ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / drivers / net / vxge / vxge-traffic.c
blobf93517055162909cdf93459956ea161f93200609
1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #include <linux/etherdevice.h>
15 #include <linux/prefetch.h>
17 #include "vxge-traffic.h"
18 #include "vxge-config.h"
19 #include "vxge-main.h"
22 * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
23 * @vp: Virtual Path handle.
25 * Enable vpath interrupts. The function is to be executed the last in
26 * vpath initialization sequence.
28 * See also: vxge_hw_vpath_intr_disable()
30 enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
32 u64 val64;
34 struct __vxge_hw_virtualpath *vpath;
35 struct vxge_hw_vpath_reg __iomem *vp_reg;
36 enum vxge_hw_status status = VXGE_HW_OK;
37 if (vp == NULL) {
38 status = VXGE_HW_ERR_INVALID_HANDLE;
39 goto exit;
42 vpath = vp->vpath;
44 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
45 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
46 goto exit;
49 vp_reg = vpath->vp_reg;
51 writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
53 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
54 &vp_reg->general_errors_reg);
56 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
57 &vp_reg->pci_config_errors_reg);
59 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
60 &vp_reg->mrpcim_to_vpath_alarm_reg);
62 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
63 &vp_reg->srpcim_to_vpath_alarm_reg);
65 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
66 &vp_reg->vpath_ppif_int_status);
68 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
69 &vp_reg->srpcim_msg_to_vpath_reg);
71 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
72 &vp_reg->vpath_pcipif_int_status);
74 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
75 &vp_reg->prc_alarm_reg);
77 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
78 &vp_reg->wrdma_alarm_status);
80 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
81 &vp_reg->asic_ntwk_vp_err_reg);
83 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
84 &vp_reg->xgmac_vp_int_status);
86 val64 = readq(&vp_reg->vpath_general_int_status);
88 /* Mask unwanted interrupts */
90 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
91 &vp_reg->vpath_pcipif_int_mask);
93 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
94 &vp_reg->srpcim_msg_to_vpath_mask);
96 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
97 &vp_reg->srpcim_to_vpath_alarm_mask);
99 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
100 &vp_reg->mrpcim_to_vpath_alarm_mask);
102 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
103 &vp_reg->pci_config_errors_mask);
105 /* Unmask the individual interrupts */
107 writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
108 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
109 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
110 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
111 &vp_reg->general_errors_mask);
113 __vxge_hw_pio_mem_write32_upper(
114 (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
115 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
116 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
117 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
118 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
119 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
120 &vp_reg->kdfcctl_errors_mask);
122 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
124 __vxge_hw_pio_mem_write32_upper(
125 (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
126 &vp_reg->prc_alarm_mask);
128 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
129 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
131 if (vpath->hldev->first_vp_id != vpath->vp_id)
132 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
133 &vp_reg->asic_ntwk_vp_err_mask);
134 else
135 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
136 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
137 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
138 &vp_reg->asic_ntwk_vp_err_mask);
140 __vxge_hw_pio_mem_write32_upper(0,
141 &vp_reg->vpath_general_int_mask);
142 exit:
143 return status;
148 * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
149 * @vp: Virtual Path handle.
151 * Disable vpath interrupts. The function is to be executed the last in
152 * vpath initialization sequence.
154 * See also: vxge_hw_vpath_intr_enable()
156 enum vxge_hw_status vxge_hw_vpath_intr_disable(
157 struct __vxge_hw_vpath_handle *vp)
159 u64 val64;
161 struct __vxge_hw_virtualpath *vpath;
162 enum vxge_hw_status status = VXGE_HW_OK;
163 struct vxge_hw_vpath_reg __iomem *vp_reg;
164 if (vp == NULL) {
165 status = VXGE_HW_ERR_INVALID_HANDLE;
166 goto exit;
169 vpath = vp->vpath;
171 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
172 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
173 goto exit;
175 vp_reg = vpath->vp_reg;
177 __vxge_hw_pio_mem_write32_upper(
178 (u32)VXGE_HW_INTR_MASK_ALL,
179 &vp_reg->vpath_general_int_mask);
181 val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
183 writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
185 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
186 &vp_reg->general_errors_mask);
188 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
189 &vp_reg->pci_config_errors_mask);
191 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
192 &vp_reg->mrpcim_to_vpath_alarm_mask);
194 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
195 &vp_reg->srpcim_to_vpath_alarm_mask);
197 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
198 &vp_reg->vpath_ppif_int_mask);
200 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
201 &vp_reg->srpcim_msg_to_vpath_mask);
203 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
204 &vp_reg->vpath_pcipif_int_mask);
206 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
207 &vp_reg->wrdma_alarm_mask);
209 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
210 &vp_reg->prc_alarm_mask);
212 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
213 &vp_reg->xgmac_vp_int_mask);
215 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
216 &vp_reg->asic_ntwk_vp_err_mask);
218 exit:
219 return status;
222 void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo *fifo)
224 struct vxge_hw_vpath_reg __iomem *vp_reg;
225 struct vxge_hw_vp_config *config;
226 u64 val64;
228 if (fifo->config->enable != VXGE_HW_FIFO_ENABLE)
229 return;
231 vp_reg = fifo->vp_reg;
232 config = container_of(fifo->config, struct vxge_hw_vp_config, fifo);
234 if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
235 config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
236 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
237 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
238 fifo->tim_tti_cfg1_saved = val64;
239 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
243 void vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring *ring)
245 u64 val64 = ring->tim_rti_cfg1_saved;
247 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
248 ring->tim_rti_cfg1_saved = val64;
249 writeq(val64, &ring->vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
252 void vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo *fifo)
254 u64 val64 = fifo->tim_tti_cfg3_saved;
255 u64 timer = (fifo->rtimer * 1000) / 272;
257 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
258 if (timer)
259 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
260 VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(5);
262 writeq(val64, &fifo->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
263 /* tti_cfg3_saved is not updated again because it is
264 * initialized at one place only - init time.
268 void vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring *ring)
270 u64 val64 = ring->tim_rti_cfg3_saved;
271 u64 timer = (ring->rtimer * 1000) / 272;
273 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
274 if (timer)
275 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
276 VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(4);
278 writeq(val64, &ring->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
279 /* rti_cfg3_saved is not updated again because it is
280 * initialized at one place only - init time.
285 * vxge_hw_channel_msix_mask - Mask MSIX Vector.
286 * @channeh: Channel for rx or tx handle
287 * @msix_id: MSIX ID
289 * The function masks the msix interrupt for the given msix_id
291 * Returns: 0
293 void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
296 __vxge_hw_pio_mem_write32_upper(
297 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
298 &channel->common_reg->set_msix_mask_vect[msix_id%4]);
302 * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
303 * @channeh: Channel for rx or tx handle
304 * @msix_id: MSI ID
306 * The function unmasks the msix interrupt for the given msix_id
308 * Returns: 0
310 void
311 vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
314 __vxge_hw_pio_mem_write32_upper(
315 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
316 &channel->common_reg->clear_msix_mask_vect[msix_id%4]);
320 * vxge_hw_channel_msix_clear - Unmask the MSIX Vector.
321 * @channel: Channel for rx or tx handle
322 * @msix_id: MSI ID
324 * The function unmasks the msix interrupt for the given msix_id
325 * if configured in MSIX oneshot mode
327 * Returns: 0
329 void vxge_hw_channel_msix_clear(struct __vxge_hw_channel *channel, int msix_id)
331 __vxge_hw_pio_mem_write32_upper(
332 (u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
333 &channel->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
337 * vxge_hw_device_set_intr_type - Updates the configuration
338 * with new interrupt type.
339 * @hldev: HW device handle.
340 * @intr_mode: New interrupt type
342 u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
345 if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
346 (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
347 (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
348 (intr_mode != VXGE_HW_INTR_MODE_DEF))
349 intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
351 hldev->config.intr_mode = intr_mode;
352 return intr_mode;
356 * vxge_hw_device_intr_enable - Enable interrupts.
357 * @hldev: HW device handle.
358 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
359 * the type(s) of interrupts to enable.
361 * Enable Titan interrupts. The function is to be executed the last in
362 * Titan initialization sequence.
364 * See also: vxge_hw_device_intr_disable()
366 void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
368 u32 i;
369 u64 val64;
370 u32 val32;
372 vxge_hw_device_mask_all(hldev);
374 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
376 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
377 continue;
379 vxge_hw_vpath_intr_enable(
380 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
383 if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
384 val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
385 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
387 if (val64 != 0) {
388 writeq(val64, &hldev->common_reg->tim_int_status0);
390 writeq(~val64, &hldev->common_reg->tim_int_mask0);
393 val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
394 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
396 if (val32 != 0) {
397 __vxge_hw_pio_mem_write32_upper(val32,
398 &hldev->common_reg->tim_int_status1);
400 __vxge_hw_pio_mem_write32_upper(~val32,
401 &hldev->common_reg->tim_int_mask1);
405 val64 = readq(&hldev->common_reg->titan_general_int_status);
407 vxge_hw_device_unmask_all(hldev);
411 * vxge_hw_device_intr_disable - Disable Titan interrupts.
412 * @hldev: HW device handle.
413 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
414 * the type(s) of interrupts to disable.
416 * Disable Titan interrupts.
418 * See also: vxge_hw_device_intr_enable()
420 void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
422 u32 i;
424 vxge_hw_device_mask_all(hldev);
426 /* mask all the tim interrupts */
427 writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
428 __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
429 &hldev->common_reg->tim_int_mask1);
431 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
433 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
434 continue;
436 vxge_hw_vpath_intr_disable(
437 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
442 * vxge_hw_device_mask_all - Mask all device interrupts.
443 * @hldev: HW device handle.
445 * Mask all device interrupts.
447 * See also: vxge_hw_device_unmask_all()
449 void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
451 u64 val64;
453 val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
454 VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
456 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
457 &hldev->common_reg->titan_mask_all_int);
461 * vxge_hw_device_unmask_all - Unmask all device interrupts.
462 * @hldev: HW device handle.
464 * Unmask all device interrupts.
466 * See also: vxge_hw_device_mask_all()
468 void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
470 u64 val64 = 0;
472 if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
473 val64 = VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
475 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
476 &hldev->common_reg->titan_mask_all_int);
480 * vxge_hw_device_flush_io - Flush io writes.
481 * @hldev: HW device handle.
483 * The function performs a read operation to flush io writes.
485 * Returns: void
487 void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
489 u32 val32;
491 val32 = readl(&hldev->common_reg->titan_general_int_status);
495 * __vxge_hw_device_handle_error - Handle error
496 * @hldev: HW device
497 * @vp_id: Vpath Id
498 * @type: Error type. Please see enum vxge_hw_event{}
500 * Handle error.
502 static enum vxge_hw_status
503 __vxge_hw_device_handle_error(struct __vxge_hw_device *hldev, u32 vp_id,
504 enum vxge_hw_event type)
506 switch (type) {
507 case VXGE_HW_EVENT_UNKNOWN:
508 break;
509 case VXGE_HW_EVENT_RESET_START:
510 case VXGE_HW_EVENT_RESET_COMPLETE:
511 case VXGE_HW_EVENT_LINK_DOWN:
512 case VXGE_HW_EVENT_LINK_UP:
513 goto out;
514 case VXGE_HW_EVENT_ALARM_CLEARED:
515 goto out;
516 case VXGE_HW_EVENT_ECCERR:
517 case VXGE_HW_EVENT_MRPCIM_ECCERR:
518 goto out;
519 case VXGE_HW_EVENT_FIFO_ERR:
520 case VXGE_HW_EVENT_VPATH_ERR:
521 case VXGE_HW_EVENT_CRITICAL_ERR:
522 case VXGE_HW_EVENT_SERR:
523 break;
524 case VXGE_HW_EVENT_SRPCIM_SERR:
525 case VXGE_HW_EVENT_MRPCIM_SERR:
526 goto out;
527 case VXGE_HW_EVENT_SLOT_FREEZE:
528 break;
529 default:
530 vxge_assert(0);
531 goto out;
534 /* notify driver */
535 if (hldev->uld_callbacks.crit_err)
536 hldev->uld_callbacks.crit_err(
537 (struct __vxge_hw_device *)hldev,
538 type, vp_id);
539 out:
541 return VXGE_HW_OK;
545 * __vxge_hw_device_handle_link_down_ind
546 * @hldev: HW device handle.
548 * Link down indication handler. The function is invoked by HW when
549 * Titan indicates that the link is down.
551 static enum vxge_hw_status
552 __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
555 * If the previous link state is not down, return.
557 if (hldev->link_state == VXGE_HW_LINK_DOWN)
558 goto exit;
560 hldev->link_state = VXGE_HW_LINK_DOWN;
562 /* notify driver */
563 if (hldev->uld_callbacks.link_down)
564 hldev->uld_callbacks.link_down(hldev);
565 exit:
566 return VXGE_HW_OK;
570 * __vxge_hw_device_handle_link_up_ind
571 * @hldev: HW device handle.
573 * Link up indication handler. The function is invoked by HW when
574 * Titan indicates that the link is up for programmable amount of time.
576 static enum vxge_hw_status
577 __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
580 * If the previous link state is not down, return.
582 if (hldev->link_state == VXGE_HW_LINK_UP)
583 goto exit;
585 hldev->link_state = VXGE_HW_LINK_UP;
587 /* notify driver */
588 if (hldev->uld_callbacks.link_up)
589 hldev->uld_callbacks.link_up(hldev);
590 exit:
591 return VXGE_HW_OK;
595 * __vxge_hw_vpath_alarm_process - Process Alarms.
596 * @vpath: Virtual Path.
597 * @skip_alarms: Do not clear the alarms
599 * Process vpath alarms.
602 static enum vxge_hw_status
603 __vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath *vpath,
604 u32 skip_alarms)
606 u64 val64;
607 u64 alarm_status;
608 u64 pic_status;
609 struct __vxge_hw_device *hldev = NULL;
610 enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
611 u64 mask64;
612 struct vxge_hw_vpath_stats_sw_info *sw_stats;
613 struct vxge_hw_vpath_reg __iomem *vp_reg;
615 if (vpath == NULL) {
616 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
617 alarm_event);
618 goto out2;
621 hldev = vpath->hldev;
622 vp_reg = vpath->vp_reg;
623 alarm_status = readq(&vp_reg->vpath_general_int_status);
625 if (alarm_status == VXGE_HW_ALL_FOXES) {
626 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
627 alarm_event);
628 goto out;
631 sw_stats = vpath->sw_stats;
633 if (alarm_status & ~(
634 VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
635 VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
636 VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
637 VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
638 sw_stats->error_stats.unknown_alarms++;
640 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
641 alarm_event);
642 goto out;
645 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
647 val64 = readq(&vp_reg->xgmac_vp_int_status);
649 if (val64 &
650 VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
652 val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
654 if (((val64 &
655 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
656 (!(val64 &
657 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
658 ((val64 &
659 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
660 (!(val64 &
661 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
662 ))) {
663 sw_stats->error_stats.network_sustained_fault++;
665 writeq(
666 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
667 &vp_reg->asic_ntwk_vp_err_mask);
669 __vxge_hw_device_handle_link_down_ind(hldev);
670 alarm_event = VXGE_HW_SET_LEVEL(
671 VXGE_HW_EVENT_LINK_DOWN, alarm_event);
674 if (((val64 &
675 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
676 (!(val64 &
677 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
678 ((val64 &
679 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
680 (!(val64 &
681 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
682 ))) {
684 sw_stats->error_stats.network_sustained_ok++;
686 writeq(
687 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
688 &vp_reg->asic_ntwk_vp_err_mask);
690 __vxge_hw_device_handle_link_up_ind(hldev);
691 alarm_event = VXGE_HW_SET_LEVEL(
692 VXGE_HW_EVENT_LINK_UP, alarm_event);
695 writeq(VXGE_HW_INTR_MASK_ALL,
696 &vp_reg->asic_ntwk_vp_err_reg);
698 alarm_event = VXGE_HW_SET_LEVEL(
699 VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
701 if (skip_alarms)
702 return VXGE_HW_OK;
706 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
708 pic_status = readq(&vp_reg->vpath_ppif_int_status);
710 if (pic_status &
711 VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
713 val64 = readq(&vp_reg->general_errors_reg);
714 mask64 = readq(&vp_reg->general_errors_mask);
716 if ((val64 &
717 VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
718 ~mask64) {
719 sw_stats->error_stats.ini_serr_det++;
721 alarm_event = VXGE_HW_SET_LEVEL(
722 VXGE_HW_EVENT_SERR, alarm_event);
725 if ((val64 &
726 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
727 ~mask64) {
728 sw_stats->error_stats.dblgen_fifo0_overflow++;
730 alarm_event = VXGE_HW_SET_LEVEL(
731 VXGE_HW_EVENT_FIFO_ERR, alarm_event);
734 if ((val64 &
735 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
736 ~mask64)
737 sw_stats->error_stats.statsb_pif_chain_error++;
739 if ((val64 &
740 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
741 ~mask64)
742 sw_stats->error_stats.statsb_drop_timeout++;
744 if ((val64 &
745 VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
746 ~mask64)
747 sw_stats->error_stats.target_illegal_access++;
749 if (!skip_alarms) {
750 writeq(VXGE_HW_INTR_MASK_ALL,
751 &vp_reg->general_errors_reg);
752 alarm_event = VXGE_HW_SET_LEVEL(
753 VXGE_HW_EVENT_ALARM_CLEARED,
754 alarm_event);
758 if (pic_status &
759 VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
761 val64 = readq(&vp_reg->kdfcctl_errors_reg);
762 mask64 = readq(&vp_reg->kdfcctl_errors_mask);
764 if ((val64 &
765 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
766 ~mask64) {
767 sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
769 alarm_event = VXGE_HW_SET_LEVEL(
770 VXGE_HW_EVENT_FIFO_ERR,
771 alarm_event);
774 if ((val64 &
775 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
776 ~mask64) {
777 sw_stats->error_stats.kdfcctl_fifo0_poison++;
779 alarm_event = VXGE_HW_SET_LEVEL(
780 VXGE_HW_EVENT_FIFO_ERR,
781 alarm_event);
784 if ((val64 &
785 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
786 ~mask64) {
787 sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
789 alarm_event = VXGE_HW_SET_LEVEL(
790 VXGE_HW_EVENT_FIFO_ERR,
791 alarm_event);
794 if (!skip_alarms) {
795 writeq(VXGE_HW_INTR_MASK_ALL,
796 &vp_reg->kdfcctl_errors_reg);
797 alarm_event = VXGE_HW_SET_LEVEL(
798 VXGE_HW_EVENT_ALARM_CLEARED,
799 alarm_event);
805 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
807 val64 = readq(&vp_reg->wrdma_alarm_status);
809 if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
811 val64 = readq(&vp_reg->prc_alarm_reg);
812 mask64 = readq(&vp_reg->prc_alarm_mask);
814 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
815 ~mask64)
816 sw_stats->error_stats.prc_ring_bumps++;
818 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
819 ~mask64) {
820 sw_stats->error_stats.prc_rxdcm_sc_err++;
822 alarm_event = VXGE_HW_SET_LEVEL(
823 VXGE_HW_EVENT_VPATH_ERR,
824 alarm_event);
827 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
828 & ~mask64) {
829 sw_stats->error_stats.prc_rxdcm_sc_abort++;
831 alarm_event = VXGE_HW_SET_LEVEL(
832 VXGE_HW_EVENT_VPATH_ERR,
833 alarm_event);
836 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
837 & ~mask64) {
838 sw_stats->error_stats.prc_quanta_size_err++;
840 alarm_event = VXGE_HW_SET_LEVEL(
841 VXGE_HW_EVENT_VPATH_ERR,
842 alarm_event);
845 if (!skip_alarms) {
846 writeq(VXGE_HW_INTR_MASK_ALL,
847 &vp_reg->prc_alarm_reg);
848 alarm_event = VXGE_HW_SET_LEVEL(
849 VXGE_HW_EVENT_ALARM_CLEARED,
850 alarm_event);
854 out:
855 hldev->stats.sw_dev_err_stats.vpath_alarms++;
856 out2:
857 if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
858 (alarm_event == VXGE_HW_EVENT_UNKNOWN))
859 return VXGE_HW_OK;
861 __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
863 if (alarm_event == VXGE_HW_EVENT_SERR)
864 return VXGE_HW_ERR_CRITICAL;
866 return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
867 VXGE_HW_ERR_SLOT_FREEZE :
868 (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
869 VXGE_HW_ERR_VPATH;
873 * vxge_hw_device_begin_irq - Begin IRQ processing.
874 * @hldev: HW device handle.
875 * @skip_alarms: Do not clear the alarms
876 * @reason: "Reason" for the interrupt, the value of Titan's
877 * general_int_status register.
879 * The function performs two actions, It first checks whether (shared IRQ) the
880 * interrupt was raised by the device. Next, it masks the device interrupts.
882 * Note:
883 * vxge_hw_device_begin_irq() does not flush MMIO writes through the
884 * bridge. Therefore, two back-to-back interrupts are potentially possible.
886 * Returns: 0, if the interrupt is not "ours" (note that in this case the
887 * device remain enabled).
888 * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
889 * status.
891 enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
892 u32 skip_alarms, u64 *reason)
894 u32 i;
895 u64 val64;
896 u64 adapter_status;
897 u64 vpath_mask;
898 enum vxge_hw_status ret = VXGE_HW_OK;
900 val64 = readq(&hldev->common_reg->titan_general_int_status);
902 if (unlikely(!val64)) {
903 /* not Titan interrupt */
904 *reason = 0;
905 ret = VXGE_HW_ERR_WRONG_IRQ;
906 goto exit;
909 if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
911 adapter_status = readq(&hldev->common_reg->adapter_status);
913 if (adapter_status == VXGE_HW_ALL_FOXES) {
915 __vxge_hw_device_handle_error(hldev,
916 NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
917 *reason = 0;
918 ret = VXGE_HW_ERR_SLOT_FREEZE;
919 goto exit;
923 hldev->stats.sw_dev_info_stats.total_intr_cnt++;
925 *reason = val64;
927 vpath_mask = hldev->vpaths_deployed >>
928 (64 - VXGE_HW_MAX_VIRTUAL_PATHS);
930 if (val64 &
931 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
932 hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
934 return VXGE_HW_OK;
937 hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
939 if (unlikely(val64 &
940 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
942 enum vxge_hw_status error_level = VXGE_HW_OK;
944 hldev->stats.sw_dev_err_stats.vpath_alarms++;
946 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
948 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
949 continue;
951 ret = __vxge_hw_vpath_alarm_process(
952 &hldev->virtual_paths[i], skip_alarms);
954 error_level = VXGE_HW_SET_LEVEL(ret, error_level);
956 if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
957 (ret == VXGE_HW_ERR_SLOT_FREEZE)))
958 break;
961 ret = error_level;
963 exit:
964 return ret;
968 * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
969 * condition that has caused the Tx and RX interrupt.
970 * @hldev: HW device.
972 * Acknowledge (that is, clear) the condition that has caused
973 * the Tx and Rx interrupt.
974 * See also: vxge_hw_device_begin_irq(),
975 * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
977 void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
980 if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
981 (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
982 writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
983 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
984 &hldev->common_reg->tim_int_status0);
987 if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
988 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
989 __vxge_hw_pio_mem_write32_upper(
990 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
991 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
992 &hldev->common_reg->tim_int_status1);
997 * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
998 * @channel: Channel
999 * @dtrh: Buffer to return the DTR pointer
1001 * Allocates a dtr from the reserve array. If the reserve array is empty,
1002 * it swaps the reserve and free arrays.
1005 static enum vxge_hw_status
1006 vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
1008 void **tmp_arr;
1010 if (channel->reserve_ptr - channel->reserve_top > 0) {
1011 _alloc_after_swap:
1012 *dtrh = channel->reserve_arr[--channel->reserve_ptr];
1014 return VXGE_HW_OK;
1017 /* switch between empty and full arrays */
1019 /* the idea behind such a design is that by having free and reserved
1020 * arrays separated we basically separated irq and non-irq parts.
1021 * i.e. no additional lock need to be done when we free a resource */
1023 if (channel->length - channel->free_ptr > 0) {
1025 tmp_arr = channel->reserve_arr;
1026 channel->reserve_arr = channel->free_arr;
1027 channel->free_arr = tmp_arr;
1028 channel->reserve_ptr = channel->length;
1029 channel->reserve_top = channel->free_ptr;
1030 channel->free_ptr = channel->length;
1032 channel->stats->reserve_free_swaps_cnt++;
1034 goto _alloc_after_swap;
1037 channel->stats->full_cnt++;
1039 *dtrh = NULL;
1040 return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
1044 * vxge_hw_channel_dtr_post - Post a dtr to the channel
1045 * @channelh: Channel
1046 * @dtrh: DTR pointer
1048 * Posts a dtr to work array.
1051 static void
1052 vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
1054 vxge_assert(channel->work_arr[channel->post_index] == NULL);
1056 channel->work_arr[channel->post_index++] = dtrh;
1058 /* wrap-around */
1059 if (channel->post_index == channel->length)
1060 channel->post_index = 0;
1064 * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
1065 * @channel: Channel
1066 * @dtr: Buffer to return the next completed DTR pointer
1068 * Returns the next completed dtr with out removing it from work array
1071 void
1072 vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
1074 vxge_assert(channel->compl_index < channel->length);
1076 *dtrh = channel->work_arr[channel->compl_index];
1077 prefetch(*dtrh);
1081 * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
1082 * @channel: Channel handle
1084 * Removes the next completed dtr from work array
1087 void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
1089 channel->work_arr[channel->compl_index] = NULL;
1091 /* wrap-around */
1092 if (++channel->compl_index == channel->length)
1093 channel->compl_index = 0;
1095 channel->stats->total_compl_cnt++;
1099 * vxge_hw_channel_dtr_free - Frees a dtr
1100 * @channel: Channel handle
1101 * @dtr: DTR pointer
1103 * Returns the dtr to free array
1106 void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
1108 channel->free_arr[--channel->free_ptr] = dtrh;
1112 * vxge_hw_channel_dtr_count
1113 * @channel: Channel handle. Obtained via vxge_hw_channel_open().
1115 * Retrieve number of DTRs available. This function can not be called
1116 * from data path. ring_initial_replenishi() is the only user.
1118 int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
1120 return (channel->reserve_ptr - channel->reserve_top) +
1121 (channel->length - channel->free_ptr);
1125 * vxge_hw_ring_rxd_reserve - Reserve ring descriptor.
1126 * @ring: Handle to the ring object used for receive
1127 * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
1128 * with a valid handle.
1130 * Reserve Rx descriptor for the subsequent filling-in driver
1131 * and posting on the corresponding channel (@channelh)
1132 * via vxge_hw_ring_rxd_post().
1134 * Returns: VXGE_HW_OK - success.
1135 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
1138 enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
1139 void **rxdh)
1141 enum vxge_hw_status status;
1142 struct __vxge_hw_channel *channel;
1144 channel = &ring->channel;
1146 status = vxge_hw_channel_dtr_alloc(channel, rxdh);
1148 if (status == VXGE_HW_OK) {
1149 struct vxge_hw_ring_rxd_1 *rxdp =
1150 (struct vxge_hw_ring_rxd_1 *)*rxdh;
1152 rxdp->control_0 = rxdp->control_1 = 0;
1155 return status;
1159 * vxge_hw_ring_rxd_free - Free descriptor.
1160 * @ring: Handle to the ring object used for receive
1161 * @rxdh: Descriptor handle.
1163 * Free the reserved descriptor. This operation is "symmetrical" to
1164 * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
1165 * lifecycle.
1167 * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
1168 * be:
1170 * - reserved (vxge_hw_ring_rxd_reserve);
1172 * - posted (vxge_hw_ring_rxd_post);
1174 * - completed (vxge_hw_ring_rxd_next_completed);
1176 * - and recycled again (vxge_hw_ring_rxd_free).
1178 * For alternative state transitions and more details please refer to
1179 * the design doc.
1182 void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
1184 struct __vxge_hw_channel *channel;
1186 channel = &ring->channel;
1188 vxge_hw_channel_dtr_free(channel, rxdh);
1193 * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
1194 * @ring: Handle to the ring object used for receive
1195 * @rxdh: Descriptor handle.
1197 * This routine prepares a rxd and posts
1199 void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
1201 struct __vxge_hw_channel *channel;
1203 channel = &ring->channel;
1205 vxge_hw_channel_dtr_post(channel, rxdh);
1209 * vxge_hw_ring_rxd_post_post - Process rxd after post.
1210 * @ring: Handle to the ring object used for receive
1211 * @rxdh: Descriptor handle.
1213 * Processes rxd after post
1215 void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
1217 struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1218 struct __vxge_hw_channel *channel;
1220 channel = &ring->channel;
1222 rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1224 if (ring->stats->common_stats.usage_cnt > 0)
1225 ring->stats->common_stats.usage_cnt--;
1229 * vxge_hw_ring_rxd_post - Post descriptor on the ring.
1230 * @ring: Handle to the ring object used for receive
1231 * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
1233 * Post descriptor on the ring.
1234 * Prior to posting the descriptor should be filled in accordance with
1235 * Host/Titan interface specification for a given service (LL, etc.).
1238 void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
1240 struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1241 struct __vxge_hw_channel *channel;
1243 channel = &ring->channel;
1245 wmb();
1246 rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1248 vxge_hw_channel_dtr_post(channel, rxdh);
1250 if (ring->stats->common_stats.usage_cnt > 0)
1251 ring->stats->common_stats.usage_cnt--;
1255 * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
1256 * @ring: Handle to the ring object used for receive
1257 * @rxdh: Descriptor handle.
1259 * Processes rxd after post with memory barrier.
1261 void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
1263 wmb();
1264 vxge_hw_ring_rxd_post_post(ring, rxdh);
1268 * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
1269 * @ring: Handle to the ring object used for receive
1270 * @rxdh: Descriptor handle. Returned by HW.
1271 * @t_code: Transfer code, as per Titan User Guide,
1272 * Receive Descriptor Format. Returned by HW.
1274 * Retrieve the _next_ completed descriptor.
1275 * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
1276 * driver of new completed descriptors. After that
1277 * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
1278 * completions (the very first completion is passed by HW via
1279 * vxge_hw_ring_callback_f).
1281 * Implementation-wise, the driver is free to call
1282 * vxge_hw_ring_rxd_next_completed either immediately from inside the
1283 * ring callback, or in a deferred fashion and separate (from HW)
1284 * context.
1286 * Non-zero @t_code means failure to fill-in receive buffer(s)
1287 * of the descriptor.
1288 * For instance, parity error detected during the data transfer.
1289 * In this case Titan will complete the descriptor and indicate
1290 * for the host that the received data is not to be used.
1291 * For details please refer to Titan User Guide.
1293 * Returns: VXGE_HW_OK - success.
1294 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1295 * are currently available for processing.
1297 * See also: vxge_hw_ring_callback_f{},
1298 * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
1300 enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
1301 struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
1303 struct __vxge_hw_channel *channel;
1304 struct vxge_hw_ring_rxd_1 *rxdp;
1305 enum vxge_hw_status status = VXGE_HW_OK;
1306 u64 control_0, own;
1308 channel = &ring->channel;
1310 vxge_hw_channel_dtr_try_complete(channel, rxdh);
1312 rxdp = (struct vxge_hw_ring_rxd_1 *)*rxdh;
1313 if (rxdp == NULL) {
1314 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1315 goto exit;
1318 control_0 = rxdp->control_0;
1319 own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1320 *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
1322 /* check whether it is not the end */
1323 if (!own || *t_code == VXGE_HW_RING_T_CODE_FRM_DROP) {
1325 vxge_assert(((struct vxge_hw_ring_rxd_1 *)rxdp)->host_control !=
1328 ++ring->cmpl_cnt;
1329 vxge_hw_channel_dtr_complete(channel);
1331 vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
1333 ring->stats->common_stats.usage_cnt++;
1334 if (ring->stats->common_stats.usage_max <
1335 ring->stats->common_stats.usage_cnt)
1336 ring->stats->common_stats.usage_max =
1337 ring->stats->common_stats.usage_cnt;
1339 status = VXGE_HW_OK;
1340 goto exit;
1343 /* reset it. since we don't want to return
1344 * garbage to the driver */
1345 *rxdh = NULL;
1346 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1347 exit:
1348 return status;
1352 * vxge_hw_ring_handle_tcode - Handle transfer code.
1353 * @ring: Handle to the ring object used for receive
1354 * @rxdh: Descriptor handle.
1355 * @t_code: One of the enumerated (and documented in the Titan user guide)
1356 * "transfer codes".
1358 * Handle descriptor's transfer code. The latter comes with each completed
1359 * descriptor.
1361 * Returns: one of the enum vxge_hw_status{} enumerated types.
1362 * VXGE_HW_OK - for success.
1363 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1365 enum vxge_hw_status vxge_hw_ring_handle_tcode(
1366 struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1368 struct __vxge_hw_channel *channel;
1369 enum vxge_hw_status status = VXGE_HW_OK;
1371 channel = &ring->channel;
1373 /* If the t_code is not supported and if the
1374 * t_code is other than 0x5 (unparseable packet
1375 * such as unknown UPV6 header), Drop it !!!
1378 if (t_code == VXGE_HW_RING_T_CODE_OK ||
1379 t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
1380 status = VXGE_HW_OK;
1381 goto exit;
1384 if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
1385 status = VXGE_HW_ERR_INVALID_TCODE;
1386 goto exit;
1389 ring->stats->rxd_t_code_err_cnt[t_code]++;
1390 exit:
1391 return status;
1395 * __vxge_hw_non_offload_db_post - Post non offload doorbell
1397 * @fifo: fifohandle
1398 * @txdl_ptr: The starting location of the TxDL in host memory
1399 * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1400 * @no_snoop: No snoop flags
1402 * This function posts a non-offload doorbell to doorbell FIFO
1405 static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1406 u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1408 struct __vxge_hw_channel *channel;
1410 channel = &fifo->channel;
1412 writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1413 VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1414 VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1415 &fifo->nofl_db->control_0);
1417 mmiowb();
1419 writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1421 mmiowb();
1425 * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1426 * the fifo
1427 * @fifoh: Handle to the fifo object used for non offload send
1429 u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1431 return vxge_hw_channel_dtr_count(&fifoh->channel);
1435 * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1436 * @fifoh: Handle to the fifo object used for non offload send
1437 * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1438 * with a valid handle.
1439 * @txdl_priv: Buffer to return the pointer to per txdl space
1441 * Reserve a single TxDL (that is, fifo descriptor)
1442 * for the subsequent filling-in by driver)
1443 * and posting on the corresponding channel (@channelh)
1444 * via vxge_hw_fifo_txdl_post().
1446 * Note: it is the responsibility of driver to reserve multiple descriptors
1447 * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1448 * carries up to configured number (fifo.max_frags) of contiguous buffers.
1450 * Returns: VXGE_HW_OK - success;
1451 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1454 enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1455 struct __vxge_hw_fifo *fifo,
1456 void **txdlh, void **txdl_priv)
1458 struct __vxge_hw_channel *channel;
1459 enum vxge_hw_status status;
1460 int i;
1462 channel = &fifo->channel;
1464 status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1466 if (status == VXGE_HW_OK) {
1467 struct vxge_hw_fifo_txd *txdp =
1468 (struct vxge_hw_fifo_txd *)*txdlh;
1469 struct __vxge_hw_fifo_txdl_priv *priv;
1471 priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1473 /* reset the TxDL's private */
1474 priv->align_dma_offset = 0;
1475 priv->align_vaddr_start = priv->align_vaddr;
1476 priv->align_used_frags = 0;
1477 priv->frags = 0;
1478 priv->alloc_frags = fifo->config->max_frags;
1479 priv->next_txdl_priv = NULL;
1481 *txdl_priv = (void *)(size_t)txdp->host_control;
1483 for (i = 0; i < fifo->config->max_frags; i++) {
1484 txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1485 txdp->control_0 = txdp->control_1 = 0;
1489 return status;
1493 * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1494 * descriptor.
1495 * @fifo: Handle to the fifo object used for non offload send
1496 * @txdlh: Descriptor handle.
1497 * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1498 * (of buffers).
1499 * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1500 * @size: Size of the data buffer (in bytes).
1502 * This API is part of the preparation of the transmit descriptor for posting
1503 * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1504 * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1505 * All three APIs fill in the fields of the fifo descriptor,
1506 * in accordance with the Titan specification.
1509 void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1510 void *txdlh, u32 frag_idx,
1511 dma_addr_t dma_pointer, u32 size)
1513 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1514 struct vxge_hw_fifo_txd *txdp, *txdp_last;
1515 struct __vxge_hw_channel *channel;
1517 channel = &fifo->channel;
1519 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1520 txdp = (struct vxge_hw_fifo_txd *)txdlh + txdl_priv->frags;
1522 if (frag_idx != 0)
1523 txdp->control_0 = txdp->control_1 = 0;
1524 else {
1525 txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1526 VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1527 txdp->control_1 |= fifo->interrupt_type;
1528 txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1529 fifo->tx_intr_num);
1530 if (txdl_priv->frags) {
1531 txdp_last = (struct vxge_hw_fifo_txd *)txdlh +
1532 (txdl_priv->frags - 1);
1533 txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1534 VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1538 vxge_assert(frag_idx < txdl_priv->alloc_frags);
1540 txdp->buffer_pointer = (u64)dma_pointer;
1541 txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1542 fifo->stats->total_buffers++;
1543 txdl_priv->frags++;
1547 * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1548 * @fifo: Handle to the fifo object used for non offload send
1549 * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1550 * @frags: Number of contiguous buffers that are part of a single
1551 * transmit operation.
1553 * Post descriptor on the 'fifo' type channel for transmission.
1554 * Prior to posting the descriptor should be filled in accordance with
1555 * Host/Titan interface specification for a given service (LL, etc.).
1558 void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1560 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1561 struct vxge_hw_fifo_txd *txdp_last;
1562 struct vxge_hw_fifo_txd *txdp_first;
1563 struct __vxge_hw_channel *channel;
1565 channel = &fifo->channel;
1567 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1568 txdp_first = (struct vxge_hw_fifo_txd *)txdlh;
1570 txdp_last = (struct vxge_hw_fifo_txd *)txdlh + (txdl_priv->frags - 1);
1571 txdp_last->control_0 |=
1572 VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1573 txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1575 vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1577 __vxge_hw_non_offload_db_post(fifo,
1578 (u64)txdl_priv->dma_addr,
1579 txdl_priv->frags - 1,
1580 fifo->no_snoop_bits);
1582 fifo->stats->total_posts++;
1583 fifo->stats->common_stats.usage_cnt++;
1584 if (fifo->stats->common_stats.usage_max <
1585 fifo->stats->common_stats.usage_cnt)
1586 fifo->stats->common_stats.usage_max =
1587 fifo->stats->common_stats.usage_cnt;
1591 * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1592 * @fifo: Handle to the fifo object used for non offload send
1593 * @txdlh: Descriptor handle. Returned by HW.
1594 * @t_code: Transfer code, as per Titan User Guide,
1595 * Transmit Descriptor Format.
1596 * Returned by HW.
1598 * Retrieve the _next_ completed descriptor.
1599 * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1600 * driver of new completed descriptors. After that
1601 * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1602 * completions (the very first completion is passed by HW via
1603 * vxge_hw_channel_callback_f).
1605 * Implementation-wise, the driver is free to call
1606 * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1607 * channel callback, or in a deferred fashion and separate (from HW)
1608 * context.
1610 * Non-zero @t_code means failure to process the descriptor.
1611 * The failure could happen, for instance, when the link is
1612 * down, in which case Titan completes the descriptor because it
1613 * is not able to send the data out.
1615 * For details please refer to Titan User Guide.
1617 * Returns: VXGE_HW_OK - success.
1618 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1619 * are currently available for processing.
1622 enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1623 struct __vxge_hw_fifo *fifo, void **txdlh,
1624 enum vxge_hw_fifo_tcode *t_code)
1626 struct __vxge_hw_channel *channel;
1627 struct vxge_hw_fifo_txd *txdp;
1628 enum vxge_hw_status status = VXGE_HW_OK;
1630 channel = &fifo->channel;
1632 vxge_hw_channel_dtr_try_complete(channel, txdlh);
1634 txdp = (struct vxge_hw_fifo_txd *)*txdlh;
1635 if (txdp == NULL) {
1636 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1637 goto exit;
1640 /* check whether host owns it */
1641 if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1643 vxge_assert(txdp->host_control != 0);
1645 vxge_hw_channel_dtr_complete(channel);
1647 *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1649 if (fifo->stats->common_stats.usage_cnt > 0)
1650 fifo->stats->common_stats.usage_cnt--;
1652 status = VXGE_HW_OK;
1653 goto exit;
1656 /* no more completions */
1657 *txdlh = NULL;
1658 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1659 exit:
1660 return status;
1664 * vxge_hw_fifo_handle_tcode - Handle transfer code.
1665 * @fifo: Handle to the fifo object used for non offload send
1666 * @txdlh: Descriptor handle.
1667 * @t_code: One of the enumerated (and documented in the Titan user guide)
1668 * "transfer codes".
1670 * Handle descriptor's transfer code. The latter comes with each completed
1671 * descriptor.
1673 * Returns: one of the enum vxge_hw_status{} enumerated types.
1674 * VXGE_HW_OK - for success.
1675 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1677 enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1678 void *txdlh,
1679 enum vxge_hw_fifo_tcode t_code)
1681 struct __vxge_hw_channel *channel;
1683 enum vxge_hw_status status = VXGE_HW_OK;
1684 channel = &fifo->channel;
1686 if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1687 status = VXGE_HW_ERR_INVALID_TCODE;
1688 goto exit;
1691 fifo->stats->txd_t_code_err_cnt[t_code]++;
1692 exit:
1693 return status;
1697 * vxge_hw_fifo_txdl_free - Free descriptor.
1698 * @fifo: Handle to the fifo object used for non offload send
1699 * @txdlh: Descriptor handle.
1701 * Free the reserved descriptor. This operation is "symmetrical" to
1702 * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1703 * lifecycle.
1705 * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1706 * be:
1708 * - reserved (vxge_hw_fifo_txdl_reserve);
1710 * - posted (vxge_hw_fifo_txdl_post);
1712 * - completed (vxge_hw_fifo_txdl_next_completed);
1714 * - and recycled again (vxge_hw_fifo_txdl_free).
1716 * For alternative state transitions and more details please refer to
1717 * the design doc.
1720 void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1722 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1723 u32 max_frags;
1724 struct __vxge_hw_channel *channel;
1726 channel = &fifo->channel;
1728 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo,
1729 (struct vxge_hw_fifo_txd *)txdlh);
1731 max_frags = fifo->config->max_frags;
1733 vxge_hw_channel_dtr_free(channel, txdlh);
1737 * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1738 * to MAC address table.
1739 * @vp: Vpath handle.
1740 * @macaddr: MAC address to be added for this vpath into the list
1741 * @macaddr_mask: MAC address mask for macaddr
1742 * @duplicate_mode: Duplicate MAC address add mode. Please see
1743 * enum vxge_hw_vpath_mac_addr_add_mode{}
1745 * Adds the given mac address and mac address mask into the list for this
1746 * vpath.
1747 * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1748 * vxge_hw_vpath_mac_addr_get_next
1751 enum vxge_hw_status
1752 vxge_hw_vpath_mac_addr_add(
1753 struct __vxge_hw_vpath_handle *vp,
1754 u8 (macaddr)[ETH_ALEN],
1755 u8 (macaddr_mask)[ETH_ALEN],
1756 enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1758 u32 i;
1759 u64 data1 = 0ULL;
1760 u64 data2 = 0ULL;
1761 enum vxge_hw_status status = VXGE_HW_OK;
1763 if (vp == NULL) {
1764 status = VXGE_HW_ERR_INVALID_HANDLE;
1765 goto exit;
1768 for (i = 0; i < ETH_ALEN; i++) {
1769 data1 <<= 8;
1770 data1 |= (u8)macaddr[i];
1772 data2 <<= 8;
1773 data2 |= (u8)macaddr_mask[i];
1776 switch (duplicate_mode) {
1777 case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1778 i = 0;
1779 break;
1780 case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1781 i = 1;
1782 break;
1783 case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1784 i = 2;
1785 break;
1786 default:
1787 i = 0;
1788 break;
1791 status = __vxge_hw_vpath_rts_table_set(vp,
1792 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1793 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1795 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1796 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1797 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1798 exit:
1799 return status;
1803 * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1804 * from MAC address table.
1805 * @vp: Vpath handle.
1806 * @macaddr: First MAC address entry for this vpath in the list
1807 * @macaddr_mask: MAC address mask for macaddr
1809 * Returns the first mac address and mac address mask in the list for this
1810 * vpath.
1811 * see also: vxge_hw_vpath_mac_addr_get_next
1814 enum vxge_hw_status
1815 vxge_hw_vpath_mac_addr_get(
1816 struct __vxge_hw_vpath_handle *vp,
1817 u8 (macaddr)[ETH_ALEN],
1818 u8 (macaddr_mask)[ETH_ALEN])
1820 u32 i;
1821 u64 data1 = 0ULL;
1822 u64 data2 = 0ULL;
1823 enum vxge_hw_status status = VXGE_HW_OK;
1825 if (vp == NULL) {
1826 status = VXGE_HW_ERR_INVALID_HANDLE;
1827 goto exit;
1830 status = __vxge_hw_vpath_rts_table_get(vp,
1831 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1832 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1833 0, &data1, &data2);
1835 if (status != VXGE_HW_OK)
1836 goto exit;
1838 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1840 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1842 for (i = ETH_ALEN; i > 0; i--) {
1843 macaddr[i-1] = (u8)(data1 & 0xFF);
1844 data1 >>= 8;
1846 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1847 data2 >>= 8;
1849 exit:
1850 return status;
1854 * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1855 * vpath
1856 * from MAC address table.
1857 * @vp: Vpath handle.
1858 * @macaddr: Next MAC address entry for this vpath in the list
1859 * @macaddr_mask: MAC address mask for macaddr
1861 * Returns the next mac address and mac address mask in the list for this
1862 * vpath.
1863 * see also: vxge_hw_vpath_mac_addr_get
1866 enum vxge_hw_status
1867 vxge_hw_vpath_mac_addr_get_next(
1868 struct __vxge_hw_vpath_handle *vp,
1869 u8 (macaddr)[ETH_ALEN],
1870 u8 (macaddr_mask)[ETH_ALEN])
1872 u32 i;
1873 u64 data1 = 0ULL;
1874 u64 data2 = 0ULL;
1875 enum vxge_hw_status status = VXGE_HW_OK;
1877 if (vp == NULL) {
1878 status = VXGE_HW_ERR_INVALID_HANDLE;
1879 goto exit;
1882 status = __vxge_hw_vpath_rts_table_get(vp,
1883 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1884 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1885 0, &data1, &data2);
1887 if (status != VXGE_HW_OK)
1888 goto exit;
1890 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1892 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1894 for (i = ETH_ALEN; i > 0; i--) {
1895 macaddr[i-1] = (u8)(data1 & 0xFF);
1896 data1 >>= 8;
1898 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1899 data2 >>= 8;
1902 exit:
1903 return status;
1907 * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1908 * to MAC address table.
1909 * @vp: Vpath handle.
1910 * @macaddr: MAC address to be added for this vpath into the list
1911 * @macaddr_mask: MAC address mask for macaddr
1913 * Delete the given mac address and mac address mask into the list for this
1914 * vpath.
1915 * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1916 * vxge_hw_vpath_mac_addr_get_next
1919 enum vxge_hw_status
1920 vxge_hw_vpath_mac_addr_delete(
1921 struct __vxge_hw_vpath_handle *vp,
1922 u8 (macaddr)[ETH_ALEN],
1923 u8 (macaddr_mask)[ETH_ALEN])
1925 u32 i;
1926 u64 data1 = 0ULL;
1927 u64 data2 = 0ULL;
1928 enum vxge_hw_status status = VXGE_HW_OK;
1930 if (vp == NULL) {
1931 status = VXGE_HW_ERR_INVALID_HANDLE;
1932 goto exit;
1935 for (i = 0; i < ETH_ALEN; i++) {
1936 data1 <<= 8;
1937 data1 |= (u8)macaddr[i];
1939 data2 <<= 8;
1940 data2 |= (u8)macaddr_mask[i];
1943 status = __vxge_hw_vpath_rts_table_set(vp,
1944 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1945 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1947 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1948 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1949 exit:
1950 return status;
1954 * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1955 * to vlan id table.
1956 * @vp: Vpath handle.
1957 * @vid: vlan id to be added for this vpath into the list
1959 * Adds the given vlan id into the list for this vpath.
1960 * see also: vxge_hw_vpath_vid_delete, vxge_hw_vpath_vid_get and
1961 * vxge_hw_vpath_vid_get_next
1964 enum vxge_hw_status
1965 vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1967 enum vxge_hw_status status = VXGE_HW_OK;
1969 if (vp == NULL) {
1970 status = VXGE_HW_ERR_INVALID_HANDLE;
1971 goto exit;
1974 status = __vxge_hw_vpath_rts_table_set(vp,
1975 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1976 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1977 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1978 exit:
1979 return status;
1983 * vxge_hw_vpath_vid_get - Get the first vid entry for this vpath
1984 * from vlan id table.
1985 * @vp: Vpath handle.
1986 * @vid: Buffer to return vlan id
1988 * Returns the first vlan id in the list for this vpath.
1989 * see also: vxge_hw_vpath_vid_get_next
1992 enum vxge_hw_status
1993 vxge_hw_vpath_vid_get(struct __vxge_hw_vpath_handle *vp, u64 *vid)
1995 u64 data;
1996 enum vxge_hw_status status = VXGE_HW_OK;
1998 if (vp == NULL) {
1999 status = VXGE_HW_ERR_INVALID_HANDLE;
2000 goto exit;
2003 status = __vxge_hw_vpath_rts_table_get(vp,
2004 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
2005 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
2006 0, vid, &data);
2008 *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
2009 exit:
2010 return status;
2014 * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
2015 * to vlan id table.
2016 * @vp: Vpath handle.
2017 * @vid: vlan id to be added for this vpath into the list
2019 * Adds the given vlan id into the list for this vpath.
2020 * see also: vxge_hw_vpath_vid_add, vxge_hw_vpath_vid_get and
2021 * vxge_hw_vpath_vid_get_next
2024 enum vxge_hw_status
2025 vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
2027 enum vxge_hw_status status = VXGE_HW_OK;
2029 if (vp == NULL) {
2030 status = VXGE_HW_ERR_INVALID_HANDLE;
2031 goto exit;
2034 status = __vxge_hw_vpath_rts_table_set(vp,
2035 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
2036 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
2037 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
2038 exit:
2039 return status;
2043 * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
2044 * @vp: Vpath handle.
2046 * Enable promiscuous mode of Titan-e operation.
2048 * See also: vxge_hw_vpath_promisc_disable().
2050 enum vxge_hw_status vxge_hw_vpath_promisc_enable(
2051 struct __vxge_hw_vpath_handle *vp)
2053 u64 val64;
2054 struct __vxge_hw_virtualpath *vpath;
2055 enum vxge_hw_status status = VXGE_HW_OK;
2057 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2058 status = VXGE_HW_ERR_INVALID_HANDLE;
2059 goto exit;
2062 vpath = vp->vpath;
2064 /* Enable promiscuous mode for function 0 only */
2065 if (!(vpath->hldev->access_rights &
2066 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
2067 return VXGE_HW_OK;
2069 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2071 if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
2073 val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2074 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2075 VXGE_HW_RXMAC_VCFG0_BCAST_EN |
2076 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
2078 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2080 exit:
2081 return status;
2085 * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
2086 * @vp: Vpath handle.
2088 * Disable promiscuous mode of Titan-e operation.
2090 * See also: vxge_hw_vpath_promisc_enable().
2092 enum vxge_hw_status vxge_hw_vpath_promisc_disable(
2093 struct __vxge_hw_vpath_handle *vp)
2095 u64 val64;
2096 struct __vxge_hw_virtualpath *vpath;
2097 enum vxge_hw_status status = VXGE_HW_OK;
2099 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2100 status = VXGE_HW_ERR_INVALID_HANDLE;
2101 goto exit;
2104 vpath = vp->vpath;
2106 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2108 if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
2110 val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2111 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2112 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
2114 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2116 exit:
2117 return status;
2121 * vxge_hw_vpath_bcast_enable - Enable broadcast
2122 * @vp: Vpath handle.
2124 * Enable receiving broadcasts.
2126 enum vxge_hw_status vxge_hw_vpath_bcast_enable(
2127 struct __vxge_hw_vpath_handle *vp)
2129 u64 val64;
2130 struct __vxge_hw_virtualpath *vpath;
2131 enum vxge_hw_status status = VXGE_HW_OK;
2133 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2134 status = VXGE_HW_ERR_INVALID_HANDLE;
2135 goto exit;
2138 vpath = vp->vpath;
2140 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2142 if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
2143 val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
2144 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2146 exit:
2147 return status;
2151 * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
2152 * @vp: Vpath handle.
2154 * Enable Titan-e multicast addresses.
2155 * Returns: VXGE_HW_OK on success.
2158 enum vxge_hw_status vxge_hw_vpath_mcast_enable(
2159 struct __vxge_hw_vpath_handle *vp)
2161 u64 val64;
2162 struct __vxge_hw_virtualpath *vpath;
2163 enum vxge_hw_status status = VXGE_HW_OK;
2165 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2166 status = VXGE_HW_ERR_INVALID_HANDLE;
2167 goto exit;
2170 vpath = vp->vpath;
2172 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2174 if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
2175 val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2176 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2178 exit:
2179 return status;
2183 * vxge_hw_vpath_mcast_disable - Disable multicast addresses.
2184 * @vp: Vpath handle.
2186 * Disable Titan-e multicast addresses.
2187 * Returns: VXGE_HW_OK - success.
2188 * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
2191 enum vxge_hw_status
2192 vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
2194 u64 val64;
2195 struct __vxge_hw_virtualpath *vpath;
2196 enum vxge_hw_status status = VXGE_HW_OK;
2198 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2199 status = VXGE_HW_ERR_INVALID_HANDLE;
2200 goto exit;
2203 vpath = vp->vpath;
2205 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2207 if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
2208 val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2209 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2211 exit:
2212 return status;
2216 * vxge_hw_vpath_alarm_process - Process Alarms.
2217 * @vpath: Virtual Path.
2218 * @skip_alarms: Do not clear the alarms
2220 * Process vpath alarms.
2223 enum vxge_hw_status vxge_hw_vpath_alarm_process(
2224 struct __vxge_hw_vpath_handle *vp,
2225 u32 skip_alarms)
2227 enum vxge_hw_status status = VXGE_HW_OK;
2229 if (vp == NULL) {
2230 status = VXGE_HW_ERR_INVALID_HANDLE;
2231 goto exit;
2234 status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2235 exit:
2236 return status;
2240 * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2241 * alrms
2242 * @vp: Virtual Path handle.
2243 * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2244 * interrupts(Can be repeated). If fifo or ring are not enabled
2245 * the MSIX vector for that should be set to 0
2246 * @alarm_msix_id: MSIX vector for alarm.
2248 * This API will associate a given MSIX vector numbers with the four TIM
2249 * interrupts and alarm interrupt.
2251 void
2252 vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2253 int alarm_msix_id)
2255 u64 val64;
2256 struct __vxge_hw_virtualpath *vpath = vp->vpath;
2257 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2258 u32 vp_id = vp->vpath->vp_id;
2260 val64 = VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2261 (vp_id * 4) + tim_msix_id[0]) |
2262 VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2263 (vp_id * 4) + tim_msix_id[1]);
2265 writeq(val64, &vp_reg->interrupt_cfg0);
2267 writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2268 (vpath->hldev->first_vp_id * 4) + alarm_msix_id),
2269 &vp_reg->interrupt_cfg2);
2271 if (vpath->hldev->config.intr_mode ==
2272 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2273 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2274 VXGE_HW_ONE_SHOT_VECT0_EN_ONE_SHOT_VECT0_EN,
2275 0, 32), &vp_reg->one_shot_vect0_en);
2276 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2277 VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2278 0, 32), &vp_reg->one_shot_vect1_en);
2279 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2280 VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2281 0, 32), &vp_reg->one_shot_vect2_en);
2286 * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2287 * @vp: Virtual Path handle.
2288 * @msix_id: MSIX ID
2290 * The function masks the msix interrupt for the given msix_id
2292 * Returns: 0,
2293 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2294 * status.
2295 * See also:
2297 void
2298 vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2300 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2301 __vxge_hw_pio_mem_write32_upper(
2302 (u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2303 &hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2307 * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2308 * @vp: Virtual Path handle.
2309 * @msix_id: MSI ID
2311 * The function clears the msix interrupt for the given msix_id
2313 * Returns: 0,
2314 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2315 * status.
2316 * See also:
2318 void vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
2320 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2322 if ((hldev->config.intr_mode == VXGE_HW_INTR_MODE_MSIX_ONE_SHOT))
2323 __vxge_hw_pio_mem_write32_upper(
2324 (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2325 &hldev->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
2326 else
2327 __vxge_hw_pio_mem_write32_upper(
2328 (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2329 &hldev->common_reg->clear_msix_mask_vect[msix_id % 4]);
2333 * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2334 * @vp: Virtual Path handle.
2335 * @msix_id: MSI ID
2337 * The function unmasks the msix interrupt for the given msix_id
2339 * Returns: 0,
2340 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2341 * status.
2342 * See also:
2344 void
2345 vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2347 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2348 __vxge_hw_pio_mem_write32_upper(
2349 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2350 &hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2354 * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2355 * @vp: Virtual Path handle.
2357 * Mask Tx and Rx vpath interrupts.
2359 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2361 void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2363 u64 tim_int_mask0[4] = {[0 ...3] = 0};
2364 u32 tim_int_mask1[4] = {[0 ...3] = 0};
2365 u64 val64;
2366 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2368 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2369 tim_int_mask1, vp->vpath->vp_id);
2371 val64 = readq(&hldev->common_reg->tim_int_mask0);
2373 if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2374 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2375 writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2376 tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2377 &hldev->common_reg->tim_int_mask0);
2380 val64 = readl(&hldev->common_reg->tim_int_mask1);
2382 if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2383 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2384 __vxge_hw_pio_mem_write32_upper(
2385 (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2386 tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2387 &hldev->common_reg->tim_int_mask1);
2392 * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2393 * @vp: Virtual Path handle.
2395 * Unmask Tx and Rx vpath interrupts.
2397 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2399 void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2401 u64 tim_int_mask0[4] = {[0 ...3] = 0};
2402 u32 tim_int_mask1[4] = {[0 ...3] = 0};
2403 u64 val64;
2404 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2406 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2407 tim_int_mask1, vp->vpath->vp_id);
2409 val64 = readq(&hldev->common_reg->tim_int_mask0);
2411 if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2412 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2413 writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2414 tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2415 &hldev->common_reg->tim_int_mask0);
2418 if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2419 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2420 __vxge_hw_pio_mem_write32_upper(
2421 (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2422 tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2423 &hldev->common_reg->tim_int_mask1);
2428 * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2429 * descriptors and process the same.
2430 * @ring: Handle to the ring object used for receive
2432 * The function polls the Rx for the completed descriptors and calls
2433 * the driver via supplied completion callback.
2435 * Returns: VXGE_HW_OK, if the polling is completed successful.
2436 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2437 * descriptors available which are yet to be processed.
2439 * See also: vxge_hw_vpath_poll_rx()
2441 enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2443 u8 t_code;
2444 enum vxge_hw_status status = VXGE_HW_OK;
2445 void *first_rxdh;
2446 u64 val64 = 0;
2447 int new_count = 0;
2449 ring->cmpl_cnt = 0;
2451 status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2452 if (status == VXGE_HW_OK)
2453 ring->callback(ring, first_rxdh,
2454 t_code, ring->channel.userdata);
2456 if (ring->cmpl_cnt != 0) {
2457 ring->doorbell_cnt += ring->cmpl_cnt;
2458 if (ring->doorbell_cnt >= ring->rxds_limit) {
2460 * Each RxD is of 4 qwords, update the number of
2461 * qwords replenished
2463 new_count = (ring->doorbell_cnt * 4);
2465 /* For each block add 4 more qwords */
2466 ring->total_db_cnt += ring->doorbell_cnt;
2467 if (ring->total_db_cnt >= ring->rxds_per_block) {
2468 new_count += 4;
2469 /* Reset total count */
2470 ring->total_db_cnt %= ring->rxds_per_block;
2472 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2473 &ring->vp_reg->prc_rxd_doorbell);
2474 val64 =
2475 readl(&ring->common_reg->titan_general_int_status);
2476 ring->doorbell_cnt = 0;
2480 return status;
2484 * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2485 * the same.
2486 * @fifo: Handle to the fifo object used for non offload send
2488 * The function polls the Tx for the completed descriptors and calls
2489 * the driver via supplied completion callback.
2491 * Returns: VXGE_HW_OK, if the polling is completed successful.
2492 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2493 * descriptors available which are yet to be processed.
2495 enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2496 struct sk_buff ***skb_ptr, int nr_skb,
2497 int *more)
2499 enum vxge_hw_fifo_tcode t_code;
2500 void *first_txdlh;
2501 enum vxge_hw_status status = VXGE_HW_OK;
2502 struct __vxge_hw_channel *channel;
2504 channel = &fifo->channel;
2506 status = vxge_hw_fifo_txdl_next_completed(fifo,
2507 &first_txdlh, &t_code);
2508 if (status == VXGE_HW_OK)
2509 if (fifo->callback(fifo, first_txdlh, t_code,
2510 channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
2511 status = VXGE_HW_COMPLETIONS_REMAIN;
2513 return status;