ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / drivers / net / sungem.c
blob361beb797d1ea08ef84a7f7b7f5e7937c2928711
1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
13 * TODO:
14 * - Now that the driver was significantly simplified, I need to rework
15 * the locking. I'm sure we don't need _2_ spinlocks, and we probably
16 * can avoid taking most of them for so long period of time (and schedule
17 * instead). The main issues at this point are caused by the netdev layer
18 * though:
20 * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
21 * help by net/core/dev.c, thus they can't schedule. That means they can't
22 * call napi_disable() neither, thus force gem_poll() to keep a spinlock
23 * where it could have been dropped. change_mtu especially would love also to
24 * be able to msleep instead of horrid locked delays when resetting the HW,
25 * but that read_lock() makes it impossible, unless I defer it's action to
26 * the reset task, which means it'll be asynchronous (won't take effect until
27 * the system schedules a bit).
29 * Also, it would probably be possible to also remove most of the long-life
30 * locking in open/resume code path (gem_reinit_chip) by beeing more careful
31 * about when we can start taking interrupts or get xmit() called...
34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/types.h>
39 #include <linux/fcntl.h>
40 #include <linux/interrupt.h>
41 #include <linux/ioport.h>
42 #include <linux/in.h>
43 #include <linux/sched.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/errno.h>
48 #include <linux/pci.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/netdevice.h>
51 #include <linux/etherdevice.h>
52 #include <linux/skbuff.h>
53 #include <linux/mii.h>
54 #include <linux/ethtool.h>
55 #include <linux/crc32.h>
56 #include <linux/random.h>
57 #include <linux/workqueue.h>
58 #include <linux/if_vlan.h>
59 #include <linux/bitops.h>
60 #include <linux/mutex.h>
61 #include <linux/mm.h>
62 #include <linux/gfp.h>
64 #include <asm/system.h>
65 #include <asm/io.h>
66 #include <asm/byteorder.h>
67 #include <asm/uaccess.h>
68 #include <asm/irq.h>
70 #ifdef CONFIG_SPARC
71 #include <asm/idprom.h>
72 #include <asm/prom.h>
73 #endif
75 #ifdef CONFIG_PPC_PMAC
76 #include <asm/pci-bridge.h>
77 #include <asm/prom.h>
78 #include <asm/machdep.h>
79 #include <asm/pmac_feature.h>
80 #endif
82 #include "sungem_phy.h"
83 #include "sungem.h"
85 /* Stripping FCS is causing problems, disabled for now */
86 #undef STRIP_FCS
88 #define DEFAULT_MSG (NETIF_MSG_DRV | \
89 NETIF_MSG_PROBE | \
90 NETIF_MSG_LINK)
92 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
93 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
94 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
95 SUPPORTED_Pause | SUPPORTED_Autoneg)
97 #define DRV_NAME "sungem"
98 #define DRV_VERSION "0.98"
99 #define DRV_RELDATE "8/24/03"
100 #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
102 static char version[] __devinitdata =
103 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
105 MODULE_AUTHOR(DRV_AUTHOR);
106 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
107 MODULE_LICENSE("GPL");
109 #define GEM_MODULE_NAME "gem"
111 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = {
112 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
113 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
115 /* These models only differ from the original GEM in
116 * that their tx/rx fifos are of a different size and
117 * they only support 10/100 speeds. -DaveM
119 * Apple's GMAC does support gigabit on machines with
120 * the BCM54xx PHYs. -BenH
122 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
123 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
124 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
125 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
126 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
127 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
128 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
129 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
130 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
131 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
132 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
133 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
134 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
135 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
136 {0, }
139 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
141 static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
143 u32 cmd;
144 int limit = 10000;
146 cmd = (1 << 30);
147 cmd |= (2 << 28);
148 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
149 cmd |= (reg << 18) & MIF_FRAME_REGAD;
150 cmd |= (MIF_FRAME_TAMSB);
151 writel(cmd, gp->regs + MIF_FRAME);
153 while (--limit) {
154 cmd = readl(gp->regs + MIF_FRAME);
155 if (cmd & MIF_FRAME_TALSB)
156 break;
158 udelay(10);
161 if (!limit)
162 cmd = 0xffff;
164 return cmd & MIF_FRAME_DATA;
167 static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
169 struct gem *gp = netdev_priv(dev);
170 return __phy_read(gp, mii_id, reg);
173 static inline u16 phy_read(struct gem *gp, int reg)
175 return __phy_read(gp, gp->mii_phy_addr, reg);
178 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
180 u32 cmd;
181 int limit = 10000;
183 cmd = (1 << 30);
184 cmd |= (1 << 28);
185 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
186 cmd |= (reg << 18) & MIF_FRAME_REGAD;
187 cmd |= (MIF_FRAME_TAMSB);
188 cmd |= (val & MIF_FRAME_DATA);
189 writel(cmd, gp->regs + MIF_FRAME);
191 while (limit--) {
192 cmd = readl(gp->regs + MIF_FRAME);
193 if (cmd & MIF_FRAME_TALSB)
194 break;
196 udelay(10);
200 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
202 struct gem *gp = netdev_priv(dev);
203 __phy_write(gp, mii_id, reg, val & 0xffff);
206 static inline void phy_write(struct gem *gp, int reg, u16 val)
208 __phy_write(gp, gp->mii_phy_addr, reg, val);
211 static inline void gem_enable_ints(struct gem *gp)
213 /* Enable all interrupts but TXDONE */
214 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
217 static inline void gem_disable_ints(struct gem *gp)
219 /* Disable all interrupts, including TXDONE */
220 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
223 static void gem_get_cell(struct gem *gp)
225 BUG_ON(gp->cell_enabled < 0);
226 gp->cell_enabled++;
227 #ifdef CONFIG_PPC_PMAC
228 if (gp->cell_enabled == 1) {
229 mb();
230 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
231 udelay(10);
233 #endif /* CONFIG_PPC_PMAC */
236 /* Turn off the chip's clock */
237 static void gem_put_cell(struct gem *gp)
239 BUG_ON(gp->cell_enabled <= 0);
240 gp->cell_enabled--;
241 #ifdef CONFIG_PPC_PMAC
242 if (gp->cell_enabled == 0) {
243 mb();
244 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
245 udelay(10);
247 #endif /* CONFIG_PPC_PMAC */
250 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
252 if (netif_msg_intr(gp))
253 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
256 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
258 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
259 u32 pcs_miistat;
261 if (netif_msg_intr(gp))
262 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
263 gp->dev->name, pcs_istat);
265 if (!(pcs_istat & PCS_ISTAT_LSC)) {
266 netdev_err(dev, "PCS irq but no link status change???\n");
267 return 0;
270 /* The link status bit latches on zero, so you must
271 * read it twice in such a case to see a transition
272 * to the link being up.
274 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
275 if (!(pcs_miistat & PCS_MIISTAT_LS))
276 pcs_miistat |=
277 (readl(gp->regs + PCS_MIISTAT) &
278 PCS_MIISTAT_LS);
280 if (pcs_miistat & PCS_MIISTAT_ANC) {
281 /* The remote-fault indication is only valid
282 * when autoneg has completed.
284 if (pcs_miistat & PCS_MIISTAT_RF)
285 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
286 else
287 netdev_info(dev, "PCS AutoNEG complete\n");
290 if (pcs_miistat & PCS_MIISTAT_LS) {
291 netdev_info(dev, "PCS link is now up\n");
292 netif_carrier_on(gp->dev);
293 } else {
294 netdev_info(dev, "PCS link is now down\n");
295 netif_carrier_off(gp->dev);
296 /* If this happens and the link timer is not running,
297 * reset so we re-negotiate.
299 if (!timer_pending(&gp->link_timer))
300 return 1;
303 return 0;
306 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
308 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
310 if (netif_msg_intr(gp))
311 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
312 gp->dev->name, txmac_stat);
314 /* Defer timer expiration is quite normal,
315 * don't even log the event.
317 if ((txmac_stat & MAC_TXSTAT_DTE) &&
318 !(txmac_stat & ~MAC_TXSTAT_DTE))
319 return 0;
321 if (txmac_stat & MAC_TXSTAT_URUN) {
322 netdev_err(dev, "TX MAC xmit underrun\n");
323 dev->stats.tx_fifo_errors++;
326 if (txmac_stat & MAC_TXSTAT_MPE) {
327 netdev_err(dev, "TX MAC max packet size error\n");
328 dev->stats.tx_errors++;
331 /* The rest are all cases of one of the 16-bit TX
332 * counters expiring.
334 if (txmac_stat & MAC_TXSTAT_NCE)
335 dev->stats.collisions += 0x10000;
337 if (txmac_stat & MAC_TXSTAT_ECE) {
338 dev->stats.tx_aborted_errors += 0x10000;
339 dev->stats.collisions += 0x10000;
342 if (txmac_stat & MAC_TXSTAT_LCE) {
343 dev->stats.tx_aborted_errors += 0x10000;
344 dev->stats.collisions += 0x10000;
347 /* We do not keep track of MAC_TXSTAT_FCE and
348 * MAC_TXSTAT_PCE events.
350 return 0;
353 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
354 * so we do the following.
356 * If any part of the reset goes wrong, we return 1 and that causes the
357 * whole chip to be reset.
359 static int gem_rxmac_reset(struct gem *gp)
361 struct net_device *dev = gp->dev;
362 int limit, i;
363 u64 desc_dma;
364 u32 val;
366 /* First, reset & disable MAC RX. */
367 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
368 for (limit = 0; limit < 5000; limit++) {
369 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
370 break;
371 udelay(10);
373 if (limit == 5000) {
374 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
375 return 1;
378 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
379 gp->regs + MAC_RXCFG);
380 for (limit = 0; limit < 5000; limit++) {
381 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
382 break;
383 udelay(10);
385 if (limit == 5000) {
386 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
387 return 1;
390 /* Second, disable RX DMA. */
391 writel(0, gp->regs + RXDMA_CFG);
392 for (limit = 0; limit < 5000; limit++) {
393 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
394 break;
395 udelay(10);
397 if (limit == 5000) {
398 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
399 return 1;
402 udelay(5000);
404 /* Execute RX reset command. */
405 writel(gp->swrst_base | GREG_SWRST_RXRST,
406 gp->regs + GREG_SWRST);
407 for (limit = 0; limit < 5000; limit++) {
408 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
409 break;
410 udelay(10);
412 if (limit == 5000) {
413 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
414 return 1;
417 /* Refresh the RX ring. */
418 for (i = 0; i < RX_RING_SIZE; i++) {
419 struct gem_rxd *rxd = &gp->init_block->rxd[i];
421 if (gp->rx_skbs[i] == NULL) {
422 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
423 return 1;
426 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
428 gp->rx_new = gp->rx_old = 0;
430 /* Now we must reprogram the rest of RX unit. */
431 desc_dma = (u64) gp->gblock_dvma;
432 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
433 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
434 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
435 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
436 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
437 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
438 writel(val, gp->regs + RXDMA_CFG);
439 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
440 writel(((5 & RXDMA_BLANK_IPKTS) |
441 ((8 << 12) & RXDMA_BLANK_ITIME)),
442 gp->regs + RXDMA_BLANK);
443 else
444 writel(((5 & RXDMA_BLANK_IPKTS) |
445 ((4 << 12) & RXDMA_BLANK_ITIME)),
446 gp->regs + RXDMA_BLANK);
447 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
448 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
449 writel(val, gp->regs + RXDMA_PTHRESH);
450 val = readl(gp->regs + RXDMA_CFG);
451 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
452 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
453 val = readl(gp->regs + MAC_RXCFG);
454 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
456 return 0;
459 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
461 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
462 int ret = 0;
464 if (netif_msg_intr(gp))
465 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
466 gp->dev->name, rxmac_stat);
468 if (rxmac_stat & MAC_RXSTAT_OFLW) {
469 u32 smac = readl(gp->regs + MAC_SMACHINE);
471 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
472 dev->stats.rx_over_errors++;
473 dev->stats.rx_fifo_errors++;
475 ret = gem_rxmac_reset(gp);
478 if (rxmac_stat & MAC_RXSTAT_ACE)
479 dev->stats.rx_frame_errors += 0x10000;
481 if (rxmac_stat & MAC_RXSTAT_CCE)
482 dev->stats.rx_crc_errors += 0x10000;
484 if (rxmac_stat & MAC_RXSTAT_LCE)
485 dev->stats.rx_length_errors += 0x10000;
487 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
488 * events.
490 return ret;
493 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
495 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
497 if (netif_msg_intr(gp))
498 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
499 gp->dev->name, mac_cstat);
501 /* This interrupt is just for pause frame and pause
502 * tracking. It is useful for diagnostics and debug
503 * but probably by default we will mask these events.
505 if (mac_cstat & MAC_CSTAT_PS)
506 gp->pause_entered++;
508 if (mac_cstat & MAC_CSTAT_PRCV)
509 gp->pause_last_time_recvd = (mac_cstat >> 16);
511 return 0;
514 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
516 u32 mif_status = readl(gp->regs + MIF_STATUS);
517 u32 reg_val, changed_bits;
519 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
520 changed_bits = (mif_status & MIF_STATUS_STAT);
522 gem_handle_mif_event(gp, reg_val, changed_bits);
524 return 0;
527 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
529 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
531 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
532 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
533 netdev_err(dev, "PCI error [%04x]", pci_estat);
535 if (pci_estat & GREG_PCIESTAT_BADACK)
536 pr_cont(" <No ACK64# during ABS64 cycle>");
537 if (pci_estat & GREG_PCIESTAT_DTRTO)
538 pr_cont(" <Delayed transaction timeout>");
539 if (pci_estat & GREG_PCIESTAT_OTHER)
540 pr_cont(" <other>");
541 pr_cont("\n");
542 } else {
543 pci_estat |= GREG_PCIESTAT_OTHER;
544 netdev_err(dev, "PCI error\n");
547 if (pci_estat & GREG_PCIESTAT_OTHER) {
548 u16 pci_cfg_stat;
550 /* Interrogate PCI config space for the
551 * true cause.
553 pci_read_config_word(gp->pdev, PCI_STATUS,
554 &pci_cfg_stat);
555 netdev_err(dev, "Read PCI cfg space status [%04x]\n",
556 pci_cfg_stat);
557 if (pci_cfg_stat & PCI_STATUS_PARITY)
558 netdev_err(dev, "PCI parity error detected\n");
559 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
560 netdev_err(dev, "PCI target abort\n");
561 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
562 netdev_err(dev, "PCI master acks target abort\n");
563 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
564 netdev_err(dev, "PCI master abort\n");
565 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
566 netdev_err(dev, "PCI system error SERR#\n");
567 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
568 netdev_err(dev, "PCI parity error\n");
570 /* Write the error bits back to clear them. */
571 pci_cfg_stat &= (PCI_STATUS_PARITY |
572 PCI_STATUS_SIG_TARGET_ABORT |
573 PCI_STATUS_REC_TARGET_ABORT |
574 PCI_STATUS_REC_MASTER_ABORT |
575 PCI_STATUS_SIG_SYSTEM_ERROR |
576 PCI_STATUS_DETECTED_PARITY);
577 pci_write_config_word(gp->pdev,
578 PCI_STATUS, pci_cfg_stat);
581 /* For all PCI errors, we should reset the chip. */
582 return 1;
585 /* All non-normal interrupt conditions get serviced here.
586 * Returns non-zero if we should just exit the interrupt
587 * handler right now (ie. if we reset the card which invalidates
588 * all of the other original irq status bits).
590 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
592 if (gem_status & GREG_STAT_RXNOBUF) {
593 /* Frame arrived, no free RX buffers available. */
594 if (netif_msg_rx_err(gp))
595 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
596 gp->dev->name);
597 dev->stats.rx_dropped++;
600 if (gem_status & GREG_STAT_RXTAGERR) {
601 /* corrupt RX tag framing */
602 if (netif_msg_rx_err(gp))
603 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
604 gp->dev->name);
605 dev->stats.rx_errors++;
607 goto do_reset;
610 if (gem_status & GREG_STAT_PCS) {
611 if (gem_pcs_interrupt(dev, gp, gem_status))
612 goto do_reset;
615 if (gem_status & GREG_STAT_TXMAC) {
616 if (gem_txmac_interrupt(dev, gp, gem_status))
617 goto do_reset;
620 if (gem_status & GREG_STAT_RXMAC) {
621 if (gem_rxmac_interrupt(dev, gp, gem_status))
622 goto do_reset;
625 if (gem_status & GREG_STAT_MAC) {
626 if (gem_mac_interrupt(dev, gp, gem_status))
627 goto do_reset;
630 if (gem_status & GREG_STAT_MIF) {
631 if (gem_mif_interrupt(dev, gp, gem_status))
632 goto do_reset;
635 if (gem_status & GREG_STAT_PCIERR) {
636 if (gem_pci_interrupt(dev, gp, gem_status))
637 goto do_reset;
640 return 0;
642 do_reset:
643 gp->reset_task_pending = 1;
644 schedule_work(&gp->reset_task);
646 return 1;
649 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
651 int entry, limit;
653 if (netif_msg_intr(gp))
654 printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
655 gp->dev->name, gem_status);
657 entry = gp->tx_old;
658 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
659 while (entry != limit) {
660 struct sk_buff *skb;
661 struct gem_txd *txd;
662 dma_addr_t dma_addr;
663 u32 dma_len;
664 int frag;
666 if (netif_msg_tx_done(gp))
667 printk(KERN_DEBUG "%s: tx done, slot %d\n",
668 gp->dev->name, entry);
669 skb = gp->tx_skbs[entry];
670 if (skb_shinfo(skb)->nr_frags) {
671 int last = entry + skb_shinfo(skb)->nr_frags;
672 int walk = entry;
673 int incomplete = 0;
675 last &= (TX_RING_SIZE - 1);
676 for (;;) {
677 walk = NEXT_TX(walk);
678 if (walk == limit)
679 incomplete = 1;
680 if (walk == last)
681 break;
683 if (incomplete)
684 break;
686 gp->tx_skbs[entry] = NULL;
687 dev->stats.tx_bytes += skb->len;
689 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
690 txd = &gp->init_block->txd[entry];
692 dma_addr = le64_to_cpu(txd->buffer);
693 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
695 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
696 entry = NEXT_TX(entry);
699 dev->stats.tx_packets++;
700 dev_kfree_skb_irq(skb);
702 gp->tx_old = entry;
704 if (netif_queue_stopped(dev) &&
705 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
706 netif_wake_queue(dev);
709 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
711 int cluster_start, curr, count, kick;
713 cluster_start = curr = (gp->rx_new & ~(4 - 1));
714 count = 0;
715 kick = -1;
716 wmb();
717 while (curr != limit) {
718 curr = NEXT_RX(curr);
719 if (++count == 4) {
720 struct gem_rxd *rxd =
721 &gp->init_block->rxd[cluster_start];
722 for (;;) {
723 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
724 rxd++;
725 cluster_start = NEXT_RX(cluster_start);
726 if (cluster_start == curr)
727 break;
729 kick = curr;
730 count = 0;
733 if (kick >= 0) {
734 mb();
735 writel(kick, gp->regs + RXDMA_KICK);
739 static int gem_rx(struct gem *gp, int work_to_do)
741 struct net_device *dev = gp->dev;
742 int entry, drops, work_done = 0;
743 u32 done;
744 __sum16 csum;
746 if (netif_msg_rx_status(gp))
747 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
748 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
750 entry = gp->rx_new;
751 drops = 0;
752 done = readl(gp->regs + RXDMA_DONE);
753 for (;;) {
754 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
755 struct sk_buff *skb;
756 u64 status = le64_to_cpu(rxd->status_word);
757 dma_addr_t dma_addr;
758 int len;
760 if ((status & RXDCTRL_OWN) != 0)
761 break;
763 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
764 break;
766 /* When writing back RX descriptor, GEM writes status
767 * then buffer address, possibly in separate transactions.
768 * If we don't wait for the chip to write both, we could
769 * post a new buffer to this descriptor then have GEM spam
770 * on the buffer address. We sync on the RX completion
771 * register to prevent this from happening.
773 if (entry == done) {
774 done = readl(gp->regs + RXDMA_DONE);
775 if (entry == done)
776 break;
779 /* We can now account for the work we're about to do */
780 work_done++;
782 skb = gp->rx_skbs[entry];
784 len = (status & RXDCTRL_BUFSZ) >> 16;
785 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
786 dev->stats.rx_errors++;
787 if (len < ETH_ZLEN)
788 dev->stats.rx_length_errors++;
789 if (len & RXDCTRL_BAD)
790 dev->stats.rx_crc_errors++;
792 /* We'll just return it to GEM. */
793 drop_it:
794 dev->stats.rx_dropped++;
795 goto next;
798 dma_addr = le64_to_cpu(rxd->buffer);
799 if (len > RX_COPY_THRESHOLD) {
800 struct sk_buff *new_skb;
802 new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
803 if (new_skb == NULL) {
804 drops++;
805 goto drop_it;
807 pci_unmap_page(gp->pdev, dma_addr,
808 RX_BUF_ALLOC_SIZE(gp),
809 PCI_DMA_FROMDEVICE);
810 gp->rx_skbs[entry] = new_skb;
811 new_skb->dev = gp->dev;
812 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
813 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
814 virt_to_page(new_skb->data),
815 offset_in_page(new_skb->data),
816 RX_BUF_ALLOC_SIZE(gp),
817 PCI_DMA_FROMDEVICE));
818 skb_reserve(new_skb, RX_OFFSET);
820 /* Trim the original skb for the netif. */
821 skb_trim(skb, len);
822 } else {
823 struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
825 if (copy_skb == NULL) {
826 drops++;
827 goto drop_it;
830 skb_reserve(copy_skb, 2);
831 skb_put(copy_skb, len);
832 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
833 skb_copy_from_linear_data(skb, copy_skb->data, len);
834 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
836 /* We'll reuse the original ring buffer. */
837 skb = copy_skb;
840 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
841 skb->csum = csum_unfold(csum);
842 skb->ip_summed = CHECKSUM_COMPLETE;
843 skb->protocol = eth_type_trans(skb, gp->dev);
845 netif_receive_skb(skb);
847 dev->stats.rx_packets++;
848 dev->stats.rx_bytes += len;
850 next:
851 entry = NEXT_RX(entry);
854 gem_post_rxds(gp, entry);
856 gp->rx_new = entry;
858 if (drops)
859 netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
861 return work_done;
864 static int gem_poll(struct napi_struct *napi, int budget)
866 struct gem *gp = container_of(napi, struct gem, napi);
867 struct net_device *dev = gp->dev;
868 unsigned long flags;
869 int work_done;
872 * NAPI locking nightmare: See comment at head of driver
874 spin_lock_irqsave(&gp->lock, flags);
876 work_done = 0;
877 do {
878 /* Handle anomalies */
879 if (gp->status & GREG_STAT_ABNORMAL) {
880 if (gem_abnormal_irq(dev, gp, gp->status))
881 break;
884 /* Run TX completion thread */
885 spin_lock(&gp->tx_lock);
886 gem_tx(dev, gp, gp->status);
887 spin_unlock(&gp->tx_lock);
889 spin_unlock_irqrestore(&gp->lock, flags);
891 /* Run RX thread. We don't use any locking here,
892 * code willing to do bad things - like cleaning the
893 * rx ring - must call napi_disable(), which
894 * schedule_timeout()'s if polling is already disabled.
896 work_done += gem_rx(gp, budget - work_done);
898 if (work_done >= budget)
899 return work_done;
901 spin_lock_irqsave(&gp->lock, flags);
903 gp->status = readl(gp->regs + GREG_STAT);
904 } while (gp->status & GREG_STAT_NAPI);
906 __napi_complete(napi);
907 gem_enable_ints(gp);
909 spin_unlock_irqrestore(&gp->lock, flags);
911 return work_done;
914 static irqreturn_t gem_interrupt(int irq, void *dev_id)
916 struct net_device *dev = dev_id;
917 struct gem *gp = netdev_priv(dev);
918 unsigned long flags;
920 /* Swallow interrupts when shutting the chip down, though
921 * that shouldn't happen, we should have done free_irq() at
922 * this point...
924 if (!gp->running)
925 return IRQ_HANDLED;
927 spin_lock_irqsave(&gp->lock, flags);
929 if (napi_schedule_prep(&gp->napi)) {
930 u32 gem_status = readl(gp->regs + GREG_STAT);
932 if (gem_status == 0) {
933 napi_enable(&gp->napi);
934 spin_unlock_irqrestore(&gp->lock, flags);
935 return IRQ_NONE;
937 gp->status = gem_status;
938 gem_disable_ints(gp);
939 __napi_schedule(&gp->napi);
942 spin_unlock_irqrestore(&gp->lock, flags);
944 /* If polling was disabled at the time we received that
945 * interrupt, we may return IRQ_HANDLED here while we
946 * should return IRQ_NONE. No big deal...
948 return IRQ_HANDLED;
951 #ifdef CONFIG_NET_POLL_CONTROLLER
952 static void gem_poll_controller(struct net_device *dev)
954 /* gem_interrupt is safe to reentrance so no need
955 * to disable_irq here.
957 gem_interrupt(dev->irq, dev);
959 #endif
961 static void gem_tx_timeout(struct net_device *dev)
963 struct gem *gp = netdev_priv(dev);
965 netdev_err(dev, "transmit timed out, resetting\n");
966 if (!gp->running) {
967 netdev_err(dev, "hrm.. hw not running !\n");
968 return;
970 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
971 readl(gp->regs + TXDMA_CFG),
972 readl(gp->regs + MAC_TXSTAT),
973 readl(gp->regs + MAC_TXCFG));
974 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
975 readl(gp->regs + RXDMA_CFG),
976 readl(gp->regs + MAC_RXSTAT),
977 readl(gp->regs + MAC_RXCFG));
979 spin_lock_irq(&gp->lock);
980 spin_lock(&gp->tx_lock);
982 gp->reset_task_pending = 1;
983 schedule_work(&gp->reset_task);
985 spin_unlock(&gp->tx_lock);
986 spin_unlock_irq(&gp->lock);
989 static __inline__ int gem_intme(int entry)
991 /* Algorithm: IRQ every 1/2 of descriptors. */
992 if (!(entry & ((TX_RING_SIZE>>1)-1)))
993 return 1;
995 return 0;
998 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
999 struct net_device *dev)
1001 struct gem *gp = netdev_priv(dev);
1002 int entry;
1003 u64 ctrl;
1004 unsigned long flags;
1006 ctrl = 0;
1007 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1008 const u64 csum_start_off = skb_checksum_start_offset(skb);
1009 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1011 ctrl = (TXDCTRL_CENAB |
1012 (csum_start_off << 15) |
1013 (csum_stuff_off << 21));
1016 if (!spin_trylock_irqsave(&gp->tx_lock, flags)) {
1017 /* Tell upper layer to requeue */
1018 return NETDEV_TX_LOCKED;
1020 /* We raced with gem_do_stop() */
1021 if (!gp->running) {
1022 spin_unlock_irqrestore(&gp->tx_lock, flags);
1023 return NETDEV_TX_BUSY;
1026 /* This is a hard error, log it. */
1027 if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
1028 netif_stop_queue(dev);
1029 spin_unlock_irqrestore(&gp->tx_lock, flags);
1030 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1031 return NETDEV_TX_BUSY;
1034 entry = gp->tx_new;
1035 gp->tx_skbs[entry] = skb;
1037 if (skb_shinfo(skb)->nr_frags == 0) {
1038 struct gem_txd *txd = &gp->init_block->txd[entry];
1039 dma_addr_t mapping;
1040 u32 len;
1042 len = skb->len;
1043 mapping = pci_map_page(gp->pdev,
1044 virt_to_page(skb->data),
1045 offset_in_page(skb->data),
1046 len, PCI_DMA_TODEVICE);
1047 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1048 if (gem_intme(entry))
1049 ctrl |= TXDCTRL_INTME;
1050 txd->buffer = cpu_to_le64(mapping);
1051 wmb();
1052 txd->control_word = cpu_to_le64(ctrl);
1053 entry = NEXT_TX(entry);
1054 } else {
1055 struct gem_txd *txd;
1056 u32 first_len;
1057 u64 intme;
1058 dma_addr_t first_mapping;
1059 int frag, first_entry = entry;
1061 intme = 0;
1062 if (gem_intme(entry))
1063 intme |= TXDCTRL_INTME;
1065 /* We must give this initial chunk to the device last.
1066 * Otherwise we could race with the device.
1068 first_len = skb_headlen(skb);
1069 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1070 offset_in_page(skb->data),
1071 first_len, PCI_DMA_TODEVICE);
1072 entry = NEXT_TX(entry);
1074 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1075 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1076 u32 len;
1077 dma_addr_t mapping;
1078 u64 this_ctrl;
1080 len = this_frag->size;
1081 mapping = pci_map_page(gp->pdev,
1082 this_frag->page,
1083 this_frag->page_offset,
1084 len, PCI_DMA_TODEVICE);
1085 this_ctrl = ctrl;
1086 if (frag == skb_shinfo(skb)->nr_frags - 1)
1087 this_ctrl |= TXDCTRL_EOF;
1089 txd = &gp->init_block->txd[entry];
1090 txd->buffer = cpu_to_le64(mapping);
1091 wmb();
1092 txd->control_word = cpu_to_le64(this_ctrl | len);
1094 if (gem_intme(entry))
1095 intme |= TXDCTRL_INTME;
1097 entry = NEXT_TX(entry);
1099 txd = &gp->init_block->txd[first_entry];
1100 txd->buffer = cpu_to_le64(first_mapping);
1101 wmb();
1102 txd->control_word =
1103 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1106 gp->tx_new = entry;
1107 if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
1108 netif_stop_queue(dev);
1110 if (netif_msg_tx_queued(gp))
1111 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1112 dev->name, entry, skb->len);
1113 mb();
1114 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1115 spin_unlock_irqrestore(&gp->tx_lock, flags);
1117 dev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
1119 return NETDEV_TX_OK;
1122 static void gem_pcs_reset(struct gem *gp)
1124 int limit;
1125 u32 val;
1127 /* Reset PCS unit. */
1128 val = readl(gp->regs + PCS_MIICTRL);
1129 val |= PCS_MIICTRL_RST;
1130 writel(val, gp->regs + PCS_MIICTRL);
1132 limit = 32;
1133 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1134 udelay(100);
1135 if (limit-- <= 0)
1136 break;
1138 if (limit < 0)
1139 netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1142 static void gem_pcs_reinit_adv(struct gem *gp)
1144 u32 val;
1146 /* Make sure PCS is disabled while changing advertisement
1147 * configuration.
1149 val = readl(gp->regs + PCS_CFG);
1150 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1151 writel(val, gp->regs + PCS_CFG);
1153 /* Advertise all capabilities except asymmetric
1154 * pause.
1156 val = readl(gp->regs + PCS_MIIADV);
1157 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1158 PCS_MIIADV_SP | PCS_MIIADV_AP);
1159 writel(val, gp->regs + PCS_MIIADV);
1161 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1162 * and re-enable PCS.
1164 val = readl(gp->regs + PCS_MIICTRL);
1165 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1166 val &= ~PCS_MIICTRL_WB;
1167 writel(val, gp->regs + PCS_MIICTRL);
1169 val = readl(gp->regs + PCS_CFG);
1170 val |= PCS_CFG_ENABLE;
1171 writel(val, gp->regs + PCS_CFG);
1173 /* Make sure serialink loopback is off. The meaning
1174 * of this bit is logically inverted based upon whether
1175 * you are in Serialink or SERDES mode.
1177 val = readl(gp->regs + PCS_SCTRL);
1178 if (gp->phy_type == phy_serialink)
1179 val &= ~PCS_SCTRL_LOOP;
1180 else
1181 val |= PCS_SCTRL_LOOP;
1182 writel(val, gp->regs + PCS_SCTRL);
1185 #define STOP_TRIES 32
1187 /* Must be invoked under gp->lock and gp->tx_lock. */
1188 static void gem_reset(struct gem *gp)
1190 int limit;
1191 u32 val;
1193 /* Make sure we won't get any more interrupts */
1194 writel(0xffffffff, gp->regs + GREG_IMASK);
1196 /* Reset the chip */
1197 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1198 gp->regs + GREG_SWRST);
1200 limit = STOP_TRIES;
1202 do {
1203 udelay(20);
1204 val = readl(gp->regs + GREG_SWRST);
1205 if (limit-- <= 0)
1206 break;
1207 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1209 if (limit < 0)
1210 netdev_err(gp->dev, "SW reset is ghetto\n");
1212 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1213 gem_pcs_reinit_adv(gp);
1216 /* Must be invoked under gp->lock and gp->tx_lock. */
1217 static void gem_start_dma(struct gem *gp)
1219 u32 val;
1221 /* We are ready to rock, turn everything on. */
1222 val = readl(gp->regs + TXDMA_CFG);
1223 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1224 val = readl(gp->regs + RXDMA_CFG);
1225 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1226 val = readl(gp->regs + MAC_TXCFG);
1227 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1228 val = readl(gp->regs + MAC_RXCFG);
1229 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1231 (void) readl(gp->regs + MAC_RXCFG);
1232 udelay(100);
1234 gem_enable_ints(gp);
1236 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1239 /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1240 * actually stopped before about 4ms tho ...
1242 static void gem_stop_dma(struct gem *gp)
1244 u32 val;
1246 /* We are done rocking, turn everything off. */
1247 val = readl(gp->regs + TXDMA_CFG);
1248 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1249 val = readl(gp->regs + RXDMA_CFG);
1250 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1251 val = readl(gp->regs + MAC_TXCFG);
1252 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1253 val = readl(gp->regs + MAC_RXCFG);
1254 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1256 (void) readl(gp->regs + MAC_RXCFG);
1258 /* Need to wait a bit ... done by the caller */
1262 /* Must be invoked under gp->lock and gp->tx_lock. */
1263 // XXX dbl check what that function should do when called on PCS PHY
1264 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1266 u32 advertise, features;
1267 int autoneg;
1268 int speed;
1269 int duplex;
1271 if (gp->phy_type != phy_mii_mdio0 &&
1272 gp->phy_type != phy_mii_mdio1)
1273 goto non_mii;
1275 /* Setup advertise */
1276 if (found_mii_phy(gp))
1277 features = gp->phy_mii.def->features;
1278 else
1279 features = 0;
1281 advertise = features & ADVERTISE_MASK;
1282 if (gp->phy_mii.advertising != 0)
1283 advertise &= gp->phy_mii.advertising;
1285 autoneg = gp->want_autoneg;
1286 speed = gp->phy_mii.speed;
1287 duplex = gp->phy_mii.duplex;
1289 /* Setup link parameters */
1290 if (!ep)
1291 goto start_aneg;
1292 if (ep->autoneg == AUTONEG_ENABLE) {
1293 advertise = ep->advertising;
1294 autoneg = 1;
1295 } else {
1296 autoneg = 0;
1297 speed = ethtool_cmd_speed(ep);
1298 duplex = ep->duplex;
1301 start_aneg:
1302 /* Sanitize settings based on PHY capabilities */
1303 if ((features & SUPPORTED_Autoneg) == 0)
1304 autoneg = 0;
1305 if (speed == SPEED_1000 &&
1306 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1307 speed = SPEED_100;
1308 if (speed == SPEED_100 &&
1309 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1310 speed = SPEED_10;
1311 if (duplex == DUPLEX_FULL &&
1312 !(features & (SUPPORTED_1000baseT_Full |
1313 SUPPORTED_100baseT_Full |
1314 SUPPORTED_10baseT_Full)))
1315 duplex = DUPLEX_HALF;
1316 if (speed == 0)
1317 speed = SPEED_10;
1319 /* If we are asleep, we don't try to actually setup the PHY, we
1320 * just store the settings
1322 if (gp->asleep) {
1323 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1324 gp->phy_mii.speed = speed;
1325 gp->phy_mii.duplex = duplex;
1326 return;
1329 /* Configure PHY & start aneg */
1330 gp->want_autoneg = autoneg;
1331 if (autoneg) {
1332 if (found_mii_phy(gp))
1333 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1334 gp->lstate = link_aneg;
1335 } else {
1336 if (found_mii_phy(gp))
1337 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1338 gp->lstate = link_force_ok;
1341 non_mii:
1342 gp->timer_ticks = 0;
1343 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1346 /* A link-up condition has occurred, initialize and enable the
1347 * rest of the chip.
1349 * Must be invoked under gp->lock and gp->tx_lock.
1351 static int gem_set_link_modes(struct gem *gp)
1353 u32 val;
1354 int full_duplex, speed, pause;
1356 full_duplex = 0;
1357 speed = SPEED_10;
1358 pause = 0;
1360 if (found_mii_phy(gp)) {
1361 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1362 return 1;
1363 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1364 speed = gp->phy_mii.speed;
1365 pause = gp->phy_mii.pause;
1366 } else if (gp->phy_type == phy_serialink ||
1367 gp->phy_type == phy_serdes) {
1368 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1370 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1371 full_duplex = 1;
1372 speed = SPEED_1000;
1375 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1376 speed, (full_duplex ? "full" : "half"));
1378 if (!gp->running)
1379 return 0;
1381 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1382 if (full_duplex) {
1383 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1384 } else {
1385 /* MAC_TXCFG_NBO must be zero. */
1387 writel(val, gp->regs + MAC_TXCFG);
1389 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1390 if (!full_duplex &&
1391 (gp->phy_type == phy_mii_mdio0 ||
1392 gp->phy_type == phy_mii_mdio1)) {
1393 val |= MAC_XIFCFG_DISE;
1394 } else if (full_duplex) {
1395 val |= MAC_XIFCFG_FLED;
1398 if (speed == SPEED_1000)
1399 val |= (MAC_XIFCFG_GMII);
1401 writel(val, gp->regs + MAC_XIFCFG);
1403 /* If gigabit and half-duplex, enable carrier extension
1404 * mode. Else, disable it.
1406 if (speed == SPEED_1000 && !full_duplex) {
1407 val = readl(gp->regs + MAC_TXCFG);
1408 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1410 val = readl(gp->regs + MAC_RXCFG);
1411 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1412 } else {
1413 val = readl(gp->regs + MAC_TXCFG);
1414 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1416 val = readl(gp->regs + MAC_RXCFG);
1417 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1420 if (gp->phy_type == phy_serialink ||
1421 gp->phy_type == phy_serdes) {
1422 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1424 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1425 pause = 1;
1428 if (netif_msg_link(gp)) {
1429 if (pause) {
1430 netdev_info(gp->dev,
1431 "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1432 gp->rx_fifo_sz,
1433 gp->rx_pause_off,
1434 gp->rx_pause_on);
1435 } else {
1436 netdev_info(gp->dev, "Pause is disabled\n");
1440 if (!full_duplex)
1441 writel(512, gp->regs + MAC_STIME);
1442 else
1443 writel(64, gp->regs + MAC_STIME);
1444 val = readl(gp->regs + MAC_MCCFG);
1445 if (pause)
1446 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1447 else
1448 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1449 writel(val, gp->regs + MAC_MCCFG);
1451 gem_start_dma(gp);
1453 return 0;
1456 /* Must be invoked under gp->lock and gp->tx_lock. */
1457 static int gem_mdio_link_not_up(struct gem *gp)
1459 switch (gp->lstate) {
1460 case link_force_ret:
1461 netif_info(gp, link, gp->dev,
1462 "Autoneg failed again, keeping forced mode\n");
1463 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1464 gp->last_forced_speed, DUPLEX_HALF);
1465 gp->timer_ticks = 5;
1466 gp->lstate = link_force_ok;
1467 return 0;
1468 case link_aneg:
1469 /* We try forced modes after a failed aneg only on PHYs that don't
1470 * have "magic_aneg" bit set, which means they internally do the
1471 * while forced-mode thingy. On these, we just restart aneg
1473 if (gp->phy_mii.def->magic_aneg)
1474 return 1;
1475 netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1476 /* Try forced modes. */
1477 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1478 DUPLEX_HALF);
1479 gp->timer_ticks = 5;
1480 gp->lstate = link_force_try;
1481 return 0;
1482 case link_force_try:
1483 /* Downgrade from 100 to 10 Mbps if necessary.
1484 * If already at 10Mbps, warn user about the
1485 * situation every 10 ticks.
1487 if (gp->phy_mii.speed == SPEED_100) {
1488 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1489 DUPLEX_HALF);
1490 gp->timer_ticks = 5;
1491 netif_info(gp, link, gp->dev,
1492 "switching to forced 10bt\n");
1493 return 0;
1494 } else
1495 return 1;
1496 default:
1497 return 0;
1501 static void gem_link_timer(unsigned long data)
1503 struct gem *gp = (struct gem *) data;
1504 int restart_aneg = 0;
1506 if (gp->asleep)
1507 return;
1509 spin_lock_irq(&gp->lock);
1510 spin_lock(&gp->tx_lock);
1511 gem_get_cell(gp);
1513 /* If the reset task is still pending, we just
1514 * reschedule the link timer
1516 if (gp->reset_task_pending)
1517 goto restart;
1519 if (gp->phy_type == phy_serialink ||
1520 gp->phy_type == phy_serdes) {
1521 u32 val = readl(gp->regs + PCS_MIISTAT);
1523 if (!(val & PCS_MIISTAT_LS))
1524 val = readl(gp->regs + PCS_MIISTAT);
1526 if ((val & PCS_MIISTAT_LS) != 0) {
1527 if (gp->lstate == link_up)
1528 goto restart;
1530 gp->lstate = link_up;
1531 netif_carrier_on(gp->dev);
1532 (void)gem_set_link_modes(gp);
1534 goto restart;
1536 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1537 /* Ok, here we got a link. If we had it due to a forced
1538 * fallback, and we were configured for autoneg, we do
1539 * retry a short autoneg pass. If you know your hub is
1540 * broken, use ethtool ;)
1542 if (gp->lstate == link_force_try && gp->want_autoneg) {
1543 gp->lstate = link_force_ret;
1544 gp->last_forced_speed = gp->phy_mii.speed;
1545 gp->timer_ticks = 5;
1546 if (netif_msg_link(gp))
1547 netdev_info(gp->dev,
1548 "Got link after fallback, retrying autoneg once...\n");
1549 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1550 } else if (gp->lstate != link_up) {
1551 gp->lstate = link_up;
1552 netif_carrier_on(gp->dev);
1553 if (gem_set_link_modes(gp))
1554 restart_aneg = 1;
1556 } else {
1557 /* If the link was previously up, we restart the
1558 * whole process
1560 if (gp->lstate == link_up) {
1561 gp->lstate = link_down;
1562 netif_info(gp, link, gp->dev, "Link down\n");
1563 netif_carrier_off(gp->dev);
1564 gp->reset_task_pending = 1;
1565 schedule_work(&gp->reset_task);
1566 restart_aneg = 1;
1567 } else if (++gp->timer_ticks > 10) {
1568 if (found_mii_phy(gp))
1569 restart_aneg = gem_mdio_link_not_up(gp);
1570 else
1571 restart_aneg = 1;
1574 if (restart_aneg) {
1575 gem_begin_auto_negotiation(gp, NULL);
1576 goto out_unlock;
1578 restart:
1579 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1580 out_unlock:
1581 gem_put_cell(gp);
1582 spin_unlock(&gp->tx_lock);
1583 spin_unlock_irq(&gp->lock);
1586 /* Must be invoked under gp->lock and gp->tx_lock. */
1587 static void gem_clean_rings(struct gem *gp)
1589 struct gem_init_block *gb = gp->init_block;
1590 struct sk_buff *skb;
1591 int i;
1592 dma_addr_t dma_addr;
1594 for (i = 0; i < RX_RING_SIZE; i++) {
1595 struct gem_rxd *rxd;
1597 rxd = &gb->rxd[i];
1598 if (gp->rx_skbs[i] != NULL) {
1599 skb = gp->rx_skbs[i];
1600 dma_addr = le64_to_cpu(rxd->buffer);
1601 pci_unmap_page(gp->pdev, dma_addr,
1602 RX_BUF_ALLOC_SIZE(gp),
1603 PCI_DMA_FROMDEVICE);
1604 dev_kfree_skb_any(skb);
1605 gp->rx_skbs[i] = NULL;
1607 rxd->status_word = 0;
1608 wmb();
1609 rxd->buffer = 0;
1612 for (i = 0; i < TX_RING_SIZE; i++) {
1613 if (gp->tx_skbs[i] != NULL) {
1614 struct gem_txd *txd;
1615 int frag;
1617 skb = gp->tx_skbs[i];
1618 gp->tx_skbs[i] = NULL;
1620 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1621 int ent = i & (TX_RING_SIZE - 1);
1623 txd = &gb->txd[ent];
1624 dma_addr = le64_to_cpu(txd->buffer);
1625 pci_unmap_page(gp->pdev, dma_addr,
1626 le64_to_cpu(txd->control_word) &
1627 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1629 if (frag != skb_shinfo(skb)->nr_frags)
1630 i++;
1632 dev_kfree_skb_any(skb);
1637 /* Must be invoked under gp->lock and gp->tx_lock. */
1638 static void gem_init_rings(struct gem *gp)
1640 struct gem_init_block *gb = gp->init_block;
1641 struct net_device *dev = gp->dev;
1642 int i;
1643 dma_addr_t dma_addr;
1645 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1647 gem_clean_rings(gp);
1649 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1650 (unsigned)VLAN_ETH_FRAME_LEN);
1652 for (i = 0; i < RX_RING_SIZE; i++) {
1653 struct sk_buff *skb;
1654 struct gem_rxd *rxd = &gb->rxd[i];
1656 skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
1657 if (!skb) {
1658 rxd->buffer = 0;
1659 rxd->status_word = 0;
1660 continue;
1663 gp->rx_skbs[i] = skb;
1664 skb->dev = dev;
1665 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1666 dma_addr = pci_map_page(gp->pdev,
1667 virt_to_page(skb->data),
1668 offset_in_page(skb->data),
1669 RX_BUF_ALLOC_SIZE(gp),
1670 PCI_DMA_FROMDEVICE);
1671 rxd->buffer = cpu_to_le64(dma_addr);
1672 wmb();
1673 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1674 skb_reserve(skb, RX_OFFSET);
1677 for (i = 0; i < TX_RING_SIZE; i++) {
1678 struct gem_txd *txd = &gb->txd[i];
1680 txd->control_word = 0;
1681 wmb();
1682 txd->buffer = 0;
1684 wmb();
1687 /* Init PHY interface and start link poll state machine */
1688 static void gem_init_phy(struct gem *gp)
1690 u32 mifcfg;
1692 /* Revert MIF CFG setting done on stop_phy */
1693 mifcfg = readl(gp->regs + MIF_CFG);
1694 mifcfg &= ~MIF_CFG_BBMODE;
1695 writel(mifcfg, gp->regs + MIF_CFG);
1697 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1698 int i;
1700 /* Those delay sucks, the HW seem to love them though, I'll
1701 * serisouly consider breaking some locks here to be able
1702 * to schedule instead
1704 for (i = 0; i < 3; i++) {
1705 #ifdef CONFIG_PPC_PMAC
1706 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1707 msleep(20);
1708 #endif
1709 /* Some PHYs used by apple have problem getting back to us,
1710 * we do an additional reset here
1712 phy_write(gp, MII_BMCR, BMCR_RESET);
1713 msleep(20);
1714 if (phy_read(gp, MII_BMCR) != 0xffff)
1715 break;
1716 if (i == 2)
1717 netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1721 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1722 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1723 u32 val;
1725 /* Init datapath mode register. */
1726 if (gp->phy_type == phy_mii_mdio0 ||
1727 gp->phy_type == phy_mii_mdio1) {
1728 val = PCS_DMODE_MGM;
1729 } else if (gp->phy_type == phy_serialink) {
1730 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1731 } else {
1732 val = PCS_DMODE_ESM;
1735 writel(val, gp->regs + PCS_DMODE);
1738 if (gp->phy_type == phy_mii_mdio0 ||
1739 gp->phy_type == phy_mii_mdio1) {
1740 // XXX check for errors
1741 mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1743 /* Init PHY */
1744 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1745 gp->phy_mii.def->ops->init(&gp->phy_mii);
1746 } else {
1747 gem_pcs_reset(gp);
1748 gem_pcs_reinit_adv(gp);
1751 /* Default aneg parameters */
1752 gp->timer_ticks = 0;
1753 gp->lstate = link_down;
1754 netif_carrier_off(gp->dev);
1756 /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1757 spin_lock_irq(&gp->lock);
1758 gem_begin_auto_negotiation(gp, NULL);
1759 spin_unlock_irq(&gp->lock);
1762 /* Must be invoked under gp->lock and gp->tx_lock. */
1763 static void gem_init_dma(struct gem *gp)
1765 u64 desc_dma = (u64) gp->gblock_dvma;
1766 u32 val;
1768 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1769 writel(val, gp->regs + TXDMA_CFG);
1771 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1772 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1773 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1775 writel(0, gp->regs + TXDMA_KICK);
1777 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1778 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1779 writel(val, gp->regs + RXDMA_CFG);
1781 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1782 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1784 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1786 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1787 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1788 writel(val, gp->regs + RXDMA_PTHRESH);
1790 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1791 writel(((5 & RXDMA_BLANK_IPKTS) |
1792 ((8 << 12) & RXDMA_BLANK_ITIME)),
1793 gp->regs + RXDMA_BLANK);
1794 else
1795 writel(((5 & RXDMA_BLANK_IPKTS) |
1796 ((4 << 12) & RXDMA_BLANK_ITIME)),
1797 gp->regs + RXDMA_BLANK);
1800 /* Must be invoked under gp->lock and gp->tx_lock. */
1801 static u32 gem_setup_multicast(struct gem *gp)
1803 u32 rxcfg = 0;
1804 int i;
1806 if ((gp->dev->flags & IFF_ALLMULTI) ||
1807 (netdev_mc_count(gp->dev) > 256)) {
1808 for (i=0; i<16; i++)
1809 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1810 rxcfg |= MAC_RXCFG_HFE;
1811 } else if (gp->dev->flags & IFF_PROMISC) {
1812 rxcfg |= MAC_RXCFG_PROM;
1813 } else {
1814 u16 hash_table[16];
1815 u32 crc;
1816 struct netdev_hw_addr *ha;
1817 int i;
1819 memset(hash_table, 0, sizeof(hash_table));
1820 netdev_for_each_mc_addr(ha, gp->dev) {
1821 char *addrs = ha->addr;
1823 if (!(*addrs & 1))
1824 continue;
1826 crc = ether_crc_le(6, addrs);
1827 crc >>= 24;
1828 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1830 for (i=0; i<16; i++)
1831 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1832 rxcfg |= MAC_RXCFG_HFE;
1835 return rxcfg;
1838 /* Must be invoked under gp->lock and gp->tx_lock. */
1839 static void gem_init_mac(struct gem *gp)
1841 unsigned char *e = &gp->dev->dev_addr[0];
1843 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1845 writel(0x00, gp->regs + MAC_IPG0);
1846 writel(0x08, gp->regs + MAC_IPG1);
1847 writel(0x04, gp->regs + MAC_IPG2);
1848 writel(0x40, gp->regs + MAC_STIME);
1849 writel(0x40, gp->regs + MAC_MINFSZ);
1851 /* Ethernet payload + header + FCS + optional VLAN tag. */
1852 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1854 writel(0x07, gp->regs + MAC_PASIZE);
1855 writel(0x04, gp->regs + MAC_JAMSIZE);
1856 writel(0x10, gp->regs + MAC_ATTLIM);
1857 writel(0x8808, gp->regs + MAC_MCTYPE);
1859 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1861 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1862 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1863 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1865 writel(0, gp->regs + MAC_ADDR3);
1866 writel(0, gp->regs + MAC_ADDR4);
1867 writel(0, gp->regs + MAC_ADDR5);
1869 writel(0x0001, gp->regs + MAC_ADDR6);
1870 writel(0xc200, gp->regs + MAC_ADDR7);
1871 writel(0x0180, gp->regs + MAC_ADDR8);
1873 writel(0, gp->regs + MAC_AFILT0);
1874 writel(0, gp->regs + MAC_AFILT1);
1875 writel(0, gp->regs + MAC_AFILT2);
1876 writel(0, gp->regs + MAC_AF21MSK);
1877 writel(0, gp->regs + MAC_AF0MSK);
1879 gp->mac_rx_cfg = gem_setup_multicast(gp);
1880 #ifdef STRIP_FCS
1881 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1882 #endif
1883 writel(0, gp->regs + MAC_NCOLL);
1884 writel(0, gp->regs + MAC_FASUCC);
1885 writel(0, gp->regs + MAC_ECOLL);
1886 writel(0, gp->regs + MAC_LCOLL);
1887 writel(0, gp->regs + MAC_DTIMER);
1888 writel(0, gp->regs + MAC_PATMPS);
1889 writel(0, gp->regs + MAC_RFCTR);
1890 writel(0, gp->regs + MAC_LERR);
1891 writel(0, gp->regs + MAC_AERR);
1892 writel(0, gp->regs + MAC_FCSERR);
1893 writel(0, gp->regs + MAC_RXCVERR);
1895 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1896 * them once a link is established.
1898 writel(0, gp->regs + MAC_TXCFG);
1899 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1900 writel(0, gp->regs + MAC_MCCFG);
1901 writel(0, gp->regs + MAC_XIFCFG);
1903 /* Setup MAC interrupts. We want to get all of the interesting
1904 * counter expiration events, but we do not want to hear about
1905 * normal rx/tx as the DMA engine tells us that.
1907 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1908 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1910 /* Don't enable even the PAUSE interrupts for now, we
1911 * make no use of those events other than to record them.
1913 writel(0xffffffff, gp->regs + MAC_MCMASK);
1915 /* Don't enable GEM's WOL in normal operations
1917 if (gp->has_wol)
1918 writel(0, gp->regs + WOL_WAKECSR);
1921 /* Must be invoked under gp->lock and gp->tx_lock. */
1922 static void gem_init_pause_thresholds(struct gem *gp)
1924 u32 cfg;
1926 /* Calculate pause thresholds. Setting the OFF threshold to the
1927 * full RX fifo size effectively disables PAUSE generation which
1928 * is what we do for 10/100 only GEMs which have FIFOs too small
1929 * to make real gains from PAUSE.
1931 if (gp->rx_fifo_sz <= (2 * 1024)) {
1932 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1933 } else {
1934 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1935 int off = (gp->rx_fifo_sz - (max_frame * 2));
1936 int on = off - max_frame;
1938 gp->rx_pause_off = off;
1939 gp->rx_pause_on = on;
1943 /* Configure the chip "burst" DMA mode & enable some
1944 * HW bug fixes on Apple version
1946 cfg = 0;
1947 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1948 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1949 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1950 cfg |= GREG_CFG_IBURST;
1951 #endif
1952 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1953 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1954 writel(cfg, gp->regs + GREG_CFG);
1956 /* If Infinite Burst didn't stick, then use different
1957 * thresholds (and Apple bug fixes don't exist)
1959 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1960 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1961 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1962 writel(cfg, gp->regs + GREG_CFG);
1966 static int gem_check_invariants(struct gem *gp)
1968 struct pci_dev *pdev = gp->pdev;
1969 u32 mif_cfg;
1971 /* On Apple's sungem, we can't rely on registers as the chip
1972 * was been powered down by the firmware. The PHY is looked
1973 * up later on.
1975 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1976 gp->phy_type = phy_mii_mdio0;
1977 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1978 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1979 gp->swrst_base = 0;
1981 mif_cfg = readl(gp->regs + MIF_CFG);
1982 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1983 mif_cfg |= MIF_CFG_MDI0;
1984 writel(mif_cfg, gp->regs + MIF_CFG);
1985 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1986 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1988 /* We hard-code the PHY address so we can properly bring it out of
1989 * reset later on, we can't really probe it at this point, though
1990 * that isn't an issue.
1992 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1993 gp->mii_phy_addr = 1;
1994 else
1995 gp->mii_phy_addr = 0;
1997 return 0;
2000 mif_cfg = readl(gp->regs + MIF_CFG);
2002 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2003 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
2004 /* One of the MII PHYs _must_ be present
2005 * as this chip has no gigabit PHY.
2007 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
2008 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2009 mif_cfg);
2010 return -1;
2014 /* Determine initial PHY interface type guess. MDIO1 is the
2015 * external PHY and thus takes precedence over MDIO0.
2018 if (mif_cfg & MIF_CFG_MDI1) {
2019 gp->phy_type = phy_mii_mdio1;
2020 mif_cfg |= MIF_CFG_PSELECT;
2021 writel(mif_cfg, gp->regs + MIF_CFG);
2022 } else if (mif_cfg & MIF_CFG_MDI0) {
2023 gp->phy_type = phy_mii_mdio0;
2024 mif_cfg &= ~MIF_CFG_PSELECT;
2025 writel(mif_cfg, gp->regs + MIF_CFG);
2026 } else {
2027 #ifdef CONFIG_SPARC
2028 const char *p;
2030 p = of_get_property(gp->of_node, "shared-pins", NULL);
2031 if (p && !strcmp(p, "serdes"))
2032 gp->phy_type = phy_serdes;
2033 else
2034 #endif
2035 gp->phy_type = phy_serialink;
2037 if (gp->phy_type == phy_mii_mdio1 ||
2038 gp->phy_type == phy_mii_mdio0) {
2039 int i;
2041 for (i = 0; i < 32; i++) {
2042 gp->mii_phy_addr = i;
2043 if (phy_read(gp, MII_BMCR) != 0xffff)
2044 break;
2046 if (i == 32) {
2047 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2048 pr_err("RIO MII phy will not respond\n");
2049 return -1;
2051 gp->phy_type = phy_serdes;
2055 /* Fetch the FIFO configurations now too. */
2056 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2057 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2059 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2060 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2061 if (gp->tx_fifo_sz != (9 * 1024) ||
2062 gp->rx_fifo_sz != (20 * 1024)) {
2063 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2064 gp->tx_fifo_sz, gp->rx_fifo_sz);
2065 return -1;
2067 gp->swrst_base = 0;
2068 } else {
2069 if (gp->tx_fifo_sz != (2 * 1024) ||
2070 gp->rx_fifo_sz != (2 * 1024)) {
2071 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2072 gp->tx_fifo_sz, gp->rx_fifo_sz);
2073 return -1;
2075 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2079 return 0;
2082 /* Must be invoked under gp->lock and gp->tx_lock. */
2083 static void gem_reinit_chip(struct gem *gp)
2085 /* Reset the chip */
2086 gem_reset(gp);
2088 /* Make sure ints are disabled */
2089 gem_disable_ints(gp);
2091 /* Allocate & setup ring buffers */
2092 gem_init_rings(gp);
2094 /* Configure pause thresholds */
2095 gem_init_pause_thresholds(gp);
2097 /* Init DMA & MAC engines */
2098 gem_init_dma(gp);
2099 gem_init_mac(gp);
2103 /* Must be invoked with no lock held. */
2104 static void gem_stop_phy(struct gem *gp, int wol)
2106 u32 mifcfg;
2107 unsigned long flags;
2109 /* Let the chip settle down a bit, it seems that helps
2110 * for sleep mode on some models
2112 msleep(10);
2114 /* Make sure we aren't polling PHY status change. We
2115 * don't currently use that feature though
2117 mifcfg = readl(gp->regs + MIF_CFG);
2118 mifcfg &= ~MIF_CFG_POLL;
2119 writel(mifcfg, gp->regs + MIF_CFG);
2121 if (wol && gp->has_wol) {
2122 unsigned char *e = &gp->dev->dev_addr[0];
2123 u32 csr;
2125 /* Setup wake-on-lan for MAGIC packet */
2126 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2127 gp->regs + MAC_RXCFG);
2128 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2129 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2130 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2132 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2133 csr = WOL_WAKECSR_ENABLE;
2134 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2135 csr |= WOL_WAKECSR_MII;
2136 writel(csr, gp->regs + WOL_WAKECSR);
2137 } else {
2138 writel(0, gp->regs + MAC_RXCFG);
2139 (void)readl(gp->regs + MAC_RXCFG);
2140 /* Machine sleep will die in strange ways if we
2141 * dont wait a bit here, looks like the chip takes
2142 * some time to really shut down
2144 msleep(10);
2147 writel(0, gp->regs + MAC_TXCFG);
2148 writel(0, gp->regs + MAC_XIFCFG);
2149 writel(0, gp->regs + TXDMA_CFG);
2150 writel(0, gp->regs + RXDMA_CFG);
2152 if (!wol) {
2153 spin_lock_irqsave(&gp->lock, flags);
2154 spin_lock(&gp->tx_lock);
2155 gem_reset(gp);
2156 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2157 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2158 spin_unlock(&gp->tx_lock);
2159 spin_unlock_irqrestore(&gp->lock, flags);
2161 /* No need to take the lock here */
2163 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2164 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2166 /* According to Apple, we must set the MDIO pins to this begnign
2167 * state or we may 1) eat more current, 2) damage some PHYs
2169 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2170 writel(0, gp->regs + MIF_BBCLK);
2171 writel(0, gp->regs + MIF_BBDATA);
2172 writel(0, gp->regs + MIF_BBOENAB);
2173 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2174 (void) readl(gp->regs + MAC_XIFCFG);
2179 static int gem_do_start(struct net_device *dev)
2181 struct gem *gp = netdev_priv(dev);
2182 unsigned long flags;
2184 spin_lock_irqsave(&gp->lock, flags);
2185 spin_lock(&gp->tx_lock);
2187 /* Enable the cell */
2188 gem_get_cell(gp);
2190 /* Init & setup chip hardware */
2191 gem_reinit_chip(gp);
2193 gp->running = 1;
2195 napi_enable(&gp->napi);
2197 if (gp->lstate == link_up) {
2198 netif_carrier_on(gp->dev);
2199 gem_set_link_modes(gp);
2202 netif_wake_queue(gp->dev);
2204 spin_unlock(&gp->tx_lock);
2205 spin_unlock_irqrestore(&gp->lock, flags);
2207 if (request_irq(gp->pdev->irq, gem_interrupt,
2208 IRQF_SHARED, dev->name, (void *)dev)) {
2209 netdev_err(dev, "failed to request irq !\n");
2211 spin_lock_irqsave(&gp->lock, flags);
2212 spin_lock(&gp->tx_lock);
2214 napi_disable(&gp->napi);
2216 gp->running = 0;
2217 gem_reset(gp);
2218 gem_clean_rings(gp);
2219 gem_put_cell(gp);
2221 spin_unlock(&gp->tx_lock);
2222 spin_unlock_irqrestore(&gp->lock, flags);
2224 return -EAGAIN;
2227 return 0;
2230 static void gem_do_stop(struct net_device *dev, int wol)
2232 struct gem *gp = netdev_priv(dev);
2233 unsigned long flags;
2235 spin_lock_irqsave(&gp->lock, flags);
2236 spin_lock(&gp->tx_lock);
2238 gp->running = 0;
2240 /* Stop netif queue */
2241 netif_stop_queue(dev);
2243 /* Make sure ints are disabled */
2244 gem_disable_ints(gp);
2246 /* We can drop the lock now */
2247 spin_unlock(&gp->tx_lock);
2248 spin_unlock_irqrestore(&gp->lock, flags);
2250 /* If we are going to sleep with WOL */
2251 gem_stop_dma(gp);
2252 msleep(10);
2253 if (!wol)
2254 gem_reset(gp);
2255 msleep(10);
2257 /* Get rid of rings */
2258 gem_clean_rings(gp);
2260 /* No irq needed anymore */
2261 free_irq(gp->pdev->irq, (void *) dev);
2263 /* Cell not needed neither if no WOL */
2264 if (!wol) {
2265 spin_lock_irqsave(&gp->lock, flags);
2266 gem_put_cell(gp);
2267 spin_unlock_irqrestore(&gp->lock, flags);
2271 static void gem_reset_task(struct work_struct *work)
2273 struct gem *gp = container_of(work, struct gem, reset_task);
2275 mutex_lock(&gp->pm_mutex);
2277 if (gp->opened)
2278 napi_disable(&gp->napi);
2280 spin_lock_irq(&gp->lock);
2281 spin_lock(&gp->tx_lock);
2283 if (gp->running) {
2284 netif_stop_queue(gp->dev);
2286 /* Reset the chip & rings */
2287 gem_reinit_chip(gp);
2288 if (gp->lstate == link_up)
2289 gem_set_link_modes(gp);
2290 netif_wake_queue(gp->dev);
2293 gp->reset_task_pending = 0;
2295 spin_unlock(&gp->tx_lock);
2296 spin_unlock_irq(&gp->lock);
2298 if (gp->opened)
2299 napi_enable(&gp->napi);
2301 mutex_unlock(&gp->pm_mutex);
2305 static int gem_open(struct net_device *dev)
2307 struct gem *gp = netdev_priv(dev);
2308 int rc = 0;
2310 mutex_lock(&gp->pm_mutex);
2312 /* We need the cell enabled */
2313 if (!gp->asleep)
2314 rc = gem_do_start(dev);
2315 gp->opened = (rc == 0);
2317 mutex_unlock(&gp->pm_mutex);
2319 return rc;
2322 static int gem_close(struct net_device *dev)
2324 struct gem *gp = netdev_priv(dev);
2326 mutex_lock(&gp->pm_mutex);
2328 napi_disable(&gp->napi);
2330 gp->opened = 0;
2331 if (!gp->asleep)
2332 gem_do_stop(dev, 0);
2334 mutex_unlock(&gp->pm_mutex);
2336 return 0;
2339 #ifdef CONFIG_PM
2340 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2342 struct net_device *dev = pci_get_drvdata(pdev);
2343 struct gem *gp = netdev_priv(dev);
2344 unsigned long flags;
2346 mutex_lock(&gp->pm_mutex);
2348 netdev_info(dev, "suspending, WakeOnLan %s\n",
2349 (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
2351 /* Keep the cell enabled during the entire operation */
2352 spin_lock_irqsave(&gp->lock, flags);
2353 spin_lock(&gp->tx_lock);
2354 gem_get_cell(gp);
2355 spin_unlock(&gp->tx_lock);
2356 spin_unlock_irqrestore(&gp->lock, flags);
2358 /* If the driver is opened, we stop the MAC */
2359 if (gp->opened) {
2360 napi_disable(&gp->napi);
2362 /* Stop traffic, mark us closed */
2363 netif_device_detach(dev);
2365 /* Switch off MAC, remember WOL setting */
2366 gp->asleep_wol = !!gp->wake_on_lan;
2367 gem_do_stop(dev, gp->asleep_wol);
2368 } else
2369 gp->asleep_wol = 0;
2371 /* Mark us asleep */
2372 gp->asleep = 1;
2373 wmb();
2375 /* Stop the link timer */
2376 del_timer_sync(&gp->link_timer);
2378 /* Now we release the mutex to not block the reset task who
2379 * can take it too. We are marked asleep, so there will be no
2380 * conflict here
2382 mutex_unlock(&gp->pm_mutex);
2384 /* Wait for the pending reset task to complete */
2385 flush_work_sync(&gp->reset_task);
2387 /* Shut the PHY down eventually and setup WOL */
2388 gem_stop_phy(gp, gp->asleep_wol);
2390 /* Make sure bus master is disabled */
2391 pci_disable_device(gp->pdev);
2393 /* Release the cell, no need to take a lock at this point since
2394 * nothing else can happen now
2396 gem_put_cell(gp);
2398 return 0;
2401 static int gem_resume(struct pci_dev *pdev)
2403 struct net_device *dev = pci_get_drvdata(pdev);
2404 struct gem *gp = netdev_priv(dev);
2405 unsigned long flags;
2407 netdev_info(dev, "resuming\n");
2409 mutex_lock(&gp->pm_mutex);
2411 /* Keep the cell enabled during the entire operation, no need to
2412 * take a lock here tho since nothing else can happen while we are
2413 * marked asleep
2415 gem_get_cell(gp);
2417 /* Make sure PCI access and bus master are enabled */
2418 if (pci_enable_device(gp->pdev)) {
2419 netdev_err(dev, "Can't re-enable chip !\n");
2420 /* Put cell and forget it for now, it will be considered as
2421 * still asleep, a new sleep cycle may bring it back
2423 gem_put_cell(gp);
2424 mutex_unlock(&gp->pm_mutex);
2425 return 0;
2427 pci_set_master(gp->pdev);
2429 /* Reset everything */
2430 gem_reset(gp);
2432 /* Mark us woken up */
2433 gp->asleep = 0;
2434 wmb();
2436 /* Bring the PHY back. Again, lock is useless at this point as
2437 * nothing can be happening until we restart the whole thing
2439 gem_init_phy(gp);
2441 /* If we were opened, bring everything back */
2442 if (gp->opened) {
2443 /* Restart MAC */
2444 gem_do_start(dev);
2446 /* Re-attach net device */
2447 netif_device_attach(dev);
2450 spin_lock_irqsave(&gp->lock, flags);
2451 spin_lock(&gp->tx_lock);
2453 /* If we had WOL enabled, the cell clock was never turned off during
2454 * sleep, so we end up beeing unbalanced. Fix that here
2456 if (gp->asleep_wol)
2457 gem_put_cell(gp);
2459 /* This function doesn't need to hold the cell, it will be held if the
2460 * driver is open by gem_do_start().
2462 gem_put_cell(gp);
2464 spin_unlock(&gp->tx_lock);
2465 spin_unlock_irqrestore(&gp->lock, flags);
2467 mutex_unlock(&gp->pm_mutex);
2469 return 0;
2471 #endif /* CONFIG_PM */
2473 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2475 struct gem *gp = netdev_priv(dev);
2477 spin_lock_irq(&gp->lock);
2478 spin_lock(&gp->tx_lock);
2480 /* I have seen this being called while the PM was in progress,
2481 * so we shield against this
2483 if (gp->running) {
2484 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2485 writel(0, gp->regs + MAC_FCSERR);
2487 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2488 writel(0, gp->regs + MAC_AERR);
2490 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2491 writel(0, gp->regs + MAC_LERR);
2493 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2494 dev->stats.collisions +=
2495 (readl(gp->regs + MAC_ECOLL) +
2496 readl(gp->regs + MAC_LCOLL));
2497 writel(0, gp->regs + MAC_ECOLL);
2498 writel(0, gp->regs + MAC_LCOLL);
2501 spin_unlock(&gp->tx_lock);
2502 spin_unlock_irq(&gp->lock);
2504 return &dev->stats;
2507 static int gem_set_mac_address(struct net_device *dev, void *addr)
2509 struct sockaddr *macaddr = (struct sockaddr *) addr;
2510 struct gem *gp = netdev_priv(dev);
2511 unsigned char *e = &dev->dev_addr[0];
2513 if (!is_valid_ether_addr(macaddr->sa_data))
2514 return -EADDRNOTAVAIL;
2516 if (!netif_running(dev) || !netif_device_present(dev)) {
2517 /* We'll just catch it later when the
2518 * device is up'd or resumed.
2520 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2521 return 0;
2524 mutex_lock(&gp->pm_mutex);
2525 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2526 if (gp->running) {
2527 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2528 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2529 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2531 mutex_unlock(&gp->pm_mutex);
2533 return 0;
2536 static void gem_set_multicast(struct net_device *dev)
2538 struct gem *gp = netdev_priv(dev);
2539 u32 rxcfg, rxcfg_new;
2540 int limit = 10000;
2543 spin_lock_irq(&gp->lock);
2544 spin_lock(&gp->tx_lock);
2546 if (!gp->running)
2547 goto bail;
2549 netif_stop_queue(dev);
2551 rxcfg = readl(gp->regs + MAC_RXCFG);
2552 rxcfg_new = gem_setup_multicast(gp);
2553 #ifdef STRIP_FCS
2554 rxcfg_new |= MAC_RXCFG_SFCS;
2555 #endif
2556 gp->mac_rx_cfg = rxcfg_new;
2558 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2559 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2560 if (!limit--)
2561 break;
2562 udelay(10);
2565 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2566 rxcfg |= rxcfg_new;
2568 writel(rxcfg, gp->regs + MAC_RXCFG);
2570 netif_wake_queue(dev);
2572 bail:
2573 spin_unlock(&gp->tx_lock);
2574 spin_unlock_irq(&gp->lock);
2577 /* Jumbo-grams don't seem to work :-( */
2578 #define GEM_MIN_MTU 68
2579 #if 1
2580 #define GEM_MAX_MTU 1500
2581 #else
2582 #define GEM_MAX_MTU 9000
2583 #endif
2585 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2587 struct gem *gp = netdev_priv(dev);
2589 if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2590 return -EINVAL;
2592 if (!netif_running(dev) || !netif_device_present(dev)) {
2593 /* We'll just catch it later when the
2594 * device is up'd or resumed.
2596 dev->mtu = new_mtu;
2597 return 0;
2600 mutex_lock(&gp->pm_mutex);
2601 spin_lock_irq(&gp->lock);
2602 spin_lock(&gp->tx_lock);
2603 dev->mtu = new_mtu;
2604 if (gp->running) {
2605 gem_reinit_chip(gp);
2606 if (gp->lstate == link_up)
2607 gem_set_link_modes(gp);
2609 spin_unlock(&gp->tx_lock);
2610 spin_unlock_irq(&gp->lock);
2611 mutex_unlock(&gp->pm_mutex);
2613 return 0;
2616 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2618 struct gem *gp = netdev_priv(dev);
2620 strcpy(info->driver, DRV_NAME);
2621 strcpy(info->version, DRV_VERSION);
2622 strcpy(info->bus_info, pci_name(gp->pdev));
2625 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2627 struct gem *gp = netdev_priv(dev);
2629 if (gp->phy_type == phy_mii_mdio0 ||
2630 gp->phy_type == phy_mii_mdio1) {
2631 if (gp->phy_mii.def)
2632 cmd->supported = gp->phy_mii.def->features;
2633 else
2634 cmd->supported = (SUPPORTED_10baseT_Half |
2635 SUPPORTED_10baseT_Full);
2637 /* XXX hardcoded stuff for now */
2638 cmd->port = PORT_MII;
2639 cmd->transceiver = XCVR_EXTERNAL;
2640 cmd->phy_address = 0; /* XXX fixed PHYAD */
2642 /* Return current PHY settings */
2643 spin_lock_irq(&gp->lock);
2644 cmd->autoneg = gp->want_autoneg;
2645 ethtool_cmd_speed_set(cmd, gp->phy_mii.speed);
2646 cmd->duplex = gp->phy_mii.duplex;
2647 cmd->advertising = gp->phy_mii.advertising;
2649 /* If we started with a forced mode, we don't have a default
2650 * advertise set, we need to return something sensible so
2651 * userland can re-enable autoneg properly.
2653 if (cmd->advertising == 0)
2654 cmd->advertising = cmd->supported;
2655 spin_unlock_irq(&gp->lock);
2656 } else { // XXX PCS ?
2657 cmd->supported =
2658 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2659 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2660 SUPPORTED_Autoneg);
2661 cmd->advertising = cmd->supported;
2662 ethtool_cmd_speed_set(cmd, 0);
2663 cmd->duplex = cmd->port = cmd->phy_address =
2664 cmd->transceiver = cmd->autoneg = 0;
2666 /* serdes means usually a Fibre connector, with most fixed */
2667 if (gp->phy_type == phy_serdes) {
2668 cmd->port = PORT_FIBRE;
2669 cmd->supported = (SUPPORTED_1000baseT_Half |
2670 SUPPORTED_1000baseT_Full |
2671 SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2672 SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2673 cmd->advertising = cmd->supported;
2674 cmd->transceiver = XCVR_INTERNAL;
2675 if (gp->lstate == link_up)
2676 ethtool_cmd_speed_set(cmd, SPEED_1000);
2677 cmd->duplex = DUPLEX_FULL;
2678 cmd->autoneg = 1;
2681 cmd->maxtxpkt = cmd->maxrxpkt = 0;
2683 return 0;
2686 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2688 struct gem *gp = netdev_priv(dev);
2689 u32 speed = ethtool_cmd_speed(cmd);
2691 /* Verify the settings we care about. */
2692 if (cmd->autoneg != AUTONEG_ENABLE &&
2693 cmd->autoneg != AUTONEG_DISABLE)
2694 return -EINVAL;
2696 if (cmd->autoneg == AUTONEG_ENABLE &&
2697 cmd->advertising == 0)
2698 return -EINVAL;
2700 if (cmd->autoneg == AUTONEG_DISABLE &&
2701 ((speed != SPEED_1000 &&
2702 speed != SPEED_100 &&
2703 speed != SPEED_10) ||
2704 (cmd->duplex != DUPLEX_HALF &&
2705 cmd->duplex != DUPLEX_FULL)))
2706 return -EINVAL;
2708 /* Apply settings and restart link process. */
2709 spin_lock_irq(&gp->lock);
2710 gem_get_cell(gp);
2711 gem_begin_auto_negotiation(gp, cmd);
2712 gem_put_cell(gp);
2713 spin_unlock_irq(&gp->lock);
2715 return 0;
2718 static int gem_nway_reset(struct net_device *dev)
2720 struct gem *gp = netdev_priv(dev);
2722 if (!gp->want_autoneg)
2723 return -EINVAL;
2725 /* Restart link process. */
2726 spin_lock_irq(&gp->lock);
2727 gem_get_cell(gp);
2728 gem_begin_auto_negotiation(gp, NULL);
2729 gem_put_cell(gp);
2730 spin_unlock_irq(&gp->lock);
2732 return 0;
2735 static u32 gem_get_msglevel(struct net_device *dev)
2737 struct gem *gp = netdev_priv(dev);
2738 return gp->msg_enable;
2741 static void gem_set_msglevel(struct net_device *dev, u32 value)
2743 struct gem *gp = netdev_priv(dev);
2744 gp->msg_enable = value;
2748 /* Add more when I understand how to program the chip */
2749 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2751 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2753 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2755 struct gem *gp = netdev_priv(dev);
2757 /* Add more when I understand how to program the chip */
2758 if (gp->has_wol) {
2759 wol->supported = WOL_SUPPORTED_MASK;
2760 wol->wolopts = gp->wake_on_lan;
2761 } else {
2762 wol->supported = 0;
2763 wol->wolopts = 0;
2767 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2769 struct gem *gp = netdev_priv(dev);
2771 if (!gp->has_wol)
2772 return -EOPNOTSUPP;
2773 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2774 return 0;
2777 static const struct ethtool_ops gem_ethtool_ops = {
2778 .get_drvinfo = gem_get_drvinfo,
2779 .get_link = ethtool_op_get_link,
2780 .get_settings = gem_get_settings,
2781 .set_settings = gem_set_settings,
2782 .nway_reset = gem_nway_reset,
2783 .get_msglevel = gem_get_msglevel,
2784 .set_msglevel = gem_set_msglevel,
2785 .get_wol = gem_get_wol,
2786 .set_wol = gem_set_wol,
2789 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2791 struct gem *gp = netdev_priv(dev);
2792 struct mii_ioctl_data *data = if_mii(ifr);
2793 int rc = -EOPNOTSUPP;
2794 unsigned long flags;
2796 /* Hold the PM mutex while doing ioctl's or we may collide
2797 * with power management.
2799 mutex_lock(&gp->pm_mutex);
2801 spin_lock_irqsave(&gp->lock, flags);
2802 gem_get_cell(gp);
2803 spin_unlock_irqrestore(&gp->lock, flags);
2805 switch (cmd) {
2806 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2807 data->phy_id = gp->mii_phy_addr;
2808 /* Fallthrough... */
2810 case SIOCGMIIREG: /* Read MII PHY register. */
2811 if (!gp->running)
2812 rc = -EAGAIN;
2813 else {
2814 data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2815 data->reg_num & 0x1f);
2816 rc = 0;
2818 break;
2820 case SIOCSMIIREG: /* Write MII PHY register. */
2821 if (!gp->running)
2822 rc = -EAGAIN;
2823 else {
2824 __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2825 data->val_in);
2826 rc = 0;
2828 break;
2831 spin_lock_irqsave(&gp->lock, flags);
2832 gem_put_cell(gp);
2833 spin_unlock_irqrestore(&gp->lock, flags);
2835 mutex_unlock(&gp->pm_mutex);
2837 return rc;
2840 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2841 /* Fetch MAC address from vital product data of PCI ROM. */
2842 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2844 int this_offset;
2846 for (this_offset = 0x20; this_offset < len; this_offset++) {
2847 void __iomem *p = rom_base + this_offset;
2848 int i;
2850 if (readb(p + 0) != 0x90 ||
2851 readb(p + 1) != 0x00 ||
2852 readb(p + 2) != 0x09 ||
2853 readb(p + 3) != 0x4e ||
2854 readb(p + 4) != 0x41 ||
2855 readb(p + 5) != 0x06)
2856 continue;
2858 this_offset += 6;
2859 p += 6;
2861 for (i = 0; i < 6; i++)
2862 dev_addr[i] = readb(p + i);
2863 return 1;
2865 return 0;
2868 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2870 size_t size;
2871 void __iomem *p = pci_map_rom(pdev, &size);
2873 if (p) {
2874 int found;
2876 found = readb(p) == 0x55 &&
2877 readb(p + 1) == 0xaa &&
2878 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2879 pci_unmap_rom(pdev, p);
2880 if (found)
2881 return;
2884 /* Sun MAC prefix then 3 random bytes. */
2885 dev_addr[0] = 0x08;
2886 dev_addr[1] = 0x00;
2887 dev_addr[2] = 0x20;
2888 get_random_bytes(dev_addr + 3, 3);
2890 #endif /* not Sparc and not PPC */
2892 static int __devinit gem_get_device_address(struct gem *gp)
2894 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2895 struct net_device *dev = gp->dev;
2896 const unsigned char *addr;
2898 addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2899 if (addr == NULL) {
2900 #ifdef CONFIG_SPARC
2901 addr = idprom->id_ethaddr;
2902 #else
2903 printk("\n");
2904 pr_err("%s: can't get mac-address\n", dev->name);
2905 return -1;
2906 #endif
2908 memcpy(dev->dev_addr, addr, 6);
2909 #else
2910 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2911 #endif
2912 return 0;
2915 static void gem_remove_one(struct pci_dev *pdev)
2917 struct net_device *dev = pci_get_drvdata(pdev);
2919 if (dev) {
2920 struct gem *gp = netdev_priv(dev);
2922 unregister_netdev(dev);
2924 /* Stop the link timer */
2925 del_timer_sync(&gp->link_timer);
2927 /* We shouldn't need any locking here */
2928 gem_get_cell(gp);
2930 /* Cancel reset task */
2931 cancel_work_sync(&gp->reset_task);
2933 /* Shut the PHY down */
2934 gem_stop_phy(gp, 0);
2936 gem_put_cell(gp);
2938 /* Make sure bus master is disabled */
2939 pci_disable_device(gp->pdev);
2941 /* Free resources */
2942 pci_free_consistent(pdev,
2943 sizeof(struct gem_init_block),
2944 gp->init_block,
2945 gp->gblock_dvma);
2946 iounmap(gp->regs);
2947 pci_release_regions(pdev);
2948 free_netdev(dev);
2950 pci_set_drvdata(pdev, NULL);
2954 static const struct net_device_ops gem_netdev_ops = {
2955 .ndo_open = gem_open,
2956 .ndo_stop = gem_close,
2957 .ndo_start_xmit = gem_start_xmit,
2958 .ndo_get_stats = gem_get_stats,
2959 .ndo_set_multicast_list = gem_set_multicast,
2960 .ndo_do_ioctl = gem_ioctl,
2961 .ndo_tx_timeout = gem_tx_timeout,
2962 .ndo_change_mtu = gem_change_mtu,
2963 .ndo_validate_addr = eth_validate_addr,
2964 .ndo_set_mac_address = gem_set_mac_address,
2965 #ifdef CONFIG_NET_POLL_CONTROLLER
2966 .ndo_poll_controller = gem_poll_controller,
2967 #endif
2970 static int __devinit gem_init_one(struct pci_dev *pdev,
2971 const struct pci_device_id *ent)
2973 unsigned long gemreg_base, gemreg_len;
2974 struct net_device *dev;
2975 struct gem *gp;
2976 int err, pci_using_dac;
2978 printk_once(KERN_INFO "%s", version);
2980 /* Apple gmac note: during probe, the chip is powered up by
2981 * the arch code to allow the code below to work (and to let
2982 * the chip be probed on the config space. It won't stay powered
2983 * up until the interface is brought up however, so we can't rely
2984 * on register configuration done at this point.
2986 err = pci_enable_device(pdev);
2987 if (err) {
2988 pr_err("Cannot enable MMIO operation, aborting\n");
2989 return err;
2991 pci_set_master(pdev);
2993 /* Configure DMA attributes. */
2995 /* All of the GEM documentation states that 64-bit DMA addressing
2996 * is fully supported and should work just fine. However the
2997 * front end for RIO based GEMs is different and only supports
2998 * 32-bit addressing.
3000 * For now we assume the various PPC GEMs are 32-bit only as well.
3002 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
3003 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
3004 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3005 pci_using_dac = 1;
3006 } else {
3007 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3008 if (err) {
3009 pr_err("No usable DMA configuration, aborting\n");
3010 goto err_disable_device;
3012 pci_using_dac = 0;
3015 gemreg_base = pci_resource_start(pdev, 0);
3016 gemreg_len = pci_resource_len(pdev, 0);
3018 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3019 pr_err("Cannot find proper PCI device base address, aborting\n");
3020 err = -ENODEV;
3021 goto err_disable_device;
3024 dev = alloc_etherdev(sizeof(*gp));
3025 if (!dev) {
3026 pr_err("Etherdev alloc failed, aborting\n");
3027 err = -ENOMEM;
3028 goto err_disable_device;
3030 SET_NETDEV_DEV(dev, &pdev->dev);
3032 gp = netdev_priv(dev);
3034 err = pci_request_regions(pdev, DRV_NAME);
3035 if (err) {
3036 pr_err("Cannot obtain PCI resources, aborting\n");
3037 goto err_out_free_netdev;
3040 gp->pdev = pdev;
3041 dev->base_addr = (long) pdev;
3042 gp->dev = dev;
3044 gp->msg_enable = DEFAULT_MSG;
3046 spin_lock_init(&gp->lock);
3047 spin_lock_init(&gp->tx_lock);
3048 mutex_init(&gp->pm_mutex);
3050 init_timer(&gp->link_timer);
3051 gp->link_timer.function = gem_link_timer;
3052 gp->link_timer.data = (unsigned long) gp;
3054 INIT_WORK(&gp->reset_task, gem_reset_task);
3056 gp->lstate = link_down;
3057 gp->timer_ticks = 0;
3058 netif_carrier_off(dev);
3060 gp->regs = ioremap(gemreg_base, gemreg_len);
3061 if (!gp->regs) {
3062 pr_err("Cannot map device registers, aborting\n");
3063 err = -EIO;
3064 goto err_out_free_res;
3067 /* On Apple, we want a reference to the Open Firmware device-tree
3068 * node. We use it for clock control.
3070 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
3071 gp->of_node = pci_device_to_OF_node(pdev);
3072 #endif
3074 /* Only Apple version supports WOL afaik */
3075 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
3076 gp->has_wol = 1;
3078 /* Make sure cell is enabled */
3079 gem_get_cell(gp);
3081 /* Make sure everything is stopped and in init state */
3082 gem_reset(gp);
3084 /* Fill up the mii_phy structure (even if we won't use it) */
3085 gp->phy_mii.dev = dev;
3086 gp->phy_mii.mdio_read = _phy_read;
3087 gp->phy_mii.mdio_write = _phy_write;
3088 #ifdef CONFIG_PPC_PMAC
3089 gp->phy_mii.platform_data = gp->of_node;
3090 #endif
3091 /* By default, we start with autoneg */
3092 gp->want_autoneg = 1;
3094 /* Check fifo sizes, PHY type, etc... */
3095 if (gem_check_invariants(gp)) {
3096 err = -ENODEV;
3097 goto err_out_iounmap;
3100 /* It is guaranteed that the returned buffer will be at least
3101 * PAGE_SIZE aligned.
3103 gp->init_block = (struct gem_init_block *)
3104 pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
3105 &gp->gblock_dvma);
3106 if (!gp->init_block) {
3107 pr_err("Cannot allocate init block, aborting\n");
3108 err = -ENOMEM;
3109 goto err_out_iounmap;
3112 if (gem_get_device_address(gp))
3113 goto err_out_free_consistent;
3115 dev->netdev_ops = &gem_netdev_ops;
3116 netif_napi_add(dev, &gp->napi, gem_poll, 64);
3117 dev->ethtool_ops = &gem_ethtool_ops;
3118 dev->watchdog_timeo = 5 * HZ;
3119 dev->irq = pdev->irq;
3120 dev->dma = 0;
3122 /* Set that now, in case PM kicks in now */
3123 pci_set_drvdata(pdev, dev);
3125 /* Detect & init PHY, start autoneg, we release the cell now
3126 * too, it will be managed by whoever needs it
3128 gem_init_phy(gp);
3130 spin_lock_irq(&gp->lock);
3131 gem_put_cell(gp);
3132 spin_unlock_irq(&gp->lock);
3134 /* Register with kernel */
3135 if (register_netdev(dev)) {
3136 pr_err("Cannot register net device, aborting\n");
3137 err = -ENOMEM;
3138 goto err_out_free_consistent;
3141 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3142 dev->dev_addr);
3144 if (gp->phy_type == phy_mii_mdio0 ||
3145 gp->phy_type == phy_mii_mdio1)
3146 netdev_info(dev, "Found %s PHY\n",
3147 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
3149 /* GEM can do it all... */
3150 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
3151 dev->features |= dev->hw_features | NETIF_F_RXCSUM | NETIF_F_LLTX;
3152 if (pci_using_dac)
3153 dev->features |= NETIF_F_HIGHDMA;
3155 return 0;
3157 err_out_free_consistent:
3158 gem_remove_one(pdev);
3159 err_out_iounmap:
3160 gem_put_cell(gp);
3161 iounmap(gp->regs);
3163 err_out_free_res:
3164 pci_release_regions(pdev);
3166 err_out_free_netdev:
3167 free_netdev(dev);
3168 err_disable_device:
3169 pci_disable_device(pdev);
3170 return err;
3175 static struct pci_driver gem_driver = {
3176 .name = GEM_MODULE_NAME,
3177 .id_table = gem_pci_tbl,
3178 .probe = gem_init_one,
3179 .remove = gem_remove_one,
3180 #ifdef CONFIG_PM
3181 .suspend = gem_suspend,
3182 .resume = gem_resume,
3183 #endif /* CONFIG_PM */
3186 static int __init gem_init(void)
3188 return pci_register_driver(&gem_driver);
3191 static void __exit gem_cleanup(void)
3193 pci_unregister_driver(&gem_driver);
3196 module_init(gem_init);
3197 module_exit(gem_cleanup);