1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
14 * - Now that the driver was significantly simplified, I need to rework
15 * the locking. I'm sure we don't need _2_ spinlocks, and we probably
16 * can avoid taking most of them for so long period of time (and schedule
17 * instead). The main issues at this point are caused by the netdev layer
20 * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
21 * help by net/core/dev.c, thus they can't schedule. That means they can't
22 * call napi_disable() neither, thus force gem_poll() to keep a spinlock
23 * where it could have been dropped. change_mtu especially would love also to
24 * be able to msleep instead of horrid locked delays when resetting the HW,
25 * but that read_lock() makes it impossible, unless I defer it's action to
26 * the reset task, which means it'll be asynchronous (won't take effect until
27 * the system schedules a bit).
29 * Also, it would probably be possible to also remove most of the long-life
30 * locking in open/resume code path (gem_reinit_chip) by beeing more careful
31 * about when we can start taking interrupts or get xmit() called...
34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/types.h>
39 #include <linux/fcntl.h>
40 #include <linux/interrupt.h>
41 #include <linux/ioport.h>
43 #include <linux/sched.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/errno.h>
48 #include <linux/pci.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/netdevice.h>
51 #include <linux/etherdevice.h>
52 #include <linux/skbuff.h>
53 #include <linux/mii.h>
54 #include <linux/ethtool.h>
55 #include <linux/crc32.h>
56 #include <linux/random.h>
57 #include <linux/workqueue.h>
58 #include <linux/if_vlan.h>
59 #include <linux/bitops.h>
60 #include <linux/mutex.h>
62 #include <linux/gfp.h>
64 #include <asm/system.h>
66 #include <asm/byteorder.h>
67 #include <asm/uaccess.h>
71 #include <asm/idprom.h>
75 #ifdef CONFIG_PPC_PMAC
76 #include <asm/pci-bridge.h>
78 #include <asm/machdep.h>
79 #include <asm/pmac_feature.h>
82 #include "sungem_phy.h"
85 /* Stripping FCS is causing problems, disabled for now */
88 #define DEFAULT_MSG (NETIF_MSG_DRV | \
92 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
93 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
94 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
95 SUPPORTED_Pause | SUPPORTED_Autoneg)
97 #define DRV_NAME "sungem"
98 #define DRV_VERSION "0.98"
99 #define DRV_RELDATE "8/24/03"
100 #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
102 static char version
[] __devinitdata
=
103 DRV_NAME
".c:v" DRV_VERSION
" " DRV_RELDATE
" " DRV_AUTHOR
"\n";
105 MODULE_AUTHOR(DRV_AUTHOR
);
106 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
107 MODULE_LICENSE("GPL");
109 #define GEM_MODULE_NAME "gem"
111 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl
) = {
112 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_GEM
,
113 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
115 /* These models only differ from the original GEM in
116 * that their tx/rx fifos are of a different size and
117 * they only support 10/100 speeds. -DaveM
119 * Apple's GMAC does support gigabit on machines with
120 * the BCM54xx PHYs. -BenH
122 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_RIO_GEM
,
123 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
124 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC
,
125 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
126 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMACP
,
127 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
128 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2
,
129 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
130 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_K2_GMAC
,
131 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
132 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_SH_SUNGEM
,
133 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
134 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_IPID2_GMAC
,
135 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
139 MODULE_DEVICE_TABLE(pci
, gem_pci_tbl
);
141 static u16
__phy_read(struct gem
*gp
, int phy_addr
, int reg
)
148 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
149 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
150 cmd
|= (MIF_FRAME_TAMSB
);
151 writel(cmd
, gp
->regs
+ MIF_FRAME
);
154 cmd
= readl(gp
->regs
+ MIF_FRAME
);
155 if (cmd
& MIF_FRAME_TALSB
)
164 return cmd
& MIF_FRAME_DATA
;
167 static inline int _phy_read(struct net_device
*dev
, int mii_id
, int reg
)
169 struct gem
*gp
= netdev_priv(dev
);
170 return __phy_read(gp
, mii_id
, reg
);
173 static inline u16
phy_read(struct gem
*gp
, int reg
)
175 return __phy_read(gp
, gp
->mii_phy_addr
, reg
);
178 static void __phy_write(struct gem
*gp
, int phy_addr
, int reg
, u16 val
)
185 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
186 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
187 cmd
|= (MIF_FRAME_TAMSB
);
188 cmd
|= (val
& MIF_FRAME_DATA
);
189 writel(cmd
, gp
->regs
+ MIF_FRAME
);
192 cmd
= readl(gp
->regs
+ MIF_FRAME
);
193 if (cmd
& MIF_FRAME_TALSB
)
200 static inline void _phy_write(struct net_device
*dev
, int mii_id
, int reg
, int val
)
202 struct gem
*gp
= netdev_priv(dev
);
203 __phy_write(gp
, mii_id
, reg
, val
& 0xffff);
206 static inline void phy_write(struct gem
*gp
, int reg
, u16 val
)
208 __phy_write(gp
, gp
->mii_phy_addr
, reg
, val
);
211 static inline void gem_enable_ints(struct gem
*gp
)
213 /* Enable all interrupts but TXDONE */
214 writel(GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
217 static inline void gem_disable_ints(struct gem
*gp
)
219 /* Disable all interrupts, including TXDONE */
220 writel(GREG_STAT_NAPI
| GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
223 static void gem_get_cell(struct gem
*gp
)
225 BUG_ON(gp
->cell_enabled
< 0);
227 #ifdef CONFIG_PPC_PMAC
228 if (gp
->cell_enabled
== 1) {
230 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 1);
233 #endif /* CONFIG_PPC_PMAC */
236 /* Turn off the chip's clock */
237 static void gem_put_cell(struct gem
*gp
)
239 BUG_ON(gp
->cell_enabled
<= 0);
241 #ifdef CONFIG_PPC_PMAC
242 if (gp
->cell_enabled
== 0) {
244 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 0);
247 #endif /* CONFIG_PPC_PMAC */
250 static void gem_handle_mif_event(struct gem
*gp
, u32 reg_val
, u32 changed_bits
)
252 if (netif_msg_intr(gp
))
253 printk(KERN_DEBUG
"%s: mif interrupt\n", gp
->dev
->name
);
256 static int gem_pcs_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
258 u32 pcs_istat
= readl(gp
->regs
+ PCS_ISTAT
);
261 if (netif_msg_intr(gp
))
262 printk(KERN_DEBUG
"%s: pcs interrupt, pcs_istat: 0x%x\n",
263 gp
->dev
->name
, pcs_istat
);
265 if (!(pcs_istat
& PCS_ISTAT_LSC
)) {
266 netdev_err(dev
, "PCS irq but no link status change???\n");
270 /* The link status bit latches on zero, so you must
271 * read it twice in such a case to see a transition
272 * to the link being up.
274 pcs_miistat
= readl(gp
->regs
+ PCS_MIISTAT
);
275 if (!(pcs_miistat
& PCS_MIISTAT_LS
))
277 (readl(gp
->regs
+ PCS_MIISTAT
) &
280 if (pcs_miistat
& PCS_MIISTAT_ANC
) {
281 /* The remote-fault indication is only valid
282 * when autoneg has completed.
284 if (pcs_miistat
& PCS_MIISTAT_RF
)
285 netdev_info(dev
, "PCS AutoNEG complete, RemoteFault\n");
287 netdev_info(dev
, "PCS AutoNEG complete\n");
290 if (pcs_miistat
& PCS_MIISTAT_LS
) {
291 netdev_info(dev
, "PCS link is now up\n");
292 netif_carrier_on(gp
->dev
);
294 netdev_info(dev
, "PCS link is now down\n");
295 netif_carrier_off(gp
->dev
);
296 /* If this happens and the link timer is not running,
297 * reset so we re-negotiate.
299 if (!timer_pending(&gp
->link_timer
))
306 static int gem_txmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
308 u32 txmac_stat
= readl(gp
->regs
+ MAC_TXSTAT
);
310 if (netif_msg_intr(gp
))
311 printk(KERN_DEBUG
"%s: txmac interrupt, txmac_stat: 0x%x\n",
312 gp
->dev
->name
, txmac_stat
);
314 /* Defer timer expiration is quite normal,
315 * don't even log the event.
317 if ((txmac_stat
& MAC_TXSTAT_DTE
) &&
318 !(txmac_stat
& ~MAC_TXSTAT_DTE
))
321 if (txmac_stat
& MAC_TXSTAT_URUN
) {
322 netdev_err(dev
, "TX MAC xmit underrun\n");
323 dev
->stats
.tx_fifo_errors
++;
326 if (txmac_stat
& MAC_TXSTAT_MPE
) {
327 netdev_err(dev
, "TX MAC max packet size error\n");
328 dev
->stats
.tx_errors
++;
331 /* The rest are all cases of one of the 16-bit TX
334 if (txmac_stat
& MAC_TXSTAT_NCE
)
335 dev
->stats
.collisions
+= 0x10000;
337 if (txmac_stat
& MAC_TXSTAT_ECE
) {
338 dev
->stats
.tx_aborted_errors
+= 0x10000;
339 dev
->stats
.collisions
+= 0x10000;
342 if (txmac_stat
& MAC_TXSTAT_LCE
) {
343 dev
->stats
.tx_aborted_errors
+= 0x10000;
344 dev
->stats
.collisions
+= 0x10000;
347 /* We do not keep track of MAC_TXSTAT_FCE and
348 * MAC_TXSTAT_PCE events.
353 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
354 * so we do the following.
356 * If any part of the reset goes wrong, we return 1 and that causes the
357 * whole chip to be reset.
359 static int gem_rxmac_reset(struct gem
*gp
)
361 struct net_device
*dev
= gp
->dev
;
366 /* First, reset & disable MAC RX. */
367 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
368 for (limit
= 0; limit
< 5000; limit
++) {
369 if (!(readl(gp
->regs
+ MAC_RXRST
) & MAC_RXRST_CMD
))
374 netdev_err(dev
, "RX MAC will not reset, resetting whole chip\n");
378 writel(gp
->mac_rx_cfg
& ~MAC_RXCFG_ENAB
,
379 gp
->regs
+ MAC_RXCFG
);
380 for (limit
= 0; limit
< 5000; limit
++) {
381 if (!(readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
))
386 netdev_err(dev
, "RX MAC will not disable, resetting whole chip\n");
390 /* Second, disable RX DMA. */
391 writel(0, gp
->regs
+ RXDMA_CFG
);
392 for (limit
= 0; limit
< 5000; limit
++) {
393 if (!(readl(gp
->regs
+ RXDMA_CFG
) & RXDMA_CFG_ENABLE
))
398 netdev_err(dev
, "RX DMA will not disable, resetting whole chip\n");
404 /* Execute RX reset command. */
405 writel(gp
->swrst_base
| GREG_SWRST_RXRST
,
406 gp
->regs
+ GREG_SWRST
);
407 for (limit
= 0; limit
< 5000; limit
++) {
408 if (!(readl(gp
->regs
+ GREG_SWRST
) & GREG_SWRST_RXRST
))
413 netdev_err(dev
, "RX reset command will not execute, resetting whole chip\n");
417 /* Refresh the RX ring. */
418 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
419 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[i
];
421 if (gp
->rx_skbs
[i
] == NULL
) {
422 netdev_err(dev
, "Parts of RX ring empty, resetting whole chip\n");
426 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
428 gp
->rx_new
= gp
->rx_old
= 0;
430 /* Now we must reprogram the rest of RX unit. */
431 desc_dma
= (u64
) gp
->gblock_dvma
;
432 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
433 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
434 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
435 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
436 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
437 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
438 writel(val
, gp
->regs
+ RXDMA_CFG
);
439 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
440 writel(((5 & RXDMA_BLANK_IPKTS
) |
441 ((8 << 12) & RXDMA_BLANK_ITIME
)),
442 gp
->regs
+ RXDMA_BLANK
);
444 writel(((5 & RXDMA_BLANK_IPKTS
) |
445 ((4 << 12) & RXDMA_BLANK_ITIME
)),
446 gp
->regs
+ RXDMA_BLANK
);
447 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
448 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
449 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
450 val
= readl(gp
->regs
+ RXDMA_CFG
);
451 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
452 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
453 val
= readl(gp
->regs
+ MAC_RXCFG
);
454 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
459 static int gem_rxmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
461 u32 rxmac_stat
= readl(gp
->regs
+ MAC_RXSTAT
);
464 if (netif_msg_intr(gp
))
465 printk(KERN_DEBUG
"%s: rxmac interrupt, rxmac_stat: 0x%x\n",
466 gp
->dev
->name
, rxmac_stat
);
468 if (rxmac_stat
& MAC_RXSTAT_OFLW
) {
469 u32 smac
= readl(gp
->regs
+ MAC_SMACHINE
);
471 netdev_err(dev
, "RX MAC fifo overflow smac[%08x]\n", smac
);
472 dev
->stats
.rx_over_errors
++;
473 dev
->stats
.rx_fifo_errors
++;
475 ret
= gem_rxmac_reset(gp
);
478 if (rxmac_stat
& MAC_RXSTAT_ACE
)
479 dev
->stats
.rx_frame_errors
+= 0x10000;
481 if (rxmac_stat
& MAC_RXSTAT_CCE
)
482 dev
->stats
.rx_crc_errors
+= 0x10000;
484 if (rxmac_stat
& MAC_RXSTAT_LCE
)
485 dev
->stats
.rx_length_errors
+= 0x10000;
487 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
493 static int gem_mac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
495 u32 mac_cstat
= readl(gp
->regs
+ MAC_CSTAT
);
497 if (netif_msg_intr(gp
))
498 printk(KERN_DEBUG
"%s: mac interrupt, mac_cstat: 0x%x\n",
499 gp
->dev
->name
, mac_cstat
);
501 /* This interrupt is just for pause frame and pause
502 * tracking. It is useful for diagnostics and debug
503 * but probably by default we will mask these events.
505 if (mac_cstat
& MAC_CSTAT_PS
)
508 if (mac_cstat
& MAC_CSTAT_PRCV
)
509 gp
->pause_last_time_recvd
= (mac_cstat
>> 16);
514 static int gem_mif_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
516 u32 mif_status
= readl(gp
->regs
+ MIF_STATUS
);
517 u32 reg_val
, changed_bits
;
519 reg_val
= (mif_status
& MIF_STATUS_DATA
) >> 16;
520 changed_bits
= (mif_status
& MIF_STATUS_STAT
);
522 gem_handle_mif_event(gp
, reg_val
, changed_bits
);
527 static int gem_pci_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
529 u32 pci_estat
= readl(gp
->regs
+ GREG_PCIESTAT
);
531 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
532 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
533 netdev_err(dev
, "PCI error [%04x]", pci_estat
);
535 if (pci_estat
& GREG_PCIESTAT_BADACK
)
536 pr_cont(" <No ACK64# during ABS64 cycle>");
537 if (pci_estat
& GREG_PCIESTAT_DTRTO
)
538 pr_cont(" <Delayed transaction timeout>");
539 if (pci_estat
& GREG_PCIESTAT_OTHER
)
543 pci_estat
|= GREG_PCIESTAT_OTHER
;
544 netdev_err(dev
, "PCI error\n");
547 if (pci_estat
& GREG_PCIESTAT_OTHER
) {
550 /* Interrogate PCI config space for the
553 pci_read_config_word(gp
->pdev
, PCI_STATUS
,
555 netdev_err(dev
, "Read PCI cfg space status [%04x]\n",
557 if (pci_cfg_stat
& PCI_STATUS_PARITY
)
558 netdev_err(dev
, "PCI parity error detected\n");
559 if (pci_cfg_stat
& PCI_STATUS_SIG_TARGET_ABORT
)
560 netdev_err(dev
, "PCI target abort\n");
561 if (pci_cfg_stat
& PCI_STATUS_REC_TARGET_ABORT
)
562 netdev_err(dev
, "PCI master acks target abort\n");
563 if (pci_cfg_stat
& PCI_STATUS_REC_MASTER_ABORT
)
564 netdev_err(dev
, "PCI master abort\n");
565 if (pci_cfg_stat
& PCI_STATUS_SIG_SYSTEM_ERROR
)
566 netdev_err(dev
, "PCI system error SERR#\n");
567 if (pci_cfg_stat
& PCI_STATUS_DETECTED_PARITY
)
568 netdev_err(dev
, "PCI parity error\n");
570 /* Write the error bits back to clear them. */
571 pci_cfg_stat
&= (PCI_STATUS_PARITY
|
572 PCI_STATUS_SIG_TARGET_ABORT
|
573 PCI_STATUS_REC_TARGET_ABORT
|
574 PCI_STATUS_REC_MASTER_ABORT
|
575 PCI_STATUS_SIG_SYSTEM_ERROR
|
576 PCI_STATUS_DETECTED_PARITY
);
577 pci_write_config_word(gp
->pdev
,
578 PCI_STATUS
, pci_cfg_stat
);
581 /* For all PCI errors, we should reset the chip. */
585 /* All non-normal interrupt conditions get serviced here.
586 * Returns non-zero if we should just exit the interrupt
587 * handler right now (ie. if we reset the card which invalidates
588 * all of the other original irq status bits).
590 static int gem_abnormal_irq(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
592 if (gem_status
& GREG_STAT_RXNOBUF
) {
593 /* Frame arrived, no free RX buffers available. */
594 if (netif_msg_rx_err(gp
))
595 printk(KERN_DEBUG
"%s: no buffer for rx frame\n",
597 dev
->stats
.rx_dropped
++;
600 if (gem_status
& GREG_STAT_RXTAGERR
) {
601 /* corrupt RX tag framing */
602 if (netif_msg_rx_err(gp
))
603 printk(KERN_DEBUG
"%s: corrupt rx tag framing\n",
605 dev
->stats
.rx_errors
++;
610 if (gem_status
& GREG_STAT_PCS
) {
611 if (gem_pcs_interrupt(dev
, gp
, gem_status
))
615 if (gem_status
& GREG_STAT_TXMAC
) {
616 if (gem_txmac_interrupt(dev
, gp
, gem_status
))
620 if (gem_status
& GREG_STAT_RXMAC
) {
621 if (gem_rxmac_interrupt(dev
, gp
, gem_status
))
625 if (gem_status
& GREG_STAT_MAC
) {
626 if (gem_mac_interrupt(dev
, gp
, gem_status
))
630 if (gem_status
& GREG_STAT_MIF
) {
631 if (gem_mif_interrupt(dev
, gp
, gem_status
))
635 if (gem_status
& GREG_STAT_PCIERR
) {
636 if (gem_pci_interrupt(dev
, gp
, gem_status
))
643 gp
->reset_task_pending
= 1;
644 schedule_work(&gp
->reset_task
);
649 static __inline__
void gem_tx(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
653 if (netif_msg_intr(gp
))
654 printk(KERN_DEBUG
"%s: tx interrupt, gem_status: 0x%x\n",
655 gp
->dev
->name
, gem_status
);
658 limit
= ((gem_status
& GREG_STAT_TXNR
) >> GREG_STAT_TXNR_SHIFT
);
659 while (entry
!= limit
) {
666 if (netif_msg_tx_done(gp
))
667 printk(KERN_DEBUG
"%s: tx done, slot %d\n",
668 gp
->dev
->name
, entry
);
669 skb
= gp
->tx_skbs
[entry
];
670 if (skb_shinfo(skb
)->nr_frags
) {
671 int last
= entry
+ skb_shinfo(skb
)->nr_frags
;
675 last
&= (TX_RING_SIZE
- 1);
677 walk
= NEXT_TX(walk
);
686 gp
->tx_skbs
[entry
] = NULL
;
687 dev
->stats
.tx_bytes
+= skb
->len
;
689 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
690 txd
= &gp
->init_block
->txd
[entry
];
692 dma_addr
= le64_to_cpu(txd
->buffer
);
693 dma_len
= le64_to_cpu(txd
->control_word
) & TXDCTRL_BUFSZ
;
695 pci_unmap_page(gp
->pdev
, dma_addr
, dma_len
, PCI_DMA_TODEVICE
);
696 entry
= NEXT_TX(entry
);
699 dev
->stats
.tx_packets
++;
700 dev_kfree_skb_irq(skb
);
704 if (netif_queue_stopped(dev
) &&
705 TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))
706 netif_wake_queue(dev
);
709 static __inline__
void gem_post_rxds(struct gem
*gp
, int limit
)
711 int cluster_start
, curr
, count
, kick
;
713 cluster_start
= curr
= (gp
->rx_new
& ~(4 - 1));
717 while (curr
!= limit
) {
718 curr
= NEXT_RX(curr
);
720 struct gem_rxd
*rxd
=
721 &gp
->init_block
->rxd
[cluster_start
];
723 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
725 cluster_start
= NEXT_RX(cluster_start
);
726 if (cluster_start
== curr
)
735 writel(kick
, gp
->regs
+ RXDMA_KICK
);
739 static int gem_rx(struct gem
*gp
, int work_to_do
)
741 struct net_device
*dev
= gp
->dev
;
742 int entry
, drops
, work_done
= 0;
746 if (netif_msg_rx_status(gp
))
747 printk(KERN_DEBUG
"%s: rx interrupt, done: %d, rx_new: %d\n",
748 gp
->dev
->name
, readl(gp
->regs
+ RXDMA_DONE
), gp
->rx_new
);
752 done
= readl(gp
->regs
+ RXDMA_DONE
);
754 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[entry
];
756 u64 status
= le64_to_cpu(rxd
->status_word
);
760 if ((status
& RXDCTRL_OWN
) != 0)
763 if (work_done
>= RX_RING_SIZE
|| work_done
>= work_to_do
)
766 /* When writing back RX descriptor, GEM writes status
767 * then buffer address, possibly in separate transactions.
768 * If we don't wait for the chip to write both, we could
769 * post a new buffer to this descriptor then have GEM spam
770 * on the buffer address. We sync on the RX completion
771 * register to prevent this from happening.
774 done
= readl(gp
->regs
+ RXDMA_DONE
);
779 /* We can now account for the work we're about to do */
782 skb
= gp
->rx_skbs
[entry
];
784 len
= (status
& RXDCTRL_BUFSZ
) >> 16;
785 if ((len
< ETH_ZLEN
) || (status
& RXDCTRL_BAD
)) {
786 dev
->stats
.rx_errors
++;
788 dev
->stats
.rx_length_errors
++;
789 if (len
& RXDCTRL_BAD
)
790 dev
->stats
.rx_crc_errors
++;
792 /* We'll just return it to GEM. */
794 dev
->stats
.rx_dropped
++;
798 dma_addr
= le64_to_cpu(rxd
->buffer
);
799 if (len
> RX_COPY_THRESHOLD
) {
800 struct sk_buff
*new_skb
;
802 new_skb
= gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
803 if (new_skb
== NULL
) {
807 pci_unmap_page(gp
->pdev
, dma_addr
,
808 RX_BUF_ALLOC_SIZE(gp
),
810 gp
->rx_skbs
[entry
] = new_skb
;
811 new_skb
->dev
= gp
->dev
;
812 skb_put(new_skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
813 rxd
->buffer
= cpu_to_le64(pci_map_page(gp
->pdev
,
814 virt_to_page(new_skb
->data
),
815 offset_in_page(new_skb
->data
),
816 RX_BUF_ALLOC_SIZE(gp
),
817 PCI_DMA_FROMDEVICE
));
818 skb_reserve(new_skb
, RX_OFFSET
);
820 /* Trim the original skb for the netif. */
823 struct sk_buff
*copy_skb
= dev_alloc_skb(len
+ 2);
825 if (copy_skb
== NULL
) {
830 skb_reserve(copy_skb
, 2);
831 skb_put(copy_skb
, len
);
832 pci_dma_sync_single_for_cpu(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
833 skb_copy_from_linear_data(skb
, copy_skb
->data
, len
);
834 pci_dma_sync_single_for_device(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
836 /* We'll reuse the original ring buffer. */
840 csum
= (__force __sum16
)htons((status
& RXDCTRL_TCPCSUM
) ^ 0xffff);
841 skb
->csum
= csum_unfold(csum
);
842 skb
->ip_summed
= CHECKSUM_COMPLETE
;
843 skb
->protocol
= eth_type_trans(skb
, gp
->dev
);
845 netif_receive_skb(skb
);
847 dev
->stats
.rx_packets
++;
848 dev
->stats
.rx_bytes
+= len
;
851 entry
= NEXT_RX(entry
);
854 gem_post_rxds(gp
, entry
);
859 netdev_info(gp
->dev
, "Memory squeeze, deferring packet\n");
864 static int gem_poll(struct napi_struct
*napi
, int budget
)
866 struct gem
*gp
= container_of(napi
, struct gem
, napi
);
867 struct net_device
*dev
= gp
->dev
;
872 * NAPI locking nightmare: See comment at head of driver
874 spin_lock_irqsave(&gp
->lock
, flags
);
878 /* Handle anomalies */
879 if (gp
->status
& GREG_STAT_ABNORMAL
) {
880 if (gem_abnormal_irq(dev
, gp
, gp
->status
))
884 /* Run TX completion thread */
885 spin_lock(&gp
->tx_lock
);
886 gem_tx(dev
, gp
, gp
->status
);
887 spin_unlock(&gp
->tx_lock
);
889 spin_unlock_irqrestore(&gp
->lock
, flags
);
891 /* Run RX thread. We don't use any locking here,
892 * code willing to do bad things - like cleaning the
893 * rx ring - must call napi_disable(), which
894 * schedule_timeout()'s if polling is already disabled.
896 work_done
+= gem_rx(gp
, budget
- work_done
);
898 if (work_done
>= budget
)
901 spin_lock_irqsave(&gp
->lock
, flags
);
903 gp
->status
= readl(gp
->regs
+ GREG_STAT
);
904 } while (gp
->status
& GREG_STAT_NAPI
);
906 __napi_complete(napi
);
909 spin_unlock_irqrestore(&gp
->lock
, flags
);
914 static irqreturn_t
gem_interrupt(int irq
, void *dev_id
)
916 struct net_device
*dev
= dev_id
;
917 struct gem
*gp
= netdev_priv(dev
);
920 /* Swallow interrupts when shutting the chip down, though
921 * that shouldn't happen, we should have done free_irq() at
927 spin_lock_irqsave(&gp
->lock
, flags
);
929 if (napi_schedule_prep(&gp
->napi
)) {
930 u32 gem_status
= readl(gp
->regs
+ GREG_STAT
);
932 if (gem_status
== 0) {
933 napi_enable(&gp
->napi
);
934 spin_unlock_irqrestore(&gp
->lock
, flags
);
937 gp
->status
= gem_status
;
938 gem_disable_ints(gp
);
939 __napi_schedule(&gp
->napi
);
942 spin_unlock_irqrestore(&gp
->lock
, flags
);
944 /* If polling was disabled at the time we received that
945 * interrupt, we may return IRQ_HANDLED here while we
946 * should return IRQ_NONE. No big deal...
951 #ifdef CONFIG_NET_POLL_CONTROLLER
952 static void gem_poll_controller(struct net_device
*dev
)
954 /* gem_interrupt is safe to reentrance so no need
955 * to disable_irq here.
957 gem_interrupt(dev
->irq
, dev
);
961 static void gem_tx_timeout(struct net_device
*dev
)
963 struct gem
*gp
= netdev_priv(dev
);
965 netdev_err(dev
, "transmit timed out, resetting\n");
967 netdev_err(dev
, "hrm.. hw not running !\n");
970 netdev_err(dev
, "TX_STATE[%08x:%08x:%08x]\n",
971 readl(gp
->regs
+ TXDMA_CFG
),
972 readl(gp
->regs
+ MAC_TXSTAT
),
973 readl(gp
->regs
+ MAC_TXCFG
));
974 netdev_err(dev
, "RX_STATE[%08x:%08x:%08x]\n",
975 readl(gp
->regs
+ RXDMA_CFG
),
976 readl(gp
->regs
+ MAC_RXSTAT
),
977 readl(gp
->regs
+ MAC_RXCFG
));
979 spin_lock_irq(&gp
->lock
);
980 spin_lock(&gp
->tx_lock
);
982 gp
->reset_task_pending
= 1;
983 schedule_work(&gp
->reset_task
);
985 spin_unlock(&gp
->tx_lock
);
986 spin_unlock_irq(&gp
->lock
);
989 static __inline__
int gem_intme(int entry
)
991 /* Algorithm: IRQ every 1/2 of descriptors. */
992 if (!(entry
& ((TX_RING_SIZE
>>1)-1)))
998 static netdev_tx_t
gem_start_xmit(struct sk_buff
*skb
,
999 struct net_device
*dev
)
1001 struct gem
*gp
= netdev_priv(dev
);
1004 unsigned long flags
;
1007 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1008 const u64 csum_start_off
= skb_checksum_start_offset(skb
);
1009 const u64 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
1011 ctrl
= (TXDCTRL_CENAB
|
1012 (csum_start_off
<< 15) |
1013 (csum_stuff_off
<< 21));
1016 if (!spin_trylock_irqsave(&gp
->tx_lock
, flags
)) {
1017 /* Tell upper layer to requeue */
1018 return NETDEV_TX_LOCKED
;
1020 /* We raced with gem_do_stop() */
1022 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1023 return NETDEV_TX_BUSY
;
1026 /* This is a hard error, log it. */
1027 if (TX_BUFFS_AVAIL(gp
) <= (skb_shinfo(skb
)->nr_frags
+ 1)) {
1028 netif_stop_queue(dev
);
1029 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1030 netdev_err(dev
, "BUG! Tx Ring full when queue awake!\n");
1031 return NETDEV_TX_BUSY
;
1035 gp
->tx_skbs
[entry
] = skb
;
1037 if (skb_shinfo(skb
)->nr_frags
== 0) {
1038 struct gem_txd
*txd
= &gp
->init_block
->txd
[entry
];
1043 mapping
= pci_map_page(gp
->pdev
,
1044 virt_to_page(skb
->data
),
1045 offset_in_page(skb
->data
),
1046 len
, PCI_DMA_TODEVICE
);
1047 ctrl
|= TXDCTRL_SOF
| TXDCTRL_EOF
| len
;
1048 if (gem_intme(entry
))
1049 ctrl
|= TXDCTRL_INTME
;
1050 txd
->buffer
= cpu_to_le64(mapping
);
1052 txd
->control_word
= cpu_to_le64(ctrl
);
1053 entry
= NEXT_TX(entry
);
1055 struct gem_txd
*txd
;
1058 dma_addr_t first_mapping
;
1059 int frag
, first_entry
= entry
;
1062 if (gem_intme(entry
))
1063 intme
|= TXDCTRL_INTME
;
1065 /* We must give this initial chunk to the device last.
1066 * Otherwise we could race with the device.
1068 first_len
= skb_headlen(skb
);
1069 first_mapping
= pci_map_page(gp
->pdev
, virt_to_page(skb
->data
),
1070 offset_in_page(skb
->data
),
1071 first_len
, PCI_DMA_TODEVICE
);
1072 entry
= NEXT_TX(entry
);
1074 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
1075 skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
1080 len
= this_frag
->size
;
1081 mapping
= pci_map_page(gp
->pdev
,
1083 this_frag
->page_offset
,
1084 len
, PCI_DMA_TODEVICE
);
1086 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
1087 this_ctrl
|= TXDCTRL_EOF
;
1089 txd
= &gp
->init_block
->txd
[entry
];
1090 txd
->buffer
= cpu_to_le64(mapping
);
1092 txd
->control_word
= cpu_to_le64(this_ctrl
| len
);
1094 if (gem_intme(entry
))
1095 intme
|= TXDCTRL_INTME
;
1097 entry
= NEXT_TX(entry
);
1099 txd
= &gp
->init_block
->txd
[first_entry
];
1100 txd
->buffer
= cpu_to_le64(first_mapping
);
1103 cpu_to_le64(ctrl
| TXDCTRL_SOF
| intme
| first_len
);
1107 if (TX_BUFFS_AVAIL(gp
) <= (MAX_SKB_FRAGS
+ 1))
1108 netif_stop_queue(dev
);
1110 if (netif_msg_tx_queued(gp
))
1111 printk(KERN_DEBUG
"%s: tx queued, slot %d, skblen %d\n",
1112 dev
->name
, entry
, skb
->len
);
1114 writel(gp
->tx_new
, gp
->regs
+ TXDMA_KICK
);
1115 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1117 dev
->trans_start
= jiffies
; /* NETIF_F_LLTX driver :( */
1119 return NETDEV_TX_OK
;
1122 static void gem_pcs_reset(struct gem
*gp
)
1127 /* Reset PCS unit. */
1128 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1129 val
|= PCS_MIICTRL_RST
;
1130 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1133 while (readl(gp
->regs
+ PCS_MIICTRL
) & PCS_MIICTRL_RST
) {
1139 netdev_warn(gp
->dev
, "PCS reset bit would not clear\n");
1142 static void gem_pcs_reinit_adv(struct gem
*gp
)
1146 /* Make sure PCS is disabled while changing advertisement
1149 val
= readl(gp
->regs
+ PCS_CFG
);
1150 val
&= ~(PCS_CFG_ENABLE
| PCS_CFG_TO
);
1151 writel(val
, gp
->regs
+ PCS_CFG
);
1153 /* Advertise all capabilities except asymmetric
1156 val
= readl(gp
->regs
+ PCS_MIIADV
);
1157 val
|= (PCS_MIIADV_FD
| PCS_MIIADV_HD
|
1158 PCS_MIIADV_SP
| PCS_MIIADV_AP
);
1159 writel(val
, gp
->regs
+ PCS_MIIADV
);
1161 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1162 * and re-enable PCS.
1164 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1165 val
|= (PCS_MIICTRL_RAN
| PCS_MIICTRL_ANE
);
1166 val
&= ~PCS_MIICTRL_WB
;
1167 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1169 val
= readl(gp
->regs
+ PCS_CFG
);
1170 val
|= PCS_CFG_ENABLE
;
1171 writel(val
, gp
->regs
+ PCS_CFG
);
1173 /* Make sure serialink loopback is off. The meaning
1174 * of this bit is logically inverted based upon whether
1175 * you are in Serialink or SERDES mode.
1177 val
= readl(gp
->regs
+ PCS_SCTRL
);
1178 if (gp
->phy_type
== phy_serialink
)
1179 val
&= ~PCS_SCTRL_LOOP
;
1181 val
|= PCS_SCTRL_LOOP
;
1182 writel(val
, gp
->regs
+ PCS_SCTRL
);
1185 #define STOP_TRIES 32
1187 /* Must be invoked under gp->lock and gp->tx_lock. */
1188 static void gem_reset(struct gem
*gp
)
1193 /* Make sure we won't get any more interrupts */
1194 writel(0xffffffff, gp
->regs
+ GREG_IMASK
);
1196 /* Reset the chip */
1197 writel(gp
->swrst_base
| GREG_SWRST_TXRST
| GREG_SWRST_RXRST
,
1198 gp
->regs
+ GREG_SWRST
);
1204 val
= readl(gp
->regs
+ GREG_SWRST
);
1207 } while (val
& (GREG_SWRST_TXRST
| GREG_SWRST_RXRST
));
1210 netdev_err(gp
->dev
, "SW reset is ghetto\n");
1212 if (gp
->phy_type
== phy_serialink
|| gp
->phy_type
== phy_serdes
)
1213 gem_pcs_reinit_adv(gp
);
1216 /* Must be invoked under gp->lock and gp->tx_lock. */
1217 static void gem_start_dma(struct gem
*gp
)
1221 /* We are ready to rock, turn everything on. */
1222 val
= readl(gp
->regs
+ TXDMA_CFG
);
1223 writel(val
| TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1224 val
= readl(gp
->regs
+ RXDMA_CFG
);
1225 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1226 val
= readl(gp
->regs
+ MAC_TXCFG
);
1227 writel(val
| MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1228 val
= readl(gp
->regs
+ MAC_RXCFG
);
1229 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1231 (void) readl(gp
->regs
+ MAC_RXCFG
);
1234 gem_enable_ints(gp
);
1236 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1239 /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1240 * actually stopped before about 4ms tho ...
1242 static void gem_stop_dma(struct gem
*gp
)
1246 /* We are done rocking, turn everything off. */
1247 val
= readl(gp
->regs
+ TXDMA_CFG
);
1248 writel(val
& ~TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1249 val
= readl(gp
->regs
+ RXDMA_CFG
);
1250 writel(val
& ~RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1251 val
= readl(gp
->regs
+ MAC_TXCFG
);
1252 writel(val
& ~MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1253 val
= readl(gp
->regs
+ MAC_RXCFG
);
1254 writel(val
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1256 (void) readl(gp
->regs
+ MAC_RXCFG
);
1258 /* Need to wait a bit ... done by the caller */
1262 /* Must be invoked under gp->lock and gp->tx_lock. */
1263 // XXX dbl check what that function should do when called on PCS PHY
1264 static void gem_begin_auto_negotiation(struct gem
*gp
, struct ethtool_cmd
*ep
)
1266 u32 advertise
, features
;
1271 if (gp
->phy_type
!= phy_mii_mdio0
&&
1272 gp
->phy_type
!= phy_mii_mdio1
)
1275 /* Setup advertise */
1276 if (found_mii_phy(gp
))
1277 features
= gp
->phy_mii
.def
->features
;
1281 advertise
= features
& ADVERTISE_MASK
;
1282 if (gp
->phy_mii
.advertising
!= 0)
1283 advertise
&= gp
->phy_mii
.advertising
;
1285 autoneg
= gp
->want_autoneg
;
1286 speed
= gp
->phy_mii
.speed
;
1287 duplex
= gp
->phy_mii
.duplex
;
1289 /* Setup link parameters */
1292 if (ep
->autoneg
== AUTONEG_ENABLE
) {
1293 advertise
= ep
->advertising
;
1297 speed
= ethtool_cmd_speed(ep
);
1298 duplex
= ep
->duplex
;
1302 /* Sanitize settings based on PHY capabilities */
1303 if ((features
& SUPPORTED_Autoneg
) == 0)
1305 if (speed
== SPEED_1000
&&
1306 !(features
& (SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
)))
1308 if (speed
== SPEED_100
&&
1309 !(features
& (SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
)))
1311 if (duplex
== DUPLEX_FULL
&&
1312 !(features
& (SUPPORTED_1000baseT_Full
|
1313 SUPPORTED_100baseT_Full
|
1314 SUPPORTED_10baseT_Full
)))
1315 duplex
= DUPLEX_HALF
;
1319 /* If we are asleep, we don't try to actually setup the PHY, we
1320 * just store the settings
1323 gp
->phy_mii
.autoneg
= gp
->want_autoneg
= autoneg
;
1324 gp
->phy_mii
.speed
= speed
;
1325 gp
->phy_mii
.duplex
= duplex
;
1329 /* Configure PHY & start aneg */
1330 gp
->want_autoneg
= autoneg
;
1332 if (found_mii_phy(gp
))
1333 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, advertise
);
1334 gp
->lstate
= link_aneg
;
1336 if (found_mii_phy(gp
))
1337 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, speed
, duplex
);
1338 gp
->lstate
= link_force_ok
;
1342 gp
->timer_ticks
= 0;
1343 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1346 /* A link-up condition has occurred, initialize and enable the
1349 * Must be invoked under gp->lock and gp->tx_lock.
1351 static int gem_set_link_modes(struct gem
*gp
)
1354 int full_duplex
, speed
, pause
;
1360 if (found_mii_phy(gp
)) {
1361 if (gp
->phy_mii
.def
->ops
->read_link(&gp
->phy_mii
))
1363 full_duplex
= (gp
->phy_mii
.duplex
== DUPLEX_FULL
);
1364 speed
= gp
->phy_mii
.speed
;
1365 pause
= gp
->phy_mii
.pause
;
1366 } else if (gp
->phy_type
== phy_serialink
||
1367 gp
->phy_type
== phy_serdes
) {
1368 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1370 if ((pcs_lpa
& PCS_MIIADV_FD
) || gp
->phy_type
== phy_serdes
)
1375 netif_info(gp
, link
, gp
->dev
, "Link is up at %d Mbps, %s-duplex\n",
1376 speed
, (full_duplex
? "full" : "half"));
1381 val
= (MAC_TXCFG_EIPG0
| MAC_TXCFG_NGU
);
1383 val
|= (MAC_TXCFG_ICS
| MAC_TXCFG_ICOLL
);
1385 /* MAC_TXCFG_NBO must be zero. */
1387 writel(val
, gp
->regs
+ MAC_TXCFG
);
1389 val
= (MAC_XIFCFG_OE
| MAC_XIFCFG_LLED
);
1391 (gp
->phy_type
== phy_mii_mdio0
||
1392 gp
->phy_type
== phy_mii_mdio1
)) {
1393 val
|= MAC_XIFCFG_DISE
;
1394 } else if (full_duplex
) {
1395 val
|= MAC_XIFCFG_FLED
;
1398 if (speed
== SPEED_1000
)
1399 val
|= (MAC_XIFCFG_GMII
);
1401 writel(val
, gp
->regs
+ MAC_XIFCFG
);
1403 /* If gigabit and half-duplex, enable carrier extension
1404 * mode. Else, disable it.
1406 if (speed
== SPEED_1000
&& !full_duplex
) {
1407 val
= readl(gp
->regs
+ MAC_TXCFG
);
1408 writel(val
| MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1410 val
= readl(gp
->regs
+ MAC_RXCFG
);
1411 writel(val
| MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1413 val
= readl(gp
->regs
+ MAC_TXCFG
);
1414 writel(val
& ~MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1416 val
= readl(gp
->regs
+ MAC_RXCFG
);
1417 writel(val
& ~MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1420 if (gp
->phy_type
== phy_serialink
||
1421 gp
->phy_type
== phy_serdes
) {
1422 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1424 if (pcs_lpa
& (PCS_MIIADV_SP
| PCS_MIIADV_AP
))
1428 if (netif_msg_link(gp
)) {
1430 netdev_info(gp
->dev
,
1431 "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1436 netdev_info(gp
->dev
, "Pause is disabled\n");
1441 writel(512, gp
->regs
+ MAC_STIME
);
1443 writel(64, gp
->regs
+ MAC_STIME
);
1444 val
= readl(gp
->regs
+ MAC_MCCFG
);
1446 val
|= (MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1448 val
&= ~(MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1449 writel(val
, gp
->regs
+ MAC_MCCFG
);
1456 /* Must be invoked under gp->lock and gp->tx_lock. */
1457 static int gem_mdio_link_not_up(struct gem
*gp
)
1459 switch (gp
->lstate
) {
1460 case link_force_ret
:
1461 netif_info(gp
, link
, gp
->dev
,
1462 "Autoneg failed again, keeping forced mode\n");
1463 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
,
1464 gp
->last_forced_speed
, DUPLEX_HALF
);
1465 gp
->timer_ticks
= 5;
1466 gp
->lstate
= link_force_ok
;
1469 /* We try forced modes after a failed aneg only on PHYs that don't
1470 * have "magic_aneg" bit set, which means they internally do the
1471 * while forced-mode thingy. On these, we just restart aneg
1473 if (gp
->phy_mii
.def
->magic_aneg
)
1475 netif_info(gp
, link
, gp
->dev
, "switching to forced 100bt\n");
1476 /* Try forced modes. */
1477 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_100
,
1479 gp
->timer_ticks
= 5;
1480 gp
->lstate
= link_force_try
;
1482 case link_force_try
:
1483 /* Downgrade from 100 to 10 Mbps if necessary.
1484 * If already at 10Mbps, warn user about the
1485 * situation every 10 ticks.
1487 if (gp
->phy_mii
.speed
== SPEED_100
) {
1488 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_10
,
1490 gp
->timer_ticks
= 5;
1491 netif_info(gp
, link
, gp
->dev
,
1492 "switching to forced 10bt\n");
1501 static void gem_link_timer(unsigned long data
)
1503 struct gem
*gp
= (struct gem
*) data
;
1504 int restart_aneg
= 0;
1509 spin_lock_irq(&gp
->lock
);
1510 spin_lock(&gp
->tx_lock
);
1513 /* If the reset task is still pending, we just
1514 * reschedule the link timer
1516 if (gp
->reset_task_pending
)
1519 if (gp
->phy_type
== phy_serialink
||
1520 gp
->phy_type
== phy_serdes
) {
1521 u32 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1523 if (!(val
& PCS_MIISTAT_LS
))
1524 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1526 if ((val
& PCS_MIISTAT_LS
) != 0) {
1527 if (gp
->lstate
== link_up
)
1530 gp
->lstate
= link_up
;
1531 netif_carrier_on(gp
->dev
);
1532 (void)gem_set_link_modes(gp
);
1536 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->poll_link(&gp
->phy_mii
)) {
1537 /* Ok, here we got a link. If we had it due to a forced
1538 * fallback, and we were configured for autoneg, we do
1539 * retry a short autoneg pass. If you know your hub is
1540 * broken, use ethtool ;)
1542 if (gp
->lstate
== link_force_try
&& gp
->want_autoneg
) {
1543 gp
->lstate
= link_force_ret
;
1544 gp
->last_forced_speed
= gp
->phy_mii
.speed
;
1545 gp
->timer_ticks
= 5;
1546 if (netif_msg_link(gp
))
1547 netdev_info(gp
->dev
,
1548 "Got link after fallback, retrying autoneg once...\n");
1549 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, gp
->phy_mii
.advertising
);
1550 } else if (gp
->lstate
!= link_up
) {
1551 gp
->lstate
= link_up
;
1552 netif_carrier_on(gp
->dev
);
1553 if (gem_set_link_modes(gp
))
1557 /* If the link was previously up, we restart the
1560 if (gp
->lstate
== link_up
) {
1561 gp
->lstate
= link_down
;
1562 netif_info(gp
, link
, gp
->dev
, "Link down\n");
1563 netif_carrier_off(gp
->dev
);
1564 gp
->reset_task_pending
= 1;
1565 schedule_work(&gp
->reset_task
);
1567 } else if (++gp
->timer_ticks
> 10) {
1568 if (found_mii_phy(gp
))
1569 restart_aneg
= gem_mdio_link_not_up(gp
);
1575 gem_begin_auto_negotiation(gp
, NULL
);
1579 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1582 spin_unlock(&gp
->tx_lock
);
1583 spin_unlock_irq(&gp
->lock
);
1586 /* Must be invoked under gp->lock and gp->tx_lock. */
1587 static void gem_clean_rings(struct gem
*gp
)
1589 struct gem_init_block
*gb
= gp
->init_block
;
1590 struct sk_buff
*skb
;
1592 dma_addr_t dma_addr
;
1594 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1595 struct gem_rxd
*rxd
;
1598 if (gp
->rx_skbs
[i
] != NULL
) {
1599 skb
= gp
->rx_skbs
[i
];
1600 dma_addr
= le64_to_cpu(rxd
->buffer
);
1601 pci_unmap_page(gp
->pdev
, dma_addr
,
1602 RX_BUF_ALLOC_SIZE(gp
),
1603 PCI_DMA_FROMDEVICE
);
1604 dev_kfree_skb_any(skb
);
1605 gp
->rx_skbs
[i
] = NULL
;
1607 rxd
->status_word
= 0;
1612 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1613 if (gp
->tx_skbs
[i
] != NULL
) {
1614 struct gem_txd
*txd
;
1617 skb
= gp
->tx_skbs
[i
];
1618 gp
->tx_skbs
[i
] = NULL
;
1620 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1621 int ent
= i
& (TX_RING_SIZE
- 1);
1623 txd
= &gb
->txd
[ent
];
1624 dma_addr
= le64_to_cpu(txd
->buffer
);
1625 pci_unmap_page(gp
->pdev
, dma_addr
,
1626 le64_to_cpu(txd
->control_word
) &
1627 TXDCTRL_BUFSZ
, PCI_DMA_TODEVICE
);
1629 if (frag
!= skb_shinfo(skb
)->nr_frags
)
1632 dev_kfree_skb_any(skb
);
1637 /* Must be invoked under gp->lock and gp->tx_lock. */
1638 static void gem_init_rings(struct gem
*gp
)
1640 struct gem_init_block
*gb
= gp
->init_block
;
1641 struct net_device
*dev
= gp
->dev
;
1643 dma_addr_t dma_addr
;
1645 gp
->rx_new
= gp
->rx_old
= gp
->tx_new
= gp
->tx_old
= 0;
1647 gem_clean_rings(gp
);
1649 gp
->rx_buf_sz
= max(dev
->mtu
+ ETH_HLEN
+ VLAN_HLEN
,
1650 (unsigned)VLAN_ETH_FRAME_LEN
);
1652 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1653 struct sk_buff
*skb
;
1654 struct gem_rxd
*rxd
= &gb
->rxd
[i
];
1656 skb
= gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
1659 rxd
->status_word
= 0;
1663 gp
->rx_skbs
[i
] = skb
;
1665 skb_put(skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
1666 dma_addr
= pci_map_page(gp
->pdev
,
1667 virt_to_page(skb
->data
),
1668 offset_in_page(skb
->data
),
1669 RX_BUF_ALLOC_SIZE(gp
),
1670 PCI_DMA_FROMDEVICE
);
1671 rxd
->buffer
= cpu_to_le64(dma_addr
);
1673 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
1674 skb_reserve(skb
, RX_OFFSET
);
1677 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1678 struct gem_txd
*txd
= &gb
->txd
[i
];
1680 txd
->control_word
= 0;
1687 /* Init PHY interface and start link poll state machine */
1688 static void gem_init_phy(struct gem
*gp
)
1692 /* Revert MIF CFG setting done on stop_phy */
1693 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
1694 mifcfg
&= ~MIF_CFG_BBMODE
;
1695 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
1697 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1700 /* Those delay sucks, the HW seem to love them though, I'll
1701 * serisouly consider breaking some locks here to be able
1702 * to schedule instead
1704 for (i
= 0; i
< 3; i
++) {
1705 #ifdef CONFIG_PPC_PMAC
1706 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET
, gp
->of_node
, 0, 0);
1709 /* Some PHYs used by apple have problem getting back to us,
1710 * we do an additional reset here
1712 phy_write(gp
, MII_BMCR
, BMCR_RESET
);
1714 if (phy_read(gp
, MII_BMCR
) != 0xffff)
1717 netdev_warn(gp
->dev
, "GMAC PHY not responding !\n");
1721 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1722 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
1725 /* Init datapath mode register. */
1726 if (gp
->phy_type
== phy_mii_mdio0
||
1727 gp
->phy_type
== phy_mii_mdio1
) {
1728 val
= PCS_DMODE_MGM
;
1729 } else if (gp
->phy_type
== phy_serialink
) {
1730 val
= PCS_DMODE_SM
| PCS_DMODE_GMOE
;
1732 val
= PCS_DMODE_ESM
;
1735 writel(val
, gp
->regs
+ PCS_DMODE
);
1738 if (gp
->phy_type
== phy_mii_mdio0
||
1739 gp
->phy_type
== phy_mii_mdio1
) {
1740 // XXX check for errors
1741 mii_phy_probe(&gp
->phy_mii
, gp
->mii_phy_addr
);
1744 if (gp
->phy_mii
.def
&& gp
->phy_mii
.def
->ops
->init
)
1745 gp
->phy_mii
.def
->ops
->init(&gp
->phy_mii
);
1748 gem_pcs_reinit_adv(gp
);
1751 /* Default aneg parameters */
1752 gp
->timer_ticks
= 0;
1753 gp
->lstate
= link_down
;
1754 netif_carrier_off(gp
->dev
);
1756 /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1757 spin_lock_irq(&gp
->lock
);
1758 gem_begin_auto_negotiation(gp
, NULL
);
1759 spin_unlock_irq(&gp
->lock
);
1762 /* Must be invoked under gp->lock and gp->tx_lock. */
1763 static void gem_init_dma(struct gem
*gp
)
1765 u64 desc_dma
= (u64
) gp
->gblock_dvma
;
1768 val
= (TXDMA_CFG_BASE
| (0x7ff << 10) | TXDMA_CFG_PMODE
);
1769 writel(val
, gp
->regs
+ TXDMA_CFG
);
1771 writel(desc_dma
>> 32, gp
->regs
+ TXDMA_DBHI
);
1772 writel(desc_dma
& 0xffffffff, gp
->regs
+ TXDMA_DBLOW
);
1773 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
1775 writel(0, gp
->regs
+ TXDMA_KICK
);
1777 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
1778 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
1779 writel(val
, gp
->regs
+ RXDMA_CFG
);
1781 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
1782 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
1784 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1786 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
1787 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
1788 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
1790 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
1791 writel(((5 & RXDMA_BLANK_IPKTS
) |
1792 ((8 << 12) & RXDMA_BLANK_ITIME
)),
1793 gp
->regs
+ RXDMA_BLANK
);
1795 writel(((5 & RXDMA_BLANK_IPKTS
) |
1796 ((4 << 12) & RXDMA_BLANK_ITIME
)),
1797 gp
->regs
+ RXDMA_BLANK
);
1800 /* Must be invoked under gp->lock and gp->tx_lock. */
1801 static u32
gem_setup_multicast(struct gem
*gp
)
1806 if ((gp
->dev
->flags
& IFF_ALLMULTI
) ||
1807 (netdev_mc_count(gp
->dev
) > 256)) {
1808 for (i
=0; i
<16; i
++)
1809 writel(0xffff, gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1810 rxcfg
|= MAC_RXCFG_HFE
;
1811 } else if (gp
->dev
->flags
& IFF_PROMISC
) {
1812 rxcfg
|= MAC_RXCFG_PROM
;
1816 struct netdev_hw_addr
*ha
;
1819 memset(hash_table
, 0, sizeof(hash_table
));
1820 netdev_for_each_mc_addr(ha
, gp
->dev
) {
1821 char *addrs
= ha
->addr
;
1826 crc
= ether_crc_le(6, addrs
);
1828 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
1830 for (i
=0; i
<16; i
++)
1831 writel(hash_table
[i
], gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1832 rxcfg
|= MAC_RXCFG_HFE
;
1838 /* Must be invoked under gp->lock and gp->tx_lock. */
1839 static void gem_init_mac(struct gem
*gp
)
1841 unsigned char *e
= &gp
->dev
->dev_addr
[0];
1843 writel(0x1bf0, gp
->regs
+ MAC_SNDPAUSE
);
1845 writel(0x00, gp
->regs
+ MAC_IPG0
);
1846 writel(0x08, gp
->regs
+ MAC_IPG1
);
1847 writel(0x04, gp
->regs
+ MAC_IPG2
);
1848 writel(0x40, gp
->regs
+ MAC_STIME
);
1849 writel(0x40, gp
->regs
+ MAC_MINFSZ
);
1851 /* Ethernet payload + header + FCS + optional VLAN tag. */
1852 writel(0x20000000 | (gp
->rx_buf_sz
+ 4), gp
->regs
+ MAC_MAXFSZ
);
1854 writel(0x07, gp
->regs
+ MAC_PASIZE
);
1855 writel(0x04, gp
->regs
+ MAC_JAMSIZE
);
1856 writel(0x10, gp
->regs
+ MAC_ATTLIM
);
1857 writel(0x8808, gp
->regs
+ MAC_MCTYPE
);
1859 writel((e
[5] | (e
[4] << 8)) & 0x3ff, gp
->regs
+ MAC_RANDSEED
);
1861 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
1862 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
1863 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
1865 writel(0, gp
->regs
+ MAC_ADDR3
);
1866 writel(0, gp
->regs
+ MAC_ADDR4
);
1867 writel(0, gp
->regs
+ MAC_ADDR5
);
1869 writel(0x0001, gp
->regs
+ MAC_ADDR6
);
1870 writel(0xc200, gp
->regs
+ MAC_ADDR7
);
1871 writel(0x0180, gp
->regs
+ MAC_ADDR8
);
1873 writel(0, gp
->regs
+ MAC_AFILT0
);
1874 writel(0, gp
->regs
+ MAC_AFILT1
);
1875 writel(0, gp
->regs
+ MAC_AFILT2
);
1876 writel(0, gp
->regs
+ MAC_AF21MSK
);
1877 writel(0, gp
->regs
+ MAC_AF0MSK
);
1879 gp
->mac_rx_cfg
= gem_setup_multicast(gp
);
1881 gp
->mac_rx_cfg
|= MAC_RXCFG_SFCS
;
1883 writel(0, gp
->regs
+ MAC_NCOLL
);
1884 writel(0, gp
->regs
+ MAC_FASUCC
);
1885 writel(0, gp
->regs
+ MAC_ECOLL
);
1886 writel(0, gp
->regs
+ MAC_LCOLL
);
1887 writel(0, gp
->regs
+ MAC_DTIMER
);
1888 writel(0, gp
->regs
+ MAC_PATMPS
);
1889 writel(0, gp
->regs
+ MAC_RFCTR
);
1890 writel(0, gp
->regs
+ MAC_LERR
);
1891 writel(0, gp
->regs
+ MAC_AERR
);
1892 writel(0, gp
->regs
+ MAC_FCSERR
);
1893 writel(0, gp
->regs
+ MAC_RXCVERR
);
1895 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1896 * them once a link is established.
1898 writel(0, gp
->regs
+ MAC_TXCFG
);
1899 writel(gp
->mac_rx_cfg
, gp
->regs
+ MAC_RXCFG
);
1900 writel(0, gp
->regs
+ MAC_MCCFG
);
1901 writel(0, gp
->regs
+ MAC_XIFCFG
);
1903 /* Setup MAC interrupts. We want to get all of the interesting
1904 * counter expiration events, but we do not want to hear about
1905 * normal rx/tx as the DMA engine tells us that.
1907 writel(MAC_TXSTAT_XMIT
, gp
->regs
+ MAC_TXMASK
);
1908 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
1910 /* Don't enable even the PAUSE interrupts for now, we
1911 * make no use of those events other than to record them.
1913 writel(0xffffffff, gp
->regs
+ MAC_MCMASK
);
1915 /* Don't enable GEM's WOL in normal operations
1918 writel(0, gp
->regs
+ WOL_WAKECSR
);
1921 /* Must be invoked under gp->lock and gp->tx_lock. */
1922 static void gem_init_pause_thresholds(struct gem
*gp
)
1926 /* Calculate pause thresholds. Setting the OFF threshold to the
1927 * full RX fifo size effectively disables PAUSE generation which
1928 * is what we do for 10/100 only GEMs which have FIFOs too small
1929 * to make real gains from PAUSE.
1931 if (gp
->rx_fifo_sz
<= (2 * 1024)) {
1932 gp
->rx_pause_off
= gp
->rx_pause_on
= gp
->rx_fifo_sz
;
1934 int max_frame
= (gp
->rx_buf_sz
+ 4 + 64) & ~63;
1935 int off
= (gp
->rx_fifo_sz
- (max_frame
* 2));
1936 int on
= off
- max_frame
;
1938 gp
->rx_pause_off
= off
;
1939 gp
->rx_pause_on
= on
;
1943 /* Configure the chip "burst" DMA mode & enable some
1944 * HW bug fixes on Apple version
1947 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
1948 cfg
|= GREG_CFG_RONPAULBIT
| GREG_CFG_ENBUG2FIX
;
1949 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1950 cfg
|= GREG_CFG_IBURST
;
1952 cfg
|= ((31 << 1) & GREG_CFG_TXDMALIM
);
1953 cfg
|= ((31 << 6) & GREG_CFG_RXDMALIM
);
1954 writel(cfg
, gp
->regs
+ GREG_CFG
);
1956 /* If Infinite Burst didn't stick, then use different
1957 * thresholds (and Apple bug fixes don't exist)
1959 if (!(readl(gp
->regs
+ GREG_CFG
) & GREG_CFG_IBURST
)) {
1960 cfg
= ((2 << 1) & GREG_CFG_TXDMALIM
);
1961 cfg
|= ((8 << 6) & GREG_CFG_RXDMALIM
);
1962 writel(cfg
, gp
->regs
+ GREG_CFG
);
1966 static int gem_check_invariants(struct gem
*gp
)
1968 struct pci_dev
*pdev
= gp
->pdev
;
1971 /* On Apple's sungem, we can't rely on registers as the chip
1972 * was been powered down by the firmware. The PHY is looked
1975 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1976 gp
->phy_type
= phy_mii_mdio0
;
1977 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
1978 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
1981 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
1982 mif_cfg
&= ~(MIF_CFG_PSELECT
|MIF_CFG_POLL
|MIF_CFG_BBMODE
|MIF_CFG_MDI1
);
1983 mif_cfg
|= MIF_CFG_MDI0
;
1984 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
1985 writel(PCS_DMODE_MGM
, gp
->regs
+ PCS_DMODE
);
1986 writel(MAC_XIFCFG_OE
, gp
->regs
+ MAC_XIFCFG
);
1988 /* We hard-code the PHY address so we can properly bring it out of
1989 * reset later on, we can't really probe it at this point, though
1990 * that isn't an issue.
1992 if (gp
->pdev
->device
== PCI_DEVICE_ID_APPLE_K2_GMAC
)
1993 gp
->mii_phy_addr
= 1;
1995 gp
->mii_phy_addr
= 0;
2000 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
2002 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2003 pdev
->device
== PCI_DEVICE_ID_SUN_RIO_GEM
) {
2004 /* One of the MII PHYs _must_ be present
2005 * as this chip has no gigabit PHY.
2007 if ((mif_cfg
& (MIF_CFG_MDI0
| MIF_CFG_MDI1
)) == 0) {
2008 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2014 /* Determine initial PHY interface type guess. MDIO1 is the
2015 * external PHY and thus takes precedence over MDIO0.
2018 if (mif_cfg
& MIF_CFG_MDI1
) {
2019 gp
->phy_type
= phy_mii_mdio1
;
2020 mif_cfg
|= MIF_CFG_PSELECT
;
2021 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2022 } else if (mif_cfg
& MIF_CFG_MDI0
) {
2023 gp
->phy_type
= phy_mii_mdio0
;
2024 mif_cfg
&= ~MIF_CFG_PSELECT
;
2025 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2030 p
= of_get_property(gp
->of_node
, "shared-pins", NULL
);
2031 if (p
&& !strcmp(p
, "serdes"))
2032 gp
->phy_type
= phy_serdes
;
2035 gp
->phy_type
= phy_serialink
;
2037 if (gp
->phy_type
== phy_mii_mdio1
||
2038 gp
->phy_type
== phy_mii_mdio0
) {
2041 for (i
= 0; i
< 32; i
++) {
2042 gp
->mii_phy_addr
= i
;
2043 if (phy_read(gp
, MII_BMCR
) != 0xffff)
2047 if (pdev
->device
!= PCI_DEVICE_ID_SUN_GEM
) {
2048 pr_err("RIO MII phy will not respond\n");
2051 gp
->phy_type
= phy_serdes
;
2055 /* Fetch the FIFO configurations now too. */
2056 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
2057 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
2059 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
) {
2060 if (pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
2061 if (gp
->tx_fifo_sz
!= (9 * 1024) ||
2062 gp
->rx_fifo_sz
!= (20 * 1024)) {
2063 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2064 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2069 if (gp
->tx_fifo_sz
!= (2 * 1024) ||
2070 gp
->rx_fifo_sz
!= (2 * 1024)) {
2071 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2072 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2075 gp
->swrst_base
= (64 / 4) << GREG_SWRST_CACHE_SHIFT
;
2082 /* Must be invoked under gp->lock and gp->tx_lock. */
2083 static void gem_reinit_chip(struct gem
*gp
)
2085 /* Reset the chip */
2088 /* Make sure ints are disabled */
2089 gem_disable_ints(gp
);
2091 /* Allocate & setup ring buffers */
2094 /* Configure pause thresholds */
2095 gem_init_pause_thresholds(gp
);
2097 /* Init DMA & MAC engines */
2103 /* Must be invoked with no lock held. */
2104 static void gem_stop_phy(struct gem
*gp
, int wol
)
2107 unsigned long flags
;
2109 /* Let the chip settle down a bit, it seems that helps
2110 * for sleep mode on some models
2114 /* Make sure we aren't polling PHY status change. We
2115 * don't currently use that feature though
2117 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
2118 mifcfg
&= ~MIF_CFG_POLL
;
2119 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
2121 if (wol
&& gp
->has_wol
) {
2122 unsigned char *e
= &gp
->dev
->dev_addr
[0];
2125 /* Setup wake-on-lan for MAGIC packet */
2126 writel(MAC_RXCFG_HFE
| MAC_RXCFG_SFCS
| MAC_RXCFG_ENAB
,
2127 gp
->regs
+ MAC_RXCFG
);
2128 writel((e
[4] << 8) | e
[5], gp
->regs
+ WOL_MATCH0
);
2129 writel((e
[2] << 8) | e
[3], gp
->regs
+ WOL_MATCH1
);
2130 writel((e
[0] << 8) | e
[1], gp
->regs
+ WOL_MATCH2
);
2132 writel(WOL_MCOUNT_N
| WOL_MCOUNT_M
, gp
->regs
+ WOL_MCOUNT
);
2133 csr
= WOL_WAKECSR_ENABLE
;
2134 if ((readl(gp
->regs
+ MAC_XIFCFG
) & MAC_XIFCFG_GMII
) == 0)
2135 csr
|= WOL_WAKECSR_MII
;
2136 writel(csr
, gp
->regs
+ WOL_WAKECSR
);
2138 writel(0, gp
->regs
+ MAC_RXCFG
);
2139 (void)readl(gp
->regs
+ MAC_RXCFG
);
2140 /* Machine sleep will die in strange ways if we
2141 * dont wait a bit here, looks like the chip takes
2142 * some time to really shut down
2147 writel(0, gp
->regs
+ MAC_TXCFG
);
2148 writel(0, gp
->regs
+ MAC_XIFCFG
);
2149 writel(0, gp
->regs
+ TXDMA_CFG
);
2150 writel(0, gp
->regs
+ RXDMA_CFG
);
2153 spin_lock_irqsave(&gp
->lock
, flags
);
2154 spin_lock(&gp
->tx_lock
);
2156 writel(MAC_TXRST_CMD
, gp
->regs
+ MAC_TXRST
);
2157 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
2158 spin_unlock(&gp
->tx_lock
);
2159 spin_unlock_irqrestore(&gp
->lock
, flags
);
2161 /* No need to take the lock here */
2163 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->suspend
)
2164 gp
->phy_mii
.def
->ops
->suspend(&gp
->phy_mii
);
2166 /* According to Apple, we must set the MDIO pins to this begnign
2167 * state or we may 1) eat more current, 2) damage some PHYs
2169 writel(mifcfg
| MIF_CFG_BBMODE
, gp
->regs
+ MIF_CFG
);
2170 writel(0, gp
->regs
+ MIF_BBCLK
);
2171 writel(0, gp
->regs
+ MIF_BBDATA
);
2172 writel(0, gp
->regs
+ MIF_BBOENAB
);
2173 writel(MAC_XIFCFG_GMII
| MAC_XIFCFG_LBCK
, gp
->regs
+ MAC_XIFCFG
);
2174 (void) readl(gp
->regs
+ MAC_XIFCFG
);
2179 static int gem_do_start(struct net_device
*dev
)
2181 struct gem
*gp
= netdev_priv(dev
);
2182 unsigned long flags
;
2184 spin_lock_irqsave(&gp
->lock
, flags
);
2185 spin_lock(&gp
->tx_lock
);
2187 /* Enable the cell */
2190 /* Init & setup chip hardware */
2191 gem_reinit_chip(gp
);
2195 napi_enable(&gp
->napi
);
2197 if (gp
->lstate
== link_up
) {
2198 netif_carrier_on(gp
->dev
);
2199 gem_set_link_modes(gp
);
2202 netif_wake_queue(gp
->dev
);
2204 spin_unlock(&gp
->tx_lock
);
2205 spin_unlock_irqrestore(&gp
->lock
, flags
);
2207 if (request_irq(gp
->pdev
->irq
, gem_interrupt
,
2208 IRQF_SHARED
, dev
->name
, (void *)dev
)) {
2209 netdev_err(dev
, "failed to request irq !\n");
2211 spin_lock_irqsave(&gp
->lock
, flags
);
2212 spin_lock(&gp
->tx_lock
);
2214 napi_disable(&gp
->napi
);
2218 gem_clean_rings(gp
);
2221 spin_unlock(&gp
->tx_lock
);
2222 spin_unlock_irqrestore(&gp
->lock
, flags
);
2230 static void gem_do_stop(struct net_device
*dev
, int wol
)
2232 struct gem
*gp
= netdev_priv(dev
);
2233 unsigned long flags
;
2235 spin_lock_irqsave(&gp
->lock
, flags
);
2236 spin_lock(&gp
->tx_lock
);
2240 /* Stop netif queue */
2241 netif_stop_queue(dev
);
2243 /* Make sure ints are disabled */
2244 gem_disable_ints(gp
);
2246 /* We can drop the lock now */
2247 spin_unlock(&gp
->tx_lock
);
2248 spin_unlock_irqrestore(&gp
->lock
, flags
);
2250 /* If we are going to sleep with WOL */
2257 /* Get rid of rings */
2258 gem_clean_rings(gp
);
2260 /* No irq needed anymore */
2261 free_irq(gp
->pdev
->irq
, (void *) dev
);
2263 /* Cell not needed neither if no WOL */
2265 spin_lock_irqsave(&gp
->lock
, flags
);
2267 spin_unlock_irqrestore(&gp
->lock
, flags
);
2271 static void gem_reset_task(struct work_struct
*work
)
2273 struct gem
*gp
= container_of(work
, struct gem
, reset_task
);
2275 mutex_lock(&gp
->pm_mutex
);
2278 napi_disable(&gp
->napi
);
2280 spin_lock_irq(&gp
->lock
);
2281 spin_lock(&gp
->tx_lock
);
2284 netif_stop_queue(gp
->dev
);
2286 /* Reset the chip & rings */
2287 gem_reinit_chip(gp
);
2288 if (gp
->lstate
== link_up
)
2289 gem_set_link_modes(gp
);
2290 netif_wake_queue(gp
->dev
);
2293 gp
->reset_task_pending
= 0;
2295 spin_unlock(&gp
->tx_lock
);
2296 spin_unlock_irq(&gp
->lock
);
2299 napi_enable(&gp
->napi
);
2301 mutex_unlock(&gp
->pm_mutex
);
2305 static int gem_open(struct net_device
*dev
)
2307 struct gem
*gp
= netdev_priv(dev
);
2310 mutex_lock(&gp
->pm_mutex
);
2312 /* We need the cell enabled */
2314 rc
= gem_do_start(dev
);
2315 gp
->opened
= (rc
== 0);
2317 mutex_unlock(&gp
->pm_mutex
);
2322 static int gem_close(struct net_device
*dev
)
2324 struct gem
*gp
= netdev_priv(dev
);
2326 mutex_lock(&gp
->pm_mutex
);
2328 napi_disable(&gp
->napi
);
2332 gem_do_stop(dev
, 0);
2334 mutex_unlock(&gp
->pm_mutex
);
2340 static int gem_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2342 struct net_device
*dev
= pci_get_drvdata(pdev
);
2343 struct gem
*gp
= netdev_priv(dev
);
2344 unsigned long flags
;
2346 mutex_lock(&gp
->pm_mutex
);
2348 netdev_info(dev
, "suspending, WakeOnLan %s\n",
2349 (gp
->wake_on_lan
&& gp
->opened
) ? "enabled" : "disabled");
2351 /* Keep the cell enabled during the entire operation */
2352 spin_lock_irqsave(&gp
->lock
, flags
);
2353 spin_lock(&gp
->tx_lock
);
2355 spin_unlock(&gp
->tx_lock
);
2356 spin_unlock_irqrestore(&gp
->lock
, flags
);
2358 /* If the driver is opened, we stop the MAC */
2360 napi_disable(&gp
->napi
);
2362 /* Stop traffic, mark us closed */
2363 netif_device_detach(dev
);
2365 /* Switch off MAC, remember WOL setting */
2366 gp
->asleep_wol
= !!gp
->wake_on_lan
;
2367 gem_do_stop(dev
, gp
->asleep_wol
);
2371 /* Mark us asleep */
2375 /* Stop the link timer */
2376 del_timer_sync(&gp
->link_timer
);
2378 /* Now we release the mutex to not block the reset task who
2379 * can take it too. We are marked asleep, so there will be no
2382 mutex_unlock(&gp
->pm_mutex
);
2384 /* Wait for the pending reset task to complete */
2385 flush_work_sync(&gp
->reset_task
);
2387 /* Shut the PHY down eventually and setup WOL */
2388 gem_stop_phy(gp
, gp
->asleep_wol
);
2390 /* Make sure bus master is disabled */
2391 pci_disable_device(gp
->pdev
);
2393 /* Release the cell, no need to take a lock at this point since
2394 * nothing else can happen now
2401 static int gem_resume(struct pci_dev
*pdev
)
2403 struct net_device
*dev
= pci_get_drvdata(pdev
);
2404 struct gem
*gp
= netdev_priv(dev
);
2405 unsigned long flags
;
2407 netdev_info(dev
, "resuming\n");
2409 mutex_lock(&gp
->pm_mutex
);
2411 /* Keep the cell enabled during the entire operation, no need to
2412 * take a lock here tho since nothing else can happen while we are
2417 /* Make sure PCI access and bus master are enabled */
2418 if (pci_enable_device(gp
->pdev
)) {
2419 netdev_err(dev
, "Can't re-enable chip !\n");
2420 /* Put cell and forget it for now, it will be considered as
2421 * still asleep, a new sleep cycle may bring it back
2424 mutex_unlock(&gp
->pm_mutex
);
2427 pci_set_master(gp
->pdev
);
2429 /* Reset everything */
2432 /* Mark us woken up */
2436 /* Bring the PHY back. Again, lock is useless at this point as
2437 * nothing can be happening until we restart the whole thing
2441 /* If we were opened, bring everything back */
2446 /* Re-attach net device */
2447 netif_device_attach(dev
);
2450 spin_lock_irqsave(&gp
->lock
, flags
);
2451 spin_lock(&gp
->tx_lock
);
2453 /* If we had WOL enabled, the cell clock was never turned off during
2454 * sleep, so we end up beeing unbalanced. Fix that here
2459 /* This function doesn't need to hold the cell, it will be held if the
2460 * driver is open by gem_do_start().
2464 spin_unlock(&gp
->tx_lock
);
2465 spin_unlock_irqrestore(&gp
->lock
, flags
);
2467 mutex_unlock(&gp
->pm_mutex
);
2471 #endif /* CONFIG_PM */
2473 static struct net_device_stats
*gem_get_stats(struct net_device
*dev
)
2475 struct gem
*gp
= netdev_priv(dev
);
2477 spin_lock_irq(&gp
->lock
);
2478 spin_lock(&gp
->tx_lock
);
2480 /* I have seen this being called while the PM was in progress,
2481 * so we shield against this
2484 dev
->stats
.rx_crc_errors
+= readl(gp
->regs
+ MAC_FCSERR
);
2485 writel(0, gp
->regs
+ MAC_FCSERR
);
2487 dev
->stats
.rx_frame_errors
+= readl(gp
->regs
+ MAC_AERR
);
2488 writel(0, gp
->regs
+ MAC_AERR
);
2490 dev
->stats
.rx_length_errors
+= readl(gp
->regs
+ MAC_LERR
);
2491 writel(0, gp
->regs
+ MAC_LERR
);
2493 dev
->stats
.tx_aborted_errors
+= readl(gp
->regs
+ MAC_ECOLL
);
2494 dev
->stats
.collisions
+=
2495 (readl(gp
->regs
+ MAC_ECOLL
) +
2496 readl(gp
->regs
+ MAC_LCOLL
));
2497 writel(0, gp
->regs
+ MAC_ECOLL
);
2498 writel(0, gp
->regs
+ MAC_LCOLL
);
2501 spin_unlock(&gp
->tx_lock
);
2502 spin_unlock_irq(&gp
->lock
);
2507 static int gem_set_mac_address(struct net_device
*dev
, void *addr
)
2509 struct sockaddr
*macaddr
= (struct sockaddr
*) addr
;
2510 struct gem
*gp
= netdev_priv(dev
);
2511 unsigned char *e
= &dev
->dev_addr
[0];
2513 if (!is_valid_ether_addr(macaddr
->sa_data
))
2514 return -EADDRNOTAVAIL
;
2516 if (!netif_running(dev
) || !netif_device_present(dev
)) {
2517 /* We'll just catch it later when the
2518 * device is up'd or resumed.
2520 memcpy(dev
->dev_addr
, macaddr
->sa_data
, dev
->addr_len
);
2524 mutex_lock(&gp
->pm_mutex
);
2525 memcpy(dev
->dev_addr
, macaddr
->sa_data
, dev
->addr_len
);
2527 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
2528 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
2529 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
2531 mutex_unlock(&gp
->pm_mutex
);
2536 static void gem_set_multicast(struct net_device
*dev
)
2538 struct gem
*gp
= netdev_priv(dev
);
2539 u32 rxcfg
, rxcfg_new
;
2543 spin_lock_irq(&gp
->lock
);
2544 spin_lock(&gp
->tx_lock
);
2549 netif_stop_queue(dev
);
2551 rxcfg
= readl(gp
->regs
+ MAC_RXCFG
);
2552 rxcfg_new
= gem_setup_multicast(gp
);
2554 rxcfg_new
|= MAC_RXCFG_SFCS
;
2556 gp
->mac_rx_cfg
= rxcfg_new
;
2558 writel(rxcfg
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
2559 while (readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
) {
2565 rxcfg
&= ~(MAC_RXCFG_PROM
| MAC_RXCFG_HFE
);
2568 writel(rxcfg
, gp
->regs
+ MAC_RXCFG
);
2570 netif_wake_queue(dev
);
2573 spin_unlock(&gp
->tx_lock
);
2574 spin_unlock_irq(&gp
->lock
);
2577 /* Jumbo-grams don't seem to work :-( */
2578 #define GEM_MIN_MTU 68
2580 #define GEM_MAX_MTU 1500
2582 #define GEM_MAX_MTU 9000
2585 static int gem_change_mtu(struct net_device
*dev
, int new_mtu
)
2587 struct gem
*gp
= netdev_priv(dev
);
2589 if (new_mtu
< GEM_MIN_MTU
|| new_mtu
> GEM_MAX_MTU
)
2592 if (!netif_running(dev
) || !netif_device_present(dev
)) {
2593 /* We'll just catch it later when the
2594 * device is up'd or resumed.
2600 mutex_lock(&gp
->pm_mutex
);
2601 spin_lock_irq(&gp
->lock
);
2602 spin_lock(&gp
->tx_lock
);
2605 gem_reinit_chip(gp
);
2606 if (gp
->lstate
== link_up
)
2607 gem_set_link_modes(gp
);
2609 spin_unlock(&gp
->tx_lock
);
2610 spin_unlock_irq(&gp
->lock
);
2611 mutex_unlock(&gp
->pm_mutex
);
2616 static void gem_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
2618 struct gem
*gp
= netdev_priv(dev
);
2620 strcpy(info
->driver
, DRV_NAME
);
2621 strcpy(info
->version
, DRV_VERSION
);
2622 strcpy(info
->bus_info
, pci_name(gp
->pdev
));
2625 static int gem_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2627 struct gem
*gp
= netdev_priv(dev
);
2629 if (gp
->phy_type
== phy_mii_mdio0
||
2630 gp
->phy_type
== phy_mii_mdio1
) {
2631 if (gp
->phy_mii
.def
)
2632 cmd
->supported
= gp
->phy_mii
.def
->features
;
2634 cmd
->supported
= (SUPPORTED_10baseT_Half
|
2635 SUPPORTED_10baseT_Full
);
2637 /* XXX hardcoded stuff for now */
2638 cmd
->port
= PORT_MII
;
2639 cmd
->transceiver
= XCVR_EXTERNAL
;
2640 cmd
->phy_address
= 0; /* XXX fixed PHYAD */
2642 /* Return current PHY settings */
2643 spin_lock_irq(&gp
->lock
);
2644 cmd
->autoneg
= gp
->want_autoneg
;
2645 ethtool_cmd_speed_set(cmd
, gp
->phy_mii
.speed
);
2646 cmd
->duplex
= gp
->phy_mii
.duplex
;
2647 cmd
->advertising
= gp
->phy_mii
.advertising
;
2649 /* If we started with a forced mode, we don't have a default
2650 * advertise set, we need to return something sensible so
2651 * userland can re-enable autoneg properly.
2653 if (cmd
->advertising
== 0)
2654 cmd
->advertising
= cmd
->supported
;
2655 spin_unlock_irq(&gp
->lock
);
2656 } else { // XXX PCS ?
2658 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2659 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2661 cmd
->advertising
= cmd
->supported
;
2662 ethtool_cmd_speed_set(cmd
, 0);
2663 cmd
->duplex
= cmd
->port
= cmd
->phy_address
=
2664 cmd
->transceiver
= cmd
->autoneg
= 0;
2666 /* serdes means usually a Fibre connector, with most fixed */
2667 if (gp
->phy_type
== phy_serdes
) {
2668 cmd
->port
= PORT_FIBRE
;
2669 cmd
->supported
= (SUPPORTED_1000baseT_Half
|
2670 SUPPORTED_1000baseT_Full
|
2671 SUPPORTED_FIBRE
| SUPPORTED_Autoneg
|
2672 SUPPORTED_Pause
| SUPPORTED_Asym_Pause
);
2673 cmd
->advertising
= cmd
->supported
;
2674 cmd
->transceiver
= XCVR_INTERNAL
;
2675 if (gp
->lstate
== link_up
)
2676 ethtool_cmd_speed_set(cmd
, SPEED_1000
);
2677 cmd
->duplex
= DUPLEX_FULL
;
2681 cmd
->maxtxpkt
= cmd
->maxrxpkt
= 0;
2686 static int gem_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2688 struct gem
*gp
= netdev_priv(dev
);
2689 u32 speed
= ethtool_cmd_speed(cmd
);
2691 /* Verify the settings we care about. */
2692 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
2693 cmd
->autoneg
!= AUTONEG_DISABLE
)
2696 if (cmd
->autoneg
== AUTONEG_ENABLE
&&
2697 cmd
->advertising
== 0)
2700 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
2701 ((speed
!= SPEED_1000
&&
2702 speed
!= SPEED_100
&&
2703 speed
!= SPEED_10
) ||
2704 (cmd
->duplex
!= DUPLEX_HALF
&&
2705 cmd
->duplex
!= DUPLEX_FULL
)))
2708 /* Apply settings and restart link process. */
2709 spin_lock_irq(&gp
->lock
);
2711 gem_begin_auto_negotiation(gp
, cmd
);
2713 spin_unlock_irq(&gp
->lock
);
2718 static int gem_nway_reset(struct net_device
*dev
)
2720 struct gem
*gp
= netdev_priv(dev
);
2722 if (!gp
->want_autoneg
)
2725 /* Restart link process. */
2726 spin_lock_irq(&gp
->lock
);
2728 gem_begin_auto_negotiation(gp
, NULL
);
2730 spin_unlock_irq(&gp
->lock
);
2735 static u32
gem_get_msglevel(struct net_device
*dev
)
2737 struct gem
*gp
= netdev_priv(dev
);
2738 return gp
->msg_enable
;
2741 static void gem_set_msglevel(struct net_device
*dev
, u32 value
)
2743 struct gem
*gp
= netdev_priv(dev
);
2744 gp
->msg_enable
= value
;
2748 /* Add more when I understand how to program the chip */
2749 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2751 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2753 static void gem_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2755 struct gem
*gp
= netdev_priv(dev
);
2757 /* Add more when I understand how to program the chip */
2759 wol
->supported
= WOL_SUPPORTED_MASK
;
2760 wol
->wolopts
= gp
->wake_on_lan
;
2767 static int gem_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2769 struct gem
*gp
= netdev_priv(dev
);
2773 gp
->wake_on_lan
= wol
->wolopts
& WOL_SUPPORTED_MASK
;
2777 static const struct ethtool_ops gem_ethtool_ops
= {
2778 .get_drvinfo
= gem_get_drvinfo
,
2779 .get_link
= ethtool_op_get_link
,
2780 .get_settings
= gem_get_settings
,
2781 .set_settings
= gem_set_settings
,
2782 .nway_reset
= gem_nway_reset
,
2783 .get_msglevel
= gem_get_msglevel
,
2784 .set_msglevel
= gem_set_msglevel
,
2785 .get_wol
= gem_get_wol
,
2786 .set_wol
= gem_set_wol
,
2789 static int gem_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2791 struct gem
*gp
= netdev_priv(dev
);
2792 struct mii_ioctl_data
*data
= if_mii(ifr
);
2793 int rc
= -EOPNOTSUPP
;
2794 unsigned long flags
;
2796 /* Hold the PM mutex while doing ioctl's or we may collide
2797 * with power management.
2799 mutex_lock(&gp
->pm_mutex
);
2801 spin_lock_irqsave(&gp
->lock
, flags
);
2803 spin_unlock_irqrestore(&gp
->lock
, flags
);
2806 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
2807 data
->phy_id
= gp
->mii_phy_addr
;
2808 /* Fallthrough... */
2810 case SIOCGMIIREG
: /* Read MII PHY register. */
2814 data
->val_out
= __phy_read(gp
, data
->phy_id
& 0x1f,
2815 data
->reg_num
& 0x1f);
2820 case SIOCSMIIREG
: /* Write MII PHY register. */
2824 __phy_write(gp
, data
->phy_id
& 0x1f, data
->reg_num
& 0x1f,
2831 spin_lock_irqsave(&gp
->lock
, flags
);
2833 spin_unlock_irqrestore(&gp
->lock
, flags
);
2835 mutex_unlock(&gp
->pm_mutex
);
2840 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2841 /* Fetch MAC address from vital product data of PCI ROM. */
2842 static int find_eth_addr_in_vpd(void __iomem
*rom_base
, int len
, unsigned char *dev_addr
)
2846 for (this_offset
= 0x20; this_offset
< len
; this_offset
++) {
2847 void __iomem
*p
= rom_base
+ this_offset
;
2850 if (readb(p
+ 0) != 0x90 ||
2851 readb(p
+ 1) != 0x00 ||
2852 readb(p
+ 2) != 0x09 ||
2853 readb(p
+ 3) != 0x4e ||
2854 readb(p
+ 4) != 0x41 ||
2855 readb(p
+ 5) != 0x06)
2861 for (i
= 0; i
< 6; i
++)
2862 dev_addr
[i
] = readb(p
+ i
);
2868 static void get_gem_mac_nonobp(struct pci_dev
*pdev
, unsigned char *dev_addr
)
2871 void __iomem
*p
= pci_map_rom(pdev
, &size
);
2876 found
= readb(p
) == 0x55 &&
2877 readb(p
+ 1) == 0xaa &&
2878 find_eth_addr_in_vpd(p
, (64 * 1024), dev_addr
);
2879 pci_unmap_rom(pdev
, p
);
2884 /* Sun MAC prefix then 3 random bytes. */
2888 get_random_bytes(dev_addr
+ 3, 3);
2890 #endif /* not Sparc and not PPC */
2892 static int __devinit
gem_get_device_address(struct gem
*gp
)
2894 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2895 struct net_device
*dev
= gp
->dev
;
2896 const unsigned char *addr
;
2898 addr
= of_get_property(gp
->of_node
, "local-mac-address", NULL
);
2901 addr
= idprom
->id_ethaddr
;
2904 pr_err("%s: can't get mac-address\n", dev
->name
);
2908 memcpy(dev
->dev_addr
, addr
, 6);
2910 get_gem_mac_nonobp(gp
->pdev
, gp
->dev
->dev_addr
);
2915 static void gem_remove_one(struct pci_dev
*pdev
)
2917 struct net_device
*dev
= pci_get_drvdata(pdev
);
2920 struct gem
*gp
= netdev_priv(dev
);
2922 unregister_netdev(dev
);
2924 /* Stop the link timer */
2925 del_timer_sync(&gp
->link_timer
);
2927 /* We shouldn't need any locking here */
2930 /* Cancel reset task */
2931 cancel_work_sync(&gp
->reset_task
);
2933 /* Shut the PHY down */
2934 gem_stop_phy(gp
, 0);
2938 /* Make sure bus master is disabled */
2939 pci_disable_device(gp
->pdev
);
2941 /* Free resources */
2942 pci_free_consistent(pdev
,
2943 sizeof(struct gem_init_block
),
2947 pci_release_regions(pdev
);
2950 pci_set_drvdata(pdev
, NULL
);
2954 static const struct net_device_ops gem_netdev_ops
= {
2955 .ndo_open
= gem_open
,
2956 .ndo_stop
= gem_close
,
2957 .ndo_start_xmit
= gem_start_xmit
,
2958 .ndo_get_stats
= gem_get_stats
,
2959 .ndo_set_multicast_list
= gem_set_multicast
,
2960 .ndo_do_ioctl
= gem_ioctl
,
2961 .ndo_tx_timeout
= gem_tx_timeout
,
2962 .ndo_change_mtu
= gem_change_mtu
,
2963 .ndo_validate_addr
= eth_validate_addr
,
2964 .ndo_set_mac_address
= gem_set_mac_address
,
2965 #ifdef CONFIG_NET_POLL_CONTROLLER
2966 .ndo_poll_controller
= gem_poll_controller
,
2970 static int __devinit
gem_init_one(struct pci_dev
*pdev
,
2971 const struct pci_device_id
*ent
)
2973 unsigned long gemreg_base
, gemreg_len
;
2974 struct net_device
*dev
;
2976 int err
, pci_using_dac
;
2978 printk_once(KERN_INFO
"%s", version
);
2980 /* Apple gmac note: during probe, the chip is powered up by
2981 * the arch code to allow the code below to work (and to let
2982 * the chip be probed on the config space. It won't stay powered
2983 * up until the interface is brought up however, so we can't rely
2984 * on register configuration done at this point.
2986 err
= pci_enable_device(pdev
);
2988 pr_err("Cannot enable MMIO operation, aborting\n");
2991 pci_set_master(pdev
);
2993 /* Configure DMA attributes. */
2995 /* All of the GEM documentation states that 64-bit DMA addressing
2996 * is fully supported and should work just fine. However the
2997 * front end for RIO based GEMs is different and only supports
2998 * 32-bit addressing.
3000 * For now we assume the various PPC GEMs are 32-bit only as well.
3002 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
3003 pdev
->device
== PCI_DEVICE_ID_SUN_GEM
&&
3004 !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
3007 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
3009 pr_err("No usable DMA configuration, aborting\n");
3010 goto err_disable_device
;
3015 gemreg_base
= pci_resource_start(pdev
, 0);
3016 gemreg_len
= pci_resource_len(pdev
, 0);
3018 if ((pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) != 0) {
3019 pr_err("Cannot find proper PCI device base address, aborting\n");
3021 goto err_disable_device
;
3024 dev
= alloc_etherdev(sizeof(*gp
));
3026 pr_err("Etherdev alloc failed, aborting\n");
3028 goto err_disable_device
;
3030 SET_NETDEV_DEV(dev
, &pdev
->dev
);
3032 gp
= netdev_priv(dev
);
3034 err
= pci_request_regions(pdev
, DRV_NAME
);
3036 pr_err("Cannot obtain PCI resources, aborting\n");
3037 goto err_out_free_netdev
;
3041 dev
->base_addr
= (long) pdev
;
3044 gp
->msg_enable
= DEFAULT_MSG
;
3046 spin_lock_init(&gp
->lock
);
3047 spin_lock_init(&gp
->tx_lock
);
3048 mutex_init(&gp
->pm_mutex
);
3050 init_timer(&gp
->link_timer
);
3051 gp
->link_timer
.function
= gem_link_timer
;
3052 gp
->link_timer
.data
= (unsigned long) gp
;
3054 INIT_WORK(&gp
->reset_task
, gem_reset_task
);
3056 gp
->lstate
= link_down
;
3057 gp
->timer_ticks
= 0;
3058 netif_carrier_off(dev
);
3060 gp
->regs
= ioremap(gemreg_base
, gemreg_len
);
3062 pr_err("Cannot map device registers, aborting\n");
3064 goto err_out_free_res
;
3067 /* On Apple, we want a reference to the Open Firmware device-tree
3068 * node. We use it for clock control.
3070 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
3071 gp
->of_node
= pci_device_to_OF_node(pdev
);
3074 /* Only Apple version supports WOL afaik */
3075 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
3078 /* Make sure cell is enabled */
3081 /* Make sure everything is stopped and in init state */
3084 /* Fill up the mii_phy structure (even if we won't use it) */
3085 gp
->phy_mii
.dev
= dev
;
3086 gp
->phy_mii
.mdio_read
= _phy_read
;
3087 gp
->phy_mii
.mdio_write
= _phy_write
;
3088 #ifdef CONFIG_PPC_PMAC
3089 gp
->phy_mii
.platform_data
= gp
->of_node
;
3091 /* By default, we start with autoneg */
3092 gp
->want_autoneg
= 1;
3094 /* Check fifo sizes, PHY type, etc... */
3095 if (gem_check_invariants(gp
)) {
3097 goto err_out_iounmap
;
3100 /* It is guaranteed that the returned buffer will be at least
3101 * PAGE_SIZE aligned.
3103 gp
->init_block
= (struct gem_init_block
*)
3104 pci_alloc_consistent(pdev
, sizeof(struct gem_init_block
),
3106 if (!gp
->init_block
) {
3107 pr_err("Cannot allocate init block, aborting\n");
3109 goto err_out_iounmap
;
3112 if (gem_get_device_address(gp
))
3113 goto err_out_free_consistent
;
3115 dev
->netdev_ops
= &gem_netdev_ops
;
3116 netif_napi_add(dev
, &gp
->napi
, gem_poll
, 64);
3117 dev
->ethtool_ops
= &gem_ethtool_ops
;
3118 dev
->watchdog_timeo
= 5 * HZ
;
3119 dev
->irq
= pdev
->irq
;
3122 /* Set that now, in case PM kicks in now */
3123 pci_set_drvdata(pdev
, dev
);
3125 /* Detect & init PHY, start autoneg, we release the cell now
3126 * too, it will be managed by whoever needs it
3130 spin_lock_irq(&gp
->lock
);
3132 spin_unlock_irq(&gp
->lock
);
3134 /* Register with kernel */
3135 if (register_netdev(dev
)) {
3136 pr_err("Cannot register net device, aborting\n");
3138 goto err_out_free_consistent
;
3141 netdev_info(dev
, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3144 if (gp
->phy_type
== phy_mii_mdio0
||
3145 gp
->phy_type
== phy_mii_mdio1
)
3146 netdev_info(dev
, "Found %s PHY\n",
3147 gp
->phy_mii
.def
? gp
->phy_mii
.def
->name
: "no");
3149 /* GEM can do it all... */
3150 dev
->hw_features
= NETIF_F_SG
| NETIF_F_HW_CSUM
;
3151 dev
->features
|= dev
->hw_features
| NETIF_F_RXCSUM
| NETIF_F_LLTX
;
3153 dev
->features
|= NETIF_F_HIGHDMA
;
3157 err_out_free_consistent
:
3158 gem_remove_one(pdev
);
3164 pci_release_regions(pdev
);
3166 err_out_free_netdev
:
3169 pci_disable_device(pdev
);
3175 static struct pci_driver gem_driver
= {
3176 .name
= GEM_MODULE_NAME
,
3177 .id_table
= gem_pci_tbl
,
3178 .probe
= gem_init_one
,
3179 .remove
= gem_remove_one
,
3181 .suspend
= gem_suspend
,
3182 .resume
= gem_resume
,
3183 #endif /* CONFIG_PM */
3186 static int __init
gem_init(void)
3188 return pci_register_driver(&gem_driver
);
3191 static void __exit
gem_cleanup(void)
3193 pci_unregister_driver(&gem_driver
);
3196 module_init(gem_init
);
3197 module_exit(gem_cleanup
);