1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #include <linux/etherdevice.h>
15 #include <linux/prefetch.h>
17 #include "vxge-traffic.h"
18 #include "vxge-config.h"
19 #include "vxge-main.h"
22 * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
23 * @vp: Virtual Path handle.
25 * Enable vpath interrupts. The function is to be executed the last in
26 * vpath initialization sequence.
28 * See also: vxge_hw_vpath_intr_disable()
30 enum vxge_hw_status
vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle
*vp
)
34 struct __vxge_hw_virtualpath
*vpath
;
35 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
36 enum vxge_hw_status status
= VXGE_HW_OK
;
38 status
= VXGE_HW_ERR_INVALID_HANDLE
;
44 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
45 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
49 vp_reg
= vpath
->vp_reg
;
51 writeq(VXGE_HW_INTR_MASK_ALL
, &vp_reg
->kdfcctl_errors_reg
);
53 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
54 &vp_reg
->general_errors_reg
);
56 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
57 &vp_reg
->pci_config_errors_reg
);
59 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
60 &vp_reg
->mrpcim_to_vpath_alarm_reg
);
62 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
63 &vp_reg
->srpcim_to_vpath_alarm_reg
);
65 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
66 &vp_reg
->vpath_ppif_int_status
);
68 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
69 &vp_reg
->srpcim_msg_to_vpath_reg
);
71 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
72 &vp_reg
->vpath_pcipif_int_status
);
74 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
75 &vp_reg
->prc_alarm_reg
);
77 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
78 &vp_reg
->wrdma_alarm_status
);
80 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
81 &vp_reg
->asic_ntwk_vp_err_reg
);
83 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
84 &vp_reg
->xgmac_vp_int_status
);
86 val64
= readq(&vp_reg
->vpath_general_int_status
);
88 /* Mask unwanted interrupts */
90 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
91 &vp_reg
->vpath_pcipif_int_mask
);
93 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
94 &vp_reg
->srpcim_msg_to_vpath_mask
);
96 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
97 &vp_reg
->srpcim_to_vpath_alarm_mask
);
99 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
100 &vp_reg
->mrpcim_to_vpath_alarm_mask
);
102 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
103 &vp_reg
->pci_config_errors_mask
);
105 /* Unmask the individual interrupts */
107 writeq((u32
)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW
|
108 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW
|
109 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ
|
110 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR
), 0, 32),
111 &vp_reg
->general_errors_mask
);
113 __vxge_hw_pio_mem_write32_upper(
114 (u32
)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR
|
115 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR
|
116 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON
|
117 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON
|
118 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR
|
119 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR
), 0, 32),
120 &vp_reg
->kdfcctl_errors_mask
);
122 __vxge_hw_pio_mem_write32_upper(0, &vp_reg
->vpath_ppif_int_mask
);
124 __vxge_hw_pio_mem_write32_upper(
125 (u32
)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP
, 0, 32),
126 &vp_reg
->prc_alarm_mask
);
128 __vxge_hw_pio_mem_write32_upper(0, &vp_reg
->wrdma_alarm_mask
);
129 __vxge_hw_pio_mem_write32_upper(0, &vp_reg
->xgmac_vp_int_mask
);
131 if (vpath
->hldev
->first_vp_id
!= vpath
->vp_id
)
132 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
133 &vp_reg
->asic_ntwk_vp_err_mask
);
135 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn((
136 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT
|
137 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK
), 0, 32),
138 &vp_reg
->asic_ntwk_vp_err_mask
);
140 __vxge_hw_pio_mem_write32_upper(0,
141 &vp_reg
->vpath_general_int_mask
);
148 * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
149 * @vp: Virtual Path handle.
151 * Disable vpath interrupts. The function is to be executed the last in
152 * vpath initialization sequence.
154 * See also: vxge_hw_vpath_intr_enable()
156 enum vxge_hw_status
vxge_hw_vpath_intr_disable(
157 struct __vxge_hw_vpath_handle
*vp
)
161 struct __vxge_hw_virtualpath
*vpath
;
162 enum vxge_hw_status status
= VXGE_HW_OK
;
163 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
165 status
= VXGE_HW_ERR_INVALID_HANDLE
;
171 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
172 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
175 vp_reg
= vpath
->vp_reg
;
177 __vxge_hw_pio_mem_write32_upper(
178 (u32
)VXGE_HW_INTR_MASK_ALL
,
179 &vp_reg
->vpath_general_int_mask
);
181 val64
= VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath
->vp_id
));
183 writeq(VXGE_HW_INTR_MASK_ALL
, &vp_reg
->kdfcctl_errors_mask
);
185 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
186 &vp_reg
->general_errors_mask
);
188 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
189 &vp_reg
->pci_config_errors_mask
);
191 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
192 &vp_reg
->mrpcim_to_vpath_alarm_mask
);
194 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
195 &vp_reg
->srpcim_to_vpath_alarm_mask
);
197 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
198 &vp_reg
->vpath_ppif_int_mask
);
200 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
201 &vp_reg
->srpcim_msg_to_vpath_mask
);
203 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
204 &vp_reg
->vpath_pcipif_int_mask
);
206 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
207 &vp_reg
->wrdma_alarm_mask
);
209 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
210 &vp_reg
->prc_alarm_mask
);
212 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
213 &vp_reg
->xgmac_vp_int_mask
);
215 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
216 &vp_reg
->asic_ntwk_vp_err_mask
);
222 void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo
*fifo
)
224 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
225 struct vxge_hw_vp_config
*config
;
228 if (fifo
->config
->enable
!= VXGE_HW_FIFO_ENABLE
)
231 vp_reg
= fifo
->vp_reg
;
232 config
= container_of(fifo
->config
, struct vxge_hw_vp_config
, fifo
);
234 if (config
->tti
.timer_ci_en
!= VXGE_HW_TIM_TIMER_CI_ENABLE
) {
235 config
->tti
.timer_ci_en
= VXGE_HW_TIM_TIMER_CI_ENABLE
;
236 val64
= readq(&vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_TX
]);
237 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI
;
238 fifo
->tim_tti_cfg1_saved
= val64
;
239 writeq(val64
, &vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_TX
]);
243 void vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring
*ring
)
245 u64 val64
= ring
->tim_rti_cfg1_saved
;
247 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI
;
248 ring
->tim_rti_cfg1_saved
= val64
;
249 writeq(val64
, &ring
->vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_RX
]);
252 void vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo
*fifo
)
254 u64 val64
= fifo
->tim_tti_cfg3_saved
;
255 u64 timer
= (fifo
->rtimer
* 1000) / 272;
257 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
259 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer
) |
260 VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(5);
262 writeq(val64
, &fifo
->vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_TX
]);
263 /* tti_cfg3_saved is not updated again because it is
264 * initialized at one place only - init time.
268 void vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring
*ring
)
270 u64 val64
= ring
->tim_rti_cfg3_saved
;
271 u64 timer
= (ring
->rtimer
* 1000) / 272;
273 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
275 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer
) |
276 VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(4);
278 writeq(val64
, &ring
->vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_RX
]);
279 /* rti_cfg3_saved is not updated again because it is
280 * initialized at one place only - init time.
285 * vxge_hw_channel_msix_mask - Mask MSIX Vector.
286 * @channeh: Channel for rx or tx handle
289 * The function masks the msix interrupt for the given msix_id
293 void vxge_hw_channel_msix_mask(struct __vxge_hw_channel
*channel
, int msix_id
)
296 __vxge_hw_pio_mem_write32_upper(
297 (u32
)vxge_bVALn(vxge_mBIT(msix_id
>> 2), 0, 32),
298 &channel
->common_reg
->set_msix_mask_vect
[msix_id
%4]);
302 * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
303 * @channeh: Channel for rx or tx handle
306 * The function unmasks the msix interrupt for the given msix_id
311 vxge_hw_channel_msix_unmask(struct __vxge_hw_channel
*channel
, int msix_id
)
314 __vxge_hw_pio_mem_write32_upper(
315 (u32
)vxge_bVALn(vxge_mBIT(msix_id
>> 2), 0, 32),
316 &channel
->common_reg
->clear_msix_mask_vect
[msix_id
%4]);
320 * vxge_hw_channel_msix_clear - Unmask the MSIX Vector.
321 * @channel: Channel for rx or tx handle
324 * The function unmasks the msix interrupt for the given msix_id
325 * if configured in MSIX oneshot mode
329 void vxge_hw_channel_msix_clear(struct __vxge_hw_channel
*channel
, int msix_id
)
331 __vxge_hw_pio_mem_write32_upper(
332 (u32
) vxge_bVALn(vxge_mBIT(msix_id
>> 2), 0, 32),
333 &channel
->common_reg
->clr_msix_one_shot_vec
[msix_id
% 4]);
337 * vxge_hw_device_set_intr_type - Updates the configuration
338 * with new interrupt type.
339 * @hldev: HW device handle.
340 * @intr_mode: New interrupt type
342 u32
vxge_hw_device_set_intr_type(struct __vxge_hw_device
*hldev
, u32 intr_mode
)
345 if ((intr_mode
!= VXGE_HW_INTR_MODE_IRQLINE
) &&
346 (intr_mode
!= VXGE_HW_INTR_MODE_MSIX
) &&
347 (intr_mode
!= VXGE_HW_INTR_MODE_MSIX_ONE_SHOT
) &&
348 (intr_mode
!= VXGE_HW_INTR_MODE_DEF
))
349 intr_mode
= VXGE_HW_INTR_MODE_IRQLINE
;
351 hldev
->config
.intr_mode
= intr_mode
;
356 * vxge_hw_device_intr_enable - Enable interrupts.
357 * @hldev: HW device handle.
358 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
359 * the type(s) of interrupts to enable.
361 * Enable Titan interrupts. The function is to be executed the last in
362 * Titan initialization sequence.
364 * See also: vxge_hw_device_intr_disable()
366 void vxge_hw_device_intr_enable(struct __vxge_hw_device
*hldev
)
372 vxge_hw_device_mask_all(hldev
);
374 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
376 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)))
379 vxge_hw_vpath_intr_enable(
380 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev
->virtual_paths
[i
]));
383 if (hldev
->config
.intr_mode
== VXGE_HW_INTR_MODE_IRQLINE
) {
384 val64
= hldev
->tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] |
385 hldev
->tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
];
388 writeq(val64
, &hldev
->common_reg
->tim_int_status0
);
390 writeq(~val64
, &hldev
->common_reg
->tim_int_mask0
);
393 val32
= hldev
->tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] |
394 hldev
->tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
];
397 __vxge_hw_pio_mem_write32_upper(val32
,
398 &hldev
->common_reg
->tim_int_status1
);
400 __vxge_hw_pio_mem_write32_upper(~val32
,
401 &hldev
->common_reg
->tim_int_mask1
);
405 val64
= readq(&hldev
->common_reg
->titan_general_int_status
);
407 vxge_hw_device_unmask_all(hldev
);
411 * vxge_hw_device_intr_disable - Disable Titan interrupts.
412 * @hldev: HW device handle.
413 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
414 * the type(s) of interrupts to disable.
416 * Disable Titan interrupts.
418 * See also: vxge_hw_device_intr_enable()
420 void vxge_hw_device_intr_disable(struct __vxge_hw_device
*hldev
)
424 vxge_hw_device_mask_all(hldev
);
426 /* mask all the tim interrupts */
427 writeq(VXGE_HW_INTR_MASK_ALL
, &hldev
->common_reg
->tim_int_mask0
);
428 __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32
,
429 &hldev
->common_reg
->tim_int_mask1
);
431 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
433 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)))
436 vxge_hw_vpath_intr_disable(
437 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev
->virtual_paths
[i
]));
442 * vxge_hw_device_mask_all - Mask all device interrupts.
443 * @hldev: HW device handle.
445 * Mask all device interrupts.
447 * See also: vxge_hw_device_unmask_all()
449 void vxge_hw_device_mask_all(struct __vxge_hw_device
*hldev
)
453 val64
= VXGE_HW_TITAN_MASK_ALL_INT_ALARM
|
454 VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC
;
456 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(val64
, 0, 32),
457 &hldev
->common_reg
->titan_mask_all_int
);
461 * vxge_hw_device_unmask_all - Unmask all device interrupts.
462 * @hldev: HW device handle.
464 * Unmask all device interrupts.
466 * See also: vxge_hw_device_mask_all()
468 void vxge_hw_device_unmask_all(struct __vxge_hw_device
*hldev
)
472 if (hldev
->config
.intr_mode
== VXGE_HW_INTR_MODE_IRQLINE
)
473 val64
= VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC
;
475 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(val64
, 0, 32),
476 &hldev
->common_reg
->titan_mask_all_int
);
480 * vxge_hw_device_flush_io - Flush io writes.
481 * @hldev: HW device handle.
483 * The function performs a read operation to flush io writes.
487 void vxge_hw_device_flush_io(struct __vxge_hw_device
*hldev
)
491 val32
= readl(&hldev
->common_reg
->titan_general_int_status
);
495 * __vxge_hw_device_handle_error - Handle error
498 * @type: Error type. Please see enum vxge_hw_event{}
502 static enum vxge_hw_status
503 __vxge_hw_device_handle_error(struct __vxge_hw_device
*hldev
, u32 vp_id
,
504 enum vxge_hw_event type
)
507 case VXGE_HW_EVENT_UNKNOWN
:
509 case VXGE_HW_EVENT_RESET_START
:
510 case VXGE_HW_EVENT_RESET_COMPLETE
:
511 case VXGE_HW_EVENT_LINK_DOWN
:
512 case VXGE_HW_EVENT_LINK_UP
:
514 case VXGE_HW_EVENT_ALARM_CLEARED
:
516 case VXGE_HW_EVENT_ECCERR
:
517 case VXGE_HW_EVENT_MRPCIM_ECCERR
:
519 case VXGE_HW_EVENT_FIFO_ERR
:
520 case VXGE_HW_EVENT_VPATH_ERR
:
521 case VXGE_HW_EVENT_CRITICAL_ERR
:
522 case VXGE_HW_EVENT_SERR
:
524 case VXGE_HW_EVENT_SRPCIM_SERR
:
525 case VXGE_HW_EVENT_MRPCIM_SERR
:
527 case VXGE_HW_EVENT_SLOT_FREEZE
:
535 if (hldev
->uld_callbacks
.crit_err
)
536 hldev
->uld_callbacks
.crit_err(
537 (struct __vxge_hw_device
*)hldev
,
545 * __vxge_hw_device_handle_link_down_ind
546 * @hldev: HW device handle.
548 * Link down indication handler. The function is invoked by HW when
549 * Titan indicates that the link is down.
551 static enum vxge_hw_status
552 __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device
*hldev
)
555 * If the previous link state is not down, return.
557 if (hldev
->link_state
== VXGE_HW_LINK_DOWN
)
560 hldev
->link_state
= VXGE_HW_LINK_DOWN
;
563 if (hldev
->uld_callbacks
.link_down
)
564 hldev
->uld_callbacks
.link_down(hldev
);
570 * __vxge_hw_device_handle_link_up_ind
571 * @hldev: HW device handle.
573 * Link up indication handler. The function is invoked by HW when
574 * Titan indicates that the link is up for programmable amount of time.
576 static enum vxge_hw_status
577 __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device
*hldev
)
580 * If the previous link state is not down, return.
582 if (hldev
->link_state
== VXGE_HW_LINK_UP
)
585 hldev
->link_state
= VXGE_HW_LINK_UP
;
588 if (hldev
->uld_callbacks
.link_up
)
589 hldev
->uld_callbacks
.link_up(hldev
);
595 * __vxge_hw_vpath_alarm_process - Process Alarms.
596 * @vpath: Virtual Path.
597 * @skip_alarms: Do not clear the alarms
599 * Process vpath alarms.
602 static enum vxge_hw_status
603 __vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath
*vpath
,
609 struct __vxge_hw_device
*hldev
= NULL
;
610 enum vxge_hw_event alarm_event
= VXGE_HW_EVENT_UNKNOWN
;
612 struct vxge_hw_vpath_stats_sw_info
*sw_stats
;
613 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
616 alarm_event
= VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN
,
621 hldev
= vpath
->hldev
;
622 vp_reg
= vpath
->vp_reg
;
623 alarm_status
= readq(&vp_reg
->vpath_general_int_status
);
625 if (alarm_status
== VXGE_HW_ALL_FOXES
) {
626 alarm_event
= VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE
,
631 sw_stats
= vpath
->sw_stats
;
633 if (alarm_status
& ~(
634 VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT
|
635 VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT
|
636 VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT
|
637 VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT
)) {
638 sw_stats
->error_stats
.unknown_alarms
++;
640 alarm_event
= VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN
,
645 if (alarm_status
& VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT
) {
647 val64
= readq(&vp_reg
->xgmac_vp_int_status
);
650 VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT
) {
652 val64
= readq(&vp_reg
->asic_ntwk_vp_err_reg
);
655 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT
) &&
657 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK
))) ||
659 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR
) &&
661 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR
)
663 sw_stats
->error_stats
.network_sustained_fault
++;
666 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT
,
667 &vp_reg
->asic_ntwk_vp_err_mask
);
669 __vxge_hw_device_handle_link_down_ind(hldev
);
670 alarm_event
= VXGE_HW_SET_LEVEL(
671 VXGE_HW_EVENT_LINK_DOWN
, alarm_event
);
675 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK
) &&
677 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT
))) ||
679 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR
) &&
681 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR
)
684 sw_stats
->error_stats
.network_sustained_ok
++;
687 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK
,
688 &vp_reg
->asic_ntwk_vp_err_mask
);
690 __vxge_hw_device_handle_link_up_ind(hldev
);
691 alarm_event
= VXGE_HW_SET_LEVEL(
692 VXGE_HW_EVENT_LINK_UP
, alarm_event
);
695 writeq(VXGE_HW_INTR_MASK_ALL
,
696 &vp_reg
->asic_ntwk_vp_err_reg
);
698 alarm_event
= VXGE_HW_SET_LEVEL(
699 VXGE_HW_EVENT_ALARM_CLEARED
, alarm_event
);
706 if (alarm_status
& VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT
) {
708 pic_status
= readq(&vp_reg
->vpath_ppif_int_status
);
711 VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT
) {
713 val64
= readq(&vp_reg
->general_errors_reg
);
714 mask64
= readq(&vp_reg
->general_errors_mask
);
717 VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET
) &
719 sw_stats
->error_stats
.ini_serr_det
++;
721 alarm_event
= VXGE_HW_SET_LEVEL(
722 VXGE_HW_EVENT_SERR
, alarm_event
);
726 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW
) &
728 sw_stats
->error_stats
.dblgen_fifo0_overflow
++;
730 alarm_event
= VXGE_HW_SET_LEVEL(
731 VXGE_HW_EVENT_FIFO_ERR
, alarm_event
);
735 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR
) &
737 sw_stats
->error_stats
.statsb_pif_chain_error
++;
740 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ
) &
742 sw_stats
->error_stats
.statsb_drop_timeout
++;
745 VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS
) &
747 sw_stats
->error_stats
.target_illegal_access
++;
750 writeq(VXGE_HW_INTR_MASK_ALL
,
751 &vp_reg
->general_errors_reg
);
752 alarm_event
= VXGE_HW_SET_LEVEL(
753 VXGE_HW_EVENT_ALARM_CLEARED
,
759 VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT
) {
761 val64
= readq(&vp_reg
->kdfcctl_errors_reg
);
762 mask64
= readq(&vp_reg
->kdfcctl_errors_mask
);
765 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR
) &
767 sw_stats
->error_stats
.kdfcctl_fifo0_overwrite
++;
769 alarm_event
= VXGE_HW_SET_LEVEL(
770 VXGE_HW_EVENT_FIFO_ERR
,
775 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON
) &
777 sw_stats
->error_stats
.kdfcctl_fifo0_poison
++;
779 alarm_event
= VXGE_HW_SET_LEVEL(
780 VXGE_HW_EVENT_FIFO_ERR
,
785 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR
) &
787 sw_stats
->error_stats
.kdfcctl_fifo0_dma_error
++;
789 alarm_event
= VXGE_HW_SET_LEVEL(
790 VXGE_HW_EVENT_FIFO_ERR
,
795 writeq(VXGE_HW_INTR_MASK_ALL
,
796 &vp_reg
->kdfcctl_errors_reg
);
797 alarm_event
= VXGE_HW_SET_LEVEL(
798 VXGE_HW_EVENT_ALARM_CLEARED
,
805 if (alarm_status
& VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT
) {
807 val64
= readq(&vp_reg
->wrdma_alarm_status
);
809 if (val64
& VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT
) {
811 val64
= readq(&vp_reg
->prc_alarm_reg
);
812 mask64
= readq(&vp_reg
->prc_alarm_mask
);
814 if ((val64
& VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP
)&
816 sw_stats
->error_stats
.prc_ring_bumps
++;
818 if ((val64
& VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR
) &
820 sw_stats
->error_stats
.prc_rxdcm_sc_err
++;
822 alarm_event
= VXGE_HW_SET_LEVEL(
823 VXGE_HW_EVENT_VPATH_ERR
,
827 if ((val64
& VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT
)
829 sw_stats
->error_stats
.prc_rxdcm_sc_abort
++;
831 alarm_event
= VXGE_HW_SET_LEVEL(
832 VXGE_HW_EVENT_VPATH_ERR
,
836 if ((val64
& VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR
)
838 sw_stats
->error_stats
.prc_quanta_size_err
++;
840 alarm_event
= VXGE_HW_SET_LEVEL(
841 VXGE_HW_EVENT_VPATH_ERR
,
846 writeq(VXGE_HW_INTR_MASK_ALL
,
847 &vp_reg
->prc_alarm_reg
);
848 alarm_event
= VXGE_HW_SET_LEVEL(
849 VXGE_HW_EVENT_ALARM_CLEARED
,
855 hldev
->stats
.sw_dev_err_stats
.vpath_alarms
++;
857 if ((alarm_event
== VXGE_HW_EVENT_ALARM_CLEARED
) ||
858 (alarm_event
== VXGE_HW_EVENT_UNKNOWN
))
861 __vxge_hw_device_handle_error(hldev
, vpath
->vp_id
, alarm_event
);
863 if (alarm_event
== VXGE_HW_EVENT_SERR
)
864 return VXGE_HW_ERR_CRITICAL
;
866 return (alarm_event
== VXGE_HW_EVENT_SLOT_FREEZE
) ?
867 VXGE_HW_ERR_SLOT_FREEZE
:
868 (alarm_event
== VXGE_HW_EVENT_FIFO_ERR
) ? VXGE_HW_ERR_FIFO
:
873 * vxge_hw_device_begin_irq - Begin IRQ processing.
874 * @hldev: HW device handle.
875 * @skip_alarms: Do not clear the alarms
876 * @reason: "Reason" for the interrupt, the value of Titan's
877 * general_int_status register.
879 * The function performs two actions, It first checks whether (shared IRQ) the
880 * interrupt was raised by the device. Next, it masks the device interrupts.
883 * vxge_hw_device_begin_irq() does not flush MMIO writes through the
884 * bridge. Therefore, two back-to-back interrupts are potentially possible.
886 * Returns: 0, if the interrupt is not "ours" (note that in this case the
887 * device remain enabled).
888 * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
891 enum vxge_hw_status
vxge_hw_device_begin_irq(struct __vxge_hw_device
*hldev
,
892 u32 skip_alarms
, u64
*reason
)
898 enum vxge_hw_status ret
= VXGE_HW_OK
;
900 val64
= readq(&hldev
->common_reg
->titan_general_int_status
);
902 if (unlikely(!val64
)) {
903 /* not Titan interrupt */
905 ret
= VXGE_HW_ERR_WRONG_IRQ
;
909 if (unlikely(val64
== VXGE_HW_ALL_FOXES
)) {
911 adapter_status
= readq(&hldev
->common_reg
->adapter_status
);
913 if (adapter_status
== VXGE_HW_ALL_FOXES
) {
915 __vxge_hw_device_handle_error(hldev
,
916 NULL_VPID
, VXGE_HW_EVENT_SLOT_FREEZE
);
918 ret
= VXGE_HW_ERR_SLOT_FREEZE
;
923 hldev
->stats
.sw_dev_info_stats
.total_intr_cnt
++;
927 vpath_mask
= hldev
->vpaths_deployed
>>
928 (64 - VXGE_HW_MAX_VIRTUAL_PATHS
);
931 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask
)) {
932 hldev
->stats
.sw_dev_info_stats
.traffic_intr_cnt
++;
937 hldev
->stats
.sw_dev_info_stats
.not_traffic_intr_cnt
++;
940 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT
)) {
942 enum vxge_hw_status error_level
= VXGE_HW_OK
;
944 hldev
->stats
.sw_dev_err_stats
.vpath_alarms
++;
946 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
948 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)))
951 ret
= __vxge_hw_vpath_alarm_process(
952 &hldev
->virtual_paths
[i
], skip_alarms
);
954 error_level
= VXGE_HW_SET_LEVEL(ret
, error_level
);
956 if (unlikely((ret
== VXGE_HW_ERR_CRITICAL
) ||
957 (ret
== VXGE_HW_ERR_SLOT_FREEZE
)))
968 * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
969 * condition that has caused the Tx and RX interrupt.
972 * Acknowledge (that is, clear) the condition that has caused
973 * the Tx and Rx interrupt.
974 * See also: vxge_hw_device_begin_irq(),
975 * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
977 void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device
*hldev
)
980 if ((hldev
->tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] != 0) ||
981 (hldev
->tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
] != 0)) {
982 writeq((hldev
->tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] |
983 hldev
->tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
]),
984 &hldev
->common_reg
->tim_int_status0
);
987 if ((hldev
->tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] != 0) ||
988 (hldev
->tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
] != 0)) {
989 __vxge_hw_pio_mem_write32_upper(
990 (hldev
->tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] |
991 hldev
->tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
]),
992 &hldev
->common_reg
->tim_int_status1
);
997 * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
999 * @dtrh: Buffer to return the DTR pointer
1001 * Allocates a dtr from the reserve array. If the reserve array is empty,
1002 * it swaps the reserve and free arrays.
1005 static enum vxge_hw_status
1006 vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel
*channel
, void **dtrh
)
1010 if (channel
->reserve_ptr
- channel
->reserve_top
> 0) {
1012 *dtrh
= channel
->reserve_arr
[--channel
->reserve_ptr
];
1017 /* switch between empty and full arrays */
1019 /* the idea behind such a design is that by having free and reserved
1020 * arrays separated we basically separated irq and non-irq parts.
1021 * i.e. no additional lock need to be done when we free a resource */
1023 if (channel
->length
- channel
->free_ptr
> 0) {
1025 tmp_arr
= channel
->reserve_arr
;
1026 channel
->reserve_arr
= channel
->free_arr
;
1027 channel
->free_arr
= tmp_arr
;
1028 channel
->reserve_ptr
= channel
->length
;
1029 channel
->reserve_top
= channel
->free_ptr
;
1030 channel
->free_ptr
= channel
->length
;
1032 channel
->stats
->reserve_free_swaps_cnt
++;
1034 goto _alloc_after_swap
;
1037 channel
->stats
->full_cnt
++;
1040 return VXGE_HW_INF_OUT_OF_DESCRIPTORS
;
1044 * vxge_hw_channel_dtr_post - Post a dtr to the channel
1045 * @channelh: Channel
1046 * @dtrh: DTR pointer
1048 * Posts a dtr to work array.
1052 vxge_hw_channel_dtr_post(struct __vxge_hw_channel
*channel
, void *dtrh
)
1054 vxge_assert(channel
->work_arr
[channel
->post_index
] == NULL
);
1056 channel
->work_arr
[channel
->post_index
++] = dtrh
;
1059 if (channel
->post_index
== channel
->length
)
1060 channel
->post_index
= 0;
1064 * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
1066 * @dtr: Buffer to return the next completed DTR pointer
1068 * Returns the next completed dtr with out removing it from work array
1072 vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel
*channel
, void **dtrh
)
1074 vxge_assert(channel
->compl_index
< channel
->length
);
1076 *dtrh
= channel
->work_arr
[channel
->compl_index
];
1081 * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
1082 * @channel: Channel handle
1084 * Removes the next completed dtr from work array
1087 void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel
*channel
)
1089 channel
->work_arr
[channel
->compl_index
] = NULL
;
1092 if (++channel
->compl_index
== channel
->length
)
1093 channel
->compl_index
= 0;
1095 channel
->stats
->total_compl_cnt
++;
1099 * vxge_hw_channel_dtr_free - Frees a dtr
1100 * @channel: Channel handle
1103 * Returns the dtr to free array
1106 void vxge_hw_channel_dtr_free(struct __vxge_hw_channel
*channel
, void *dtrh
)
1108 channel
->free_arr
[--channel
->free_ptr
] = dtrh
;
1112 * vxge_hw_channel_dtr_count
1113 * @channel: Channel handle. Obtained via vxge_hw_channel_open().
1115 * Retrieve number of DTRs available. This function can not be called
1116 * from data path. ring_initial_replenishi() is the only user.
1118 int vxge_hw_channel_dtr_count(struct __vxge_hw_channel
*channel
)
1120 return (channel
->reserve_ptr
- channel
->reserve_top
) +
1121 (channel
->length
- channel
->free_ptr
);
1125 * vxge_hw_ring_rxd_reserve - Reserve ring descriptor.
1126 * @ring: Handle to the ring object used for receive
1127 * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
1128 * with a valid handle.
1130 * Reserve Rx descriptor for the subsequent filling-in driver
1131 * and posting on the corresponding channel (@channelh)
1132 * via vxge_hw_ring_rxd_post().
1134 * Returns: VXGE_HW_OK - success.
1135 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
1138 enum vxge_hw_status
vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring
*ring
,
1141 enum vxge_hw_status status
;
1142 struct __vxge_hw_channel
*channel
;
1144 channel
= &ring
->channel
;
1146 status
= vxge_hw_channel_dtr_alloc(channel
, rxdh
);
1148 if (status
== VXGE_HW_OK
) {
1149 struct vxge_hw_ring_rxd_1
*rxdp
=
1150 (struct vxge_hw_ring_rxd_1
*)*rxdh
;
1152 rxdp
->control_0
= rxdp
->control_1
= 0;
1159 * vxge_hw_ring_rxd_free - Free descriptor.
1160 * @ring: Handle to the ring object used for receive
1161 * @rxdh: Descriptor handle.
1163 * Free the reserved descriptor. This operation is "symmetrical" to
1164 * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
1167 * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
1170 * - reserved (vxge_hw_ring_rxd_reserve);
1172 * - posted (vxge_hw_ring_rxd_post);
1174 * - completed (vxge_hw_ring_rxd_next_completed);
1176 * - and recycled again (vxge_hw_ring_rxd_free).
1178 * For alternative state transitions and more details please refer to
1182 void vxge_hw_ring_rxd_free(struct __vxge_hw_ring
*ring
, void *rxdh
)
1184 struct __vxge_hw_channel
*channel
;
1186 channel
= &ring
->channel
;
1188 vxge_hw_channel_dtr_free(channel
, rxdh
);
1193 * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
1194 * @ring: Handle to the ring object used for receive
1195 * @rxdh: Descriptor handle.
1197 * This routine prepares a rxd and posts
1199 void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring
*ring
, void *rxdh
)
1201 struct __vxge_hw_channel
*channel
;
1203 channel
= &ring
->channel
;
1205 vxge_hw_channel_dtr_post(channel
, rxdh
);
1209 * vxge_hw_ring_rxd_post_post - Process rxd after post.
1210 * @ring: Handle to the ring object used for receive
1211 * @rxdh: Descriptor handle.
1213 * Processes rxd after post
1215 void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring
*ring
, void *rxdh
)
1217 struct vxge_hw_ring_rxd_1
*rxdp
= (struct vxge_hw_ring_rxd_1
*)rxdh
;
1218 struct __vxge_hw_channel
*channel
;
1220 channel
= &ring
->channel
;
1222 rxdp
->control_0
= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER
;
1224 if (ring
->stats
->common_stats
.usage_cnt
> 0)
1225 ring
->stats
->common_stats
.usage_cnt
--;
1229 * vxge_hw_ring_rxd_post - Post descriptor on the ring.
1230 * @ring: Handle to the ring object used for receive
1231 * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
1233 * Post descriptor on the ring.
1234 * Prior to posting the descriptor should be filled in accordance with
1235 * Host/Titan interface specification for a given service (LL, etc.).
1238 void vxge_hw_ring_rxd_post(struct __vxge_hw_ring
*ring
, void *rxdh
)
1240 struct vxge_hw_ring_rxd_1
*rxdp
= (struct vxge_hw_ring_rxd_1
*)rxdh
;
1241 struct __vxge_hw_channel
*channel
;
1243 channel
= &ring
->channel
;
1246 rxdp
->control_0
= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER
;
1248 vxge_hw_channel_dtr_post(channel
, rxdh
);
1250 if (ring
->stats
->common_stats
.usage_cnt
> 0)
1251 ring
->stats
->common_stats
.usage_cnt
--;
1255 * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
1256 * @ring: Handle to the ring object used for receive
1257 * @rxdh: Descriptor handle.
1259 * Processes rxd after post with memory barrier.
1261 void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring
*ring
, void *rxdh
)
1264 vxge_hw_ring_rxd_post_post(ring
, rxdh
);
1268 * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
1269 * @ring: Handle to the ring object used for receive
1270 * @rxdh: Descriptor handle. Returned by HW.
1271 * @t_code: Transfer code, as per Titan User Guide,
1272 * Receive Descriptor Format. Returned by HW.
1274 * Retrieve the _next_ completed descriptor.
1275 * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
1276 * driver of new completed descriptors. After that
1277 * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
1278 * completions (the very first completion is passed by HW via
1279 * vxge_hw_ring_callback_f).
1281 * Implementation-wise, the driver is free to call
1282 * vxge_hw_ring_rxd_next_completed either immediately from inside the
1283 * ring callback, or in a deferred fashion and separate (from HW)
1286 * Non-zero @t_code means failure to fill-in receive buffer(s)
1287 * of the descriptor.
1288 * For instance, parity error detected during the data transfer.
1289 * In this case Titan will complete the descriptor and indicate
1290 * for the host that the received data is not to be used.
1291 * For details please refer to Titan User Guide.
1293 * Returns: VXGE_HW_OK - success.
1294 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1295 * are currently available for processing.
1297 * See also: vxge_hw_ring_callback_f{},
1298 * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
1300 enum vxge_hw_status
vxge_hw_ring_rxd_next_completed(
1301 struct __vxge_hw_ring
*ring
, void **rxdh
, u8
*t_code
)
1303 struct __vxge_hw_channel
*channel
;
1304 struct vxge_hw_ring_rxd_1
*rxdp
;
1305 enum vxge_hw_status status
= VXGE_HW_OK
;
1308 channel
= &ring
->channel
;
1310 vxge_hw_channel_dtr_try_complete(channel
, rxdh
);
1312 rxdp
= (struct vxge_hw_ring_rxd_1
*)*rxdh
;
1314 status
= VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS
;
1318 control_0
= rxdp
->control_0
;
1319 own
= control_0
& VXGE_HW_RING_RXD_LIST_OWN_ADAPTER
;
1320 *t_code
= (u8
)VXGE_HW_RING_RXD_T_CODE_GET(control_0
);
1322 /* check whether it is not the end */
1323 if (!own
|| *t_code
== VXGE_HW_RING_T_CODE_FRM_DROP
) {
1325 vxge_assert(((struct vxge_hw_ring_rxd_1
*)rxdp
)->host_control
!=
1329 vxge_hw_channel_dtr_complete(channel
);
1331 vxge_assert(*t_code
!= VXGE_HW_RING_RXD_T_CODE_UNUSED
);
1333 ring
->stats
->common_stats
.usage_cnt
++;
1334 if (ring
->stats
->common_stats
.usage_max
<
1335 ring
->stats
->common_stats
.usage_cnt
)
1336 ring
->stats
->common_stats
.usage_max
=
1337 ring
->stats
->common_stats
.usage_cnt
;
1339 status
= VXGE_HW_OK
;
1343 /* reset it. since we don't want to return
1344 * garbage to the driver */
1346 status
= VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS
;
1352 * vxge_hw_ring_handle_tcode - Handle transfer code.
1353 * @ring: Handle to the ring object used for receive
1354 * @rxdh: Descriptor handle.
1355 * @t_code: One of the enumerated (and documented in the Titan user guide)
1358 * Handle descriptor's transfer code. The latter comes with each completed
1361 * Returns: one of the enum vxge_hw_status{} enumerated types.
1362 * VXGE_HW_OK - for success.
1363 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1365 enum vxge_hw_status
vxge_hw_ring_handle_tcode(
1366 struct __vxge_hw_ring
*ring
, void *rxdh
, u8 t_code
)
1368 struct __vxge_hw_channel
*channel
;
1369 enum vxge_hw_status status
= VXGE_HW_OK
;
1371 channel
= &ring
->channel
;
1373 /* If the t_code is not supported and if the
1374 * t_code is other than 0x5 (unparseable packet
1375 * such as unknown UPV6 header), Drop it !!!
1378 if (t_code
== VXGE_HW_RING_T_CODE_OK
||
1379 t_code
== VXGE_HW_RING_T_CODE_L3_PKT_ERR
) {
1380 status
= VXGE_HW_OK
;
1384 if (t_code
> VXGE_HW_RING_T_CODE_MULTI_ERR
) {
1385 status
= VXGE_HW_ERR_INVALID_TCODE
;
1389 ring
->stats
->rxd_t_code_err_cnt
[t_code
]++;
1395 * __vxge_hw_non_offload_db_post - Post non offload doorbell
1398 * @txdl_ptr: The starting location of the TxDL in host memory
1399 * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1400 * @no_snoop: No snoop flags
1402 * This function posts a non-offload doorbell to doorbell FIFO
1405 static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo
*fifo
,
1406 u64 txdl_ptr
, u32 num_txds
, u32 no_snoop
)
1408 struct __vxge_hw_channel
*channel
;
1410 channel
= &fifo
->channel
;
1412 writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW
) |
1413 VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds
) |
1414 VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop
),
1415 &fifo
->nofl_db
->control_0
);
1419 writeq(txdl_ptr
, &fifo
->nofl_db
->txdl_ptr
);
1425 * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1427 * @fifoh: Handle to the fifo object used for non offload send
1429 u32
vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo
*fifoh
)
1431 return vxge_hw_channel_dtr_count(&fifoh
->channel
);
1435 * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1436 * @fifoh: Handle to the fifo object used for non offload send
1437 * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1438 * with a valid handle.
1439 * @txdl_priv: Buffer to return the pointer to per txdl space
1441 * Reserve a single TxDL (that is, fifo descriptor)
1442 * for the subsequent filling-in by driver)
1443 * and posting on the corresponding channel (@channelh)
1444 * via vxge_hw_fifo_txdl_post().
1446 * Note: it is the responsibility of driver to reserve multiple descriptors
1447 * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1448 * carries up to configured number (fifo.max_frags) of contiguous buffers.
1450 * Returns: VXGE_HW_OK - success;
1451 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1454 enum vxge_hw_status
vxge_hw_fifo_txdl_reserve(
1455 struct __vxge_hw_fifo
*fifo
,
1456 void **txdlh
, void **txdl_priv
)
1458 struct __vxge_hw_channel
*channel
;
1459 enum vxge_hw_status status
;
1462 channel
= &fifo
->channel
;
1464 status
= vxge_hw_channel_dtr_alloc(channel
, txdlh
);
1466 if (status
== VXGE_HW_OK
) {
1467 struct vxge_hw_fifo_txd
*txdp
=
1468 (struct vxge_hw_fifo_txd
*)*txdlh
;
1469 struct __vxge_hw_fifo_txdl_priv
*priv
;
1471 priv
= __vxge_hw_fifo_txdl_priv(fifo
, txdp
);
1473 /* reset the TxDL's private */
1474 priv
->align_dma_offset
= 0;
1475 priv
->align_vaddr_start
= priv
->align_vaddr
;
1476 priv
->align_used_frags
= 0;
1478 priv
->alloc_frags
= fifo
->config
->max_frags
;
1479 priv
->next_txdl_priv
= NULL
;
1481 *txdl_priv
= (void *)(size_t)txdp
->host_control
;
1483 for (i
= 0; i
< fifo
->config
->max_frags
; i
++) {
1484 txdp
= ((struct vxge_hw_fifo_txd
*)*txdlh
) + i
;
1485 txdp
->control_0
= txdp
->control_1
= 0;
1493 * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1495 * @fifo: Handle to the fifo object used for non offload send
1496 * @txdlh: Descriptor handle.
1497 * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1499 * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1500 * @size: Size of the data buffer (in bytes).
1502 * This API is part of the preparation of the transmit descriptor for posting
1503 * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1504 * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1505 * All three APIs fill in the fields of the fifo descriptor,
1506 * in accordance with the Titan specification.
1509 void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo
*fifo
,
1510 void *txdlh
, u32 frag_idx
,
1511 dma_addr_t dma_pointer
, u32 size
)
1513 struct __vxge_hw_fifo_txdl_priv
*txdl_priv
;
1514 struct vxge_hw_fifo_txd
*txdp
, *txdp_last
;
1515 struct __vxge_hw_channel
*channel
;
1517 channel
= &fifo
->channel
;
1519 txdl_priv
= __vxge_hw_fifo_txdl_priv(fifo
, txdlh
);
1520 txdp
= (struct vxge_hw_fifo_txd
*)txdlh
+ txdl_priv
->frags
;
1523 txdp
->control_0
= txdp
->control_1
= 0;
1525 txdp
->control_0
|= VXGE_HW_FIFO_TXD_GATHER_CODE(
1526 VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST
);
1527 txdp
->control_1
|= fifo
->interrupt_type
;
1528 txdp
->control_1
|= VXGE_HW_FIFO_TXD_INT_NUMBER(
1530 if (txdl_priv
->frags
) {
1531 txdp_last
= (struct vxge_hw_fifo_txd
*)txdlh
+
1532 (txdl_priv
->frags
- 1);
1533 txdp_last
->control_0
|= VXGE_HW_FIFO_TXD_GATHER_CODE(
1534 VXGE_HW_FIFO_TXD_GATHER_CODE_LAST
);
1538 vxge_assert(frag_idx
< txdl_priv
->alloc_frags
);
1540 txdp
->buffer_pointer
= (u64
)dma_pointer
;
1541 txdp
->control_0
|= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size
);
1542 fifo
->stats
->total_buffers
++;
1547 * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1548 * @fifo: Handle to the fifo object used for non offload send
1549 * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1550 * @frags: Number of contiguous buffers that are part of a single
1551 * transmit operation.
1553 * Post descriptor on the 'fifo' type channel for transmission.
1554 * Prior to posting the descriptor should be filled in accordance with
1555 * Host/Titan interface specification for a given service (LL, etc.).
1558 void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo
*fifo
, void *txdlh
)
1560 struct __vxge_hw_fifo_txdl_priv
*txdl_priv
;
1561 struct vxge_hw_fifo_txd
*txdp_last
;
1562 struct vxge_hw_fifo_txd
*txdp_first
;
1563 struct __vxge_hw_channel
*channel
;
1565 channel
= &fifo
->channel
;
1567 txdl_priv
= __vxge_hw_fifo_txdl_priv(fifo
, txdlh
);
1568 txdp_first
= (struct vxge_hw_fifo_txd
*)txdlh
;
1570 txdp_last
= (struct vxge_hw_fifo_txd
*)txdlh
+ (txdl_priv
->frags
- 1);
1571 txdp_last
->control_0
|=
1572 VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST
);
1573 txdp_first
->control_0
|= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER
;
1575 vxge_hw_channel_dtr_post(&fifo
->channel
, txdlh
);
1577 __vxge_hw_non_offload_db_post(fifo
,
1578 (u64
)txdl_priv
->dma_addr
,
1579 txdl_priv
->frags
- 1,
1580 fifo
->no_snoop_bits
);
1582 fifo
->stats
->total_posts
++;
1583 fifo
->stats
->common_stats
.usage_cnt
++;
1584 if (fifo
->stats
->common_stats
.usage_max
<
1585 fifo
->stats
->common_stats
.usage_cnt
)
1586 fifo
->stats
->common_stats
.usage_max
=
1587 fifo
->stats
->common_stats
.usage_cnt
;
1591 * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1592 * @fifo: Handle to the fifo object used for non offload send
1593 * @txdlh: Descriptor handle. Returned by HW.
1594 * @t_code: Transfer code, as per Titan User Guide,
1595 * Transmit Descriptor Format.
1598 * Retrieve the _next_ completed descriptor.
1599 * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1600 * driver of new completed descriptors. After that
1601 * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1602 * completions (the very first completion is passed by HW via
1603 * vxge_hw_channel_callback_f).
1605 * Implementation-wise, the driver is free to call
1606 * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1607 * channel callback, or in a deferred fashion and separate (from HW)
1610 * Non-zero @t_code means failure to process the descriptor.
1611 * The failure could happen, for instance, when the link is
1612 * down, in which case Titan completes the descriptor because it
1613 * is not able to send the data out.
1615 * For details please refer to Titan User Guide.
1617 * Returns: VXGE_HW_OK - success.
1618 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1619 * are currently available for processing.
1622 enum vxge_hw_status
vxge_hw_fifo_txdl_next_completed(
1623 struct __vxge_hw_fifo
*fifo
, void **txdlh
,
1624 enum vxge_hw_fifo_tcode
*t_code
)
1626 struct __vxge_hw_channel
*channel
;
1627 struct vxge_hw_fifo_txd
*txdp
;
1628 enum vxge_hw_status status
= VXGE_HW_OK
;
1630 channel
= &fifo
->channel
;
1632 vxge_hw_channel_dtr_try_complete(channel
, txdlh
);
1634 txdp
= (struct vxge_hw_fifo_txd
*)*txdlh
;
1636 status
= VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS
;
1640 /* check whether host owns it */
1641 if (!(txdp
->control_0
& VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER
)) {
1643 vxge_assert(txdp
->host_control
!= 0);
1645 vxge_hw_channel_dtr_complete(channel
);
1647 *t_code
= (u8
)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp
->control_0
);
1649 if (fifo
->stats
->common_stats
.usage_cnt
> 0)
1650 fifo
->stats
->common_stats
.usage_cnt
--;
1652 status
= VXGE_HW_OK
;
1656 /* no more completions */
1658 status
= VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS
;
1664 * vxge_hw_fifo_handle_tcode - Handle transfer code.
1665 * @fifo: Handle to the fifo object used for non offload send
1666 * @txdlh: Descriptor handle.
1667 * @t_code: One of the enumerated (and documented in the Titan user guide)
1670 * Handle descriptor's transfer code. The latter comes with each completed
1673 * Returns: one of the enum vxge_hw_status{} enumerated types.
1674 * VXGE_HW_OK - for success.
1675 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1677 enum vxge_hw_status
vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo
*fifo
,
1679 enum vxge_hw_fifo_tcode t_code
)
1681 struct __vxge_hw_channel
*channel
;
1683 enum vxge_hw_status status
= VXGE_HW_OK
;
1684 channel
= &fifo
->channel
;
1686 if (((t_code
& 0x7) < 0) || ((t_code
& 0x7) > 0x4)) {
1687 status
= VXGE_HW_ERR_INVALID_TCODE
;
1691 fifo
->stats
->txd_t_code_err_cnt
[t_code
]++;
1697 * vxge_hw_fifo_txdl_free - Free descriptor.
1698 * @fifo: Handle to the fifo object used for non offload send
1699 * @txdlh: Descriptor handle.
1701 * Free the reserved descriptor. This operation is "symmetrical" to
1702 * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1705 * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1708 * - reserved (vxge_hw_fifo_txdl_reserve);
1710 * - posted (vxge_hw_fifo_txdl_post);
1712 * - completed (vxge_hw_fifo_txdl_next_completed);
1714 * - and recycled again (vxge_hw_fifo_txdl_free).
1716 * For alternative state transitions and more details please refer to
1720 void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo
*fifo
, void *txdlh
)
1722 struct __vxge_hw_fifo_txdl_priv
*txdl_priv
;
1724 struct __vxge_hw_channel
*channel
;
1726 channel
= &fifo
->channel
;
1728 txdl_priv
= __vxge_hw_fifo_txdl_priv(fifo
,
1729 (struct vxge_hw_fifo_txd
*)txdlh
);
1731 max_frags
= fifo
->config
->max_frags
;
1733 vxge_hw_channel_dtr_free(channel
, txdlh
);
1737 * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1738 * to MAC address table.
1739 * @vp: Vpath handle.
1740 * @macaddr: MAC address to be added for this vpath into the list
1741 * @macaddr_mask: MAC address mask for macaddr
1742 * @duplicate_mode: Duplicate MAC address add mode. Please see
1743 * enum vxge_hw_vpath_mac_addr_add_mode{}
1745 * Adds the given mac address and mac address mask into the list for this
1747 * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1748 * vxge_hw_vpath_mac_addr_get_next
1752 vxge_hw_vpath_mac_addr_add(
1753 struct __vxge_hw_vpath_handle
*vp
,
1754 u8 (macaddr
)[ETH_ALEN
],
1755 u8 (macaddr_mask
)[ETH_ALEN
],
1756 enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode
)
1761 enum vxge_hw_status status
= VXGE_HW_OK
;
1764 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1768 for (i
= 0; i
< ETH_ALEN
; i
++) {
1770 data1
|= (u8
)macaddr
[i
];
1773 data2
|= (u8
)macaddr_mask
[i
];
1776 switch (duplicate_mode
) {
1777 case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE
:
1780 case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE
:
1783 case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE
:
1791 status
= __vxge_hw_vpath_rts_table_set(vp
,
1792 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY
,
1793 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
,
1795 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1
),
1796 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2
)|
1797 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i
));
1803 * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1804 * from MAC address table.
1805 * @vp: Vpath handle.
1806 * @macaddr: First MAC address entry for this vpath in the list
1807 * @macaddr_mask: MAC address mask for macaddr
1809 * Returns the first mac address and mac address mask in the list for this
1811 * see also: vxge_hw_vpath_mac_addr_get_next
1815 vxge_hw_vpath_mac_addr_get(
1816 struct __vxge_hw_vpath_handle
*vp
,
1817 u8 (macaddr
)[ETH_ALEN
],
1818 u8 (macaddr_mask
)[ETH_ALEN
])
1823 enum vxge_hw_status status
= VXGE_HW_OK
;
1826 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1830 status
= __vxge_hw_vpath_rts_table_get(vp
,
1831 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY
,
1832 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
,
1835 if (status
!= VXGE_HW_OK
)
1838 data1
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1
);
1840 data2
= VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2
);
1842 for (i
= ETH_ALEN
; i
> 0; i
--) {
1843 macaddr
[i
-1] = (u8
)(data1
& 0xFF);
1846 macaddr_mask
[i
-1] = (u8
)(data2
& 0xFF);
1854 * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1856 * from MAC address table.
1857 * @vp: Vpath handle.
1858 * @macaddr: Next MAC address entry for this vpath in the list
1859 * @macaddr_mask: MAC address mask for macaddr
1861 * Returns the next mac address and mac address mask in the list for this
1863 * see also: vxge_hw_vpath_mac_addr_get
1867 vxge_hw_vpath_mac_addr_get_next(
1868 struct __vxge_hw_vpath_handle
*vp
,
1869 u8 (macaddr
)[ETH_ALEN
],
1870 u8 (macaddr_mask
)[ETH_ALEN
])
1875 enum vxge_hw_status status
= VXGE_HW_OK
;
1878 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1882 status
= __vxge_hw_vpath_rts_table_get(vp
,
1883 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY
,
1884 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
,
1887 if (status
!= VXGE_HW_OK
)
1890 data1
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1
);
1892 data2
= VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2
);
1894 for (i
= ETH_ALEN
; i
> 0; i
--) {
1895 macaddr
[i
-1] = (u8
)(data1
& 0xFF);
1898 macaddr_mask
[i
-1] = (u8
)(data2
& 0xFF);
1907 * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1908 * to MAC address table.
1909 * @vp: Vpath handle.
1910 * @macaddr: MAC address to be added for this vpath into the list
1911 * @macaddr_mask: MAC address mask for macaddr
1913 * Delete the given mac address and mac address mask into the list for this
1915 * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1916 * vxge_hw_vpath_mac_addr_get_next
1920 vxge_hw_vpath_mac_addr_delete(
1921 struct __vxge_hw_vpath_handle
*vp
,
1922 u8 (macaddr
)[ETH_ALEN
],
1923 u8 (macaddr_mask
)[ETH_ALEN
])
1928 enum vxge_hw_status status
= VXGE_HW_OK
;
1931 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1935 for (i
= 0; i
< ETH_ALEN
; i
++) {
1937 data1
|= (u8
)macaddr
[i
];
1940 data2
|= (u8
)macaddr_mask
[i
];
1943 status
= __vxge_hw_vpath_rts_table_set(vp
,
1944 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY
,
1945 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
,
1947 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1
),
1948 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2
));
1954 * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1956 * @vp: Vpath handle.
1957 * @vid: vlan id to be added for this vpath into the list
1959 * Adds the given vlan id into the list for this vpath.
1960 * see also: vxge_hw_vpath_vid_delete, vxge_hw_vpath_vid_get and
1961 * vxge_hw_vpath_vid_get_next
1965 vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle
*vp
, u64 vid
)
1967 enum vxge_hw_status status
= VXGE_HW_OK
;
1970 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1974 status
= __vxge_hw_vpath_rts_table_set(vp
,
1975 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY
,
1976 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID
,
1977 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid
), 0);
1983 * vxge_hw_vpath_vid_get - Get the first vid entry for this vpath
1984 * from vlan id table.
1985 * @vp: Vpath handle.
1986 * @vid: Buffer to return vlan id
1988 * Returns the first vlan id in the list for this vpath.
1989 * see also: vxge_hw_vpath_vid_get_next
1993 vxge_hw_vpath_vid_get(struct __vxge_hw_vpath_handle
*vp
, u64
*vid
)
1996 enum vxge_hw_status status
= VXGE_HW_OK
;
1999 status
= VXGE_HW_ERR_INVALID_HANDLE
;
2003 status
= __vxge_hw_vpath_rts_table_get(vp
,
2004 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY
,
2005 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID
,
2008 *vid
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid
);
2014 * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
2016 * @vp: Vpath handle.
2017 * @vid: vlan id to be added for this vpath into the list
2019 * Adds the given vlan id into the list for this vpath.
2020 * see also: vxge_hw_vpath_vid_add, vxge_hw_vpath_vid_get and
2021 * vxge_hw_vpath_vid_get_next
2025 vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle
*vp
, u64 vid
)
2027 enum vxge_hw_status status
= VXGE_HW_OK
;
2030 status
= VXGE_HW_ERR_INVALID_HANDLE
;
2034 status
= __vxge_hw_vpath_rts_table_set(vp
,
2035 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY
,
2036 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID
,
2037 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid
), 0);
2043 * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
2044 * @vp: Vpath handle.
2046 * Enable promiscuous mode of Titan-e operation.
2048 * See also: vxge_hw_vpath_promisc_disable().
2050 enum vxge_hw_status
vxge_hw_vpath_promisc_enable(
2051 struct __vxge_hw_vpath_handle
*vp
)
2054 struct __vxge_hw_virtualpath
*vpath
;
2055 enum vxge_hw_status status
= VXGE_HW_OK
;
2057 if ((vp
== NULL
) || (vp
->vpath
->ringh
== NULL
)) {
2058 status
= VXGE_HW_ERR_INVALID_HANDLE
;
2064 /* Enable promiscuous mode for function 0 only */
2065 if (!(vpath
->hldev
->access_rights
&
2066 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
))
2069 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
2071 if (!(val64
& VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN
)) {
2073 val64
|= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN
|
2074 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN
|
2075 VXGE_HW_RXMAC_VCFG0_BCAST_EN
|
2076 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN
;
2078 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
2085 * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
2086 * @vp: Vpath handle.
2088 * Disable promiscuous mode of Titan-e operation.
2090 * See also: vxge_hw_vpath_promisc_enable().
2092 enum vxge_hw_status
vxge_hw_vpath_promisc_disable(
2093 struct __vxge_hw_vpath_handle
*vp
)
2096 struct __vxge_hw_virtualpath
*vpath
;
2097 enum vxge_hw_status status
= VXGE_HW_OK
;
2099 if ((vp
== NULL
) || (vp
->vpath
->ringh
== NULL
)) {
2100 status
= VXGE_HW_ERR_INVALID_HANDLE
;
2106 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
2108 if (val64
& VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN
) {
2110 val64
&= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN
|
2111 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN
|
2112 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN
);
2114 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
2121 * vxge_hw_vpath_bcast_enable - Enable broadcast
2122 * @vp: Vpath handle.
2124 * Enable receiving broadcasts.
2126 enum vxge_hw_status
vxge_hw_vpath_bcast_enable(
2127 struct __vxge_hw_vpath_handle
*vp
)
2130 struct __vxge_hw_virtualpath
*vpath
;
2131 enum vxge_hw_status status
= VXGE_HW_OK
;
2133 if ((vp
== NULL
) || (vp
->vpath
->ringh
== NULL
)) {
2134 status
= VXGE_HW_ERR_INVALID_HANDLE
;
2140 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
2142 if (!(val64
& VXGE_HW_RXMAC_VCFG0_BCAST_EN
)) {
2143 val64
|= VXGE_HW_RXMAC_VCFG0_BCAST_EN
;
2144 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
2151 * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
2152 * @vp: Vpath handle.
2154 * Enable Titan-e multicast addresses.
2155 * Returns: VXGE_HW_OK on success.
2158 enum vxge_hw_status
vxge_hw_vpath_mcast_enable(
2159 struct __vxge_hw_vpath_handle
*vp
)
2162 struct __vxge_hw_virtualpath
*vpath
;
2163 enum vxge_hw_status status
= VXGE_HW_OK
;
2165 if ((vp
== NULL
) || (vp
->vpath
->ringh
== NULL
)) {
2166 status
= VXGE_HW_ERR_INVALID_HANDLE
;
2172 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
2174 if (!(val64
& VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN
)) {
2175 val64
|= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN
;
2176 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
2183 * vxge_hw_vpath_mcast_disable - Disable multicast addresses.
2184 * @vp: Vpath handle.
2186 * Disable Titan-e multicast addresses.
2187 * Returns: VXGE_HW_OK - success.
2188 * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
2192 vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle
*vp
)
2195 struct __vxge_hw_virtualpath
*vpath
;
2196 enum vxge_hw_status status
= VXGE_HW_OK
;
2198 if ((vp
== NULL
) || (vp
->vpath
->ringh
== NULL
)) {
2199 status
= VXGE_HW_ERR_INVALID_HANDLE
;
2205 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
2207 if (val64
& VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN
) {
2208 val64
&= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN
;
2209 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
2216 * vxge_hw_vpath_alarm_process - Process Alarms.
2217 * @vpath: Virtual Path.
2218 * @skip_alarms: Do not clear the alarms
2220 * Process vpath alarms.
2223 enum vxge_hw_status
vxge_hw_vpath_alarm_process(
2224 struct __vxge_hw_vpath_handle
*vp
,
2227 enum vxge_hw_status status
= VXGE_HW_OK
;
2230 status
= VXGE_HW_ERR_INVALID_HANDLE
;
2234 status
= __vxge_hw_vpath_alarm_process(vp
->vpath
, skip_alarms
);
2240 * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2242 * @vp: Virtual Path handle.
2243 * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2244 * interrupts(Can be repeated). If fifo or ring are not enabled
2245 * the MSIX vector for that should be set to 0
2246 * @alarm_msix_id: MSIX vector for alarm.
2248 * This API will associate a given MSIX vector numbers with the four TIM
2249 * interrupts and alarm interrupt.
2252 vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle
*vp
, int *tim_msix_id
,
2256 struct __vxge_hw_virtualpath
*vpath
= vp
->vpath
;
2257 struct vxge_hw_vpath_reg __iomem
*vp_reg
= vpath
->vp_reg
;
2258 u32 vp_id
= vp
->vpath
->vp_id
;
2260 val64
= VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2261 (vp_id
* 4) + tim_msix_id
[0]) |
2262 VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2263 (vp_id
* 4) + tim_msix_id
[1]);
2265 writeq(val64
, &vp_reg
->interrupt_cfg0
);
2267 writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2268 (vpath
->hldev
->first_vp_id
* 4) + alarm_msix_id
),
2269 &vp_reg
->interrupt_cfg2
);
2271 if (vpath
->hldev
->config
.intr_mode
==
2272 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT
) {
2273 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(
2274 VXGE_HW_ONE_SHOT_VECT0_EN_ONE_SHOT_VECT0_EN
,
2275 0, 32), &vp_reg
->one_shot_vect0_en
);
2276 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(
2277 VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN
,
2278 0, 32), &vp_reg
->one_shot_vect1_en
);
2279 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(
2280 VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN
,
2281 0, 32), &vp_reg
->one_shot_vect2_en
);
2286 * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2287 * @vp: Virtual Path handle.
2290 * The function masks the msix interrupt for the given msix_id
2293 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2298 vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle
*vp
, int msix_id
)
2300 struct __vxge_hw_device
*hldev
= vp
->vpath
->hldev
;
2301 __vxge_hw_pio_mem_write32_upper(
2302 (u32
) vxge_bVALn(vxge_mBIT(msix_id
>> 2), 0, 32),
2303 &hldev
->common_reg
->set_msix_mask_vect
[msix_id
% 4]);
2307 * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2308 * @vp: Virtual Path handle.
2311 * The function clears the msix interrupt for the given msix_id
2314 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2318 void vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle
*vp
, int msix_id
)
2320 struct __vxge_hw_device
*hldev
= vp
->vpath
->hldev
;
2322 if ((hldev
->config
.intr_mode
== VXGE_HW_INTR_MODE_MSIX_ONE_SHOT
))
2323 __vxge_hw_pio_mem_write32_upper(
2324 (u32
) vxge_bVALn(vxge_mBIT((msix_id
>> 2)), 0, 32),
2325 &hldev
->common_reg
->clr_msix_one_shot_vec
[msix_id
% 4]);
2327 __vxge_hw_pio_mem_write32_upper(
2328 (u32
) vxge_bVALn(vxge_mBIT((msix_id
>> 2)), 0, 32),
2329 &hldev
->common_reg
->clear_msix_mask_vect
[msix_id
% 4]);
2333 * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2334 * @vp: Virtual Path handle.
2337 * The function unmasks the msix interrupt for the given msix_id
2340 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2345 vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle
*vp
, int msix_id
)
2347 struct __vxge_hw_device
*hldev
= vp
->vpath
->hldev
;
2348 __vxge_hw_pio_mem_write32_upper(
2349 (u32
)vxge_bVALn(vxge_mBIT(msix_id
>> 2), 0, 32),
2350 &hldev
->common_reg
->clear_msix_mask_vect
[msix_id
%4]);
2354 * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2355 * @vp: Virtual Path handle.
2357 * Mask Tx and Rx vpath interrupts.
2359 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2361 void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle
*vp
)
2363 u64 tim_int_mask0
[4] = {[0 ...3] = 0};
2364 u32 tim_int_mask1
[4] = {[0 ...3] = 0};
2366 struct __vxge_hw_device
*hldev
= vp
->vpath
->hldev
;
2368 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0
,
2369 tim_int_mask1
, vp
->vpath
->vp_id
);
2371 val64
= readq(&hldev
->common_reg
->tim_int_mask0
);
2373 if ((tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] != 0) ||
2374 (tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
] != 0)) {
2375 writeq((tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] |
2376 tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
] | val64
),
2377 &hldev
->common_reg
->tim_int_mask0
);
2380 val64
= readl(&hldev
->common_reg
->tim_int_mask1
);
2382 if ((tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] != 0) ||
2383 (tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
] != 0)) {
2384 __vxge_hw_pio_mem_write32_upper(
2385 (tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] |
2386 tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
] | val64
),
2387 &hldev
->common_reg
->tim_int_mask1
);
2392 * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2393 * @vp: Virtual Path handle.
2395 * Unmask Tx and Rx vpath interrupts.
2397 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2399 void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle
*vp
)
2401 u64 tim_int_mask0
[4] = {[0 ...3] = 0};
2402 u32 tim_int_mask1
[4] = {[0 ...3] = 0};
2404 struct __vxge_hw_device
*hldev
= vp
->vpath
->hldev
;
2406 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0
,
2407 tim_int_mask1
, vp
->vpath
->vp_id
);
2409 val64
= readq(&hldev
->common_reg
->tim_int_mask0
);
2411 if ((tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] != 0) ||
2412 (tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
] != 0)) {
2413 writeq((~(tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] |
2414 tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
])) & val64
,
2415 &hldev
->common_reg
->tim_int_mask0
);
2418 if ((tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] != 0) ||
2419 (tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
] != 0)) {
2420 __vxge_hw_pio_mem_write32_upper(
2421 (~(tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] |
2422 tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
])) & val64
,
2423 &hldev
->common_reg
->tim_int_mask1
);
2428 * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2429 * descriptors and process the same.
2430 * @ring: Handle to the ring object used for receive
2432 * The function polls the Rx for the completed descriptors and calls
2433 * the driver via supplied completion callback.
2435 * Returns: VXGE_HW_OK, if the polling is completed successful.
2436 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2437 * descriptors available which are yet to be processed.
2439 * See also: vxge_hw_vpath_poll_rx()
2441 enum vxge_hw_status
vxge_hw_vpath_poll_rx(struct __vxge_hw_ring
*ring
)
2444 enum vxge_hw_status status
= VXGE_HW_OK
;
2451 status
= vxge_hw_ring_rxd_next_completed(ring
, &first_rxdh
, &t_code
);
2452 if (status
== VXGE_HW_OK
)
2453 ring
->callback(ring
, first_rxdh
,
2454 t_code
, ring
->channel
.userdata
);
2456 if (ring
->cmpl_cnt
!= 0) {
2457 ring
->doorbell_cnt
+= ring
->cmpl_cnt
;
2458 if (ring
->doorbell_cnt
>= ring
->rxds_limit
) {
2460 * Each RxD is of 4 qwords, update the number of
2461 * qwords replenished
2463 new_count
= (ring
->doorbell_cnt
* 4);
2465 /* For each block add 4 more qwords */
2466 ring
->total_db_cnt
+= ring
->doorbell_cnt
;
2467 if (ring
->total_db_cnt
>= ring
->rxds_per_block
) {
2469 /* Reset total count */
2470 ring
->total_db_cnt
%= ring
->rxds_per_block
;
2472 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count
),
2473 &ring
->vp_reg
->prc_rxd_doorbell
);
2475 readl(&ring
->common_reg
->titan_general_int_status
);
2476 ring
->doorbell_cnt
= 0;
2484 * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2486 * @fifo: Handle to the fifo object used for non offload send
2488 * The function polls the Tx for the completed descriptors and calls
2489 * the driver via supplied completion callback.
2491 * Returns: VXGE_HW_OK, if the polling is completed successful.
2492 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2493 * descriptors available which are yet to be processed.
2495 enum vxge_hw_status
vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo
*fifo
,
2496 struct sk_buff
***skb_ptr
, int nr_skb
,
2499 enum vxge_hw_fifo_tcode t_code
;
2501 enum vxge_hw_status status
= VXGE_HW_OK
;
2502 struct __vxge_hw_channel
*channel
;
2504 channel
= &fifo
->channel
;
2506 status
= vxge_hw_fifo_txdl_next_completed(fifo
,
2507 &first_txdlh
, &t_code
);
2508 if (status
== VXGE_HW_OK
)
2509 if (fifo
->callback(fifo
, first_txdlh
, t_code
,
2510 channel
->userdata
, skb_ptr
, nr_skb
, more
) != VXGE_HW_OK
)
2511 status
= VXGE_HW_COMPLETIONS_REMAIN
;