ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / drivers / platform / x86 / toshiba_acpi.c
blobcb009b2629eef532c444bf71ce1372106cfd9327
1 /*
2 * toshiba_acpi.c - Toshiba Laptop ACPI Extras
5 * Copyright (C) 2002-2004 John Belmonte
6 * Copyright (C) 2008 Philip Langdale
7 * Copyright (C) 2010 Pierre Ducroquet
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 * The devolpment page for this driver is located at
25 * http://memebeam.org/toys/ToshibaAcpiDriver.
27 * Credits:
28 * Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse
29 * engineering the Windows drivers
30 * Yasushi Nagato - changes for linux kernel 2.4 -> 2.5
31 * Rob Miller - TV out and hotkeys help
34 * TODO
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 #define TOSHIBA_ACPI_VERSION "0.19"
41 #define PROC_INTERFACE_VERSION 1
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/init.h>
46 #include <linux/types.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/backlight.h>
50 #include <linux/platform_device.h>
51 #include <linux/rfkill.h>
52 #include <linux/input.h>
53 #include <linux/input/sparse-keymap.h>
54 #include <linux/leds.h>
55 #include <linux/slab.h>
57 #include <asm/uaccess.h>
59 #include <acpi/acpi_drivers.h>
61 MODULE_AUTHOR("John Belmonte");
62 MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver");
63 MODULE_LICENSE("GPL");
65 /* Toshiba ACPI method paths */
66 #define METHOD_LCD_BRIGHTNESS "\\_SB_.PCI0.VGA_.LCD_._BCM"
67 #define TOSH_INTERFACE_1 "\\_SB_.VALD"
68 #define TOSH_INTERFACE_2 "\\_SB_.VALZ"
69 #define METHOD_VIDEO_OUT "\\_SB_.VALX.DSSX"
70 #define GHCI_METHOD ".GHCI"
72 /* Toshiba HCI interface definitions
74 * HCI is Toshiba's "Hardware Control Interface" which is supposed to
75 * be uniform across all their models. Ideally we would just call
76 * dedicated ACPI methods instead of using this primitive interface.
77 * However the ACPI methods seem to be incomplete in some areas (for
78 * example they allow setting, but not reading, the LCD brightness value),
79 * so this is still useful.
82 #define HCI_WORDS 6
84 /* operations */
85 #define HCI_SET 0xff00
86 #define HCI_GET 0xfe00
88 /* return codes */
89 #define HCI_SUCCESS 0x0000
90 #define HCI_FAILURE 0x1000
91 #define HCI_NOT_SUPPORTED 0x8000
92 #define HCI_EMPTY 0x8c00
94 /* registers */
95 #define HCI_FAN 0x0004
96 #define HCI_SYSTEM_EVENT 0x0016
97 #define HCI_VIDEO_OUT 0x001c
98 #define HCI_HOTKEY_EVENT 0x001e
99 #define HCI_LCD_BRIGHTNESS 0x002a
100 #define HCI_WIRELESS 0x0056
102 /* field definitions */
103 #define HCI_LCD_BRIGHTNESS_BITS 3
104 #define HCI_LCD_BRIGHTNESS_SHIFT (16-HCI_LCD_BRIGHTNESS_BITS)
105 #define HCI_LCD_BRIGHTNESS_LEVELS (1 << HCI_LCD_BRIGHTNESS_BITS)
106 #define HCI_VIDEO_OUT_LCD 0x1
107 #define HCI_VIDEO_OUT_CRT 0x2
108 #define HCI_VIDEO_OUT_TV 0x4
109 #define HCI_WIRELESS_KILL_SWITCH 0x01
110 #define HCI_WIRELESS_BT_PRESENT 0x0f
111 #define HCI_WIRELESS_BT_ATTACH 0x40
112 #define HCI_WIRELESS_BT_POWER 0x80
114 static const struct acpi_device_id toshiba_device_ids[] = {
115 {"TOS6200", 0},
116 {"TOS6208", 0},
117 {"TOS1900", 0},
118 {"", 0},
120 MODULE_DEVICE_TABLE(acpi, toshiba_device_ids);
122 static const struct key_entry toshiba_acpi_keymap[] __initconst = {
123 { KE_KEY, 0x101, { KEY_MUTE } },
124 { KE_KEY, 0x102, { KEY_ZOOMOUT } },
125 { KE_KEY, 0x103, { KEY_ZOOMIN } },
126 { KE_KEY, 0x13b, { KEY_COFFEE } },
127 { KE_KEY, 0x13c, { KEY_BATTERY } },
128 { KE_KEY, 0x13d, { KEY_SLEEP } },
129 { KE_KEY, 0x13e, { KEY_SUSPEND } },
130 { KE_KEY, 0x13f, { KEY_SWITCHVIDEOMODE } },
131 { KE_KEY, 0x140, { KEY_BRIGHTNESSDOWN } },
132 { KE_KEY, 0x141, { KEY_BRIGHTNESSUP } },
133 { KE_KEY, 0x142, { KEY_WLAN } },
134 { KE_KEY, 0x143, { KEY_PROG1 } },
135 { KE_KEY, 0x17f, { KEY_FN } },
136 { KE_KEY, 0xb05, { KEY_PROG2 } },
137 { KE_KEY, 0xb06, { KEY_WWW } },
138 { KE_KEY, 0xb07, { KEY_MAIL } },
139 { KE_KEY, 0xb30, { KEY_STOP } },
140 { KE_KEY, 0xb31, { KEY_PREVIOUSSONG } },
141 { KE_KEY, 0xb32, { KEY_NEXTSONG } },
142 { KE_KEY, 0xb33, { KEY_PLAYPAUSE } },
143 { KE_KEY, 0xb5a, { KEY_MEDIA } },
144 { KE_END, 0 },
147 /* utility
150 static __inline__ void _set_bit(u32 * word, u32 mask, int value)
152 *word = (*word & ~mask) | (mask * value);
155 /* acpi interface wrappers
158 static int is_valid_acpi_path(const char *methodName)
160 acpi_handle handle;
161 acpi_status status;
163 status = acpi_get_handle(NULL, (char *)methodName, &handle);
164 return !ACPI_FAILURE(status);
167 static int write_acpi_int(const char *methodName, int val)
169 struct acpi_object_list params;
170 union acpi_object in_objs[1];
171 acpi_status status;
173 params.count = ARRAY_SIZE(in_objs);
174 params.pointer = in_objs;
175 in_objs[0].type = ACPI_TYPE_INTEGER;
176 in_objs[0].integer.value = val;
178 status = acpi_evaluate_object(NULL, (char *)methodName, &params, NULL);
179 return (status == AE_OK);
182 #if 0
183 static int read_acpi_int(const char *methodName, int *pVal)
185 struct acpi_buffer results;
186 union acpi_object out_objs[1];
187 acpi_status status;
189 results.length = sizeof(out_objs);
190 results.pointer = out_objs;
192 status = acpi_evaluate_object(0, (char *)methodName, 0, &results);
193 *pVal = out_objs[0].integer.value;
195 return (status == AE_OK) && (out_objs[0].type == ACPI_TYPE_INTEGER);
197 #endif
199 static const char *method_hci /*= 0*/ ;
201 /* Perform a raw HCI call. Here we don't care about input or output buffer
202 * format.
204 static acpi_status hci_raw(const u32 in[HCI_WORDS], u32 out[HCI_WORDS])
206 struct acpi_object_list params;
207 union acpi_object in_objs[HCI_WORDS];
208 struct acpi_buffer results;
209 union acpi_object out_objs[HCI_WORDS + 1];
210 acpi_status status;
211 int i;
213 params.count = HCI_WORDS;
214 params.pointer = in_objs;
215 for (i = 0; i < HCI_WORDS; ++i) {
216 in_objs[i].type = ACPI_TYPE_INTEGER;
217 in_objs[i].integer.value = in[i];
220 results.length = sizeof(out_objs);
221 results.pointer = out_objs;
223 status = acpi_evaluate_object(NULL, (char *)method_hci, &params,
224 &results);
225 if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) {
226 for (i = 0; i < out_objs->package.count; ++i) {
227 out[i] = out_objs->package.elements[i].integer.value;
231 return status;
234 /* common hci tasks (get or set one or two value)
236 * In addition to the ACPI status, the HCI system returns a result which
237 * may be useful (such as "not supported").
240 static acpi_status hci_write1(u32 reg, u32 in1, u32 * result)
242 u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 };
243 u32 out[HCI_WORDS];
244 acpi_status status = hci_raw(in, out);
245 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
246 return status;
249 static acpi_status hci_read1(u32 reg, u32 * out1, u32 * result)
251 u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 };
252 u32 out[HCI_WORDS];
253 acpi_status status = hci_raw(in, out);
254 *out1 = out[2];
255 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
256 return status;
259 static acpi_status hci_write2(u32 reg, u32 in1, u32 in2, u32 *result)
261 u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 };
262 u32 out[HCI_WORDS];
263 acpi_status status = hci_raw(in, out);
264 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
265 return status;
268 static acpi_status hci_read2(u32 reg, u32 *out1, u32 *out2, u32 *result)
270 u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 };
271 u32 out[HCI_WORDS];
272 acpi_status status = hci_raw(in, out);
273 *out1 = out[2];
274 *out2 = out[3];
275 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
276 return status;
279 struct toshiba_acpi_dev {
280 struct platform_device *p_dev;
281 struct rfkill *bt_rfk;
282 struct input_dev *hotkey_dev;
283 int illumination_installed;
284 acpi_handle handle;
286 const char *bt_name;
288 struct mutex mutex;
291 /* Illumination support */
292 static int toshiba_illumination_available(void)
294 u32 in[HCI_WORDS] = { 0, 0, 0, 0, 0, 0 };
295 u32 out[HCI_WORDS];
296 acpi_status status;
298 in[0] = 0xf100;
299 status = hci_raw(in, out);
300 if (ACPI_FAILURE(status)) {
301 pr_info("Illumination device not available\n");
302 return 0;
304 in[0] = 0xf400;
305 status = hci_raw(in, out);
306 return 1;
309 static void toshiba_illumination_set(struct led_classdev *cdev,
310 enum led_brightness brightness)
312 u32 in[HCI_WORDS] = { 0, 0, 0, 0, 0, 0 };
313 u32 out[HCI_WORDS];
314 acpi_status status;
316 /* First request : initialize communication. */
317 in[0] = 0xf100;
318 status = hci_raw(in, out);
319 if (ACPI_FAILURE(status)) {
320 pr_info("Illumination device not available\n");
321 return;
324 if (brightness) {
325 /* Switch the illumination on */
326 in[0] = 0xf400;
327 in[1] = 0x14e;
328 in[2] = 1;
329 status = hci_raw(in, out);
330 if (ACPI_FAILURE(status)) {
331 pr_info("ACPI call for illumination failed\n");
332 return;
334 } else {
335 /* Switch the illumination off */
336 in[0] = 0xf400;
337 in[1] = 0x14e;
338 in[2] = 0;
339 status = hci_raw(in, out);
340 if (ACPI_FAILURE(status)) {
341 pr_info("ACPI call for illumination failed.\n");
342 return;
346 /* Last request : close communication. */
347 in[0] = 0xf200;
348 in[1] = 0;
349 in[2] = 0;
350 hci_raw(in, out);
353 static enum led_brightness toshiba_illumination_get(struct led_classdev *cdev)
355 u32 in[HCI_WORDS] = { 0, 0, 0, 0, 0, 0 };
356 u32 out[HCI_WORDS];
357 acpi_status status;
358 enum led_brightness result;
360 /* First request : initialize communication. */
361 in[0] = 0xf100;
362 status = hci_raw(in, out);
363 if (ACPI_FAILURE(status)) {
364 pr_info("Illumination device not available\n");
365 return LED_OFF;
368 /* Check the illumination */
369 in[0] = 0xf300;
370 in[1] = 0x14e;
371 status = hci_raw(in, out);
372 if (ACPI_FAILURE(status)) {
373 pr_info("ACPI call for illumination failed.\n");
374 return LED_OFF;
377 result = out[2] ? LED_FULL : LED_OFF;
379 /* Last request : close communication. */
380 in[0] = 0xf200;
381 in[1] = 0;
382 in[2] = 0;
383 hci_raw(in, out);
385 return result;
388 static struct led_classdev toshiba_led = {
389 .name = "toshiba::illumination",
390 .max_brightness = 1,
391 .brightness_set = toshiba_illumination_set,
392 .brightness_get = toshiba_illumination_get,
395 static struct toshiba_acpi_dev toshiba_acpi = {
396 .bt_name = "Toshiba Bluetooth",
399 /* Bluetooth rfkill handlers */
401 static u32 hci_get_bt_present(bool *present)
403 u32 hci_result;
404 u32 value, value2;
406 value = 0;
407 value2 = 0;
408 hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
409 if (hci_result == HCI_SUCCESS)
410 *present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false;
412 return hci_result;
415 static u32 hci_get_radio_state(bool *radio_state)
417 u32 hci_result;
418 u32 value, value2;
420 value = 0;
421 value2 = 0x0001;
422 hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
424 *radio_state = value & HCI_WIRELESS_KILL_SWITCH;
425 return hci_result;
428 static int bt_rfkill_set_block(void *data, bool blocked)
430 struct toshiba_acpi_dev *dev = data;
431 u32 result1, result2;
432 u32 value;
433 int err;
434 bool radio_state;
436 value = (blocked == false);
438 mutex_lock(&dev->mutex);
439 if (hci_get_radio_state(&radio_state) != HCI_SUCCESS) {
440 err = -EBUSY;
441 goto out;
444 if (!radio_state) {
445 err = 0;
446 goto out;
449 hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1);
450 hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2);
452 if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS)
453 err = -EBUSY;
454 else
455 err = 0;
456 out:
457 mutex_unlock(&dev->mutex);
458 return err;
461 static void bt_rfkill_poll(struct rfkill *rfkill, void *data)
463 bool new_rfk_state;
464 bool value;
465 u32 hci_result;
466 struct toshiba_acpi_dev *dev = data;
468 mutex_lock(&dev->mutex);
470 hci_result = hci_get_radio_state(&value);
471 if (hci_result != HCI_SUCCESS) {
472 /* Can't do anything useful */
473 mutex_unlock(&dev->mutex);
474 return;
477 new_rfk_state = value;
479 mutex_unlock(&dev->mutex);
481 if (rfkill_set_hw_state(rfkill, !new_rfk_state))
482 bt_rfkill_set_block(data, true);
485 static const struct rfkill_ops toshiba_rfk_ops = {
486 .set_block = bt_rfkill_set_block,
487 .poll = bt_rfkill_poll,
490 static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ;
491 static struct backlight_device *toshiba_backlight_device;
492 static int force_fan;
493 static int last_key_event;
494 static int key_event_valid;
496 static int get_lcd(struct backlight_device *bd)
498 u32 hci_result;
499 u32 value;
501 hci_read1(HCI_LCD_BRIGHTNESS, &value, &hci_result);
502 if (hci_result == HCI_SUCCESS) {
503 return (value >> HCI_LCD_BRIGHTNESS_SHIFT);
504 } else
505 return -EFAULT;
508 static int lcd_proc_show(struct seq_file *m, void *v)
510 int value = get_lcd(NULL);
512 if (value >= 0) {
513 seq_printf(m, "brightness: %d\n", value);
514 seq_printf(m, "brightness_levels: %d\n",
515 HCI_LCD_BRIGHTNESS_LEVELS);
516 } else {
517 pr_err("Error reading LCD brightness\n");
520 return 0;
523 static int lcd_proc_open(struct inode *inode, struct file *file)
525 return single_open(file, lcd_proc_show, NULL);
528 static int set_lcd(int value)
530 u32 hci_result;
532 value = value << HCI_LCD_BRIGHTNESS_SHIFT;
533 hci_write1(HCI_LCD_BRIGHTNESS, value, &hci_result);
534 if (hci_result != HCI_SUCCESS)
535 return -EFAULT;
537 return 0;
540 static int set_lcd_status(struct backlight_device *bd)
542 return set_lcd(bd->props.brightness);
545 static ssize_t lcd_proc_write(struct file *file, const char __user *buf,
546 size_t count, loff_t *pos)
548 char cmd[42];
549 size_t len;
550 int value;
551 int ret;
553 len = min(count, sizeof(cmd) - 1);
554 if (copy_from_user(cmd, buf, len))
555 return -EFAULT;
556 cmd[len] = '\0';
558 if (sscanf(cmd, " brightness : %i", &value) == 1 &&
559 value >= 0 && value < HCI_LCD_BRIGHTNESS_LEVELS) {
560 ret = set_lcd(value);
561 if (ret == 0)
562 ret = count;
563 } else {
564 ret = -EINVAL;
566 return ret;
569 static const struct file_operations lcd_proc_fops = {
570 .owner = THIS_MODULE,
571 .open = lcd_proc_open,
572 .read = seq_read,
573 .llseek = seq_lseek,
574 .release = single_release,
575 .write = lcd_proc_write,
578 static int video_proc_show(struct seq_file *m, void *v)
580 u32 hci_result;
581 u32 value;
583 hci_read1(HCI_VIDEO_OUT, &value, &hci_result);
584 if (hci_result == HCI_SUCCESS) {
585 int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0;
586 int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0;
587 int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0;
588 seq_printf(m, "lcd_out: %d\n", is_lcd);
589 seq_printf(m, "crt_out: %d\n", is_crt);
590 seq_printf(m, "tv_out: %d\n", is_tv);
591 } else {
592 pr_err("Error reading video out status\n");
595 return 0;
598 static int video_proc_open(struct inode *inode, struct file *file)
600 return single_open(file, video_proc_show, NULL);
603 static ssize_t video_proc_write(struct file *file, const char __user *buf,
604 size_t count, loff_t *pos)
606 char *cmd, *buffer;
607 int value;
608 int remain = count;
609 int lcd_out = -1;
610 int crt_out = -1;
611 int tv_out = -1;
612 u32 hci_result;
613 u32 video_out;
615 cmd = kmalloc(count + 1, GFP_KERNEL);
616 if (!cmd)
617 return -ENOMEM;
618 if (copy_from_user(cmd, buf, count)) {
619 kfree(cmd);
620 return -EFAULT;
622 cmd[count] = '\0';
624 buffer = cmd;
626 /* scan expression. Multiple expressions may be delimited with ;
628 * NOTE: to keep scanning simple, invalid fields are ignored
630 while (remain) {
631 if (sscanf(buffer, " lcd_out : %i", &value) == 1)
632 lcd_out = value & 1;
633 else if (sscanf(buffer, " crt_out : %i", &value) == 1)
634 crt_out = value & 1;
635 else if (sscanf(buffer, " tv_out : %i", &value) == 1)
636 tv_out = value & 1;
637 /* advance to one character past the next ; */
638 do {
639 ++buffer;
640 --remain;
642 while (remain && *(buffer - 1) != ';');
645 kfree(cmd);
647 hci_read1(HCI_VIDEO_OUT, &video_out, &hci_result);
648 if (hci_result == HCI_SUCCESS) {
649 unsigned int new_video_out = video_out;
650 if (lcd_out != -1)
651 _set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out);
652 if (crt_out != -1)
653 _set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out);
654 if (tv_out != -1)
655 _set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out);
656 /* To avoid unnecessary video disruption, only write the new
657 * video setting if something changed. */
658 if (new_video_out != video_out)
659 write_acpi_int(METHOD_VIDEO_OUT, new_video_out);
660 } else {
661 return -EFAULT;
664 return count;
667 static const struct file_operations video_proc_fops = {
668 .owner = THIS_MODULE,
669 .open = video_proc_open,
670 .read = seq_read,
671 .llseek = seq_lseek,
672 .release = single_release,
673 .write = video_proc_write,
676 static int fan_proc_show(struct seq_file *m, void *v)
678 u32 hci_result;
679 u32 value;
681 hci_read1(HCI_FAN, &value, &hci_result);
682 if (hci_result == HCI_SUCCESS) {
683 seq_printf(m, "running: %d\n", (value > 0));
684 seq_printf(m, "force_on: %d\n", force_fan);
685 } else {
686 pr_err("Error reading fan status\n");
689 return 0;
692 static int fan_proc_open(struct inode *inode, struct file *file)
694 return single_open(file, fan_proc_show, NULL);
697 static ssize_t fan_proc_write(struct file *file, const char __user *buf,
698 size_t count, loff_t *pos)
700 char cmd[42];
701 size_t len;
702 int value;
703 u32 hci_result;
705 len = min(count, sizeof(cmd) - 1);
706 if (copy_from_user(cmd, buf, len))
707 return -EFAULT;
708 cmd[len] = '\0';
710 if (sscanf(cmd, " force_on : %i", &value) == 1 &&
711 value >= 0 && value <= 1) {
712 hci_write1(HCI_FAN, value, &hci_result);
713 if (hci_result != HCI_SUCCESS)
714 return -EFAULT;
715 else
716 force_fan = value;
717 } else {
718 return -EINVAL;
721 return count;
724 static const struct file_operations fan_proc_fops = {
725 .owner = THIS_MODULE,
726 .open = fan_proc_open,
727 .read = seq_read,
728 .llseek = seq_lseek,
729 .release = single_release,
730 .write = fan_proc_write,
733 static int keys_proc_show(struct seq_file *m, void *v)
735 u32 hci_result;
736 u32 value;
738 if (!key_event_valid) {
739 hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
740 if (hci_result == HCI_SUCCESS) {
741 key_event_valid = 1;
742 last_key_event = value;
743 } else if (hci_result == HCI_EMPTY) {
744 /* better luck next time */
745 } else if (hci_result == HCI_NOT_SUPPORTED) {
746 /* This is a workaround for an unresolved issue on
747 * some machines where system events sporadically
748 * become disabled. */
749 hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
750 pr_notice("Re-enabled hotkeys\n");
751 } else {
752 pr_err("Error reading hotkey status\n");
753 goto end;
757 seq_printf(m, "hotkey_ready: %d\n", key_event_valid);
758 seq_printf(m, "hotkey: 0x%04x\n", last_key_event);
759 end:
760 return 0;
763 static int keys_proc_open(struct inode *inode, struct file *file)
765 return single_open(file, keys_proc_show, NULL);
768 static ssize_t keys_proc_write(struct file *file, const char __user *buf,
769 size_t count, loff_t *pos)
771 char cmd[42];
772 size_t len;
773 int value;
775 len = min(count, sizeof(cmd) - 1);
776 if (copy_from_user(cmd, buf, len))
777 return -EFAULT;
778 cmd[len] = '\0';
780 if (sscanf(cmd, " hotkey_ready : %i", &value) == 1 && value == 0) {
781 key_event_valid = 0;
782 } else {
783 return -EINVAL;
786 return count;
789 static const struct file_operations keys_proc_fops = {
790 .owner = THIS_MODULE,
791 .open = keys_proc_open,
792 .read = seq_read,
793 .llseek = seq_lseek,
794 .release = single_release,
795 .write = keys_proc_write,
798 static int version_proc_show(struct seq_file *m, void *v)
800 seq_printf(m, "driver: %s\n", TOSHIBA_ACPI_VERSION);
801 seq_printf(m, "proc_interface: %d\n", PROC_INTERFACE_VERSION);
802 return 0;
805 static int version_proc_open(struct inode *inode, struct file *file)
807 return single_open(file, version_proc_show, PDE(inode)->data);
810 static const struct file_operations version_proc_fops = {
811 .owner = THIS_MODULE,
812 .open = version_proc_open,
813 .read = seq_read,
814 .llseek = seq_lseek,
815 .release = single_release,
818 /* proc and module init
821 #define PROC_TOSHIBA "toshiba"
823 static void __init create_toshiba_proc_entries(void)
825 proc_create("lcd", S_IRUGO | S_IWUSR, toshiba_proc_dir, &lcd_proc_fops);
826 proc_create("video", S_IRUGO | S_IWUSR, toshiba_proc_dir, &video_proc_fops);
827 proc_create("fan", S_IRUGO | S_IWUSR, toshiba_proc_dir, &fan_proc_fops);
828 proc_create("keys", S_IRUGO | S_IWUSR, toshiba_proc_dir, &keys_proc_fops);
829 proc_create("version", S_IRUGO, toshiba_proc_dir, &version_proc_fops);
832 static void remove_toshiba_proc_entries(void)
834 remove_proc_entry("lcd", toshiba_proc_dir);
835 remove_proc_entry("video", toshiba_proc_dir);
836 remove_proc_entry("fan", toshiba_proc_dir);
837 remove_proc_entry("keys", toshiba_proc_dir);
838 remove_proc_entry("version", toshiba_proc_dir);
841 static const struct backlight_ops toshiba_backlight_data = {
842 .get_brightness = get_lcd,
843 .update_status = set_lcd_status,
846 static void toshiba_acpi_notify(acpi_handle handle, u32 event, void *context)
848 u32 hci_result, value;
850 if (event != 0x80)
851 return;
852 do {
853 hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
854 if (hci_result == HCI_SUCCESS) {
855 if (value == 0x100)
856 continue;
857 /* act on key press; ignore key release */
858 if (value & 0x80)
859 continue;
861 if (!sparse_keymap_report_event(toshiba_acpi.hotkey_dev,
862 value, 1, true)) {
863 pr_info("Unknown key %x\n",
864 value);
866 } else if (hci_result == HCI_NOT_SUPPORTED) {
867 /* This is a workaround for an unresolved issue on
868 * some machines where system events sporadically
869 * become disabled. */
870 hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
871 pr_notice("Re-enabled hotkeys\n");
873 } while (hci_result != HCI_EMPTY);
876 static int __init toshiba_acpi_setup_keyboard(char *device)
878 acpi_status status;
879 int error;
881 status = acpi_get_handle(NULL, device, &toshiba_acpi.handle);
882 if (ACPI_FAILURE(status)) {
883 pr_info("Unable to get notification device\n");
884 return -ENODEV;
887 toshiba_acpi.hotkey_dev = input_allocate_device();
888 if (!toshiba_acpi.hotkey_dev) {
889 pr_info("Unable to register input device\n");
890 return -ENOMEM;
893 toshiba_acpi.hotkey_dev->name = "Toshiba input device";
894 toshiba_acpi.hotkey_dev->phys = device;
895 toshiba_acpi.hotkey_dev->id.bustype = BUS_HOST;
897 error = sparse_keymap_setup(toshiba_acpi.hotkey_dev,
898 toshiba_acpi_keymap, NULL);
899 if (error)
900 goto err_free_dev;
902 status = acpi_install_notify_handler(toshiba_acpi.handle,
903 ACPI_DEVICE_NOTIFY, toshiba_acpi_notify, NULL);
904 if (ACPI_FAILURE(status)) {
905 pr_info("Unable to install hotkey notification\n");
906 error = -ENODEV;
907 goto err_free_keymap;
910 status = acpi_evaluate_object(toshiba_acpi.handle, "ENAB", NULL, NULL);
911 if (ACPI_FAILURE(status)) {
912 pr_info("Unable to enable hotkeys\n");
913 error = -ENODEV;
914 goto err_remove_notify;
917 error = input_register_device(toshiba_acpi.hotkey_dev);
918 if (error) {
919 pr_info("Unable to register input device\n");
920 goto err_remove_notify;
923 return 0;
925 err_remove_notify:
926 acpi_remove_notify_handler(toshiba_acpi.handle,
927 ACPI_DEVICE_NOTIFY, toshiba_acpi_notify);
928 err_free_keymap:
929 sparse_keymap_free(toshiba_acpi.hotkey_dev);
930 err_free_dev:
931 input_free_device(toshiba_acpi.hotkey_dev);
932 toshiba_acpi.hotkey_dev = NULL;
933 return error;
936 static void toshiba_acpi_exit(void)
938 if (toshiba_acpi.hotkey_dev) {
939 acpi_remove_notify_handler(toshiba_acpi.handle,
940 ACPI_DEVICE_NOTIFY, toshiba_acpi_notify);
941 sparse_keymap_free(toshiba_acpi.hotkey_dev);
942 input_unregister_device(toshiba_acpi.hotkey_dev);
945 if (toshiba_acpi.bt_rfk) {
946 rfkill_unregister(toshiba_acpi.bt_rfk);
947 rfkill_destroy(toshiba_acpi.bt_rfk);
950 if (toshiba_backlight_device)
951 backlight_device_unregister(toshiba_backlight_device);
953 remove_toshiba_proc_entries();
955 if (toshiba_proc_dir)
956 remove_proc_entry(PROC_TOSHIBA, acpi_root_dir);
958 if (toshiba_acpi.illumination_installed)
959 led_classdev_unregister(&toshiba_led);
961 platform_device_unregister(toshiba_acpi.p_dev);
963 return;
966 static int __init toshiba_acpi_init(void)
968 u32 hci_result;
969 bool bt_present;
970 int ret = 0;
971 struct backlight_properties props;
973 if (acpi_disabled)
974 return -ENODEV;
976 /* simple device detection: look for HCI method */
977 if (is_valid_acpi_path(TOSH_INTERFACE_1 GHCI_METHOD)) {
978 method_hci = TOSH_INTERFACE_1 GHCI_METHOD;
979 if (toshiba_acpi_setup_keyboard(TOSH_INTERFACE_1))
980 pr_info("Unable to activate hotkeys\n");
981 } else if (is_valid_acpi_path(TOSH_INTERFACE_2 GHCI_METHOD)) {
982 method_hci = TOSH_INTERFACE_2 GHCI_METHOD;
983 if (toshiba_acpi_setup_keyboard(TOSH_INTERFACE_2))
984 pr_info("Unable to activate hotkeys\n");
985 } else
986 return -ENODEV;
988 pr_info("Toshiba Laptop ACPI Extras version %s\n",
989 TOSHIBA_ACPI_VERSION);
990 pr_info(" HCI method: %s\n", method_hci);
992 mutex_init(&toshiba_acpi.mutex);
994 toshiba_acpi.p_dev = platform_device_register_simple("toshiba_acpi",
995 -1, NULL, 0);
996 if (IS_ERR(toshiba_acpi.p_dev)) {
997 ret = PTR_ERR(toshiba_acpi.p_dev);
998 pr_err("unable to register platform device\n");
999 toshiba_acpi.p_dev = NULL;
1000 toshiba_acpi_exit();
1001 return ret;
1004 force_fan = 0;
1005 key_event_valid = 0;
1007 /* enable event fifo */
1008 hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
1010 toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir);
1011 if (!toshiba_proc_dir) {
1012 toshiba_acpi_exit();
1013 return -ENODEV;
1014 } else {
1015 create_toshiba_proc_entries();
1018 props.type = BACKLIGHT_PLATFORM;
1019 props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1;
1020 toshiba_backlight_device = backlight_device_register("toshiba",
1021 &toshiba_acpi.p_dev->dev,
1022 NULL,
1023 &toshiba_backlight_data,
1024 &props);
1025 if (IS_ERR(toshiba_backlight_device)) {
1026 ret = PTR_ERR(toshiba_backlight_device);
1028 pr_err("Could not register toshiba backlight device\n");
1029 toshiba_backlight_device = NULL;
1030 toshiba_acpi_exit();
1031 return ret;
1034 /* Register rfkill switch for Bluetooth */
1035 if (hci_get_bt_present(&bt_present) == HCI_SUCCESS && bt_present) {
1036 toshiba_acpi.bt_rfk = rfkill_alloc(toshiba_acpi.bt_name,
1037 &toshiba_acpi.p_dev->dev,
1038 RFKILL_TYPE_BLUETOOTH,
1039 &toshiba_rfk_ops,
1040 &toshiba_acpi);
1041 if (!toshiba_acpi.bt_rfk) {
1042 pr_err("unable to allocate rfkill device\n");
1043 toshiba_acpi_exit();
1044 return -ENOMEM;
1047 ret = rfkill_register(toshiba_acpi.bt_rfk);
1048 if (ret) {
1049 pr_err("unable to register rfkill device\n");
1050 rfkill_destroy(toshiba_acpi.bt_rfk);
1051 toshiba_acpi_exit();
1052 return ret;
1056 toshiba_acpi.illumination_installed = 0;
1057 if (toshiba_illumination_available()) {
1058 if (!led_classdev_register(&(toshiba_acpi.p_dev->dev),
1059 &toshiba_led))
1060 toshiba_acpi.illumination_installed = 1;
1063 return 0;
1066 module_init(toshiba_acpi_init);
1067 module_exit(toshiba_acpi_exit);