addr
)) & 0x3F;
1030 static void greth_set_hash_filter(struct net_device
*dev
)
1032 struct netdev_hw_addr
*ha
;
1033 struct greth_private
*greth
= netdev_priv(dev
);
1034 struct greth_regs
*regs
= (struct greth_regs
*) greth
->regs
;
1038 mc_filter
[0] = mc_filter
[1] = 0;
1040 netdev_for_each_mc_addr(ha
, dev
) {
1041 bitnr
= greth_hash_get_index(ha
->addr
);
1042 mc_filter
[bitnr
>> 5] |= 1 << (bitnr
& 31);
1045 GRETH_REGSAVE(regs
->hash_msb
, mc_filter
[1]);
1046 GRETH_REGSAVE(regs
->hash_lsb
, mc_filter
[0]);
1049 static void greth_set_multicast_list(struct net_device
*dev
)
1052 struct greth_private
*greth
= netdev_priv(dev
);
1053 struct greth_regs
*regs
= (struct greth_regs
*) greth
->regs
;
1055 cfg
= GRETH_REGLOAD(regs
->control
);
1056 if (dev
->flags
& IFF_PROMISC
)
1057 cfg
|= GRETH_CTRL_PR
;
1059 cfg
&= ~GRETH_CTRL_PR
;
1061 if (greth
->multicast
) {
1062 if (dev
->flags
& IFF_ALLMULTI
) {
1063 GRETH_REGSAVE(regs
->hash_msb
, -1);
1064 GRETH_REGSAVE(regs
->hash_lsb
, -1);
1065 cfg
|= GRETH_CTRL_MCEN
;
1066 GRETH_REGSAVE(regs
->control
, cfg
);
1070 if (netdev_mc_empty(dev
)) {
1071 cfg
&= ~GRETH_CTRL_MCEN
;
1072 GRETH_REGSAVE(regs
->control
, cfg
);
1076 /* Setup multicast filter */
1077 greth_set_hash_filter(dev
);
1078 cfg
|= GRETH_CTRL_MCEN
;
1080 GRETH_REGSAVE(regs
->control
, cfg
);
1083 static u32
greth_get_msglevel(struct net_device
*dev
)
1085 struct greth_private
*greth
= netdev_priv(dev
);
1086 return greth
->msg_enable
;
1089 static void greth_set_msglevel(struct net_device
*dev
, u32 value
)
1091 struct greth_private
*greth
= netdev_priv(dev
);
1092 greth
->msg_enable
= value
;
1094 static int greth_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1096 struct greth_private
*greth
= netdev_priv(dev
);
1097 struct phy_device
*phy
= greth
->phy
;
1102 return phy_ethtool_gset(phy
, cmd
);
1105 static int greth_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1107 struct greth_private
*greth
= netdev_priv(dev
);
1108 struct phy_device
*phy
= greth
->phy
;
1113 return phy_ethtool_sset(phy
, cmd
);
1116 static int greth_get_regs_len(struct net_device
*dev
)
1118 return sizeof(struct greth_regs
);
1121 static void greth_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1123 struct greth_private
*greth
= netdev_priv(dev
);
1125 strncpy(info
->driver
, dev_driver_string(greth
->dev
), 32);
1126 strncpy(info
->version
, "revision: 1.0", 32);
1127 strncpy(info
->bus_info
, greth
->dev
->bus
->name
, 32);
1128 strncpy(info
->fw_version
, "N/A", 32);
1129 info
->eedump_len
= 0;
1130 info
->regdump_len
= sizeof(struct greth_regs
);
1133 static void greth_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *p
)
1136 struct greth_private
*greth
= netdev_priv(dev
);
1137 u32 __iomem
*greth_regs
= (u32 __iomem
*) greth
->regs
;
1140 for (i
= 0; i
< sizeof(struct greth_regs
) / sizeof(u32
); i
++)
1141 buff
[i
] = greth_read_bd(&greth_regs
[i
]);
1144 static const struct ethtool_ops greth_ethtool_ops
= {
1145 .get_msglevel
= greth_get_msglevel
,
1146 .set_msglevel
= greth_set_msglevel
,
1147 .get_settings
= greth_get_settings
,
1148 .set_settings
= greth_set_settings
,
1149 .get_drvinfo
= greth_get_drvinfo
,
1150 .get_regs_len
= greth_get_regs_len
,
1151 .get_regs
= greth_get_regs
,
1152 .get_link
= ethtool_op_get_link
,
1155 static struct net_device_ops greth_netdev_ops
= {
1156 .ndo_open
= greth_open
,
1157 .ndo_stop
= greth_close
,
1158 .ndo_start_xmit
= greth_start_xmit
,
1159 .ndo_set_mac_address
= greth_set_mac_add
,
1160 .ndo_validate_addr
= eth_validate_addr
,
1163 static inline int wait_for_mdio(struct greth_private
*greth
)
1165 unsigned long timeout
= jiffies
+ 4*HZ
/100;
1166 while (GRETH_REGLOAD(greth
->regs
->mdio
) & GRETH_MII_BUSY
) {
1167 if (time_after(jiffies
, timeout
))
1173 static int greth_mdio_read(struct mii_bus
*bus
, int phy
, int reg
)
1175 struct greth_private
*greth
= bus
->priv
;
1178 if (!wait_for_mdio(greth
))
1181 GRETH_REGSAVE(greth
->regs
->mdio
, ((phy
& 0x1F) << 11) | ((reg
& 0x1F) << 6) | 2);
1183 if (!wait_for_mdio(greth
))
1186 if (!(GRETH_REGLOAD(greth
->regs
->mdio
) & GRETH_MII_NVALID
)) {
1187 data
= (GRETH_REGLOAD(greth
->regs
->mdio
) >> 16) & 0xFFFF;
1195 static int greth_mdio_write(struct mii_bus
*bus
, int phy
, int reg
, u16 val
)
1197 struct greth_private
*greth
= bus
->priv
;
1199 if (!wait_for_mdio(greth
))
1202 GRETH_REGSAVE(greth
->regs
->mdio
,
1203 ((val
& 0xFFFF) << 16) | ((phy
& 0x1F) << 11) | ((reg
& 0x1F) << 6) | 1);
1205 if (!wait_for_mdio(greth
))
1211 static int greth_mdio_reset(struct mii_bus
*bus
)
1216 static void greth_link_change(struct net_device
*dev
)
1218 struct greth_private
*greth
= netdev_priv(dev
);
1219 struct phy_device
*phydev
= greth
->phy
;
1220 unsigned long flags
;
1221 int status_change
= 0;
1224 spin_lock_irqsave(&greth
->devlock
, flags
);
1228 if ((greth
->speed
!= phydev
->speed
) || (greth
->duplex
!= phydev
->duplex
)) {
1229 ctrl
= GRETH_REGLOAD(greth
->regs
->control
) &
1230 ~(GRETH_CTRL_FD
| GRETH_CTRL_SP
| GRETH_CTRL_GB
);
1233 ctrl
|= GRETH_CTRL_FD
;
1235 if (phydev
->speed
== SPEED_100
)
1236 ctrl
|= GRETH_CTRL_SP
;
1237 else if (phydev
->speed
== SPEED_1000
)
1238 ctrl
|= GRETH_CTRL_GB
;
1240 GRETH_REGSAVE(greth
->regs
->control
, ctrl
);
1241 greth
->speed
= phydev
->speed
;
1242 greth
->duplex
= phydev
->duplex
;
1247 if (phydev
->link
!= greth
->link
) {
1248 if (!phydev
->link
) {
1252 greth
->link
= phydev
->link
;
1257 spin_unlock_irqrestore(&greth
->devlock
, flags
);
1259 if (status_change
) {
1261 pr_debug("%s: link up (%d/%s)\n",
1262 dev
->name
, phydev
->speed
,
1263 DUPLEX_FULL
== phydev
->duplex
? "Full" : "Half");
1265 pr_debug("%s: link down\n", dev
->name
);
1269 static int greth_mdio_probe(struct net_device
*dev
)
1271 struct greth_private
*greth
= netdev_priv(dev
);
1272 struct phy_device
*phy
= NULL
;
1275 /* Find the first PHY */
1276 phy
= phy_find_first(greth
->mdio
);
1279 if (netif_msg_probe(greth
))
1280 dev_err(&dev
->dev
, "no PHY found\n");
1284 ret
= phy_connect_direct(dev
, phy
, &greth_link_change
,
1285 0, greth
->gbit_mac
?
1286 PHY_INTERFACE_MODE_GMII
:
1287 PHY_INTERFACE_MODE_MII
);
1289 if (netif_msg_ifup(greth
))
1290 dev_err(&dev
->dev
, "could not attach to PHY\n");
1294 if (greth
->gbit_mac
)
1295 phy
->supported
&= PHY_GBIT_FEATURES
;
1297 phy
->supported
&= PHY_BASIC_FEATURES
;
1299 phy
->advertising
= phy
->supported
;
1309 static inline int phy_aneg_done(struct phy_device
*phydev
)
1313 retval
= phy_read(phydev
, MII_BMSR
);
1315 return (retval
< 0) ? retval
: (retval
& BMSR_ANEGCOMPLETE
);
1318 static int greth_mdio_init(struct greth_private
*greth
)
1321 unsigned long timeout
;
1323 greth
->mdio
= mdiobus_alloc();
1328 greth
->mdio
->name
= "greth-mdio";
1329 snprintf(greth
->mdio
->id
, MII_BUS_ID_SIZE
, "%s-%d", greth
->mdio
->name
, greth
->irq
);
1330 greth
->mdio
->read
= greth_mdio_read
;
1331 greth
->mdio
->write
= greth_mdio_write
;
1332 greth
->mdio
->reset
= greth_mdio_reset
;
1333 greth
->mdio
->priv
= greth
;
1335 greth
->mdio
->irq
= greth
->mdio_irqs
;
1337 for (phy
= 0; phy
< PHY_MAX_ADDR
; phy
++)
1338 greth
->mdio
->irq
[phy
] = PHY_POLL
;
1340 ret
= mdiobus_register(greth
->mdio
);
1345 ret
= greth_mdio_probe(greth
->netdev
);
1347 if (netif_msg_probe(greth
))
1348 dev_err(&greth
->netdev
->dev
, "failed to probe MDIO bus\n");
1352 phy_start(greth
->phy
);
1354 /* If Ethernet debug link is used make autoneg happen right away */
1355 if (greth
->edcl
&& greth_edcl
== 1) {
1356 phy_start_aneg(greth
->phy
);
1357 timeout
= jiffies
+ 6*HZ
;
1358 while (!phy_aneg_done(greth
->phy
) && time_before(jiffies
, timeout
)) {
1360 genphy_read_status(greth
->phy
);
1361 greth_link_change(greth
->netdev
);
1367 mdiobus_unregister(greth
->mdio
);
1369 mdiobus_free(greth
->mdio
);
1373 /* Initialize the GRETH MAC */
1374 static int __devinit
greth_of_probe(struct platform_device
*ofdev
)
1376 struct net_device
*dev
;
1377 struct greth_private
*greth
;
1378 struct greth_regs
*regs
;
1383 unsigned long timeout
;
1385 dev
= alloc_etherdev(sizeof(struct greth_private
));
1390 greth
= netdev_priv(dev
);
1391 greth
->netdev
= dev
;
1392 greth
->dev
= &ofdev
->dev
;
1394 if (greth_debug
> 0)
1395 greth
->msg_enable
= greth_debug
;
1397 greth
->msg_enable
= GRETH_DEF_MSG_ENABLE
;
1399 spin_lock_init(&greth
->devlock
);
1401 greth
->regs
= of_ioremap(&ofdev
->resource
[0], 0,
1402 resource_size(&ofdev
->resource
[0]),
1403 "grlib-greth regs");
1405 if (greth
->regs
== NULL
) {
1406 if (netif_msg_probe(greth
))
1407 dev_err(greth
->dev
, "ioremap failure.\n");
1412 regs
= (struct greth_regs
*) greth
->regs
;
1413 greth
->irq
= ofdev
->archdata
.irqs
[0];
1415 dev_set_drvdata(greth
->dev
, dev
);
1416 SET_NETDEV_DEV(dev
, greth
->dev
);
1418 if (netif_msg_probe(greth
))
1419 dev_dbg(greth
->dev
, "reseting controller.\n");
1421 /* Reset the controller. */
1422 GRETH_REGSAVE(regs
->control
, GRETH_RESET
);
1424 /* Wait for MAC to reset itself */
1425 timeout
= jiffies
+ HZ
/100;
1426 while (GRETH_REGLOAD(regs
->control
) & GRETH_RESET
) {
1427 if (time_after(jiffies
, timeout
)) {
1429 if (netif_msg_probe(greth
))
1430 dev_err(greth
->dev
, "timeout when waiting for reset.\n");
1435 /* Get default PHY address */
1436 greth
->phyaddr
= (GRETH_REGLOAD(regs
->mdio
) >> 11) & 0x1F;
1438 /* Check if we have GBIT capable MAC */
1439 tmp
= GRETH_REGLOAD(regs
->control
);
1440 greth
->gbit_mac
= (tmp
>> 27) & 1;
1442 /* Check for multicast capability */
1443 greth
->multicast
= (tmp
>> 25) & 1;
1445 greth
->edcl
= (tmp
>> 31) & 1;
1447 /* If we have EDCL we disable the EDCL speed-duplex FSM so
1448 * it doesn't interfere with the software */
1449 if (greth
->edcl
!= 0)
1450 GRETH_REGORIN(regs
->control
, GRETH_CTRL_DISDUPLEX
);
1452 /* Check if MAC can handle MDIO interrupts */
1453 greth
->mdio_int_en
= (tmp
>> 26) & 1;
1455 err
= greth_mdio_init(greth
);
1457 if (netif_msg_probe(greth
))
1458 dev_err(greth
->dev
, "failed to register MDIO bus\n");
1462 /* Allocate TX descriptor ring in coherent memory */
1463 greth
->tx_bd_base
= (struct greth_bd
*) dma_alloc_coherent(greth
->dev
,
1465 &greth
->tx_bd_base_phys
,
1468 if (!greth
->tx_bd_base
) {
1469 if (netif_msg_probe(greth
))
1470 dev_err(&dev
->dev
, "could not allocate descriptor memory.\n");
1475 memset(greth
->tx_bd_base
, 0, 1024);
1477 /* Allocate RX descriptor ring in coherent memory */
1478 greth
->rx_bd_base
= (struct greth_bd
*) dma_alloc_coherent(greth
->dev
,
1480 &greth
->rx_bd_base_phys
,
1483 if (!greth
->rx_bd_base
) {
1484 if (netif_msg_probe(greth
))
1485 dev_err(greth
->dev
, "could not allocate descriptor memory.\n");
1490 memset(greth
->rx_bd_base
, 0, 1024);
1492 /* Get MAC address from: module param, OF property or ID prom */
1493 for (i
= 0; i
< 6; i
++) {
1494 if (macaddr
[i
] != 0)
1498 const unsigned char *addr
;
1500 addr
= of_get_property(ofdev
->dev
.of_node
, "local-mac-address",
1502 if (addr
!= NULL
&& len
== 6) {
1503 for (i
= 0; i
< 6; i
++)
1504 macaddr
[i
] = (unsigned int) addr
[i
];
1507 for (i
= 0; i
< 6; i
++)
1508 macaddr
[i
] = (unsigned int) idprom
->id_ethaddr
[i
];
1513 for (i
= 0; i
< 6; i
++)
1514 dev
->dev_addr
[i
] = macaddr
[i
];
1518 if (!is_valid_ether_addr(&dev
->dev_addr
[0])) {
1519 if (netif_msg_probe(greth
))
1520 dev_err(greth
->dev
, "no valid ethernet address, aborting.\n");
1525 GRETH_REGSAVE(regs
->esa_msb
, dev
->dev_addr
[0] << 8 | dev
->dev_addr
[1]);
1526 GRETH_REGSAVE(regs
->esa_lsb
, dev
->dev_addr
[2] << 24 | dev
->dev_addr
[3] << 16 |
1527 dev
->dev_addr
[4] << 8 | dev
->dev_addr
[5]);
1529 /* Clear all pending interrupts except PHY irq */
1530 GRETH_REGSAVE(regs
->status
, 0xFF);
1532 if (greth
->gbit_mac
) {
1533 dev
->hw_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
|
1535 dev
->features
= dev
->hw_features
| NETIF_F_HIGHDMA
;
1536 greth_netdev_ops
.ndo_start_xmit
= greth_start_xmit_gbit
;
1539 if (greth
->multicast
) {
1540 greth_netdev_ops
.ndo_set_multicast_list
= greth_set_multicast_list
;
1541 dev
->flags
|= IFF_MULTICAST
;
1543 dev
->flags
&= ~IFF_MULTICAST
;
1546 dev
->netdev_ops
= &greth_netdev_ops
;
1547 dev
->ethtool_ops
= &greth_ethtool_ops
;
1549 err
= register_netdev(dev
);
1551 if (netif_msg_probe(greth
))
1552 dev_err(greth
->dev
, "netdevice registration failed.\n");
1557 netif_napi_add(dev
, &greth
->napi
, greth_poll
, 64);
1562 dma_free_coherent(greth
->dev
, 1024, greth
->rx_bd_base
, greth
->rx_bd_base_phys
);
1564 dma_free_coherent(greth
->dev
, 1024, greth
->tx_bd_base
, greth
->tx_bd_base_phys
);
1566 mdiobus_unregister(greth
->mdio
);
1568 of_iounmap(&ofdev
->resource
[0], greth
->regs
, resource_size(&ofdev
->resource
[0]));
1574 static int __devexit
greth_of_remove(struct platform_device
*of_dev
)
1576 struct net_device
*ndev
= dev_get_drvdata(&of_dev
->dev
);
1577 struct greth_private
*greth
= netdev_priv(ndev
);
1579 /* Free descriptor areas */
1580 dma_free_coherent(&of_dev
->dev
, 1024, greth
->rx_bd_base
, greth
->rx_bd_base_phys
);
1582 dma_free_coherent(&of_dev
->dev
, 1024, greth
->tx_bd_base
, greth
->tx_bd_base_phys
);
1584 dev_set_drvdata(&of_dev
->dev
, NULL
);
1587 phy_stop(greth
->phy
);
1588 mdiobus_unregister(greth
->mdio
);
1590 unregister_netdev(ndev
);
1593 of_iounmap(&of_dev
->resource
[0], greth
->regs
, resource_size(&of_dev
->resource
[0]));
1598 static struct of_device_id greth_of_match
[] = {
1600 .name
= "GAISLER_ETHMAC",
1608 MODULE_DEVICE_TABLE(of
, greth_of_match
);
1610 static struct platform_driver greth_of_driver
= {
1612 .name
= "grlib-greth",
1613 .owner
= THIS_MODULE
,
1614 .of_match_table
= greth_of_match
,
1616 .probe
= greth_of_probe
,
1617 .remove
= __devexit_p(greth_of_remove
),
1620 static int __init
greth_init(void)
1622 return platform_driver_register(&greth_of_driver
);
1625 static void __exit
greth_cleanup(void)
1627 platform_driver_unregister(&greth_of_driver
);
1630 module_init(greth_init
);
1631 module_exit(greth_cleanup
);
1633 MODULE_AUTHOR("Aeroflex Gaisler AB.");
1634 MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
1635 MODULE_LICENSE("GPL");