ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / drivers / net / vxge / vxge-config.c
blob32763b2dd73f70ab120a11f29ff50f2e4b7b778b
1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/pci.h>
17 #include <linux/pci_hotplug.h>
18 #include <linux/slab.h>
20 #include "vxge-traffic.h"
21 #include "vxge-config.h"
22 #include "vxge-main.h"
24 #define VXGE_HW_VPATH_STATS_PIO_READ(offset) { \
25 status = __vxge_hw_vpath_stats_access(vpath, \
26 VXGE_HW_STATS_OP_READ, \
27 offset, \
28 &val64); \
29 if (status != VXGE_HW_OK) \
30 return status; \
33 static void
34 vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem *vp_reg)
36 u64 val64;
38 val64 = readq(&vp_reg->rxmac_vcfg0);
39 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
40 writeq(val64, &vp_reg->rxmac_vcfg0);
41 val64 = readq(&vp_reg->rxmac_vcfg0);
45 * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle
47 int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device *hldev, u32 vp_id)
49 struct vxge_hw_vpath_reg __iomem *vp_reg;
50 struct __vxge_hw_virtualpath *vpath;
51 u64 val64, rxd_count, rxd_spat;
52 int count = 0, total_count = 0;
54 vpath = &hldev->virtual_paths[vp_id];
55 vp_reg = vpath->vp_reg;
57 vxge_hw_vpath_set_zero_rx_frm_len(vp_reg);
59 /* Check that the ring controller for this vpath has enough free RxDs
60 * to send frames to the host. This is done by reading the
61 * PRC_RXD_DOORBELL_VPn register and comparing the read value to the
62 * RXD_SPAT value for the vpath.
64 val64 = readq(&vp_reg->prc_cfg6);
65 rxd_spat = VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64) + 1;
66 /* Use a factor of 2 when comparing rxd_count against rxd_spat for some
67 * leg room.
69 rxd_spat *= 2;
71 do {
72 mdelay(1);
74 rxd_count = readq(&vp_reg->prc_rxd_doorbell);
76 /* Check that the ring controller for this vpath does
77 * not have any frame in its pipeline.
79 val64 = readq(&vp_reg->frm_in_progress_cnt);
80 if ((rxd_count <= rxd_spat) || (val64 > 0))
81 count = 0;
82 else
83 count++;
84 total_count++;
85 } while ((count < VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT) &&
86 (total_count < VXGE_HW_MAX_POLLING_COUNT));
88 if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
89 printk(KERN_ALERT "%s: Still Receiving traffic. Abort wait\n",
90 __func__);
92 return total_count;
95 /* vxge_hw_device_wait_receive_idle - This function waits until all frames
96 * stored in the frame buffer for each vpath assigned to the given
97 * function (hldev) have been sent to the host.
99 void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device *hldev)
101 int i, total_count = 0;
103 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
104 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
105 continue;
107 total_count += vxge_hw_vpath_wait_receive_idle(hldev, i);
108 if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
109 break;
114 * __vxge_hw_device_register_poll
115 * Will poll certain register for specified amount of time.
116 * Will poll until masked bit is not cleared.
118 static enum vxge_hw_status
119 __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
121 u64 val64;
122 u32 i = 0;
123 enum vxge_hw_status ret = VXGE_HW_FAIL;
125 udelay(10);
127 do {
128 val64 = readq(reg);
129 if (!(val64 & mask))
130 return VXGE_HW_OK;
131 udelay(100);
132 } while (++i <= 9);
134 i = 0;
135 do {
136 val64 = readq(reg);
137 if (!(val64 & mask))
138 return VXGE_HW_OK;
139 mdelay(1);
140 } while (++i <= max_millis);
142 return ret;
145 static inline enum vxge_hw_status
146 __vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr,
147 u64 mask, u32 max_millis)
149 __vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr);
150 wmb();
151 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr);
152 wmb();
154 return __vxge_hw_device_register_poll(addr, mask, max_millis);
157 static enum vxge_hw_status
158 vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath *vpath, u32 action,
159 u32 fw_memo, u32 offset, u64 *data0, u64 *data1,
160 u64 *steer_ctrl)
162 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
163 enum vxge_hw_status status;
164 u64 val64;
165 u32 retry = 0, max_retry = 3;
167 spin_lock(&vpath->lock);
168 if (!vpath->vp_open) {
169 spin_unlock(&vpath->lock);
170 max_retry = 100;
173 writeq(*data0, &vp_reg->rts_access_steer_data0);
174 writeq(*data1, &vp_reg->rts_access_steer_data1);
175 wmb();
177 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
178 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo) |
179 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset) |
180 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
181 *steer_ctrl;
183 status = __vxge_hw_pio_mem_write64(val64,
184 &vp_reg->rts_access_steer_ctrl,
185 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
186 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
188 /* The __vxge_hw_device_register_poll can udelay for a significant
189 * amount of time, blocking other process from the CPU. If it delays
190 * for ~5secs, a NMI error can occur. A way around this is to give up
191 * the processor via msleep, but this is not allowed is under lock.
192 * So, only allow it to sleep for ~4secs if open. Otherwise, delay for
193 * 1sec and sleep for 10ms until the firmware operation has completed
194 * or timed-out.
196 while ((status != VXGE_HW_OK) && retry++ < max_retry) {
197 if (!vpath->vp_open)
198 msleep(20);
199 status = __vxge_hw_device_register_poll(
200 &vp_reg->rts_access_steer_ctrl,
201 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
202 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
205 if (status != VXGE_HW_OK)
206 goto out;
208 val64 = readq(&vp_reg->rts_access_steer_ctrl);
209 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
210 *data0 = readq(&vp_reg->rts_access_steer_data0);
211 *data1 = readq(&vp_reg->rts_access_steer_data1);
212 *steer_ctrl = val64;
213 } else
214 status = VXGE_HW_FAIL;
216 out:
217 if (vpath->vp_open)
218 spin_unlock(&vpath->lock);
219 return status;
222 enum vxge_hw_status
223 vxge_hw_upgrade_read_version(struct __vxge_hw_device *hldev, u32 *major,
224 u32 *minor, u32 *build)
226 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
227 struct __vxge_hw_virtualpath *vpath;
228 enum vxge_hw_status status;
230 vpath = &hldev->virtual_paths[hldev->first_vp_id];
232 status = vxge_hw_vpath_fw_api(vpath,
233 VXGE_HW_FW_UPGRADE_ACTION,
234 VXGE_HW_FW_UPGRADE_MEMO,
235 VXGE_HW_FW_UPGRADE_OFFSET_READ,
236 &data0, &data1, &steer_ctrl);
237 if (status != VXGE_HW_OK)
238 return status;
240 *major = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
241 *minor = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
242 *build = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
244 return status;
247 enum vxge_hw_status vxge_hw_flash_fw(struct __vxge_hw_device *hldev)
249 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
250 struct __vxge_hw_virtualpath *vpath;
251 enum vxge_hw_status status;
252 u32 ret;
254 vpath = &hldev->virtual_paths[hldev->first_vp_id];
256 status = vxge_hw_vpath_fw_api(vpath,
257 VXGE_HW_FW_UPGRADE_ACTION,
258 VXGE_HW_FW_UPGRADE_MEMO,
259 VXGE_HW_FW_UPGRADE_OFFSET_COMMIT,
260 &data0, &data1, &steer_ctrl);
261 if (status != VXGE_HW_OK) {
262 vxge_debug_init(VXGE_ERR, "%s: FW upgrade failed", __func__);
263 goto exit;
266 ret = VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl) & 0x7F;
267 if (ret != 1) {
268 vxge_debug_init(VXGE_ERR, "%s: FW commit failed with error %d",
269 __func__, ret);
270 status = VXGE_HW_FAIL;
273 exit:
274 return status;
277 enum vxge_hw_status
278 vxge_update_fw_image(struct __vxge_hw_device *hldev, const u8 *fwdata, int size)
280 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
281 struct __vxge_hw_virtualpath *vpath;
282 enum vxge_hw_status status;
283 int ret_code, sec_code;
285 vpath = &hldev->virtual_paths[hldev->first_vp_id];
287 /* send upgrade start command */
288 status = vxge_hw_vpath_fw_api(vpath,
289 VXGE_HW_FW_UPGRADE_ACTION,
290 VXGE_HW_FW_UPGRADE_MEMO,
291 VXGE_HW_FW_UPGRADE_OFFSET_START,
292 &data0, &data1, &steer_ctrl);
293 if (status != VXGE_HW_OK) {
294 vxge_debug_init(VXGE_ERR, " %s: Upgrade start cmd failed",
295 __func__);
296 return status;
299 /* Transfer fw image to adapter 16 bytes at a time */
300 for (; size > 0; size -= VXGE_HW_FW_UPGRADE_BLK_SIZE) {
301 steer_ctrl = 0;
303 /* The next 128bits of fwdata to be loaded onto the adapter */
304 data0 = *((u64 *)fwdata);
305 data1 = *((u64 *)fwdata + 1);
307 status = vxge_hw_vpath_fw_api(vpath,
308 VXGE_HW_FW_UPGRADE_ACTION,
309 VXGE_HW_FW_UPGRADE_MEMO,
310 VXGE_HW_FW_UPGRADE_OFFSET_SEND,
311 &data0, &data1, &steer_ctrl);
312 if (status != VXGE_HW_OK) {
313 vxge_debug_init(VXGE_ERR, "%s: Upgrade send failed",
314 __func__);
315 goto out;
318 ret_code = VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0);
319 switch (ret_code) {
320 case VXGE_HW_FW_UPGRADE_OK:
321 /* All OK, send next 16 bytes. */
322 break;
323 case VXGE_FW_UPGRADE_BYTES2SKIP:
324 /* skip bytes in the stream */
325 fwdata += (data0 >> 8) & 0xFFFFFFFF;
326 break;
327 case VXGE_HW_FW_UPGRADE_DONE:
328 goto out;
329 case VXGE_HW_FW_UPGRADE_ERR:
330 sec_code = VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0);
331 switch (sec_code) {
332 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1:
333 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7:
334 printk(KERN_ERR
335 "corrupted data from .ncf file\n");
336 break;
337 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3:
338 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4:
339 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5:
340 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6:
341 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8:
342 printk(KERN_ERR "invalid .ncf file\n");
343 break;
344 case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW:
345 printk(KERN_ERR "buffer overflow\n");
346 break;
347 case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH:
348 printk(KERN_ERR "failed to flash the image\n");
349 break;
350 case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN:
351 printk(KERN_ERR
352 "generic error. Unknown error type\n");
353 break;
354 default:
355 printk(KERN_ERR "Unknown error of type %d\n",
356 sec_code);
357 break;
359 status = VXGE_HW_FAIL;
360 goto out;
361 default:
362 printk(KERN_ERR "Unknown FW error: %d\n", ret_code);
363 status = VXGE_HW_FAIL;
364 goto out;
366 /* point to next 16 bytes */
367 fwdata += VXGE_HW_FW_UPGRADE_BLK_SIZE;
369 out:
370 return status;
373 enum vxge_hw_status
374 vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device *hldev,
375 struct eprom_image *img)
377 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
378 struct __vxge_hw_virtualpath *vpath;
379 enum vxge_hw_status status;
380 int i;
382 vpath = &hldev->virtual_paths[hldev->first_vp_id];
384 for (i = 0; i < VXGE_HW_MAX_ROM_IMAGES; i++) {
385 data0 = VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i);
386 data1 = steer_ctrl = 0;
388 status = vxge_hw_vpath_fw_api(vpath,
389 VXGE_HW_FW_API_GET_EPROM_REV,
390 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
391 0, &data0, &data1, &steer_ctrl);
392 if (status != VXGE_HW_OK)
393 break;
395 img[i].is_valid = VXGE_HW_GET_EPROM_IMAGE_VALID(data0);
396 img[i].index = VXGE_HW_GET_EPROM_IMAGE_INDEX(data0);
397 img[i].type = VXGE_HW_GET_EPROM_IMAGE_TYPE(data0);
398 img[i].version = VXGE_HW_GET_EPROM_IMAGE_REV(data0);
401 return status;
405 * __vxge_hw_channel_free - Free memory allocated for channel
406 * This function deallocates memory from the channel and various arrays
407 * in the channel
409 static void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
411 kfree(channel->work_arr);
412 kfree(channel->free_arr);
413 kfree(channel->reserve_arr);
414 kfree(channel->orig_arr);
415 kfree(channel);
419 * __vxge_hw_channel_initialize - Initialize a channel
420 * This function initializes a channel by properly setting the
421 * various references
423 static enum vxge_hw_status
424 __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
426 u32 i;
427 struct __vxge_hw_virtualpath *vpath;
429 vpath = channel->vph->vpath;
431 if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
432 for (i = 0; i < channel->length; i++)
433 channel->orig_arr[i] = channel->reserve_arr[i];
436 switch (channel->type) {
437 case VXGE_HW_CHANNEL_TYPE_FIFO:
438 vpath->fifoh = (struct __vxge_hw_fifo *)channel;
439 channel->stats = &((struct __vxge_hw_fifo *)
440 channel)->stats->common_stats;
441 break;
442 case VXGE_HW_CHANNEL_TYPE_RING:
443 vpath->ringh = (struct __vxge_hw_ring *)channel;
444 channel->stats = &((struct __vxge_hw_ring *)
445 channel)->stats->common_stats;
446 break;
447 default:
448 break;
451 return VXGE_HW_OK;
455 * __vxge_hw_channel_reset - Resets a channel
456 * This function resets a channel by properly setting the various references
458 static enum vxge_hw_status
459 __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
461 u32 i;
463 for (i = 0; i < channel->length; i++) {
464 if (channel->reserve_arr != NULL)
465 channel->reserve_arr[i] = channel->orig_arr[i];
466 if (channel->free_arr != NULL)
467 channel->free_arr[i] = NULL;
468 if (channel->work_arr != NULL)
469 channel->work_arr[i] = NULL;
471 channel->free_ptr = channel->length;
472 channel->reserve_ptr = channel->length;
473 channel->reserve_top = 0;
474 channel->post_index = 0;
475 channel->compl_index = 0;
477 return VXGE_HW_OK;
481 * __vxge_hw_device_pci_e_init
482 * Initialize certain PCI/PCI-X configuration registers
483 * with recommended values. Save config space for future hw resets.
485 static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
487 u16 cmd = 0;
489 /* Set the PErr Repconse bit and SERR in PCI command register. */
490 pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
491 cmd |= 0x140;
492 pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
494 pci_save_state(hldev->pdev);
497 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
498 * in progress
499 * This routine checks the vpath reset in progress register is turned zero
501 static enum vxge_hw_status
502 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
504 enum vxge_hw_status status;
505 status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
506 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
507 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
508 return status;
512 * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
513 * Set the swapper bits appropriately for the lagacy section.
515 static enum vxge_hw_status
516 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
518 u64 val64;
519 enum vxge_hw_status status = VXGE_HW_OK;
521 val64 = readq(&legacy_reg->toc_swapper_fb);
523 wmb();
525 switch (val64) {
526 case VXGE_HW_SWAPPER_INITIAL_VALUE:
527 return status;
529 case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
530 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
531 &legacy_reg->pifm_rd_swap_en);
532 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
533 &legacy_reg->pifm_rd_flip_en);
534 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
535 &legacy_reg->pifm_wr_swap_en);
536 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
537 &legacy_reg->pifm_wr_flip_en);
538 break;
540 case VXGE_HW_SWAPPER_BYTE_SWAPPED:
541 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
542 &legacy_reg->pifm_rd_swap_en);
543 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
544 &legacy_reg->pifm_wr_swap_en);
545 break;
547 case VXGE_HW_SWAPPER_BIT_FLIPPED:
548 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
549 &legacy_reg->pifm_rd_flip_en);
550 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
551 &legacy_reg->pifm_wr_flip_en);
552 break;
555 wmb();
557 val64 = readq(&legacy_reg->toc_swapper_fb);
559 if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
560 status = VXGE_HW_ERR_SWAPPER_CTRL;
562 return status;
566 * __vxge_hw_device_toc_get
567 * This routine sets the swapper and reads the toc pointer and returns the
568 * memory mapped address of the toc
570 static struct vxge_hw_toc_reg __iomem *
571 __vxge_hw_device_toc_get(void __iomem *bar0)
573 u64 val64;
574 struct vxge_hw_toc_reg __iomem *toc = NULL;
575 enum vxge_hw_status status;
577 struct vxge_hw_legacy_reg __iomem *legacy_reg =
578 (struct vxge_hw_legacy_reg __iomem *)bar0;
580 status = __vxge_hw_legacy_swapper_set(legacy_reg);
581 if (status != VXGE_HW_OK)
582 goto exit;
584 val64 = readq(&legacy_reg->toc_first_pointer);
585 toc = (struct vxge_hw_toc_reg __iomem *)(bar0+val64);
586 exit:
587 return toc;
591 * __vxge_hw_device_reg_addr_get
592 * This routine sets the swapper and reads the toc pointer and initializes the
593 * register location pointers in the device object. It waits until the ric is
594 * completed initializing registers.
596 static enum vxge_hw_status
597 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
599 u64 val64;
600 u32 i;
601 enum vxge_hw_status status = VXGE_HW_OK;
603 hldev->legacy_reg = (struct vxge_hw_legacy_reg __iomem *)hldev->bar0;
605 hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
606 if (hldev->toc_reg == NULL) {
607 status = VXGE_HW_FAIL;
608 goto exit;
611 val64 = readq(&hldev->toc_reg->toc_common_pointer);
612 hldev->common_reg =
613 (struct vxge_hw_common_reg __iomem *)(hldev->bar0 + val64);
615 val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
616 hldev->mrpcim_reg =
617 (struct vxge_hw_mrpcim_reg __iomem *)(hldev->bar0 + val64);
619 for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
620 val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
621 hldev->srpcim_reg[i] =
622 (struct vxge_hw_srpcim_reg __iomem *)
623 (hldev->bar0 + val64);
626 for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
627 val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
628 hldev->vpmgmt_reg[i] =
629 (struct vxge_hw_vpmgmt_reg __iomem *)(hldev->bar0 + val64);
632 for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
633 val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
634 hldev->vpath_reg[i] =
635 (struct vxge_hw_vpath_reg __iomem *)
636 (hldev->bar0 + val64);
639 val64 = readq(&hldev->toc_reg->toc_kdfc);
641 switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
642 case 0:
643 hldev->kdfc = (u8 __iomem *)(hldev->bar0 +
644 VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64));
645 break;
646 default:
647 break;
650 status = __vxge_hw_device_vpath_reset_in_prog_check(
651 (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
652 exit:
653 return status;
657 * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
658 * This routine returns the Access Rights of the driver
660 static u32
661 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
663 u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
665 switch (host_type) {
666 case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
667 if (func_id == 0) {
668 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
669 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
671 break;
672 case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
673 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
674 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
675 break;
676 case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
677 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
678 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
679 break;
680 case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
681 case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
682 case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
683 break;
684 case VXGE_HW_SR_VH_FUNCTION0:
685 case VXGE_HW_VH_NORMAL_FUNCTION:
686 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
687 break;
690 return access_rights;
693 * __vxge_hw_device_is_privilaged
694 * This routine checks if the device function is privilaged or not
697 enum vxge_hw_status
698 __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
700 if (__vxge_hw_device_access_rights_get(host_type,
701 func_id) &
702 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
703 return VXGE_HW_OK;
704 else
705 return VXGE_HW_ERR_PRIVILAGED_OPEARATION;
709 * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
710 * Returns the function number of the vpath.
712 static u32
713 __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
715 u64 val64;
717 val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
719 return
720 (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
724 * __vxge_hw_device_host_info_get
725 * This routine returns the host type assignments
727 static void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
729 u64 val64;
730 u32 i;
732 val64 = readq(&hldev->common_reg->host_type_assignments);
734 hldev->host_type =
735 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
737 hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
739 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
740 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
741 continue;
743 hldev->func_id =
744 __vxge_hw_vpath_func_id_get(hldev->vpmgmt_reg[i]);
746 hldev->access_rights = __vxge_hw_device_access_rights_get(
747 hldev->host_type, hldev->func_id);
749 hldev->virtual_paths[i].vp_open = VXGE_HW_VP_NOT_OPEN;
750 hldev->virtual_paths[i].vp_reg = hldev->vpath_reg[i];
752 hldev->first_vp_id = i;
753 break;
758 * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
759 * link width and signalling rate.
761 static enum vxge_hw_status
762 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
764 int exp_cap;
765 u16 lnk;
767 /* Get the negotiated link width and speed from PCI config space */
768 exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
769 pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
771 if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
772 return VXGE_HW_ERR_INVALID_PCI_INFO;
774 switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
775 case PCIE_LNK_WIDTH_RESRV:
776 case PCIE_LNK_X1:
777 case PCIE_LNK_X2:
778 case PCIE_LNK_X4:
779 case PCIE_LNK_X8:
780 break;
781 default:
782 return VXGE_HW_ERR_INVALID_PCI_INFO;
785 return VXGE_HW_OK;
789 * __vxge_hw_device_initialize
790 * Initialize Titan-V hardware.
792 static enum vxge_hw_status
793 __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
795 enum vxge_hw_status status = VXGE_HW_OK;
797 if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
798 hldev->func_id)) {
799 /* Validate the pci-e link width and speed */
800 status = __vxge_hw_verify_pci_e_info(hldev);
801 if (status != VXGE_HW_OK)
802 goto exit;
805 exit:
806 return status;
810 * __vxge_hw_vpath_fw_ver_get - Get the fw version
811 * Returns FW Version
813 static enum vxge_hw_status
814 __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath *vpath,
815 struct vxge_hw_device_hw_info *hw_info)
817 struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
818 struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
819 struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
820 struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
821 u64 data0, data1 = 0, steer_ctrl = 0;
822 enum vxge_hw_status status;
824 status = vxge_hw_vpath_fw_api(vpath,
825 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
826 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
827 0, &data0, &data1, &steer_ctrl);
828 if (status != VXGE_HW_OK)
829 goto exit;
831 fw_date->day =
832 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0);
833 fw_date->month =
834 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0);
835 fw_date->year =
836 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0);
838 snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
839 fw_date->month, fw_date->day, fw_date->year);
841 fw_version->major =
842 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
843 fw_version->minor =
844 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
845 fw_version->build =
846 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
848 snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
849 fw_version->major, fw_version->minor, fw_version->build);
851 flash_date->day =
852 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1);
853 flash_date->month =
854 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1);
855 flash_date->year =
856 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1);
858 snprintf(flash_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
859 flash_date->month, flash_date->day, flash_date->year);
861 flash_version->major =
862 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1);
863 flash_version->minor =
864 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1);
865 flash_version->build =
866 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1);
868 snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
869 flash_version->major, flash_version->minor,
870 flash_version->build);
872 exit:
873 return status;
877 * __vxge_hw_vpath_card_info_get - Get the serial numbers,
878 * part number and product description.
880 static enum vxge_hw_status
881 __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath *vpath,
882 struct vxge_hw_device_hw_info *hw_info)
884 enum vxge_hw_status status;
885 u64 data0, data1 = 0, steer_ctrl = 0;
886 u8 *serial_number = hw_info->serial_number;
887 u8 *part_number = hw_info->part_number;
888 u8 *product_desc = hw_info->product_desc;
889 u32 i, j = 0;
891 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER;
893 status = vxge_hw_vpath_fw_api(vpath,
894 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
895 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
896 0, &data0, &data1, &steer_ctrl);
897 if (status != VXGE_HW_OK)
898 return status;
900 ((u64 *)serial_number)[0] = be64_to_cpu(data0);
901 ((u64 *)serial_number)[1] = be64_to_cpu(data1);
903 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER;
904 data1 = steer_ctrl = 0;
906 status = vxge_hw_vpath_fw_api(vpath,
907 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
908 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
909 0, &data0, &data1, &steer_ctrl);
910 if (status != VXGE_HW_OK)
911 return status;
913 ((u64 *)part_number)[0] = be64_to_cpu(data0);
914 ((u64 *)part_number)[1] = be64_to_cpu(data1);
916 for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
917 i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
918 data0 = i;
919 data1 = steer_ctrl = 0;
921 status = vxge_hw_vpath_fw_api(vpath,
922 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
923 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
924 0, &data0, &data1, &steer_ctrl);
925 if (status != VXGE_HW_OK)
926 return status;
928 ((u64 *)product_desc)[j++] = be64_to_cpu(data0);
929 ((u64 *)product_desc)[j++] = be64_to_cpu(data1);
932 return status;
936 * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
937 * Returns pci function mode
939 static enum vxge_hw_status
940 __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath *vpath,
941 struct vxge_hw_device_hw_info *hw_info)
943 u64 data0, data1 = 0, steer_ctrl = 0;
944 enum vxge_hw_status status;
946 data0 = 0;
948 status = vxge_hw_vpath_fw_api(vpath,
949 VXGE_HW_FW_API_GET_FUNC_MODE,
950 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
951 0, &data0, &data1, &steer_ctrl);
952 if (status != VXGE_HW_OK)
953 return status;
955 hw_info->function_mode = VXGE_HW_GET_FUNC_MODE_VAL(data0);
956 return status;
960 * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
961 * from MAC address table.
963 static enum vxge_hw_status
964 __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath *vpath,
965 u8 *macaddr, u8 *macaddr_mask)
967 u64 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
968 data0 = 0, data1 = 0, steer_ctrl = 0;
969 enum vxge_hw_status status;
970 int i;
972 do {
973 status = vxge_hw_vpath_fw_api(vpath, action,
974 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
975 0, &data0, &data1, &steer_ctrl);
976 if (status != VXGE_HW_OK)
977 goto exit;
979 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0);
980 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
981 data1);
983 for (i = ETH_ALEN; i > 0; i--) {
984 macaddr[i - 1] = (u8) (data0 & 0xFF);
985 data0 >>= 8;
987 macaddr_mask[i - 1] = (u8) (data1 & 0xFF);
988 data1 >>= 8;
991 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY;
992 data0 = 0, data1 = 0, steer_ctrl = 0;
994 } while (!is_valid_ether_addr(macaddr));
995 exit:
996 return status;
1000 * vxge_hw_device_hw_info_get - Get the hw information
1001 * Returns the vpath mask that has the bits set for each vpath allocated
1002 * for the driver, FW version information, and the first mac address for
1003 * each vpath
1005 enum vxge_hw_status __devinit
1006 vxge_hw_device_hw_info_get(void __iomem *bar0,
1007 struct vxge_hw_device_hw_info *hw_info)
1009 u32 i;
1010 u64 val64;
1011 struct vxge_hw_toc_reg __iomem *toc;
1012 struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
1013 struct vxge_hw_common_reg __iomem *common_reg;
1014 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
1015 enum vxge_hw_status status;
1016 struct __vxge_hw_virtualpath vpath;
1018 memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
1020 toc = __vxge_hw_device_toc_get(bar0);
1021 if (toc == NULL) {
1022 status = VXGE_HW_ERR_CRITICAL;
1023 goto exit;
1026 val64 = readq(&toc->toc_common_pointer);
1027 common_reg = (struct vxge_hw_common_reg __iomem *)(bar0 + val64);
1029 status = __vxge_hw_device_vpath_reset_in_prog_check(
1030 (u64 __iomem *)&common_reg->vpath_rst_in_prog);
1031 if (status != VXGE_HW_OK)
1032 goto exit;
1034 hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
1036 val64 = readq(&common_reg->host_type_assignments);
1038 hw_info->host_type =
1039 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
1041 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1042 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1043 continue;
1045 val64 = readq(&toc->toc_vpmgmt_pointer[i]);
1047 vpmgmt_reg = (struct vxge_hw_vpmgmt_reg __iomem *)
1048 (bar0 + val64);
1050 hw_info->func_id = __vxge_hw_vpath_func_id_get(vpmgmt_reg);
1051 if (__vxge_hw_device_access_rights_get(hw_info->host_type,
1052 hw_info->func_id) &
1053 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
1055 val64 = readq(&toc->toc_mrpcim_pointer);
1057 mrpcim_reg = (struct vxge_hw_mrpcim_reg __iomem *)
1058 (bar0 + val64);
1060 writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
1061 wmb();
1064 val64 = readq(&toc->toc_vpath_pointer[i]);
1066 spin_lock_init(&vpath.lock);
1067 vpath.vp_reg = (struct vxge_hw_vpath_reg __iomem *)
1068 (bar0 + val64);
1069 vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1071 status = __vxge_hw_vpath_pci_func_mode_get(&vpath, hw_info);
1072 if (status != VXGE_HW_OK)
1073 goto exit;
1075 status = __vxge_hw_vpath_fw_ver_get(&vpath, hw_info);
1076 if (status != VXGE_HW_OK)
1077 goto exit;
1079 status = __vxge_hw_vpath_card_info_get(&vpath, hw_info);
1080 if (status != VXGE_HW_OK)
1081 goto exit;
1083 break;
1086 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1087 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1088 continue;
1090 val64 = readq(&toc->toc_vpath_pointer[i]);
1091 vpath.vp_reg = (struct vxge_hw_vpath_reg __iomem *)
1092 (bar0 + val64);
1093 vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1095 status = __vxge_hw_vpath_addr_get(&vpath,
1096 hw_info->mac_addrs[i],
1097 hw_info->mac_addr_masks[i]);
1098 if (status != VXGE_HW_OK)
1099 goto exit;
1101 exit:
1102 return status;
1106 * __vxge_hw_blockpool_destroy - Deallocates the block pool
1108 static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
1110 struct __vxge_hw_device *hldev;
1111 struct list_head *p, *n;
1112 u16 ret;
1114 if (blockpool == NULL) {
1115 ret = 1;
1116 goto exit;
1119 hldev = blockpool->hldev;
1121 list_for_each_safe(p, n, &blockpool->free_block_list) {
1122 pci_unmap_single(hldev->pdev,
1123 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
1124 ((struct __vxge_hw_blockpool_entry *)p)->length,
1125 PCI_DMA_BIDIRECTIONAL);
1127 vxge_os_dma_free(hldev->pdev,
1128 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
1129 &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
1131 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1132 kfree(p);
1133 blockpool->pool_size--;
1136 list_for_each_safe(p, n, &blockpool->free_entry_list) {
1137 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1138 kfree((void *)p);
1140 ret = 0;
1141 exit:
1142 return;
1146 * __vxge_hw_blockpool_create - Create block pool
1148 static enum vxge_hw_status
1149 __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
1150 struct __vxge_hw_blockpool *blockpool,
1151 u32 pool_size,
1152 u32 pool_max)
1154 u32 i;
1155 struct __vxge_hw_blockpool_entry *entry = NULL;
1156 void *memblock;
1157 dma_addr_t dma_addr;
1158 struct pci_dev *dma_handle;
1159 struct pci_dev *acc_handle;
1160 enum vxge_hw_status status = VXGE_HW_OK;
1162 if (blockpool == NULL) {
1163 status = VXGE_HW_FAIL;
1164 goto blockpool_create_exit;
1167 blockpool->hldev = hldev;
1168 blockpool->block_size = VXGE_HW_BLOCK_SIZE;
1169 blockpool->pool_size = 0;
1170 blockpool->pool_max = pool_max;
1171 blockpool->req_out = 0;
1173 INIT_LIST_HEAD(&blockpool->free_block_list);
1174 INIT_LIST_HEAD(&blockpool->free_entry_list);
1176 for (i = 0; i < pool_size + pool_max; i++) {
1177 entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1178 GFP_KERNEL);
1179 if (entry == NULL) {
1180 __vxge_hw_blockpool_destroy(blockpool);
1181 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1182 goto blockpool_create_exit;
1184 list_add(&entry->item, &blockpool->free_entry_list);
1187 for (i = 0; i < pool_size; i++) {
1188 memblock = vxge_os_dma_malloc(
1189 hldev->pdev,
1190 VXGE_HW_BLOCK_SIZE,
1191 &dma_handle,
1192 &acc_handle);
1193 if (memblock == NULL) {
1194 __vxge_hw_blockpool_destroy(blockpool);
1195 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1196 goto blockpool_create_exit;
1199 dma_addr = pci_map_single(hldev->pdev, memblock,
1200 VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
1201 if (unlikely(pci_dma_mapping_error(hldev->pdev,
1202 dma_addr))) {
1203 vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
1204 __vxge_hw_blockpool_destroy(blockpool);
1205 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1206 goto blockpool_create_exit;
1209 if (!list_empty(&blockpool->free_entry_list))
1210 entry = (struct __vxge_hw_blockpool_entry *)
1211 list_first_entry(&blockpool->free_entry_list,
1212 struct __vxge_hw_blockpool_entry,
1213 item);
1215 if (entry == NULL)
1216 entry =
1217 kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1218 GFP_KERNEL);
1219 if (entry != NULL) {
1220 list_del(&entry->item);
1221 entry->length = VXGE_HW_BLOCK_SIZE;
1222 entry->memblock = memblock;
1223 entry->dma_addr = dma_addr;
1224 entry->acc_handle = acc_handle;
1225 entry->dma_handle = dma_handle;
1226 list_add(&entry->item,
1227 &blockpool->free_block_list);
1228 blockpool->pool_size++;
1229 } else {
1230 __vxge_hw_blockpool_destroy(blockpool);
1231 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1232 goto blockpool_create_exit;
1236 blockpool_create_exit:
1237 return status;
1241 * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1242 * Check the fifo configuration
1244 static enum vxge_hw_status
1245 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
1247 if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
1248 (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
1249 return VXGE_HW_BADCFG_FIFO_BLOCKS;
1251 return VXGE_HW_OK;
1255 * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1256 * Check the vpath configuration
1258 static enum vxge_hw_status
1259 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
1261 enum vxge_hw_status status;
1263 if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
1264 (vp_config->min_bandwidth > VXGE_HW_VPATH_BANDWIDTH_MAX))
1265 return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
1267 status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
1268 if (status != VXGE_HW_OK)
1269 return status;
1271 if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
1272 ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
1273 (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
1274 return VXGE_HW_BADCFG_VPATH_MTU;
1276 if ((vp_config->rpa_strip_vlan_tag !=
1277 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
1278 (vp_config->rpa_strip_vlan_tag !=
1279 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
1280 (vp_config->rpa_strip_vlan_tag !=
1281 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
1282 return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
1284 return VXGE_HW_OK;
1288 * __vxge_hw_device_config_check - Check device configuration.
1289 * Check the device configuration
1291 static enum vxge_hw_status
1292 __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
1294 u32 i;
1295 enum vxge_hw_status status;
1297 if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
1298 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
1299 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
1300 (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
1301 return VXGE_HW_BADCFG_INTR_MODE;
1303 if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
1304 (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
1305 return VXGE_HW_BADCFG_RTS_MAC_EN;
1307 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1308 status = __vxge_hw_device_vpath_config_check(
1309 &new_config->vp_config[i]);
1310 if (status != VXGE_HW_OK)
1311 return status;
1314 return VXGE_HW_OK;
1318 * vxge_hw_device_initialize - Initialize Titan device.
1319 * Initialize Titan device. Note that all the arguments of this public API
1320 * are 'IN', including @hldev. Driver cooperates with
1321 * OS to find new Titan device, locate its PCI and memory spaces.
1323 * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
1324 * to enable the latter to perform Titan hardware initialization.
1326 enum vxge_hw_status __devinit
1327 vxge_hw_device_initialize(
1328 struct __vxge_hw_device **devh,
1329 struct vxge_hw_device_attr *attr,
1330 struct vxge_hw_device_config *device_config)
1332 u32 i;
1333 u32 nblocks = 0;
1334 struct __vxge_hw_device *hldev = NULL;
1335 enum vxge_hw_status status = VXGE_HW_OK;
1337 status = __vxge_hw_device_config_check(device_config);
1338 if (status != VXGE_HW_OK)
1339 goto exit;
1341 hldev = vzalloc(sizeof(struct __vxge_hw_device));
1342 if (hldev == NULL) {
1343 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1344 goto exit;
1347 hldev->magic = VXGE_HW_DEVICE_MAGIC;
1349 vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
1351 /* apply config */
1352 memcpy(&hldev->config, device_config,
1353 sizeof(struct vxge_hw_device_config));
1355 hldev->bar0 = attr->bar0;
1356 hldev->pdev = attr->pdev;
1358 hldev->uld_callbacks.link_up = attr->uld_callbacks.link_up;
1359 hldev->uld_callbacks.link_down = attr->uld_callbacks.link_down;
1360 hldev->uld_callbacks.crit_err = attr->uld_callbacks.crit_err;
1362 __vxge_hw_device_pci_e_init(hldev);
1364 status = __vxge_hw_device_reg_addr_get(hldev);
1365 if (status != VXGE_HW_OK) {
1366 vfree(hldev);
1367 goto exit;
1370 __vxge_hw_device_host_info_get(hldev);
1372 /* Incrementing for stats blocks */
1373 nblocks++;
1375 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1376 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
1377 continue;
1379 if (device_config->vp_config[i].ring.enable ==
1380 VXGE_HW_RING_ENABLE)
1381 nblocks += device_config->vp_config[i].ring.ring_blocks;
1383 if (device_config->vp_config[i].fifo.enable ==
1384 VXGE_HW_FIFO_ENABLE)
1385 nblocks += device_config->vp_config[i].fifo.fifo_blocks;
1386 nblocks++;
1389 if (__vxge_hw_blockpool_create(hldev,
1390 &hldev->block_pool,
1391 device_config->dma_blockpool_initial + nblocks,
1392 device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
1394 vxge_hw_device_terminate(hldev);
1395 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1396 goto exit;
1399 status = __vxge_hw_device_initialize(hldev);
1400 if (status != VXGE_HW_OK) {
1401 vxge_hw_device_terminate(hldev);
1402 goto exit;
1405 *devh = hldev;
1406 exit:
1407 return status;
1411 * vxge_hw_device_terminate - Terminate Titan device.
1412 * Terminate HW device.
1414 void
1415 vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
1417 vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
1419 hldev->magic = VXGE_HW_DEVICE_DEAD;
1420 __vxge_hw_blockpool_destroy(&hldev->block_pool);
1421 vfree(hldev);
1425 * __vxge_hw_vpath_stats_access - Get the statistics from the given location
1426 * and offset and perform an operation
1428 static enum vxge_hw_status
1429 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
1430 u32 operation, u32 offset, u64 *stat)
1432 u64 val64;
1433 enum vxge_hw_status status = VXGE_HW_OK;
1434 struct vxge_hw_vpath_reg __iomem *vp_reg;
1436 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1437 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1438 goto vpath_stats_access_exit;
1441 vp_reg = vpath->vp_reg;
1443 val64 = VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
1444 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
1445 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
1447 status = __vxge_hw_pio_mem_write64(val64,
1448 &vp_reg->xmac_stats_access_cmd,
1449 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
1450 vpath->hldev->config.device_poll_millis);
1451 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1452 *stat = readq(&vp_reg->xmac_stats_access_data);
1453 else
1454 *stat = 0;
1456 vpath_stats_access_exit:
1457 return status;
1461 * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
1463 static enum vxge_hw_status
1464 __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath *vpath,
1465 struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
1467 u64 *val64;
1468 int i;
1469 u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
1470 enum vxge_hw_status status = VXGE_HW_OK;
1472 val64 = (u64 *)vpath_tx_stats;
1474 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1475 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1476 goto exit;
1479 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
1480 status = __vxge_hw_vpath_stats_access(vpath,
1481 VXGE_HW_STATS_OP_READ,
1482 offset, val64);
1483 if (status != VXGE_HW_OK)
1484 goto exit;
1485 offset++;
1486 val64++;
1488 exit:
1489 return status;
1493 * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
1495 static enum vxge_hw_status
1496 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
1497 struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
1499 u64 *val64;
1500 enum vxge_hw_status status = VXGE_HW_OK;
1501 int i;
1502 u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
1503 val64 = (u64 *) vpath_rx_stats;
1505 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1506 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1507 goto exit;
1509 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
1510 status = __vxge_hw_vpath_stats_access(vpath,
1511 VXGE_HW_STATS_OP_READ,
1512 offset >> 3, val64);
1513 if (status != VXGE_HW_OK)
1514 goto exit;
1516 offset += 8;
1517 val64++;
1519 exit:
1520 return status;
1524 * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
1526 static enum vxge_hw_status
1527 __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath,
1528 struct vxge_hw_vpath_stats_hw_info *hw_stats)
1530 u64 val64;
1531 enum vxge_hw_status status = VXGE_HW_OK;
1532 struct vxge_hw_vpath_reg __iomem *vp_reg;
1534 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1535 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1536 goto exit;
1538 vp_reg = vpath->vp_reg;
1540 val64 = readq(&vp_reg->vpath_debug_stats0);
1541 hw_stats->ini_num_mwr_sent =
1542 (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
1544 val64 = readq(&vp_reg->vpath_debug_stats1);
1545 hw_stats->ini_num_mrd_sent =
1546 (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
1548 val64 = readq(&vp_reg->vpath_debug_stats2);
1549 hw_stats->ini_num_cpl_rcvd =
1550 (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
1552 val64 = readq(&vp_reg->vpath_debug_stats3);
1553 hw_stats->ini_num_mwr_byte_sent =
1554 VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
1556 val64 = readq(&vp_reg->vpath_debug_stats4);
1557 hw_stats->ini_num_cpl_byte_rcvd =
1558 VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
1560 val64 = readq(&vp_reg->vpath_debug_stats5);
1561 hw_stats->wrcrdtarb_xoff =
1562 (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
1564 val64 = readq(&vp_reg->vpath_debug_stats6);
1565 hw_stats->rdcrdtarb_xoff =
1566 (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
1568 val64 = readq(&vp_reg->vpath_genstats_count01);
1569 hw_stats->vpath_genstats_count0 =
1570 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
1571 val64);
1573 val64 = readq(&vp_reg->vpath_genstats_count01);
1574 hw_stats->vpath_genstats_count1 =
1575 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
1576 val64);
1578 val64 = readq(&vp_reg->vpath_genstats_count23);
1579 hw_stats->vpath_genstats_count2 =
1580 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
1581 val64);
1583 val64 = readq(&vp_reg->vpath_genstats_count01);
1584 hw_stats->vpath_genstats_count3 =
1585 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
1586 val64);
1588 val64 = readq(&vp_reg->vpath_genstats_count4);
1589 hw_stats->vpath_genstats_count4 =
1590 (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
1591 val64);
1593 val64 = readq(&vp_reg->vpath_genstats_count5);
1594 hw_stats->vpath_genstats_count5 =
1595 (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
1596 val64);
1598 status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
1599 if (status != VXGE_HW_OK)
1600 goto exit;
1602 status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
1603 if (status != VXGE_HW_OK)
1604 goto exit;
1606 VXGE_HW_VPATH_STATS_PIO_READ(
1607 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
1609 hw_stats->prog_event_vnum0 =
1610 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
1612 hw_stats->prog_event_vnum1 =
1613 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
1615 VXGE_HW_VPATH_STATS_PIO_READ(
1616 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
1618 hw_stats->prog_event_vnum2 =
1619 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
1621 hw_stats->prog_event_vnum3 =
1622 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
1624 val64 = readq(&vp_reg->rx_multi_cast_stats);
1625 hw_stats->rx_multi_cast_frame_discard =
1626 (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
1628 val64 = readq(&vp_reg->rx_frm_transferred);
1629 hw_stats->rx_frm_transferred =
1630 (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
1632 val64 = readq(&vp_reg->rxd_returned);
1633 hw_stats->rxd_returned =
1634 (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
1636 val64 = readq(&vp_reg->dbg_stats_rx_mpa);
1637 hw_stats->rx_mpa_len_fail_frms =
1638 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
1639 hw_stats->rx_mpa_mrk_fail_frms =
1640 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
1641 hw_stats->rx_mpa_crc_fail_frms =
1642 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
1644 val64 = readq(&vp_reg->dbg_stats_rx_fau);
1645 hw_stats->rx_permitted_frms =
1646 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
1647 hw_stats->rx_vp_reset_discarded_frms =
1648 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
1649 hw_stats->rx_wol_frms =
1650 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
1652 val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
1653 hw_stats->tx_vp_reset_discarded_frms =
1654 (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
1655 val64);
1656 exit:
1657 return status;
1661 * vxge_hw_device_stats_get - Get the device hw statistics.
1662 * Returns the vpath h/w stats for the device.
1664 enum vxge_hw_status
1665 vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
1666 struct vxge_hw_device_stats_hw_info *hw_stats)
1668 u32 i;
1669 enum vxge_hw_status status = VXGE_HW_OK;
1671 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1672 if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
1673 (hldev->virtual_paths[i].vp_open ==
1674 VXGE_HW_VP_NOT_OPEN))
1675 continue;
1677 memcpy(hldev->virtual_paths[i].hw_stats_sav,
1678 hldev->virtual_paths[i].hw_stats,
1679 sizeof(struct vxge_hw_vpath_stats_hw_info));
1681 status = __vxge_hw_vpath_stats_get(
1682 &hldev->virtual_paths[i],
1683 hldev->virtual_paths[i].hw_stats);
1686 memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
1687 sizeof(struct vxge_hw_device_stats_hw_info));
1689 return status;
1693 * vxge_hw_driver_stats_get - Get the device sw statistics.
1694 * Returns the vpath s/w stats for the device.
1696 enum vxge_hw_status vxge_hw_driver_stats_get(
1697 struct __vxge_hw_device *hldev,
1698 struct vxge_hw_device_stats_sw_info *sw_stats)
1700 enum vxge_hw_status status = VXGE_HW_OK;
1702 memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
1703 sizeof(struct vxge_hw_device_stats_sw_info));
1705 return status;
1709 * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
1710 * and offset and perform an operation
1711 * Get the statistics from the given location and offset.
1713 enum vxge_hw_status
1714 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
1715 u32 operation, u32 location, u32 offset, u64 *stat)
1717 u64 val64;
1718 enum vxge_hw_status status = VXGE_HW_OK;
1720 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1721 hldev->func_id);
1722 if (status != VXGE_HW_OK)
1723 goto exit;
1725 val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
1726 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
1727 VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
1728 VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
1730 status = __vxge_hw_pio_mem_write64(val64,
1731 &hldev->mrpcim_reg->xmac_stats_sys_cmd,
1732 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
1733 hldev->config.device_poll_millis);
1735 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1736 *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
1737 else
1738 *stat = 0;
1739 exit:
1740 return status;
1744 * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
1745 * Get the Statistics on aggregate port
1747 static enum vxge_hw_status
1748 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
1749 struct vxge_hw_xmac_aggr_stats *aggr_stats)
1751 u64 *val64;
1752 int i;
1753 u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
1754 enum vxge_hw_status status = VXGE_HW_OK;
1756 val64 = (u64 *)aggr_stats;
1758 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1759 hldev->func_id);
1760 if (status != VXGE_HW_OK)
1761 goto exit;
1763 for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
1764 status = vxge_hw_mrpcim_stats_access(hldev,
1765 VXGE_HW_STATS_OP_READ,
1766 VXGE_HW_STATS_LOC_AGGR,
1767 ((offset + (104 * port)) >> 3), val64);
1768 if (status != VXGE_HW_OK)
1769 goto exit;
1771 offset += 8;
1772 val64++;
1774 exit:
1775 return status;
1779 * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1780 * Get the Statistics on port
1782 static enum vxge_hw_status
1783 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
1784 struct vxge_hw_xmac_port_stats *port_stats)
1786 u64 *val64;
1787 enum vxge_hw_status status = VXGE_HW_OK;
1788 int i;
1789 u32 offset = 0x0;
1790 val64 = (u64 *) port_stats;
1792 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1793 hldev->func_id);
1794 if (status != VXGE_HW_OK)
1795 goto exit;
1797 for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
1798 status = vxge_hw_mrpcim_stats_access(hldev,
1799 VXGE_HW_STATS_OP_READ,
1800 VXGE_HW_STATS_LOC_AGGR,
1801 ((offset + (608 * port)) >> 3), val64);
1802 if (status != VXGE_HW_OK)
1803 goto exit;
1805 offset += 8;
1806 val64++;
1809 exit:
1810 return status;
1814 * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1815 * Get the XMAC Statistics
1817 enum vxge_hw_status
1818 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
1819 struct vxge_hw_xmac_stats *xmac_stats)
1821 enum vxge_hw_status status = VXGE_HW_OK;
1822 u32 i;
1824 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1825 0, &xmac_stats->aggr_stats[0]);
1826 if (status != VXGE_HW_OK)
1827 goto exit;
1829 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1830 1, &xmac_stats->aggr_stats[1]);
1831 if (status != VXGE_HW_OK)
1832 goto exit;
1834 for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
1836 status = vxge_hw_device_xmac_port_stats_get(hldev,
1837 i, &xmac_stats->port_stats[i]);
1838 if (status != VXGE_HW_OK)
1839 goto exit;
1842 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1844 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
1845 continue;
1847 status = __vxge_hw_vpath_xmac_tx_stats_get(
1848 &hldev->virtual_paths[i],
1849 &xmac_stats->vpath_tx_stats[i]);
1850 if (status != VXGE_HW_OK)
1851 goto exit;
1853 status = __vxge_hw_vpath_xmac_rx_stats_get(
1854 &hldev->virtual_paths[i],
1855 &xmac_stats->vpath_rx_stats[i]);
1856 if (status != VXGE_HW_OK)
1857 goto exit;
1859 exit:
1860 return status;
1864 * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1865 * This routine is used to dynamically change the debug output
1867 void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
1868 enum vxge_debug_level level, u32 mask)
1870 if (hldev == NULL)
1871 return;
1873 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1874 defined(VXGE_DEBUG_ERR_MASK)
1875 hldev->debug_module_mask = mask;
1876 hldev->debug_level = level;
1877 #endif
1879 #if defined(VXGE_DEBUG_ERR_MASK)
1880 hldev->level_err = level & VXGE_ERR;
1881 #endif
1883 #if defined(VXGE_DEBUG_TRACE_MASK)
1884 hldev->level_trace = level & VXGE_TRACE;
1885 #endif
1889 * vxge_hw_device_error_level_get - Get the error level
1890 * This routine returns the current error level set
1892 u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
1894 #if defined(VXGE_DEBUG_ERR_MASK)
1895 if (hldev == NULL)
1896 return VXGE_ERR;
1897 else
1898 return hldev->level_err;
1899 #else
1900 return 0;
1901 #endif
1905 * vxge_hw_device_trace_level_get - Get the trace level
1906 * This routine returns the current trace level set
1908 u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
1910 #if defined(VXGE_DEBUG_TRACE_MASK)
1911 if (hldev == NULL)
1912 return VXGE_TRACE;
1913 else
1914 return hldev->level_trace;
1915 #else
1916 return 0;
1917 #endif
1921 * vxge_hw_getpause_data -Pause frame frame generation and reception.
1922 * Returns the Pause frame generation and reception capability of the NIC.
1924 enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
1925 u32 port, u32 *tx, u32 *rx)
1927 u64 val64;
1928 enum vxge_hw_status status = VXGE_HW_OK;
1930 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1931 status = VXGE_HW_ERR_INVALID_DEVICE;
1932 goto exit;
1935 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1936 status = VXGE_HW_ERR_INVALID_PORT;
1937 goto exit;
1940 if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
1941 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
1942 goto exit;
1945 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1946 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
1947 *tx = 1;
1948 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
1949 *rx = 1;
1950 exit:
1951 return status;
1955 * vxge_hw_device_setpause_data - set/reset pause frame generation.
1956 * It can be used to set or reset Pause frame generation or reception
1957 * support of the NIC.
1959 enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
1960 u32 port, u32 tx, u32 rx)
1962 u64 val64;
1963 enum vxge_hw_status status = VXGE_HW_OK;
1965 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1966 status = VXGE_HW_ERR_INVALID_DEVICE;
1967 goto exit;
1970 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1971 status = VXGE_HW_ERR_INVALID_PORT;
1972 goto exit;
1975 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1976 hldev->func_id);
1977 if (status != VXGE_HW_OK)
1978 goto exit;
1980 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1981 if (tx)
1982 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1983 else
1984 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1985 if (rx)
1986 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1987 else
1988 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1990 writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1991 exit:
1992 return status;
1995 u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
1997 int link_width, exp_cap;
1998 u16 lnk;
2000 exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
2001 pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
2002 link_width = (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
2003 return link_width;
2007 * __vxge_hw_ring_block_memblock_idx - Return the memblock index
2008 * This function returns the index of memory block
2010 static inline u32
2011 __vxge_hw_ring_block_memblock_idx(u8 *block)
2013 return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
2017 * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
2018 * This function sets index to a memory block
2020 static inline void
2021 __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
2023 *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
2027 * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
2028 * in RxD block
2029 * Sets the next block pointer in RxD block
2031 static inline void
2032 __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
2034 *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
2038 * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
2039 * first block
2040 * Returns the dma address of the first RxD block
2042 static u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
2044 struct vxge_hw_mempool_dma *dma_object;
2046 dma_object = ring->mempool->memblocks_dma_arr;
2047 vxge_assert(dma_object != NULL);
2049 return dma_object->addr;
2053 * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
2054 * This function returns the dma address of a given item
2056 static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
2057 void *item)
2059 u32 memblock_idx;
2060 void *memblock;
2061 struct vxge_hw_mempool_dma *memblock_dma_object;
2062 ptrdiff_t dma_item_offset;
2064 /* get owner memblock index */
2065 memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
2067 /* get owner memblock by memblock index */
2068 memblock = mempoolh->memblocks_arr[memblock_idx];
2070 /* get memblock DMA object by memblock index */
2071 memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
2073 /* calculate offset in the memblock of this item */
2074 dma_item_offset = (u8 *)item - (u8 *)memblock;
2076 return memblock_dma_object->addr + dma_item_offset;
2080 * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
2081 * This function returns the dma address of a given item
2083 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
2084 struct __vxge_hw_ring *ring, u32 from,
2085 u32 to)
2087 u8 *to_item , *from_item;
2088 dma_addr_t to_dma;
2090 /* get "from" RxD block */
2091 from_item = mempoolh->items_arr[from];
2092 vxge_assert(from_item);
2094 /* get "to" RxD block */
2095 to_item = mempoolh->items_arr[to];
2096 vxge_assert(to_item);
2098 /* return address of the beginning of previous RxD block */
2099 to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
2101 /* set next pointer for this RxD block to point on
2102 * previous item's DMA start address */
2103 __vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
2107 * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
2108 * block callback
2109 * This function is callback passed to __vxge_hw_mempool_create to create memory
2110 * pool for RxD block
2112 static void
2113 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
2114 u32 memblock_index,
2115 struct vxge_hw_mempool_dma *dma_object,
2116 u32 index, u32 is_last)
2118 u32 i;
2119 void *item = mempoolh->items_arr[index];
2120 struct __vxge_hw_ring *ring =
2121 (struct __vxge_hw_ring *)mempoolh->userdata;
2123 /* format rxds array */
2124 for (i = 0; i < ring->rxds_per_block; i++) {
2125 void *rxdblock_priv;
2126 void *uld_priv;
2127 struct vxge_hw_ring_rxd_1 *rxdp;
2129 u32 reserve_index = ring->channel.reserve_ptr -
2130 (index * ring->rxds_per_block + i + 1);
2131 u32 memblock_item_idx;
2133 ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
2134 i * ring->rxd_size;
2136 /* Note: memblock_item_idx is index of the item within
2137 * the memblock. For instance, in case of three RxD-blocks
2138 * per memblock this value can be 0, 1 or 2. */
2139 rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
2140 memblock_index, item,
2141 &memblock_item_idx);
2143 rxdp = (struct vxge_hw_ring_rxd_1 *)
2144 ring->channel.reserve_arr[reserve_index];
2146 uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
2148 /* pre-format Host_Control */
2149 rxdp->host_control = (u64)(size_t)uld_priv;
2152 __vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
2154 if (is_last) {
2155 /* link last one with first one */
2156 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
2159 if (index > 0) {
2160 /* link this RxD block with previous one */
2161 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
2166 * __vxge_hw_ring_replenish - Initial replenish of RxDs
2167 * This function replenishes the RxDs from reserve array to work array
2169 enum vxge_hw_status
2170 vxge_hw_ring_replenish(struct __vxge_hw_ring *ring)
2172 void *rxd;
2173 struct __vxge_hw_channel *channel;
2174 enum vxge_hw_status status = VXGE_HW_OK;
2176 channel = &ring->channel;
2178 while (vxge_hw_channel_dtr_count(channel) > 0) {
2180 status = vxge_hw_ring_rxd_reserve(ring, &rxd);
2182 vxge_assert(status == VXGE_HW_OK);
2184 if (ring->rxd_init) {
2185 status = ring->rxd_init(rxd, channel->userdata);
2186 if (status != VXGE_HW_OK) {
2187 vxge_hw_ring_rxd_free(ring, rxd);
2188 goto exit;
2192 vxge_hw_ring_rxd_post(ring, rxd);
2194 status = VXGE_HW_OK;
2195 exit:
2196 return status;
2200 * __vxge_hw_channel_allocate - Allocate memory for channel
2201 * This function allocates required memory for the channel and various arrays
2202 * in the channel
2204 static struct __vxge_hw_channel *
2205 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
2206 enum __vxge_hw_channel_type type,
2207 u32 length, u32 per_dtr_space,
2208 void *userdata)
2210 struct __vxge_hw_channel *channel;
2211 struct __vxge_hw_device *hldev;
2212 int size = 0;
2213 u32 vp_id;
2215 hldev = vph->vpath->hldev;
2216 vp_id = vph->vpath->vp_id;
2218 switch (type) {
2219 case VXGE_HW_CHANNEL_TYPE_FIFO:
2220 size = sizeof(struct __vxge_hw_fifo);
2221 break;
2222 case VXGE_HW_CHANNEL_TYPE_RING:
2223 size = sizeof(struct __vxge_hw_ring);
2224 break;
2225 default:
2226 break;
2229 channel = kzalloc(size, GFP_KERNEL);
2230 if (channel == NULL)
2231 goto exit0;
2232 INIT_LIST_HEAD(&channel->item);
2234 channel->common_reg = hldev->common_reg;
2235 channel->first_vp_id = hldev->first_vp_id;
2236 channel->type = type;
2237 channel->devh = hldev;
2238 channel->vph = vph;
2239 channel->userdata = userdata;
2240 channel->per_dtr_space = per_dtr_space;
2241 channel->length = length;
2242 channel->vp_id = vp_id;
2244 channel->work_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2245 if (channel->work_arr == NULL)
2246 goto exit1;
2248 channel->free_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2249 if (channel->free_arr == NULL)
2250 goto exit1;
2251 channel->free_ptr = length;
2253 channel->reserve_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2254 if (channel->reserve_arr == NULL)
2255 goto exit1;
2256 channel->reserve_ptr = length;
2257 channel->reserve_top = 0;
2259 channel->orig_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2260 if (channel->orig_arr == NULL)
2261 goto exit1;
2263 return channel;
2264 exit1:
2265 __vxge_hw_channel_free(channel);
2267 exit0:
2268 return NULL;
2272 * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
2273 * Adds a block to block pool
2275 static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh,
2276 void *block_addr,
2277 u32 length,
2278 struct pci_dev *dma_h,
2279 struct pci_dev *acc_handle)
2281 struct __vxge_hw_blockpool *blockpool;
2282 struct __vxge_hw_blockpool_entry *entry = NULL;
2283 dma_addr_t dma_addr;
2284 enum vxge_hw_status status = VXGE_HW_OK;
2285 u32 req_out;
2287 blockpool = &devh->block_pool;
2289 if (block_addr == NULL) {
2290 blockpool->req_out--;
2291 status = VXGE_HW_FAIL;
2292 goto exit;
2295 dma_addr = pci_map_single(devh->pdev, block_addr, length,
2296 PCI_DMA_BIDIRECTIONAL);
2298 if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
2299 vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
2300 blockpool->req_out--;
2301 status = VXGE_HW_FAIL;
2302 goto exit;
2305 if (!list_empty(&blockpool->free_entry_list))
2306 entry = (struct __vxge_hw_blockpool_entry *)
2307 list_first_entry(&blockpool->free_entry_list,
2308 struct __vxge_hw_blockpool_entry,
2309 item);
2311 if (entry == NULL)
2312 entry = vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
2313 else
2314 list_del(&entry->item);
2316 if (entry != NULL) {
2317 entry->length = length;
2318 entry->memblock = block_addr;
2319 entry->dma_addr = dma_addr;
2320 entry->acc_handle = acc_handle;
2321 entry->dma_handle = dma_h;
2322 list_add(&entry->item, &blockpool->free_block_list);
2323 blockpool->pool_size++;
2324 status = VXGE_HW_OK;
2325 } else
2326 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2328 blockpool->req_out--;
2330 req_out = blockpool->req_out;
2331 exit:
2332 return;
2335 static inline void
2336 vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh, unsigned long size)
2338 gfp_t flags;
2339 void *vaddr;
2341 if (in_interrupt())
2342 flags = GFP_ATOMIC | GFP_DMA;
2343 else
2344 flags = GFP_KERNEL | GFP_DMA;
2346 vaddr = kmalloc((size), flags);
2348 vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev);
2352 * __vxge_hw_blockpool_blocks_add - Request additional blocks
2354 static
2355 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
2357 u32 nreq = 0, i;
2359 if ((blockpool->pool_size + blockpool->req_out) <
2360 VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
2361 nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
2362 blockpool->req_out += nreq;
2365 for (i = 0; i < nreq; i++)
2366 vxge_os_dma_malloc_async(
2367 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
2368 blockpool->hldev, VXGE_HW_BLOCK_SIZE);
2372 * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
2373 * Allocates a block of memory of given size, either from block pool
2374 * or by calling vxge_os_dma_malloc()
2376 static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
2377 struct vxge_hw_mempool_dma *dma_object)
2379 struct __vxge_hw_blockpool_entry *entry = NULL;
2380 struct __vxge_hw_blockpool *blockpool;
2381 void *memblock = NULL;
2382 enum vxge_hw_status status = VXGE_HW_OK;
2384 blockpool = &devh->block_pool;
2386 if (size != blockpool->block_size) {
2388 memblock = vxge_os_dma_malloc(devh->pdev, size,
2389 &dma_object->handle,
2390 &dma_object->acc_handle);
2392 if (memblock == NULL) {
2393 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2394 goto exit;
2397 dma_object->addr = pci_map_single(devh->pdev, memblock, size,
2398 PCI_DMA_BIDIRECTIONAL);
2400 if (unlikely(pci_dma_mapping_error(devh->pdev,
2401 dma_object->addr))) {
2402 vxge_os_dma_free(devh->pdev, memblock,
2403 &dma_object->acc_handle);
2404 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2405 goto exit;
2408 } else {
2410 if (!list_empty(&blockpool->free_block_list))
2411 entry = (struct __vxge_hw_blockpool_entry *)
2412 list_first_entry(&blockpool->free_block_list,
2413 struct __vxge_hw_blockpool_entry,
2414 item);
2416 if (entry != NULL) {
2417 list_del(&entry->item);
2418 dma_object->addr = entry->dma_addr;
2419 dma_object->handle = entry->dma_handle;
2420 dma_object->acc_handle = entry->acc_handle;
2421 memblock = entry->memblock;
2423 list_add(&entry->item,
2424 &blockpool->free_entry_list);
2425 blockpool->pool_size--;
2428 if (memblock != NULL)
2429 __vxge_hw_blockpool_blocks_add(blockpool);
2431 exit:
2432 return memblock;
2436 * __vxge_hw_blockpool_blocks_remove - Free additional blocks
2438 static void
2439 __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
2441 struct list_head *p, *n;
2443 list_for_each_safe(p, n, &blockpool->free_block_list) {
2445 if (blockpool->pool_size < blockpool->pool_max)
2446 break;
2448 pci_unmap_single(
2449 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
2450 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
2451 ((struct __vxge_hw_blockpool_entry *)p)->length,
2452 PCI_DMA_BIDIRECTIONAL);
2454 vxge_os_dma_free(
2455 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
2456 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
2457 &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
2459 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
2461 list_add(p, &blockpool->free_entry_list);
2463 blockpool->pool_size--;
2469 * __vxge_hw_blockpool_free - Frees the memory allcoated with
2470 * __vxge_hw_blockpool_malloc
2472 static void __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
2473 void *memblock, u32 size,
2474 struct vxge_hw_mempool_dma *dma_object)
2476 struct __vxge_hw_blockpool_entry *entry = NULL;
2477 struct __vxge_hw_blockpool *blockpool;
2478 enum vxge_hw_status status = VXGE_HW_OK;
2480 blockpool = &devh->block_pool;
2482 if (size != blockpool->block_size) {
2483 pci_unmap_single(devh->pdev, dma_object->addr, size,
2484 PCI_DMA_BIDIRECTIONAL);
2485 vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
2486 } else {
2488 if (!list_empty(&blockpool->free_entry_list))
2489 entry = (struct __vxge_hw_blockpool_entry *)
2490 list_first_entry(&blockpool->free_entry_list,
2491 struct __vxge_hw_blockpool_entry,
2492 item);
2494 if (entry == NULL)
2495 entry = vmalloc(sizeof(
2496 struct __vxge_hw_blockpool_entry));
2497 else
2498 list_del(&entry->item);
2500 if (entry != NULL) {
2501 entry->length = size;
2502 entry->memblock = memblock;
2503 entry->dma_addr = dma_object->addr;
2504 entry->acc_handle = dma_object->acc_handle;
2505 entry->dma_handle = dma_object->handle;
2506 list_add(&entry->item,
2507 &blockpool->free_block_list);
2508 blockpool->pool_size++;
2509 status = VXGE_HW_OK;
2510 } else
2511 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2513 if (status == VXGE_HW_OK)
2514 __vxge_hw_blockpool_blocks_remove(blockpool);
2519 * vxge_hw_mempool_destroy
2521 static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
2523 u32 i, j;
2524 struct __vxge_hw_device *devh = mempool->devh;
2526 for (i = 0; i < mempool->memblocks_allocated; i++) {
2527 struct vxge_hw_mempool_dma *dma_object;
2529 vxge_assert(mempool->memblocks_arr[i]);
2530 vxge_assert(mempool->memblocks_dma_arr + i);
2532 dma_object = mempool->memblocks_dma_arr + i;
2534 for (j = 0; j < mempool->items_per_memblock; j++) {
2535 u32 index = i * mempool->items_per_memblock + j;
2537 /* to skip last partially filled(if any) memblock */
2538 if (index >= mempool->items_current)
2539 break;
2542 vfree(mempool->memblocks_priv_arr[i]);
2544 __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
2545 mempool->memblock_size, dma_object);
2548 vfree(mempool->items_arr);
2549 vfree(mempool->memblocks_dma_arr);
2550 vfree(mempool->memblocks_priv_arr);
2551 vfree(mempool->memblocks_arr);
2552 vfree(mempool);
2556 * __vxge_hw_mempool_grow
2557 * Will resize mempool up to %num_allocate value.
2559 static enum vxge_hw_status
2560 __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
2561 u32 *num_allocated)
2563 u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
2564 u32 n_items = mempool->items_per_memblock;
2565 u32 start_block_idx = mempool->memblocks_allocated;
2566 u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
2567 enum vxge_hw_status status = VXGE_HW_OK;
2569 *num_allocated = 0;
2571 if (end_block_idx > mempool->memblocks_max) {
2572 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2573 goto exit;
2576 for (i = start_block_idx; i < end_block_idx; i++) {
2577 u32 j;
2578 u32 is_last = ((end_block_idx - 1) == i);
2579 struct vxge_hw_mempool_dma *dma_object =
2580 mempool->memblocks_dma_arr + i;
2581 void *the_memblock;
2583 /* allocate memblock's private part. Each DMA memblock
2584 * has a space allocated for item's private usage upon
2585 * mempool's user request. Each time mempool grows, it will
2586 * allocate new memblock and its private part at once.
2587 * This helps to minimize memory usage a lot. */
2588 mempool->memblocks_priv_arr[i] =
2589 vzalloc(mempool->items_priv_size * n_items);
2590 if (mempool->memblocks_priv_arr[i] == NULL) {
2591 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2592 goto exit;
2595 /* allocate DMA-capable memblock */
2596 mempool->memblocks_arr[i] =
2597 __vxge_hw_blockpool_malloc(mempool->devh,
2598 mempool->memblock_size, dma_object);
2599 if (mempool->memblocks_arr[i] == NULL) {
2600 vfree(mempool->memblocks_priv_arr[i]);
2601 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2602 goto exit;
2605 (*num_allocated)++;
2606 mempool->memblocks_allocated++;
2608 memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
2610 the_memblock = mempool->memblocks_arr[i];
2612 /* fill the items hash array */
2613 for (j = 0; j < n_items; j++) {
2614 u32 index = i * n_items + j;
2616 if (first_time && index >= mempool->items_initial)
2617 break;
2619 mempool->items_arr[index] =
2620 ((char *)the_memblock + j*mempool->item_size);
2622 /* let caller to do more job on each item */
2623 if (mempool->item_func_alloc != NULL)
2624 mempool->item_func_alloc(mempool, i,
2625 dma_object, index, is_last);
2627 mempool->items_current = index + 1;
2630 if (first_time && mempool->items_current ==
2631 mempool->items_initial)
2632 break;
2634 exit:
2635 return status;
2639 * vxge_hw_mempool_create
2640 * This function will create memory pool object. Pool may grow but will
2641 * never shrink. Pool consists of number of dynamically allocated blocks
2642 * with size enough to hold %items_initial number of items. Memory is
2643 * DMA-able but client must map/unmap before interoperating with the device.
2645 static struct vxge_hw_mempool *
2646 __vxge_hw_mempool_create(struct __vxge_hw_device *devh,
2647 u32 memblock_size,
2648 u32 item_size,
2649 u32 items_priv_size,
2650 u32 items_initial,
2651 u32 items_max,
2652 struct vxge_hw_mempool_cbs *mp_callback,
2653 void *userdata)
2655 enum vxge_hw_status status = VXGE_HW_OK;
2656 u32 memblocks_to_allocate;
2657 struct vxge_hw_mempool *mempool = NULL;
2658 u32 allocated;
2660 if (memblock_size < item_size) {
2661 status = VXGE_HW_FAIL;
2662 goto exit;
2665 mempool = vzalloc(sizeof(struct vxge_hw_mempool));
2666 if (mempool == NULL) {
2667 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2668 goto exit;
2671 mempool->devh = devh;
2672 mempool->memblock_size = memblock_size;
2673 mempool->items_max = items_max;
2674 mempool->items_initial = items_initial;
2675 mempool->item_size = item_size;
2676 mempool->items_priv_size = items_priv_size;
2677 mempool->item_func_alloc = mp_callback->item_func_alloc;
2678 mempool->userdata = userdata;
2680 mempool->memblocks_allocated = 0;
2682 mempool->items_per_memblock = memblock_size / item_size;
2684 mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
2685 mempool->items_per_memblock;
2687 /* allocate array of memblocks */
2688 mempool->memblocks_arr =
2689 vzalloc(sizeof(void *) * mempool->memblocks_max);
2690 if (mempool->memblocks_arr == NULL) {
2691 __vxge_hw_mempool_destroy(mempool);
2692 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2693 mempool = NULL;
2694 goto exit;
2697 /* allocate array of private parts of items per memblocks */
2698 mempool->memblocks_priv_arr =
2699 vzalloc(sizeof(void *) * mempool->memblocks_max);
2700 if (mempool->memblocks_priv_arr == NULL) {
2701 __vxge_hw_mempool_destroy(mempool);
2702 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2703 mempool = NULL;
2704 goto exit;
2707 /* allocate array of memblocks DMA objects */
2708 mempool->memblocks_dma_arr =
2709 vzalloc(sizeof(struct vxge_hw_mempool_dma) *
2710 mempool->memblocks_max);
2711 if (mempool->memblocks_dma_arr == NULL) {
2712 __vxge_hw_mempool_destroy(mempool);
2713 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2714 mempool = NULL;
2715 goto exit;
2718 /* allocate hash array of items */
2719 mempool->items_arr = vzalloc(sizeof(void *) * mempool->items_max);
2720 if (mempool->items_arr == NULL) {
2721 __vxge_hw_mempool_destroy(mempool);
2722 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2723 mempool = NULL;
2724 goto exit;
2727 /* calculate initial number of memblocks */
2728 memblocks_to_allocate = (mempool->items_initial +
2729 mempool->items_per_memblock - 1) /
2730 mempool->items_per_memblock;
2732 /* pre-allocate the mempool */
2733 status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
2734 &allocated);
2735 if (status != VXGE_HW_OK) {
2736 __vxge_hw_mempool_destroy(mempool);
2737 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2738 mempool = NULL;
2739 goto exit;
2742 exit:
2743 return mempool;
2747 * __vxge_hw_ring_abort - Returns the RxD
2748 * This function terminates the RxDs of ring
2750 static enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
2752 void *rxdh;
2753 struct __vxge_hw_channel *channel;
2755 channel = &ring->channel;
2757 for (;;) {
2758 vxge_hw_channel_dtr_try_complete(channel, &rxdh);
2760 if (rxdh == NULL)
2761 break;
2763 vxge_hw_channel_dtr_complete(channel);
2765 if (ring->rxd_term)
2766 ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
2767 channel->userdata);
2769 vxge_hw_channel_dtr_free(channel, rxdh);
2772 return VXGE_HW_OK;
2776 * __vxge_hw_ring_reset - Resets the ring
2777 * This function resets the ring during vpath reset operation
2779 static enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
2781 enum vxge_hw_status status = VXGE_HW_OK;
2782 struct __vxge_hw_channel *channel;
2784 channel = &ring->channel;
2786 __vxge_hw_ring_abort(ring);
2788 status = __vxge_hw_channel_reset(channel);
2790 if (status != VXGE_HW_OK)
2791 goto exit;
2793 if (ring->rxd_init) {
2794 status = vxge_hw_ring_replenish(ring);
2795 if (status != VXGE_HW_OK)
2796 goto exit;
2798 exit:
2799 return status;
2803 * __vxge_hw_ring_delete - Removes the ring
2804 * This function freeup the memory pool and removes the ring
2806 static enum vxge_hw_status
2807 __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
2809 struct __vxge_hw_ring *ring = vp->vpath->ringh;
2811 __vxge_hw_ring_abort(ring);
2813 if (ring->mempool)
2814 __vxge_hw_mempool_destroy(ring->mempool);
2816 vp->vpath->ringh = NULL;
2817 __vxge_hw_channel_free(&ring->channel);
2819 return VXGE_HW_OK;
2823 * __vxge_hw_ring_create - Create a Ring
2824 * This function creates Ring and initializes it.
2826 static enum vxge_hw_status
2827 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
2828 struct vxge_hw_ring_attr *attr)
2830 enum vxge_hw_status status = VXGE_HW_OK;
2831 struct __vxge_hw_ring *ring;
2832 u32 ring_length;
2833 struct vxge_hw_ring_config *config;
2834 struct __vxge_hw_device *hldev;
2835 u32 vp_id;
2836 struct vxge_hw_mempool_cbs ring_mp_callback;
2838 if ((vp == NULL) || (attr == NULL)) {
2839 status = VXGE_HW_FAIL;
2840 goto exit;
2843 hldev = vp->vpath->hldev;
2844 vp_id = vp->vpath->vp_id;
2846 config = &hldev->config.vp_config[vp_id].ring;
2848 ring_length = config->ring_blocks *
2849 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2851 ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
2852 VXGE_HW_CHANNEL_TYPE_RING,
2853 ring_length,
2854 attr->per_rxd_space,
2855 attr->userdata);
2856 if (ring == NULL) {
2857 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2858 goto exit;
2861 vp->vpath->ringh = ring;
2862 ring->vp_id = vp_id;
2863 ring->vp_reg = vp->vpath->vp_reg;
2864 ring->common_reg = hldev->common_reg;
2865 ring->stats = &vp->vpath->sw_stats->ring_stats;
2866 ring->config = config;
2867 ring->callback = attr->callback;
2868 ring->rxd_init = attr->rxd_init;
2869 ring->rxd_term = attr->rxd_term;
2870 ring->buffer_mode = config->buffer_mode;
2871 ring->tim_rti_cfg1_saved = vp->vpath->tim_rti_cfg1_saved;
2872 ring->tim_rti_cfg3_saved = vp->vpath->tim_rti_cfg3_saved;
2873 ring->rxds_limit = config->rxds_limit;
2875 ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
2876 ring->rxd_priv_size =
2877 sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
2878 ring->per_rxd_space = attr->per_rxd_space;
2880 ring->rxd_priv_size =
2881 ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
2882 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
2884 /* how many RxDs can fit into one block. Depends on configured
2885 * buffer_mode. */
2886 ring->rxds_per_block =
2887 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2889 /* calculate actual RxD block private size */
2890 ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
2891 ring_mp_callback.item_func_alloc = __vxge_hw_ring_mempool_item_alloc;
2892 ring->mempool = __vxge_hw_mempool_create(hldev,
2893 VXGE_HW_BLOCK_SIZE,
2894 VXGE_HW_BLOCK_SIZE,
2895 ring->rxdblock_priv_size,
2896 ring->config->ring_blocks,
2897 ring->config->ring_blocks,
2898 &ring_mp_callback,
2899 ring);
2900 if (ring->mempool == NULL) {
2901 __vxge_hw_ring_delete(vp);
2902 return VXGE_HW_ERR_OUT_OF_MEMORY;
2905 status = __vxge_hw_channel_initialize(&ring->channel);
2906 if (status != VXGE_HW_OK) {
2907 __vxge_hw_ring_delete(vp);
2908 goto exit;
2911 /* Note:
2912 * Specifying rxd_init callback means two things:
2913 * 1) rxds need to be initialized by driver at channel-open time;
2914 * 2) rxds need to be posted at channel-open time
2915 * (that's what the initial_replenish() below does)
2916 * Currently we don't have a case when the 1) is done without the 2).
2918 if (ring->rxd_init) {
2919 status = vxge_hw_ring_replenish(ring);
2920 if (status != VXGE_HW_OK) {
2921 __vxge_hw_ring_delete(vp);
2922 goto exit;
2926 /* initial replenish will increment the counter in its post() routine,
2927 * we have to reset it */
2928 ring->stats->common_stats.usage_cnt = 0;
2929 exit:
2930 return status;
2934 * vxge_hw_device_config_default_get - Initialize device config with defaults.
2935 * Initialize Titan device config with default values.
2937 enum vxge_hw_status __devinit
2938 vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
2940 u32 i;
2942 device_config->dma_blockpool_initial =
2943 VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
2944 device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
2945 device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
2946 device_config->rth_en = VXGE_HW_RTH_DEFAULT;
2947 device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
2948 device_config->device_poll_millis = VXGE_HW_DEF_DEVICE_POLL_MILLIS;
2949 device_config->rts_mac_en = VXGE_HW_RTS_MAC_DEFAULT;
2951 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
2952 device_config->vp_config[i].vp_id = i;
2954 device_config->vp_config[i].min_bandwidth =
2955 VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
2957 device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
2959 device_config->vp_config[i].ring.ring_blocks =
2960 VXGE_HW_DEF_RING_BLOCKS;
2962 device_config->vp_config[i].ring.buffer_mode =
2963 VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
2965 device_config->vp_config[i].ring.scatter_mode =
2966 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
2968 device_config->vp_config[i].ring.rxds_limit =
2969 VXGE_HW_DEF_RING_RXDS_LIMIT;
2971 device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
2973 device_config->vp_config[i].fifo.fifo_blocks =
2974 VXGE_HW_MIN_FIFO_BLOCKS;
2976 device_config->vp_config[i].fifo.max_frags =
2977 VXGE_HW_MAX_FIFO_FRAGS;
2979 device_config->vp_config[i].fifo.memblock_size =
2980 VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
2982 device_config->vp_config[i].fifo.alignment_size =
2983 VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
2985 device_config->vp_config[i].fifo.intr =
2986 VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
2988 device_config->vp_config[i].fifo.no_snoop_bits =
2989 VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
2990 device_config->vp_config[i].tti.intr_enable =
2991 VXGE_HW_TIM_INTR_DEFAULT;
2993 device_config->vp_config[i].tti.btimer_val =
2994 VXGE_HW_USE_FLASH_DEFAULT;
2996 device_config->vp_config[i].tti.timer_ac_en =
2997 VXGE_HW_USE_FLASH_DEFAULT;
2999 device_config->vp_config[i].tti.timer_ci_en =
3000 VXGE_HW_USE_FLASH_DEFAULT;
3002 device_config->vp_config[i].tti.timer_ri_en =
3003 VXGE_HW_USE_FLASH_DEFAULT;
3005 device_config->vp_config[i].tti.rtimer_val =
3006 VXGE_HW_USE_FLASH_DEFAULT;
3008 device_config->vp_config[i].tti.util_sel =
3009 VXGE_HW_USE_FLASH_DEFAULT;
3011 device_config->vp_config[i].tti.ltimer_val =
3012 VXGE_HW_USE_FLASH_DEFAULT;
3014 device_config->vp_config[i].tti.urange_a =
3015 VXGE_HW_USE_FLASH_DEFAULT;
3017 device_config->vp_config[i].tti.uec_a =
3018 VXGE_HW_USE_FLASH_DEFAULT;
3020 device_config->vp_config[i].tti.urange_b =
3021 VXGE_HW_USE_FLASH_DEFAULT;
3023 device_config->vp_config[i].tti.uec_b =
3024 VXGE_HW_USE_FLASH_DEFAULT;
3026 device_config->vp_config[i].tti.urange_c =
3027 VXGE_HW_USE_FLASH_DEFAULT;
3029 device_config->vp_config[i].tti.uec_c =
3030 VXGE_HW_USE_FLASH_DEFAULT;
3032 device_config->vp_config[i].tti.uec_d =
3033 VXGE_HW_USE_FLASH_DEFAULT;
3035 device_config->vp_config[i].rti.intr_enable =
3036 VXGE_HW_TIM_INTR_DEFAULT;
3038 device_config->vp_config[i].rti.btimer_val =
3039 VXGE_HW_USE_FLASH_DEFAULT;
3041 device_config->vp_config[i].rti.timer_ac_en =
3042 VXGE_HW_USE_FLASH_DEFAULT;
3044 device_config->vp_config[i].rti.timer_ci_en =
3045 VXGE_HW_USE_FLASH_DEFAULT;
3047 device_config->vp_config[i].rti.timer_ri_en =
3048 VXGE_HW_USE_FLASH_DEFAULT;
3050 device_config->vp_config[i].rti.rtimer_val =
3051 VXGE_HW_USE_FLASH_DEFAULT;
3053 device_config->vp_config[i].rti.util_sel =
3054 VXGE_HW_USE_FLASH_DEFAULT;
3056 device_config->vp_config[i].rti.ltimer_val =
3057 VXGE_HW_USE_FLASH_DEFAULT;
3059 device_config->vp_config[i].rti.urange_a =
3060 VXGE_HW_USE_FLASH_DEFAULT;
3062 device_config->vp_config[i].rti.uec_a =
3063 VXGE_HW_USE_FLASH_DEFAULT;
3065 device_config->vp_config[i].rti.urange_b =
3066 VXGE_HW_USE_FLASH_DEFAULT;
3068 device_config->vp_config[i].rti.uec_b =
3069 VXGE_HW_USE_FLASH_DEFAULT;
3071 device_config->vp_config[i].rti.urange_c =
3072 VXGE_HW_USE_FLASH_DEFAULT;
3074 device_config->vp_config[i].rti.uec_c =
3075 VXGE_HW_USE_FLASH_DEFAULT;
3077 device_config->vp_config[i].rti.uec_d =
3078 VXGE_HW_USE_FLASH_DEFAULT;
3080 device_config->vp_config[i].mtu =
3081 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
3083 device_config->vp_config[i].rpa_strip_vlan_tag =
3084 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
3087 return VXGE_HW_OK;
3091 * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
3092 * Set the swapper bits appropriately for the vpath.
3094 static enum vxge_hw_status
3095 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
3097 #ifndef __BIG_ENDIAN
3098 u64 val64;
3100 val64 = readq(&vpath_reg->vpath_general_cfg1);
3101 wmb();
3102 val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
3103 writeq(val64, &vpath_reg->vpath_general_cfg1);
3104 wmb();
3105 #endif
3106 return VXGE_HW_OK;
3110 * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
3111 * Set the swapper bits appropriately for the vpath.
3113 static enum vxge_hw_status
3114 __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg,
3115 struct vxge_hw_vpath_reg __iomem *vpath_reg)
3117 u64 val64;
3119 val64 = readq(&legacy_reg->pifm_wr_swap_en);
3121 if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
3122 val64 = readq(&vpath_reg->kdfcctl_cfg0);
3123 wmb();
3125 val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 |
3126 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 |
3127 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
3129 writeq(val64, &vpath_reg->kdfcctl_cfg0);
3130 wmb();
3133 return VXGE_HW_OK;
3137 * vxge_hw_mgmt_reg_read - Read Titan register.
3139 enum vxge_hw_status
3140 vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
3141 enum vxge_hw_mgmt_reg_type type,
3142 u32 index, u32 offset, u64 *value)
3144 enum vxge_hw_status status = VXGE_HW_OK;
3146 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3147 status = VXGE_HW_ERR_INVALID_DEVICE;
3148 goto exit;
3151 switch (type) {
3152 case vxge_hw_mgmt_reg_type_legacy:
3153 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3154 status = VXGE_HW_ERR_INVALID_OFFSET;
3155 break;
3157 *value = readq((void __iomem *)hldev->legacy_reg + offset);
3158 break;
3159 case vxge_hw_mgmt_reg_type_toc:
3160 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3161 status = VXGE_HW_ERR_INVALID_OFFSET;
3162 break;
3164 *value = readq((void __iomem *)hldev->toc_reg + offset);
3165 break;
3166 case vxge_hw_mgmt_reg_type_common:
3167 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3168 status = VXGE_HW_ERR_INVALID_OFFSET;
3169 break;
3171 *value = readq((void __iomem *)hldev->common_reg + offset);
3172 break;
3173 case vxge_hw_mgmt_reg_type_mrpcim:
3174 if (!(hldev->access_rights &
3175 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3176 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3177 break;
3179 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3180 status = VXGE_HW_ERR_INVALID_OFFSET;
3181 break;
3183 *value = readq((void __iomem *)hldev->mrpcim_reg + offset);
3184 break;
3185 case vxge_hw_mgmt_reg_type_srpcim:
3186 if (!(hldev->access_rights &
3187 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3188 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3189 break;
3191 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3192 status = VXGE_HW_ERR_INVALID_INDEX;
3193 break;
3195 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3196 status = VXGE_HW_ERR_INVALID_OFFSET;
3197 break;
3199 *value = readq((void __iomem *)hldev->srpcim_reg[index] +
3200 offset);
3201 break;
3202 case vxge_hw_mgmt_reg_type_vpmgmt:
3203 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3204 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3205 status = VXGE_HW_ERR_INVALID_INDEX;
3206 break;
3208 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3209 status = VXGE_HW_ERR_INVALID_OFFSET;
3210 break;
3212 *value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
3213 offset);
3214 break;
3215 case vxge_hw_mgmt_reg_type_vpath:
3216 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
3217 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3218 status = VXGE_HW_ERR_INVALID_INDEX;
3219 break;
3221 if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
3222 status = VXGE_HW_ERR_INVALID_INDEX;
3223 break;
3225 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3226 status = VXGE_HW_ERR_INVALID_OFFSET;
3227 break;
3229 *value = readq((void __iomem *)hldev->vpath_reg[index] +
3230 offset);
3231 break;
3232 default:
3233 status = VXGE_HW_ERR_INVALID_TYPE;
3234 break;
3237 exit:
3238 return status;
3242 * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
3244 enum vxge_hw_status
3245 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
3247 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
3248 enum vxge_hw_status status = VXGE_HW_OK;
3249 int i = 0, j = 0;
3251 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3252 if (!((vpath_mask) & vxge_mBIT(i)))
3253 continue;
3254 vpmgmt_reg = hldev->vpmgmt_reg[i];
3255 for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
3256 if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
3257 & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
3258 return VXGE_HW_FAIL;
3261 return status;
3264 * vxge_hw_mgmt_reg_Write - Write Titan register.
3266 enum vxge_hw_status
3267 vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
3268 enum vxge_hw_mgmt_reg_type type,
3269 u32 index, u32 offset, u64 value)
3271 enum vxge_hw_status status = VXGE_HW_OK;
3273 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3274 status = VXGE_HW_ERR_INVALID_DEVICE;
3275 goto exit;
3278 switch (type) {
3279 case vxge_hw_mgmt_reg_type_legacy:
3280 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3281 status = VXGE_HW_ERR_INVALID_OFFSET;
3282 break;
3284 writeq(value, (void __iomem *)hldev->legacy_reg + offset);
3285 break;
3286 case vxge_hw_mgmt_reg_type_toc:
3287 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3288 status = VXGE_HW_ERR_INVALID_OFFSET;
3289 break;
3291 writeq(value, (void __iomem *)hldev->toc_reg + offset);
3292 break;
3293 case vxge_hw_mgmt_reg_type_common:
3294 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3295 status = VXGE_HW_ERR_INVALID_OFFSET;
3296 break;
3298 writeq(value, (void __iomem *)hldev->common_reg + offset);
3299 break;
3300 case vxge_hw_mgmt_reg_type_mrpcim:
3301 if (!(hldev->access_rights &
3302 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3303 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3304 break;
3306 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3307 status = VXGE_HW_ERR_INVALID_OFFSET;
3308 break;
3310 writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
3311 break;
3312 case vxge_hw_mgmt_reg_type_srpcim:
3313 if (!(hldev->access_rights &
3314 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3315 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3316 break;
3318 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3319 status = VXGE_HW_ERR_INVALID_INDEX;
3320 break;
3322 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3323 status = VXGE_HW_ERR_INVALID_OFFSET;
3324 break;
3326 writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
3327 offset);
3329 break;
3330 case vxge_hw_mgmt_reg_type_vpmgmt:
3331 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3332 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3333 status = VXGE_HW_ERR_INVALID_INDEX;
3334 break;
3336 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3337 status = VXGE_HW_ERR_INVALID_OFFSET;
3338 break;
3340 writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
3341 offset);
3342 break;
3343 case vxge_hw_mgmt_reg_type_vpath:
3344 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
3345 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3346 status = VXGE_HW_ERR_INVALID_INDEX;
3347 break;
3349 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3350 status = VXGE_HW_ERR_INVALID_OFFSET;
3351 break;
3353 writeq(value, (void __iomem *)hldev->vpath_reg[index] +
3354 offset);
3355 break;
3356 default:
3357 status = VXGE_HW_ERR_INVALID_TYPE;
3358 break;
3360 exit:
3361 return status;
3365 * __vxge_hw_fifo_abort - Returns the TxD
3366 * This function terminates the TxDs of fifo
3368 static enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
3370 void *txdlh;
3372 for (;;) {
3373 vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
3375 if (txdlh == NULL)
3376 break;
3378 vxge_hw_channel_dtr_complete(&fifo->channel);
3380 if (fifo->txdl_term) {
3381 fifo->txdl_term(txdlh,
3382 VXGE_HW_TXDL_STATE_POSTED,
3383 fifo->channel.userdata);
3386 vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
3389 return VXGE_HW_OK;
3393 * __vxge_hw_fifo_reset - Resets the fifo
3394 * This function resets the fifo during vpath reset operation
3396 static enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
3398 enum vxge_hw_status status = VXGE_HW_OK;
3400 __vxge_hw_fifo_abort(fifo);
3401 status = __vxge_hw_channel_reset(&fifo->channel);
3403 return status;
3407 * __vxge_hw_fifo_delete - Removes the FIFO
3408 * This function freeup the memory pool and removes the FIFO
3410 static enum vxge_hw_status
3411 __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
3413 struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
3415 __vxge_hw_fifo_abort(fifo);
3417 if (fifo->mempool)
3418 __vxge_hw_mempool_destroy(fifo->mempool);
3420 vp->vpath->fifoh = NULL;
3422 __vxge_hw_channel_free(&fifo->channel);
3424 return VXGE_HW_OK;
3428 * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
3429 * list callback
3430 * This function is callback passed to __vxge_hw_mempool_create to create memory
3431 * pool for TxD list
3433 static void
3434 __vxge_hw_fifo_mempool_item_alloc(
3435 struct vxge_hw_mempool *mempoolh,
3436 u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
3437 u32 index, u32 is_last)
3439 u32 memblock_item_idx;
3440 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
3441 struct vxge_hw_fifo_txd *txdp =
3442 (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
3443 struct __vxge_hw_fifo *fifo =
3444 (struct __vxge_hw_fifo *)mempoolh->userdata;
3445 void *memblock = mempoolh->memblocks_arr[memblock_index];
3447 vxge_assert(txdp);
3449 txdp->host_control = (u64) (size_t)
3450 __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
3451 &memblock_item_idx);
3453 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
3455 vxge_assert(txdl_priv);
3457 fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
3459 /* pre-format HW's TxDL's private */
3460 txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
3461 txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
3462 txdl_priv->dma_handle = dma_object->handle;
3463 txdl_priv->memblock = memblock;
3464 txdl_priv->first_txdp = txdp;
3465 txdl_priv->next_txdl_priv = NULL;
3466 txdl_priv->alloc_frags = 0;
3470 * __vxge_hw_fifo_create - Create a FIFO
3471 * This function creates FIFO and initializes it.
3473 static enum vxge_hw_status
3474 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
3475 struct vxge_hw_fifo_attr *attr)
3477 enum vxge_hw_status status = VXGE_HW_OK;
3478 struct __vxge_hw_fifo *fifo;
3479 struct vxge_hw_fifo_config *config;
3480 u32 txdl_size, txdl_per_memblock;
3481 struct vxge_hw_mempool_cbs fifo_mp_callback;
3482 struct __vxge_hw_virtualpath *vpath;
3484 if ((vp == NULL) || (attr == NULL)) {
3485 status = VXGE_HW_ERR_INVALID_HANDLE;
3486 goto exit;
3488 vpath = vp->vpath;
3489 config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
3491 txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
3493 txdl_per_memblock = config->memblock_size / txdl_size;
3495 fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
3496 VXGE_HW_CHANNEL_TYPE_FIFO,
3497 config->fifo_blocks * txdl_per_memblock,
3498 attr->per_txdl_space, attr->userdata);
3500 if (fifo == NULL) {
3501 status = VXGE_HW_ERR_OUT_OF_MEMORY;
3502 goto exit;
3505 vpath->fifoh = fifo;
3506 fifo->nofl_db = vpath->nofl_db;
3508 fifo->vp_id = vpath->vp_id;
3509 fifo->vp_reg = vpath->vp_reg;
3510 fifo->stats = &vpath->sw_stats->fifo_stats;
3512 fifo->config = config;
3514 /* apply "interrupts per txdl" attribute */
3515 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
3516 fifo->tim_tti_cfg1_saved = vpath->tim_tti_cfg1_saved;
3517 fifo->tim_tti_cfg3_saved = vpath->tim_tti_cfg3_saved;
3519 if (fifo->config->intr)
3520 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
3522 fifo->no_snoop_bits = config->no_snoop_bits;
3525 * FIFO memory management strategy:
3527 * TxDL split into three independent parts:
3528 * - set of TxD's
3529 * - TxD HW private part
3530 * - driver private part
3532 * Adaptative memory allocation used. i.e. Memory allocated on
3533 * demand with the size which will fit into one memory block.
3534 * One memory block may contain more than one TxDL.
3536 * During "reserve" operations more memory can be allocated on demand
3537 * for example due to FIFO full condition.
3539 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
3540 * routine which will essentially stop the channel and free resources.
3543 /* TxDL common private size == TxDL private + driver private */
3544 fifo->priv_size =
3545 sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
3546 fifo->priv_size = ((fifo->priv_size + VXGE_CACHE_LINE_SIZE - 1) /
3547 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
3549 fifo->per_txdl_space = attr->per_txdl_space;
3551 /* recompute txdl size to be cacheline aligned */
3552 fifo->txdl_size = txdl_size;
3553 fifo->txdl_per_memblock = txdl_per_memblock;
3555 fifo->txdl_term = attr->txdl_term;
3556 fifo->callback = attr->callback;
3558 if (fifo->txdl_per_memblock == 0) {
3559 __vxge_hw_fifo_delete(vp);
3560 status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
3561 goto exit;
3564 fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
3566 fifo->mempool =
3567 __vxge_hw_mempool_create(vpath->hldev,
3568 fifo->config->memblock_size,
3569 fifo->txdl_size,
3570 fifo->priv_size,
3571 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3572 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3573 &fifo_mp_callback,
3574 fifo);
3576 if (fifo->mempool == NULL) {
3577 __vxge_hw_fifo_delete(vp);
3578 status = VXGE_HW_ERR_OUT_OF_MEMORY;
3579 goto exit;
3582 status = __vxge_hw_channel_initialize(&fifo->channel);
3583 if (status != VXGE_HW_OK) {
3584 __vxge_hw_fifo_delete(vp);
3585 goto exit;
3588 vxge_assert(fifo->channel.reserve_ptr);
3589 exit:
3590 return status;
3594 * __vxge_hw_vpath_pci_read - Read the content of given address
3595 * in pci config space.
3596 * Read from the vpath pci config space.
3598 static enum vxge_hw_status
3599 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
3600 u32 phy_func_0, u32 offset, u32 *val)
3602 u64 val64;
3603 enum vxge_hw_status status = VXGE_HW_OK;
3604 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
3606 val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
3608 if (phy_func_0)
3609 val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
3611 writeq(val64, &vp_reg->pci_config_access_cfg1);
3612 wmb();
3613 writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
3614 &vp_reg->pci_config_access_cfg2);
3615 wmb();
3617 status = __vxge_hw_device_register_poll(
3618 &vp_reg->pci_config_access_cfg2,
3619 VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3621 if (status != VXGE_HW_OK)
3622 goto exit;
3624 val64 = readq(&vp_reg->pci_config_access_status);
3626 if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
3627 status = VXGE_HW_FAIL;
3628 *val = 0;
3629 } else
3630 *val = (u32)vxge_bVALn(val64, 32, 32);
3631 exit:
3632 return status;
3636 * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3637 * @hldev: HW device.
3638 * @on_off: TRUE if flickering to be on, FALSE to be off
3640 * Flicker the link LED.
3642 enum vxge_hw_status
3643 vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev, u64 on_off)
3645 struct __vxge_hw_virtualpath *vpath;
3646 u64 data0, data1 = 0, steer_ctrl = 0;
3647 enum vxge_hw_status status;
3649 if (hldev == NULL) {
3650 status = VXGE_HW_ERR_INVALID_DEVICE;
3651 goto exit;
3654 vpath = &hldev->virtual_paths[hldev->first_vp_id];
3656 data0 = on_off;
3657 status = vxge_hw_vpath_fw_api(vpath,
3658 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL,
3659 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
3660 0, &data0, &data1, &steer_ctrl);
3661 exit:
3662 return status;
3666 * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3668 enum vxge_hw_status
3669 __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle *vp,
3670 u32 action, u32 rts_table, u32 offset,
3671 u64 *data0, u64 *data1)
3673 enum vxge_hw_status status;
3674 u64 steer_ctrl = 0;
3676 if (vp == NULL) {
3677 status = VXGE_HW_ERR_INVALID_HANDLE;
3678 goto exit;
3681 if ((rts_table ==
3682 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
3683 (rts_table ==
3684 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
3685 (rts_table ==
3686 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
3687 (rts_table ==
3688 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
3689 steer_ctrl = VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
3692 status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3693 data0, data1, &steer_ctrl);
3694 if (status != VXGE_HW_OK)
3695 goto exit;
3697 if ((rts_table != VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) &&
3698 (rts_table !=
3699 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3700 *data1 = 0;
3701 exit:
3702 return status;
3706 * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3708 enum vxge_hw_status
3709 __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle *vp, u32 action,
3710 u32 rts_table, u32 offset, u64 steer_data0,
3711 u64 steer_data1)
3713 u64 data0, data1 = 0, steer_ctrl = 0;
3714 enum vxge_hw_status status;
3716 if (vp == NULL) {
3717 status = VXGE_HW_ERR_INVALID_HANDLE;
3718 goto exit;
3721 data0 = steer_data0;
3723 if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3724 (rts_table ==
3725 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3726 data1 = steer_data1;
3728 status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3729 &data0, &data1, &steer_ctrl);
3730 exit:
3731 return status;
3735 * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3737 enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
3738 struct __vxge_hw_vpath_handle *vp,
3739 enum vxge_hw_rth_algoritms algorithm,
3740 struct vxge_hw_rth_hash_types *hash_type,
3741 u16 bucket_size)
3743 u64 data0, data1;
3744 enum vxge_hw_status status = VXGE_HW_OK;
3746 if (vp == NULL) {
3747 status = VXGE_HW_ERR_INVALID_HANDLE;
3748 goto exit;
3751 status = __vxge_hw_vpath_rts_table_get(vp,
3752 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
3753 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3754 0, &data0, &data1);
3755 if (status != VXGE_HW_OK)
3756 goto exit;
3758 data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3759 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3761 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
3762 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
3763 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
3765 if (hash_type->hash_type_tcpipv4_en)
3766 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
3768 if (hash_type->hash_type_ipv4_en)
3769 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
3771 if (hash_type->hash_type_tcpipv6_en)
3772 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
3774 if (hash_type->hash_type_ipv6_en)
3775 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
3777 if (hash_type->hash_type_tcpipv6ex_en)
3778 data0 |=
3779 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
3781 if (hash_type->hash_type_ipv6ex_en)
3782 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
3784 if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
3785 data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3786 else
3787 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3789 status = __vxge_hw_vpath_rts_table_set(vp,
3790 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
3791 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3792 0, data0, 0);
3793 exit:
3794 return status;
3797 static void
3798 vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
3799 u16 flag, u8 *itable)
3801 switch (flag) {
3802 case 1:
3803 *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
3804 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
3805 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3806 itable[j]);
3807 case 2:
3808 *data0 |=
3809 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
3810 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
3811 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3812 itable[j]);
3813 case 3:
3814 *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
3815 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
3816 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3817 itable[j]);
3818 case 4:
3819 *data1 |=
3820 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
3821 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
3822 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3823 itable[j]);
3824 default:
3825 return;
3829 * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3831 enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
3832 struct __vxge_hw_vpath_handle **vpath_handles,
3833 u32 vpath_count,
3834 u8 *mtable,
3835 u8 *itable,
3836 u32 itable_size)
3838 u32 i, j, action, rts_table;
3839 u64 data0;
3840 u64 data1;
3841 u32 max_entries;
3842 enum vxge_hw_status status = VXGE_HW_OK;
3843 struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
3845 if (vp == NULL) {
3846 status = VXGE_HW_ERR_INVALID_HANDLE;
3847 goto exit;
3850 max_entries = (((u32)1) << itable_size);
3852 if (vp->vpath->hldev->config.rth_it_type
3853 == VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
3854 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3855 rts_table =
3856 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
3858 for (j = 0; j < max_entries; j++) {
3860 data1 = 0;
3862 data0 =
3863 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3864 itable[j]);
3866 status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
3867 action, rts_table, j, data0, data1);
3869 if (status != VXGE_HW_OK)
3870 goto exit;
3873 for (j = 0; j < max_entries; j++) {
3875 data1 = 0;
3877 data0 =
3878 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
3879 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3880 itable[j]);
3882 status = __vxge_hw_vpath_rts_table_set(
3883 vpath_handles[mtable[itable[j]]], action,
3884 rts_table, j, data0, data1);
3886 if (status != VXGE_HW_OK)
3887 goto exit;
3889 } else {
3890 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3891 rts_table =
3892 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
3893 for (i = 0; i < vpath_count; i++) {
3895 for (j = 0; j < max_entries;) {
3897 data0 = 0;
3898 data1 = 0;
3900 while (j < max_entries) {
3901 if (mtable[itable[j]] != i) {
3902 j++;
3903 continue;
3905 vxge_hw_rts_rth_data0_data1_get(j,
3906 &data0, &data1, 1, itable);
3907 j++;
3908 break;
3911 while (j < max_entries) {
3912 if (mtable[itable[j]] != i) {
3913 j++;
3914 continue;
3916 vxge_hw_rts_rth_data0_data1_get(j,
3917 &data0, &data1, 2, itable);
3918 j++;
3919 break;
3922 while (j < max_entries) {
3923 if (mtable[itable[j]] != i) {
3924 j++;
3925 continue;
3927 vxge_hw_rts_rth_data0_data1_get(j,
3928 &data0, &data1, 3, itable);
3929 j++;
3930 break;
3933 while (j < max_entries) {
3934 if (mtable[itable[j]] != i) {
3935 j++;
3936 continue;
3938 vxge_hw_rts_rth_data0_data1_get(j,
3939 &data0, &data1, 4, itable);
3940 j++;
3941 break;
3944 if (data0 != 0) {
3945 status = __vxge_hw_vpath_rts_table_set(
3946 vpath_handles[i],
3947 action, rts_table,
3948 0, data0, data1);
3950 if (status != VXGE_HW_OK)
3951 goto exit;
3956 exit:
3957 return status;
3961 * vxge_hw_vpath_check_leak - Check for memory leak
3962 * @ringh: Handle to the ring object used for receive
3964 * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3965 * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3966 * Returns: VXGE_HW_FAIL, if leak has occurred.
3969 enum vxge_hw_status
3970 vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
3972 enum vxge_hw_status status = VXGE_HW_OK;
3973 u64 rxd_new_count, rxd_spat;
3975 if (ring == NULL)
3976 return status;
3978 rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
3979 rxd_spat = readq(&ring->vp_reg->prc_cfg6);
3980 rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
3982 if (rxd_new_count >= rxd_spat)
3983 status = VXGE_HW_FAIL;
3985 return status;
3989 * __vxge_hw_vpath_mgmt_read
3990 * This routine reads the vpath_mgmt registers
3992 static enum vxge_hw_status
3993 __vxge_hw_vpath_mgmt_read(
3994 struct __vxge_hw_device *hldev,
3995 struct __vxge_hw_virtualpath *vpath)
3997 u32 i, mtu = 0, max_pyld = 0;
3998 u64 val64;
3999 enum vxge_hw_status status = VXGE_HW_OK;
4001 for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
4003 val64 = readq(&vpath->vpmgmt_reg->
4004 rxmac_cfg0_port_vpmgmt_clone[i]);
4005 max_pyld =
4006 (u32)
4007 VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
4008 (val64);
4009 if (mtu < max_pyld)
4010 mtu = max_pyld;
4013 vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
4015 val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
4017 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
4018 if (val64 & vxge_mBIT(i))
4019 vpath->vsport_number = i;
4022 val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
4024 if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
4025 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
4026 else
4027 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
4029 return status;
4033 * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
4034 * This routine checks the vpath_rst_in_prog register to see if
4035 * adapter completed the reset process for the vpath
4037 static enum vxge_hw_status
4038 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
4040 enum vxge_hw_status status;
4042 status = __vxge_hw_device_register_poll(
4043 &vpath->hldev->common_reg->vpath_rst_in_prog,
4044 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
4045 1 << (16 - vpath->vp_id)),
4046 vpath->hldev->config.device_poll_millis);
4048 return status;
4052 * __vxge_hw_vpath_reset
4053 * This routine resets the vpath on the device
4055 static enum vxge_hw_status
4056 __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4058 u64 val64;
4059 enum vxge_hw_status status = VXGE_HW_OK;
4061 val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
4063 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
4064 &hldev->common_reg->cmn_rsthdlr_cfg0);
4066 return status;
4070 * __vxge_hw_vpath_sw_reset
4071 * This routine resets the vpath structures
4073 static enum vxge_hw_status
4074 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4076 enum vxge_hw_status status = VXGE_HW_OK;
4077 struct __vxge_hw_virtualpath *vpath;
4079 vpath = (struct __vxge_hw_virtualpath *)&hldev->virtual_paths[vp_id];
4081 if (vpath->ringh) {
4082 status = __vxge_hw_ring_reset(vpath->ringh);
4083 if (status != VXGE_HW_OK)
4084 goto exit;
4087 if (vpath->fifoh)
4088 status = __vxge_hw_fifo_reset(vpath->fifoh);
4089 exit:
4090 return status;
4094 * __vxge_hw_vpath_prc_configure
4095 * This routine configures the prc registers of virtual path using the config
4096 * passed
4098 static void
4099 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4101 u64 val64;
4102 struct __vxge_hw_virtualpath *vpath;
4103 struct vxge_hw_vp_config *vp_config;
4104 struct vxge_hw_vpath_reg __iomem *vp_reg;
4106 vpath = &hldev->virtual_paths[vp_id];
4107 vp_reg = vpath->vp_reg;
4108 vp_config = vpath->vp_config;
4110 if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
4111 return;
4113 val64 = readq(&vp_reg->prc_cfg1);
4114 val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
4115 writeq(val64, &vp_reg->prc_cfg1);
4117 val64 = readq(&vpath->vp_reg->prc_cfg6);
4118 val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
4119 writeq(val64, &vpath->vp_reg->prc_cfg6);
4121 val64 = readq(&vp_reg->prc_cfg7);
4123 if (vpath->vp_config->ring.scatter_mode !=
4124 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
4126 val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
4128 switch (vpath->vp_config->ring.scatter_mode) {
4129 case VXGE_HW_RING_SCATTER_MODE_A:
4130 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4131 VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
4132 break;
4133 case VXGE_HW_RING_SCATTER_MODE_B:
4134 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4135 VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
4136 break;
4137 case VXGE_HW_RING_SCATTER_MODE_C:
4138 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4139 VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
4140 break;
4144 writeq(val64, &vp_reg->prc_cfg7);
4146 writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
4147 __vxge_hw_ring_first_block_address_get(
4148 vpath->ringh) >> 3), &vp_reg->prc_cfg5);
4150 val64 = readq(&vp_reg->prc_cfg4);
4151 val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
4152 val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
4154 val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
4155 VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
4157 if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
4158 val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
4159 else
4160 val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
4162 writeq(val64, &vp_reg->prc_cfg4);
4166 * __vxge_hw_vpath_kdfc_configure
4167 * This routine configures the kdfc registers of virtual path using the
4168 * config passed
4170 static enum vxge_hw_status
4171 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4173 u64 val64;
4174 u64 vpath_stride;
4175 enum vxge_hw_status status = VXGE_HW_OK;
4176 struct __vxge_hw_virtualpath *vpath;
4177 struct vxge_hw_vpath_reg __iomem *vp_reg;
4179 vpath = &hldev->virtual_paths[vp_id];
4180 vp_reg = vpath->vp_reg;
4181 status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
4183 if (status != VXGE_HW_OK)
4184 goto exit;
4186 val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
4188 vpath->max_kdfc_db =
4189 (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
4190 val64+1)/2;
4192 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4194 vpath->max_nofl_db = vpath->max_kdfc_db;
4196 if (vpath->max_nofl_db <
4197 ((vpath->vp_config->fifo.memblock_size /
4198 (vpath->vp_config->fifo.max_frags *
4199 sizeof(struct vxge_hw_fifo_txd))) *
4200 vpath->vp_config->fifo.fifo_blocks)) {
4202 return VXGE_HW_BADCFG_FIFO_BLOCKS;
4204 val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
4205 (vpath->max_nofl_db*2)-1);
4208 writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
4210 writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
4211 &vp_reg->kdfc_fifo_trpl_ctrl);
4213 val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
4215 val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
4216 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
4218 val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
4219 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
4220 #ifndef __BIG_ENDIAN
4221 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
4222 #endif
4223 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
4225 writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
4226 writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
4227 wmb();
4228 vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
4230 vpath->nofl_db =
4231 (struct __vxge_hw_non_offload_db_wrapper __iomem *)
4232 (hldev->kdfc + (vp_id *
4233 VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
4234 vpath_stride)));
4235 exit:
4236 return status;
4240 * __vxge_hw_vpath_mac_configure
4241 * This routine configures the mac of virtual path using the config passed
4243 static enum vxge_hw_status
4244 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4246 u64 val64;
4247 enum vxge_hw_status status = VXGE_HW_OK;
4248 struct __vxge_hw_virtualpath *vpath;
4249 struct vxge_hw_vp_config *vp_config;
4250 struct vxge_hw_vpath_reg __iomem *vp_reg;
4252 vpath = &hldev->virtual_paths[vp_id];
4253 vp_reg = vpath->vp_reg;
4254 vp_config = vpath->vp_config;
4256 writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
4257 vpath->vsport_number), &vp_reg->xmac_vsport_choice);
4259 if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4261 val64 = readq(&vp_reg->xmac_rpa_vcfg);
4263 if (vp_config->rpa_strip_vlan_tag !=
4264 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
4265 if (vp_config->rpa_strip_vlan_tag)
4266 val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4267 else
4268 val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4271 writeq(val64, &vp_reg->xmac_rpa_vcfg);
4272 val64 = readq(&vp_reg->rxmac_vcfg0);
4274 if (vp_config->mtu !=
4275 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
4276 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4277 if ((vp_config->mtu +
4278 VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
4279 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4280 vp_config->mtu +
4281 VXGE_HW_MAC_HEADER_MAX_SIZE);
4282 else
4283 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4284 vpath->max_mtu);
4287 writeq(val64, &vp_reg->rxmac_vcfg0);
4289 val64 = readq(&vp_reg->rxmac_vcfg1);
4291 val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
4292 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
4294 if (hldev->config.rth_it_type ==
4295 VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
4296 val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
4297 0x2) |
4298 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
4301 writeq(val64, &vp_reg->rxmac_vcfg1);
4303 return status;
4307 * __vxge_hw_vpath_tim_configure
4308 * This routine configures the tim registers of virtual path using the config
4309 * passed
4311 static enum vxge_hw_status
4312 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4314 u64 val64;
4315 enum vxge_hw_status status = VXGE_HW_OK;
4316 struct __vxge_hw_virtualpath *vpath;
4317 struct vxge_hw_vpath_reg __iomem *vp_reg;
4318 struct vxge_hw_vp_config *config;
4320 vpath = &hldev->virtual_paths[vp_id];
4321 vp_reg = vpath->vp_reg;
4322 config = vpath->vp_config;
4324 writeq(0, &vp_reg->tim_dest_addr);
4325 writeq(0, &vp_reg->tim_vpath_map);
4326 writeq(0, &vp_reg->tim_bitmap);
4327 writeq(0, &vp_reg->tim_remap);
4329 if (config->ring.enable == VXGE_HW_RING_ENABLE)
4330 writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
4331 (vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4332 VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
4334 val64 = readq(&vp_reg->tim_pci_cfg);
4335 val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
4336 writeq(val64, &vp_reg->tim_pci_cfg);
4338 if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4340 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4342 if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4343 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4344 0x3ffffff);
4345 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4346 config->tti.btimer_val);
4349 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4351 if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4352 if (config->tti.timer_ac_en)
4353 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4354 else
4355 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4358 if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4359 if (config->tti.timer_ci_en)
4360 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4361 else
4362 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4365 if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4366 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4367 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4368 config->tti.urange_a);
4371 if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4372 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4373 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4374 config->tti.urange_b);
4377 if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4378 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4379 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4380 config->tti.urange_c);
4383 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4384 vpath->tim_tti_cfg1_saved = val64;
4386 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4388 if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4389 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4390 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4391 config->tti.uec_a);
4394 if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4395 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4396 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4397 config->tti.uec_b);
4400 if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4401 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4402 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4403 config->tti.uec_c);
4406 if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4407 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4408 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4409 config->tti.uec_d);
4412 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4413 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4415 if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4416 if (config->tti.timer_ri_en)
4417 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4418 else
4419 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4422 if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4423 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4424 0x3ffffff);
4425 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4426 config->tti.rtimer_val);
4429 if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4430 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4431 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4434 if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4435 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4436 0x3ffffff);
4437 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4438 config->tti.ltimer_val);
4441 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4442 vpath->tim_tti_cfg3_saved = val64;
4445 if (config->ring.enable == VXGE_HW_RING_ENABLE) {
4447 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4449 if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4450 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4451 0x3ffffff);
4452 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4453 config->rti.btimer_val);
4456 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4458 if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4459 if (config->rti.timer_ac_en)
4460 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4461 else
4462 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4465 if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4466 if (config->rti.timer_ci_en)
4467 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4468 else
4469 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4472 if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4473 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4474 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4475 config->rti.urange_a);
4478 if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4479 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4480 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4481 config->rti.urange_b);
4484 if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4485 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4486 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4487 config->rti.urange_c);
4490 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4491 vpath->tim_rti_cfg1_saved = val64;
4493 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4495 if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4496 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4497 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4498 config->rti.uec_a);
4501 if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4502 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4503 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4504 config->rti.uec_b);
4507 if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4508 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4509 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4510 config->rti.uec_c);
4513 if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4514 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4515 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4516 config->rti.uec_d);
4519 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4520 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4522 if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4523 if (config->rti.timer_ri_en)
4524 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4525 else
4526 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4529 if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4530 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4531 0x3ffffff);
4532 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4533 config->rti.rtimer_val);
4536 if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4537 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4538 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4541 if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4542 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4543 0x3ffffff);
4544 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4545 config->rti.ltimer_val);
4548 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4549 vpath->tim_rti_cfg3_saved = val64;
4552 val64 = 0;
4553 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4554 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4555 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4556 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4557 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4558 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4560 val64 = VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150);
4561 val64 |= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0);
4562 val64 |= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3);
4563 writeq(val64, &vp_reg->tim_wrkld_clc);
4565 return status;
4569 * __vxge_hw_vpath_initialize
4570 * This routine is the final phase of init which initializes the
4571 * registers of the vpath using the configuration passed.
4573 static enum vxge_hw_status
4574 __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
4576 u64 val64;
4577 u32 val32;
4578 enum vxge_hw_status status = VXGE_HW_OK;
4579 struct __vxge_hw_virtualpath *vpath;
4580 struct vxge_hw_vpath_reg __iomem *vp_reg;
4582 vpath = &hldev->virtual_paths[vp_id];
4584 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4585 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4586 goto exit;
4588 vp_reg = vpath->vp_reg;
4590 status = __vxge_hw_vpath_swapper_set(vpath->vp_reg);
4591 if (status != VXGE_HW_OK)
4592 goto exit;
4594 status = __vxge_hw_vpath_mac_configure(hldev, vp_id);
4595 if (status != VXGE_HW_OK)
4596 goto exit;
4598 status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
4599 if (status != VXGE_HW_OK)
4600 goto exit;
4602 status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
4603 if (status != VXGE_HW_OK)
4604 goto exit;
4606 val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
4608 /* Get MRRS value from device control */
4609 status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
4610 if (status == VXGE_HW_OK) {
4611 val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
4612 val64 &=
4613 ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4614 val64 |=
4615 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
4617 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
4620 val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4621 val64 |=
4622 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4623 VXGE_HW_MAX_PAYLOAD_SIZE_512);
4625 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
4626 writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
4628 exit:
4629 return status;
4633 * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4634 * This routine closes all channels it opened and freeup memory
4636 static void __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
4638 struct __vxge_hw_virtualpath *vpath;
4640 vpath = &hldev->virtual_paths[vp_id];
4642 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
4643 goto exit;
4645 VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
4646 vpath->hldev->tim_int_mask1, vpath->vp_id);
4647 hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
4649 /* If the whole struct __vxge_hw_virtualpath is zeroed, nothing will
4650 * work after the interface is brought down.
4652 spin_lock(&vpath->lock);
4653 vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
4654 spin_unlock(&vpath->lock);
4656 vpath->vpmgmt_reg = NULL;
4657 vpath->nofl_db = NULL;
4658 vpath->max_mtu = 0;
4659 vpath->vsport_number = 0;
4660 vpath->max_kdfc_db = 0;
4661 vpath->max_nofl_db = 0;
4662 vpath->ringh = NULL;
4663 vpath->fifoh = NULL;
4664 memset(&vpath->vpath_handles, 0, sizeof(struct list_head));
4665 vpath->stats_block = 0;
4666 vpath->hw_stats = NULL;
4667 vpath->hw_stats_sav = NULL;
4668 vpath->sw_stats = NULL;
4670 exit:
4671 return;
4675 * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4676 * This routine is the initial phase of init which resets the vpath and
4677 * initializes the software support structures.
4679 static enum vxge_hw_status
4680 __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
4681 struct vxge_hw_vp_config *config)
4683 struct __vxge_hw_virtualpath *vpath;
4684 enum vxge_hw_status status = VXGE_HW_OK;
4686 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4687 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4688 goto exit;
4691 vpath = &hldev->virtual_paths[vp_id];
4693 spin_lock_init(&vpath->lock);
4694 vpath->vp_id = vp_id;
4695 vpath->vp_open = VXGE_HW_VP_OPEN;
4696 vpath->hldev = hldev;
4697 vpath->vp_config = config;
4698 vpath->vp_reg = hldev->vpath_reg[vp_id];
4699 vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
4701 __vxge_hw_vpath_reset(hldev, vp_id);
4703 status = __vxge_hw_vpath_reset_check(vpath);
4704 if (status != VXGE_HW_OK) {
4705 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4706 goto exit;
4709 status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
4710 if (status != VXGE_HW_OK) {
4711 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4712 goto exit;
4715 INIT_LIST_HEAD(&vpath->vpath_handles);
4717 vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
4719 VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
4720 hldev->tim_int_mask1, vp_id);
4722 status = __vxge_hw_vpath_initialize(hldev, vp_id);
4723 if (status != VXGE_HW_OK)
4724 __vxge_hw_vp_terminate(hldev, vp_id);
4725 exit:
4726 return status;
4730 * vxge_hw_vpath_mtu_set - Set MTU.
4731 * Set new MTU value. Example, to use jumbo frames:
4732 * vxge_hw_vpath_mtu_set(my_device, 9600);
4734 enum vxge_hw_status
4735 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
4737 u64 val64;
4738 enum vxge_hw_status status = VXGE_HW_OK;
4739 struct __vxge_hw_virtualpath *vpath;
4741 if (vp == NULL) {
4742 status = VXGE_HW_ERR_INVALID_HANDLE;
4743 goto exit;
4745 vpath = vp->vpath;
4747 new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
4749 if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
4750 status = VXGE_HW_ERR_INVALID_MTU_SIZE;
4752 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
4754 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4755 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
4757 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
4759 vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
4761 exit:
4762 return status;
4766 * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4767 * Enable the DMA vpath statistics. The function is to be called to re-enable
4768 * the adapter to update stats into the host memory
4770 static enum vxge_hw_status
4771 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
4773 enum vxge_hw_status status = VXGE_HW_OK;
4774 struct __vxge_hw_virtualpath *vpath;
4776 vpath = vp->vpath;
4778 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4779 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4780 goto exit;
4783 memcpy(vpath->hw_stats_sav, vpath->hw_stats,
4784 sizeof(struct vxge_hw_vpath_stats_hw_info));
4786 status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
4787 exit:
4788 return status;
4792 * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
4793 * This function allocates a block from block pool or from the system
4795 static struct __vxge_hw_blockpool_entry *
4796 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
4798 struct __vxge_hw_blockpool_entry *entry = NULL;
4799 struct __vxge_hw_blockpool *blockpool;
4801 blockpool = &devh->block_pool;
4803 if (size == blockpool->block_size) {
4805 if (!list_empty(&blockpool->free_block_list))
4806 entry = (struct __vxge_hw_blockpool_entry *)
4807 list_first_entry(&blockpool->free_block_list,
4808 struct __vxge_hw_blockpool_entry,
4809 item);
4811 if (entry != NULL) {
4812 list_del(&entry->item);
4813 blockpool->pool_size--;
4817 if (entry != NULL)
4818 __vxge_hw_blockpool_blocks_add(blockpool);
4820 return entry;
4824 * vxge_hw_vpath_open - Open a virtual path on a given adapter
4825 * This function is used to open access to virtual path of an
4826 * adapter for offload, GRO operations. This function returns
4827 * synchronously.
4829 enum vxge_hw_status
4830 vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
4831 struct vxge_hw_vpath_attr *attr,
4832 struct __vxge_hw_vpath_handle **vpath_handle)
4834 struct __vxge_hw_virtualpath *vpath;
4835 struct __vxge_hw_vpath_handle *vp;
4836 enum vxge_hw_status status;
4838 vpath = &hldev->virtual_paths[attr->vp_id];
4840 if (vpath->vp_open == VXGE_HW_VP_OPEN) {
4841 status = VXGE_HW_ERR_INVALID_STATE;
4842 goto vpath_open_exit1;
4845 status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
4846 &hldev->config.vp_config[attr->vp_id]);
4847 if (status != VXGE_HW_OK)
4848 goto vpath_open_exit1;
4850 vp = vzalloc(sizeof(struct __vxge_hw_vpath_handle));
4851 if (vp == NULL) {
4852 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4853 goto vpath_open_exit2;
4856 vp->vpath = vpath;
4858 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4859 status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
4860 if (status != VXGE_HW_OK)
4861 goto vpath_open_exit6;
4864 if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4865 status = __vxge_hw_ring_create(vp, &attr->ring_attr);
4866 if (status != VXGE_HW_OK)
4867 goto vpath_open_exit7;
4869 __vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
4872 vpath->fifoh->tx_intr_num =
4873 (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4874 VXGE_HW_VPATH_INTR_TX;
4876 vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
4877 VXGE_HW_BLOCK_SIZE);
4878 if (vpath->stats_block == NULL) {
4879 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4880 goto vpath_open_exit8;
4883 vpath->hw_stats = (struct vxge_hw_vpath_stats_hw_info *)vpath->
4884 stats_block->memblock;
4885 memset(vpath->hw_stats, 0,
4886 sizeof(struct vxge_hw_vpath_stats_hw_info));
4888 hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
4889 vpath->hw_stats;
4891 vpath->hw_stats_sav =
4892 &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
4893 memset(vpath->hw_stats_sav, 0,
4894 sizeof(struct vxge_hw_vpath_stats_hw_info));
4896 writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
4898 status = vxge_hw_vpath_stats_enable(vp);
4899 if (status != VXGE_HW_OK)
4900 goto vpath_open_exit8;
4902 list_add(&vp->item, &vpath->vpath_handles);
4904 hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
4906 *vpath_handle = vp;
4908 attr->fifo_attr.userdata = vpath->fifoh;
4909 attr->ring_attr.userdata = vpath->ringh;
4911 return VXGE_HW_OK;
4913 vpath_open_exit8:
4914 if (vpath->ringh != NULL)
4915 __vxge_hw_ring_delete(vp);
4916 vpath_open_exit7:
4917 if (vpath->fifoh != NULL)
4918 __vxge_hw_fifo_delete(vp);
4919 vpath_open_exit6:
4920 vfree(vp);
4921 vpath_open_exit2:
4922 __vxge_hw_vp_terminate(hldev, attr->vp_id);
4923 vpath_open_exit1:
4925 return status;
4929 * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4930 * (vpath) open
4931 * @vp: Handle got from previous vpath open
4933 * This function is used to close access to virtual path opened
4934 * earlier.
4936 void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
4938 struct __vxge_hw_virtualpath *vpath = vp->vpath;
4939 struct __vxge_hw_ring *ring = vpath->ringh;
4940 struct vxgedev *vdev = netdev_priv(vpath->hldev->ndev);
4941 u64 new_count, val64, val164;
4943 if (vdev->titan1) {
4944 new_count = readq(&vpath->vp_reg->rxdmem_size);
4945 new_count &= 0x1fff;
4946 } else
4947 new_count = ring->config->ring_blocks * VXGE_HW_BLOCK_SIZE / 8;
4949 val164 = VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count);
4951 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
4952 &vpath->vp_reg->prc_rxd_doorbell);
4953 readl(&vpath->vp_reg->prc_rxd_doorbell);
4955 val164 /= 2;
4956 val64 = readq(&vpath->vp_reg->prc_cfg6);
4957 val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
4958 val64 &= 0x1ff;
4961 * Each RxD is of 4 qwords
4963 new_count -= (val64 + 1);
4964 val64 = min(val164, new_count) / 4;
4966 ring->rxds_limit = min(ring->rxds_limit, val64);
4967 if (ring->rxds_limit < 4)
4968 ring->rxds_limit = 4;
4972 * __vxge_hw_blockpool_block_free - Frees a block from block pool
4973 * @devh: Hal device
4974 * @entry: Entry of block to be freed
4976 * This function frees a block from block pool
4978 static void
4979 __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
4980 struct __vxge_hw_blockpool_entry *entry)
4982 struct __vxge_hw_blockpool *blockpool;
4984 blockpool = &devh->block_pool;
4986 if (entry->length == blockpool->block_size) {
4987 list_add(&entry->item, &blockpool->free_block_list);
4988 blockpool->pool_size++;
4991 __vxge_hw_blockpool_blocks_remove(blockpool);
4995 * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4996 * This function is used to close access to virtual path opened
4997 * earlier.
4999 enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
5001 struct __vxge_hw_virtualpath *vpath = NULL;
5002 struct __vxge_hw_device *devh = NULL;
5003 u32 vp_id = vp->vpath->vp_id;
5004 u32 is_empty = TRUE;
5005 enum vxge_hw_status status = VXGE_HW_OK;
5007 vpath = vp->vpath;
5008 devh = vpath->hldev;
5010 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5011 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5012 goto vpath_close_exit;
5015 list_del(&vp->item);
5017 if (!list_empty(&vpath->vpath_handles)) {
5018 list_add(&vp->item, &vpath->vpath_handles);
5019 is_empty = FALSE;
5022 if (!is_empty) {
5023 status = VXGE_HW_FAIL;
5024 goto vpath_close_exit;
5027 devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
5029 if (vpath->ringh != NULL)
5030 __vxge_hw_ring_delete(vp);
5032 if (vpath->fifoh != NULL)
5033 __vxge_hw_fifo_delete(vp);
5035 if (vpath->stats_block != NULL)
5036 __vxge_hw_blockpool_block_free(devh, vpath->stats_block);
5038 vfree(vp);
5040 __vxge_hw_vp_terminate(devh, vp_id);
5042 vpath_close_exit:
5043 return status;
5047 * vxge_hw_vpath_reset - Resets vpath
5048 * This function is used to request a reset of vpath
5050 enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
5052 enum vxge_hw_status status;
5053 u32 vp_id;
5054 struct __vxge_hw_virtualpath *vpath = vp->vpath;
5056 vp_id = vpath->vp_id;
5058 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5059 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5060 goto exit;
5063 status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
5064 if (status == VXGE_HW_OK)
5065 vpath->sw_stats->soft_reset_cnt++;
5066 exit:
5067 return status;
5071 * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
5072 * This function poll's for the vpath reset completion and re initializes
5073 * the vpath.
5075 enum vxge_hw_status
5076 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
5078 struct __vxge_hw_virtualpath *vpath = NULL;
5079 enum vxge_hw_status status;
5080 struct __vxge_hw_device *hldev;
5081 u32 vp_id;
5083 vp_id = vp->vpath->vp_id;
5084 vpath = vp->vpath;
5085 hldev = vpath->hldev;
5087 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5088 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5089 goto exit;
5092 status = __vxge_hw_vpath_reset_check(vpath);
5093 if (status != VXGE_HW_OK)
5094 goto exit;
5096 status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
5097 if (status != VXGE_HW_OK)
5098 goto exit;
5100 status = __vxge_hw_vpath_initialize(hldev, vp_id);
5101 if (status != VXGE_HW_OK)
5102 goto exit;
5104 if (vpath->ringh != NULL)
5105 __vxge_hw_vpath_prc_configure(hldev, vp_id);
5107 memset(vpath->hw_stats, 0,
5108 sizeof(struct vxge_hw_vpath_stats_hw_info));
5110 memset(vpath->hw_stats_sav, 0,
5111 sizeof(struct vxge_hw_vpath_stats_hw_info));
5113 writeq(vpath->stats_block->dma_addr,
5114 &vpath->vp_reg->stats_cfg);
5116 status = vxge_hw_vpath_stats_enable(vp);
5118 exit:
5119 return status;
5123 * vxge_hw_vpath_enable - Enable vpath.
5124 * This routine clears the vpath reset thereby enabling a vpath
5125 * to start forwarding frames and generating interrupts.
5127 void
5128 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
5130 struct __vxge_hw_device *hldev;
5131 u64 val64;
5133 hldev = vp->vpath->hldev;
5135 val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
5136 1 << (16 - vp->vpath->vp_id));
5138 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
5139 &hldev->common_reg->cmn_rsthdlr_cfg1);